
To Err is Human; to Debug, Divine
Roger Staum, SAS® Institute, New York, NY

ABSTRACT
This tutorial describes four types of programming errors and how
you can recognize them. It also discusses four approaches to
handling errors: deter, detect, deflect, and debug.

INTRODUCTION
In this paper, I focus on errors which you may encounter, and
tools you can use, in

• version 8.2 of base SAS software
• all operating environments supported by that software1
• both interactive and non-interactive execution modes.

Because it is a beginning tutorial, this paper does not address
errors which can occur

• in the SAS macro language. The only use of macro
language is as a diagnostic tool.

• in the process of integrating your program into a system.
All examples are assumed to be stand-alone programs.

The primary data set used in the examples is SASUSER.CLASS,
which contains data about 19 boys and girls. There are two
character variables (Name and Sex) and three numeric variables
(Age, Height, and Weight). The data set is sorted by Name
within Sex.
In order to illustrate merging issues, a second data set,
SASUSER.CLASSCOLORS, is used. This data set contains two
character variables (Name and FavoriteColor), 9 observations,
and is sorted by Name.
CLASS.DAT and CLASS2RECORDS.DAT are external files
which can be read to create SASUSER.CLASS. CLASS.DAT
has one record, and CLASS2RECORDS.DAT has two records,
for every observation of SASUSER.CLASS.
Excerpts from programs, logs, and outputs appear throughout
this paper. I have edited them in order to save space, and
emphasized some lines in bold font.

WHAT IS AN ERROR?
People use the term “error” in different ways, often resulting in
confusion and miscommunication. In order to avoid this, I will
state my definition up front, and use it consistently:

An error in a computer program refers to a condition
leading to an unexpected and usually undesirable
result.

This is, admittedly, a very general definition. It implies that an
error may occur without being signalled by an error message in
the SAS log. In fact, information about an error may be
contained in warnings or notes, or may not even be hinted at in
the log.

TYPES OF ERRORS
People also categorize SAS programming errors in different
ways. The distinctions among these categories can be difficult
to understand, especially for a beginning programmer. Therefore
the categories which I have chosen are based primarily on what
you can observe in the SAS log.
Recognizing the type of error which has occurred in your program
is the first step in the process of debugging.

SYNTAX/RESOURCE ERRORS
A syntax/resource error is always identified by an ERROR
message in the log, and the step or global statement in which it
occurs is not executed. This means that you are likely to see
additional messages in the log, indicating that a DATA step did

not read or write data, a PROC step did not produce a report, or a
global statement did not do its work.
Syntax errors are caused by violating the rules of the SAS
language. Such violations include misspelled keywords, omitted
semicolons, mismatched quotes, invalid options, etc.
The following is an example of a syntax error in a PROC step.
Notice how the SAS system does not process any data or
produce the desired report.
8 PROC PRINT DATA sasuser.class;

73

ERROR 73-322: Expecting an =.
9 RUN;

NOTE: The SAS System stopped processing this
step because of errors.

Resource errors occur when the SAS system is unable to find a
resource, such as a data set or external file, which the program
needs.
The following is an example of a resource error caused by
requesting a non-existent data set. Notice once again that the
SAS system does not process data or produce a report.
10 PROC PRINT DATA=sasuser.children;
ERROR: File SASUSER.CHILDREN.DATA does not
exist.
11 RUN;

NOTE: The SAS System stopped processing this
step because of errors.

Sometimes a syntax error is accompanied by misleading
resource error messages. Notice how the missing semicolon in
the following example makes the SAS system believe that the
program is trying to read non-existent data sets.
1 DATA a;
2 SET sasuser.class
3 IF Age > 14;

-
22
--
200

ERROR: File WORK.IF.DATA does not exist.
ERROR: File WORK.AGE.DATA does not exist.
ERROR 22-322: Syntax error, expecting one of the
following: a name, a quoted string, (, ;, END,
KEY, KEYS, NOBS, OPEN, POINT, _DATA_, _LAST_,
NULL.
ERROR 200-322: The symbol is not recognized and
will be ignored.
4 RUN;
NOTE: The SAS System stopped processing this
step because of errors.
WARNING: The data set WORK.A may be incomplete.
When this step was stopped there were 0
observations and 5 variables.

In the case of a slight misspelling of a keyword, the SAS system
may guess what keyword you intended, display a warning instead
of an error message, and execute the step or global statement.
Here is an example of a misspelled keyword leading to a warning
message and step execution:
17 DATA a;
18 ST sasuser.class;

--
1

WARNING 1-322: Assuming the symbol SET was
misspelled as ST.
19 IF Age > 14;
20 RUN;

Beginning TutorialsNESUG 15

2

NOTE: There were 19 observations read from the
data set SASUSER.CLASS.
NOTE: The data set WORK.A has 5 observations and
5 variables.

The SAS system may not always guess correctly what you
intended. Even when it does, you should always correct the
error. Your goal should be an error-free program, a clean log,
and correct output.

RUN-TIME ERRORS
A run-time error is also flagged with an error message in the log,
but the step partially executes.2 A DATA step may read or write
some of the data, or a PROC step may produce part of a report,
and then stop executing.
A run-time error is usually caused by a serious contradiction
within your program, or between your program and the data. The
SAS system is unable to detect this problem until it starts
executing the step, and cannot easily recover.
Here are two examples of run-time errors. The first is an attempt
to do BY-group processing when the data set is not properly
sorted. Notice that PROC PRINT reads the data until it finds an
observation out of sort order. It also produces a partial report.
7 PROC PRINT DATA=sasuser.class;
8 BY Name;
9 RUN;
ERROR: Data set SASUSER.CLASS is not sorted in
ascending sequence. The current by-group has
Name = Tammy and the next by-group has Name =
Alfred.
NOTE: The SAS System stopped processing this
step because of errors.
NOTE: There were 10 observations read from the
data set SASUSER.CLASS.

The second run-time error occurs when an executing DATA step
attempts to access a non-existent 16th array element.
15 DATA a;
16 SET sasuser.class;
17 ARRAY X {15};
18 X{Age} = 1;
19 RUN;
ERROR: Array subscript out of range at line 18
column 5.
name=Philip sex=M age=16 height=72 weight=150
X1=. X2=. X3=. X4=. X5=. X6=. X7=. X8=. X9=.
X10=.
X11=. X12=. X13=. X14=. X15=. _ERROR_=1 _N_=16
NOTE: The SAS System stopped processing this
step because of errors.
NOTE: There were 16 observations read from the
data set SASUSER.CLASS.
WARNING: The data set WORK.A may be incomplete.
When this step was stopped there were 15
observations and 20 variables.

DATA ERRORS
Data errors occur only in DATA steps. They are identified by
notes, rather than error messages, which tell you that missing
values have been generated because an expression could not be
evaluated or an external data field could not be read. In addition,
the log displays a snapshot of the Program Data Vector (PDV) at
the time the error was encountered. This snapshot shows that
the automatic variable _ERROR_ is set to 1.3 If an external data
file is being read, the log will also show a snapshot of the input
buffer, with a column ruler.
Data errors result from contradictions between program
specifications and the data being processed. In these cases, the
SAS system recovers by generating missing values. Execution
continues.
Data errors can be either sporadic or systematic. If the errors are
caused by data entry errors, for example, there will probably be
only a few such messages, and therefore a few missing values as
a result. If the errors are caused by incorrect specifications or

informats, however, virtually identical data error messages may
occur for every record or observation processed.
You can control the maximum number of such messages printed
by using the ERRORS= system option. The default value is 20.
This option does not affect the number of missing values
generated.
Here is an example of a data error resulting from an expression
which could not be evaluated. Apparently, the programmer
assumed that every student’s weight (in pounds) would exceed
his/her height (in inches), and that it would therefore be safe to
take the log of the difference. This assumption was not true for
one student.
32 DATA a;
33 SET sasuser.class;
34 X = LOG(Weight-Height);
35 RUN;
NOTE: Invalid argument to function LOG at line
34 column 9.
name=Sandy sex=F age=11 height=51.3 weight=50.5
X=. _ERROR_=1 _N_=7
NOTE: Mathematical operations could not be
performed at the following places. The results
of the operations have been set to missing
values.
Each place is given by: (Number of times) at
(Line):(Column).
1 at 34:9
NOTE: There were 19 observations read from the
data set SASUSER.CLASS.
NOTE: The data set WORK.A has 19 observations
and 6 variables.

Data errors can also occur when reading external files, if the data
fields contradict the input specifications. You might be
attempting to read character data into a SAS numeric variable, or
to read data with an inappropriate informat.
In the following example, the programmer was trying to create
SASUSER.CLASS from an external file, and apparently believed
that the field representing the student’s sex was coded as a
number, rather than a letter. The variable Sex in the new data set
now contains missing values.
239 OPTIONS ERRORS=3;
240 DATA sasuser.class;
241 INFILE 'class.dat';
242 INPUT @ 1 Name $8.
243 @10 Sex 1.
244 @12 Age 2.
245 @15 Height 4.1
246 @20 Weight 5.1;
247 RUN;
NOTE: Invalid data for Sex in line 1 10-10.
RULE: ----+----1----+----2----+----3
1 Alice F 13 56.5 84.0 24
Name=Alice Sex=. Age=13 Height=56.5 Weight=84
ERROR=1 _N_=1
NOTE: Invalid data for Sex in line 2 10-10.
2 Becka F 13 65.3 98.0 24
Name=Becka Sex=. Age=13 Height=65.3 Weight=98
ERROR=1 _N_=2
NOTE: Invalid data for Sex in line 3 10-10.
ERROR: Limit set by ERRORS= option reached.
Further errors of this type will not be printed.
3 Gail F 14 64.3 90.0 24
Name=Gail Sex=. Age=14 Height=64.3 Weight=90
ERROR=1 _N_=3

NOTE: The data set SASUSER.CLASS has 19
observations and 5 variables.

LOGIC ERRORS
Logic errors are not as easily identified as the other types of
errors. There are no error or warning messages, or even
distinctive notes, in the log. The SAS system does not perceive
anything wrong or unusual in the program.

Beginning TutorialsNESUG 15

3

Sometimes log notes may indicate a relationship between the
amount of input and output data which you may recognize as
incorrect. A logic error is a probable explanation. In other cases,
examining the output may be the only way to discover logic
errors.
Logic errors are caused by a completely legal use of
programming tools which, nonetheless, do not produce the
intended output.
Here is an example of a logic error, in which the programmer
wants to create a summary data set by Sex. The desired result
should have two observations, but since the programmer did not
use a conditional OUTPUT or subsetting IF statement, the
summary data set has as many observations as the original detail
data set.
26 DATA avhts (KEEP=Sex AverageHeight);
27 SET sasuser.class;
28 BY Sex;
29 IF FIRST.Sex THEN DO;
30 SumOfHeights = 0;
31 Number = 0;
32 END;
33 SumOfHeights + Height;
34 Number + 1;
35 IF LAST.Sex THEN
36 AverageHeight =
SumOfHeights/Number;
37 RUN;
NOTE: There were 19 observations read from the
data set SASUSER.CLASS.
NOTE: The data set WORK.AVHTS has 19
observations and 2 variables.

AN APPROACH TO PROGRAMMING: THE 4 D’S
If your attitude towards programming errors is, “I’ll wait until they
are obvious or someone points them out to me, and then I’ll
correct them”, then you will spend a lot of time explaining your
incorrect results, as well as maintaining and correcting your
programs. A comprehensive approach to errors in computer
programs should include more than just debugging.
I recommend a multi-layer approach to dealing with errors in your
SAS programs. It can be summarized as the 4 Ds:

• Deter – avoid errors in the first place
• Detect – notice and categorize errors
• Deflect – protect your data and program logic
• Debug – remove the errors

DETER
“An ounce of prevention is worth a pound of cure” is an adage
which certainly holds true in programming. It is far less time-
consuming and frustrating to avoid errors than to identify and
remove them.

PROGRAMMING STYLE
A readable, consistent programming style is your first line of
defense against errors. White space and indentation support
readability. Ending every step with an appropriate RUN; or QUIT;
statement will not only cause messages to appear in the right
place in your log, but also make it easier for you to submit
individual steps interactively.
Aim for simple, elegant solutions to programming problems.
Remember that there is usually more than one solution to a
problem in the SAS system. If your code seems complex or
clumsy, look for a better way.
A liberal sprinkling of comments within your code will force you to
think about and articulate the issues, and thus help you avoid
logical errors. Comments can also facilitate subsequent
debugging and program maintenance.

DEVELOPMENT STYLE

If you try to write a long, complex program all at once, the
debugging process will almost always be more difficult. Instead,
develop incrementally - one SAS step at a time, for example,
checking your results after each step.
Interactive execution mode goes hand-in-hand with incremental
development. When you run interactively, you can submit code
fragments and get faster turnaround. Once you have an error-
free program, non-interactive execution will use fewer resources
and may be more convenient.

DEFENSIVE PROGRAMMING
Just as defensive driving can help avoid traffic accidents,
defensive programming can help prevent errors – especially logic
errors.
SAS software is very forgiving. For instance, there are many
built-in defaults, and automatic type conversion occurs in many
situations. These features can save time and typing, but the
results may not be what you wanted. When you code more
explicitly, you are more likely to think through issues such as
variable type and length, and get optimal results.
For example, when you omit the DATA= option on a PROC step,
the PROC will read the most recently created data set. But if you
later move code within the program, that PROC might read the
wrong data set.
As another example, the SAS system does not warn you about
truncation of character data. The only way that you can tell that
this has happened is by looking carefully at your output. There
are a number of situations where the SAS system defaults to 8
bytes for character strings, which may not be what you want. An
explicit LENGTH statement allows you to assign the correct
number of bytes to a character variable, avoiding both truncation
and wasted space.

KNOW YOUR DATA
There is no substitute for knowing your data. The better you
know your data, the less likely you are to encounter run-time,
data, and logic errors.
There are many tools in SAS for familiarizing yourself with your
data:

• The FSLIST procedure allows you to browse external
files.4

• The CONTENTS, DATASETS, and CATALOG
procedures allow you to gather metadata about SAS data
libraries and their members.5

• The interactive windows of the SAS Explorer allow you to
gather similar metadata

• The SQL procedure dictionary tables contain similar
information, as well as global metadata such as title
settings.

• The PRINT procedure and VIEWTABLE windows allow
you to look at the data portion of SAS data sets.

• The FREQ and MEANS procedures permit you to get a
quick picture of the distribution of variables.

USE THE ENHANCED EDITOR
The enhanced editor is available in Version 8 under Windows.
The visual appearance of your code can give you an early
warning about syntax errors before you submit the program. For
example, quoted strings usually have a unique color and font
combination. Omission of a quote is immediately obvious,
because all subsequent code looks like one long quoted string.

MERGING
Merging is an inherently complex operation. Here are three
issues to think about in order to avoid logic errors:
Non-matches
If the data sets do not contain the same values of the BY
variables, then there will be some non-matches. Always be
aware of whether non-matches exist in your data, and whether
you want to output them. The IN= data set option tells you which

Beginning TutorialsNESUG 15

4

data set(s) are contributing data to the PDV at each execution of
the MERGE statement, and thus allow you to include or exclude
non-matches.
In the following example, we need to merge SASUSER.CLASS
with SASUSER.CLASSCOLORS, which contains the results of a
class survey on students’ favorite colors. Since only the girls
responded to the survey, there are many non-matches. If our
purpose is to display the survey results without embarrassing the
boys, then the program should eliminate non-matches.
147 PROC SORT DATA=sasuser.class
148 OUT=class;
149 BY Name;
150 RUN;
NOTE: There were 19 observations read from the
data set SASUSER.CLASS.
NOTE: The data set WORK.CLASS has 19
observations and 5 variables.
NOTE: PROCEDURE SORT used:

real time 0.02 seconds
cpu time 0.02 seconds

152 DATA responders;
153 MERGE class
154 sasuser.classcolors (IN=cc);
155 BY Name;
156 IF cc = 1;
157 RUN;
NOTE: There were 19 observations read from the
data set WORK.CLASS.

NOTE: There were 9 observations read from the
data set SASUSER.CLASSCOLORS.

Multiple matches
If there are multiple observations in 2 or more datasets with the
same values of the BY variables, then you have multiple
matches. This situation is usually problematic, since there is no
a priori “correct” way to combine the data.6 The DATA step
responds by writing the following note to the log:
MERGE statement has more than one data set with
repeats of BY values.
If you consider multiple matches as an error in your program, the
usual causes are:

• a variable missing from the BY statement
• data sets which should not be merged in the first place.

Overwriting of commonly named variables
Usually the only variables in common when merging data sets
are the BY variables. If there are other variables with the same
names, the values in the first data set mentioned on the MERGE
statement will be overwritten by those in the second data set.
By default, no special message appears in the log. If you set the
system option MSGLEVEL= to I, then you will see a message
such as the following:
INFO: The variable Y on data set WORK.A will be
overwritten by data set WORK.B.

In many cases the problem can be corrected by realizing that the
additional variable should have been in the BY statement. In
other cases - especially when the variables have a different
underlying meaning - one of them should be renamed to avoid
overwriting.

DETECT
Despite your best efforts, SAS errors happen. It is important to
be aware that an error has occurred.

LOOK AT THE LOG
It cannot be over-emphasized: always look at the log. Beginning
programmers tend to ignore the log if they get any output at all, or
to stare only at the source code if they get no output or the output
is clearly incorrect.
There are tools which make it easier to remember to look at the
log. In interactive mode:

• Issue the commands AUTOPOP ON; WSAVE from the
log window. The first command causes the log to pop up
automatically if SAS software writes anything to it. The
second command causes the software to store this
behavior in your profile.

• Program your function keys to take you to the top of the
log, and to search for common error keywords (such as
INVALID).

In non-interactive mode:

• At a minimum, refer to the pages listed in the summary of
error messages at the end of the log. Remember,
however, that SAS error messages do not identify data
and logic errors.

• You might also want to consider creating a post-
processing routine which reads the log and produces a
readable summary of syntax, run-time, and data errors.

ALL THE CODE
If you look at your program as echoed in the log, you may not see
all of the code which actually executed. There are five system
options which you should make sure are turned on:

• ECHOAUTO, which must be set at invocation or in your
configuration file, ensures that any code in an autoexec
file is echoed at the top of the log. Remember that an
autoexec file may have been written by someone else and
be executing without your knowledge. The default setting
is NOECHOAUTO.

• SOURCE controls the echoing of your main program
(primary source code). If all that appears in the log are
messages, someone has probably turned this option off.
This option may be (re)set at any point in your session.
The default setting is SOURCE.

• SOURCE2 controls the echoing of secondary source code
brought in by %INCLUDE statements. This option may be
(re)set at any point in your session. The default setting is
NOSOURCE2.

• MPRINT controls echoing of source code generated by
macro execution. This option may be (re)set at any point
in your session. The default value is NOMPRINT.

• SYMBOLGEN controls resolution of macro variables. This
is especially useful in “open code” (when there is no
macro program executing, and therefore MPRINT cannot
be used). The default setting is NOSYMBOLGEN.

MAKE THE LOG MORE READABLE
Don’t discourage yourself from looking at the log because it is
cluttered and difficult to read:

• In interactive mode, clear the log periodically.
• In non-interactive mode, if your program has several

sections, you may want to use the global statements
SKIP <n>; or PAGE;.7 The SKIP <n>; statement will
cause n blank lines to appear in the log.8 The PAGE;
statement will cause the log to go to another page.
Neither of these statements is echoed to the log.

LOOK AT THE OUTPUT
Do not restrict yourself to looking at the log. Remember that logic
errors may be undetectable from the log. Look at the output of
each step carefully, whether it is a report or a data file.

DEFLECT
Sometimes errors can harm your data or program logic before
you even have a chance to notice them. In such cases, it is a
good idea to anticipate the possibility of errors, and program
around them.

DEFEND YOUR DATA
There are system options which, when turned on, will help you
protect your data from the harmful effects of errors.

Beginning TutorialsNESUG 15

5

NOREPLACE prevents permanent data sets from being
replaced. If your program is only supposed to be reading from
permanent data sets, and the only data sets it should be
replacing are temporary, then this might be a good option to set.
It should be noted that this protection does not extend to
techniques which modify the data in place. The default setting is
REPLACE.
In the examples below, the NOREPLACE option keeps the SORT
procedure from replacing SASUSER.CLASS, but does not block
the SQL procedure from deleting observations (since this
modifies the data set in place).
47 OPTIONS NOREPLACE;
48 PROC SORT DATA=sasuser.class;
49 BY Height;
50 RUN;
NOTE: There were 19 observations read from the
data set SASUSER.CLASS.
NOTE: The data set SASUSER.CLASS has 19
observations and 5 variables.
WARNING: Data set SASUSER.CLASS was not replaced
because of NOREPLACE option.

52 PROC SQL;
53 DELETE FROM sasuser.class
54 WHERE Age > 14;
NOTE: 5 rows were deleted from SASUSER.CLASS.

RSASUSER puts the entire SASUSER library in read-only mode.
It is valid only at session startup. The default setting is
NORSASUSER.
DATASTMTCHK= allows you to prevent certain keywords from
being used as one-level data set names. The possible settings
are NONE, COREKEYWORDS (the default), and
ALLKEYWORDS.
This option might seem unimportant to you until you see a
particular type of error caused by omitting a semicolon. Notice
how DATASTMTCHK=COREKEYWORD prevents the data set
from being inadvertently destroyed.
6 OPTIONS DATASTMTCHK=NONE;
7 DATA a
8 SET sasuser.class;
9 IF age > 14;
10 RUN;
NOTE: Variable age is uninitialized.
NOTE: The data set WORK.A has 0 observations and
1 variables.
NOTE: The data set WORK.SET has 0 observations
and 1 variables.
NOTE: The data set SASUSER.CLASS has 0
observations and 1 variables.

17 OPTIONS DATASTMTCHK=COREKEYWORDS;
18 DATA a
19 SET sasuser.class;

56

ERROR 56-185: SET is not allowed in the DATA
statement when option DATASTMTCHK=COREKEYWORDS.
Check for a missing semicolon in the DATA
statement, or use DATASTMTCHK=NONE.
20 IF age > 14;
21 RUN;
NOTE: The SAS System stopped processing this
step because of errors.
WARNING: The data set WORK.A may be incomplete.
When this step was stopped there were 0
observations and 1 variables.
WARNING: Data set WORK.A was not replaced
because this step was stopped.
WARNING: The data set WORK.SET may be
incomplete. When this step was stopped there
were 0
observations and 1 variables.
WARNING: Data set WORK.SET was not replaced
because this step was stopped.

WARNING: The data set SASUSER.CLASS may be
incomplete. When this step was stopped there
were 0 observations and 1 variables.
WARNING: Data set SASUSER.CLASS was not replaced
because this step was stopped.

MERGENOBY= allows you to specify what action SAS should
take when it finds a MERGE statement with no accompanying BY
statement.
A MERGE without a BY is a one-to-one merge. It is legal, but
rarely useful. If you know that you never use this kind of merge,
setting this option to ERROR could prevent incorrect creation or
replacement of a data set. The possible settings are NOWARN
(the default), WARN, and ERROR.
55 OPTIONS MERGENOBY=ERROR;
56 DATA a;
57 MERGE sasuser.class
58 sasuser.classcolors;
59 RUN;
ERROR: No BY statement was specified for a MERGE
statement.
NOTE: The SAS System stopped processing this
step because of errors.
WARNING: The data set WORK.A may be incomplete.
When this step was stopped there were 0
observations and 6 variables.
WARNING: Data set WORK.A was not replaced
because this step was stopped.

You may also want to consider password-protecting your data via
one of three data set options, corresponding to three levels of
protection:
• READ=, which prevents the data set from being read
• WRITE=, which prevents the data set from being modified in

place
• ALTER=, which prevents the data set from being replaced or

deleted
without the password.
In order to protect important data sets from being damaged by
program errors, you should assign both WRITE and ALTER
passwords.9 Under UNIX and Windows, you can also apply
security rules at the operating environment level. Regular
backups are vital as a last line of defense.
The following example shows how to add an ALTER password to
an existing data set, and what happens if you try to replace the
data set with and without the password. Notice how the
password is masked on the log.
31 PROC DATASETS LIBRARY=sasuser NOLIST;
32 MODIFY class (ALTER=XXXXXX);
33 QUIT;

36 DATA sasuser.class;
37 SET sasuser.class;
38 WHERE Age > 14;
39 RUN;
ERROR: Invalid or missing ALTER password on
member SASUSER.CLASS.DATA.
NOTE: The SAS System stopped processing this
step because of errors.

40 DATA sasuser.class (ALTER=XXXXXX);
41 SET sasuser.class;
42 WHERE Age > 14;
43 RUN;
NOTE: There were 5 observations read from the
data set SASUSER.CLASS.
NOTE: The data set SASUSER.CLASS has 5
observations and 5 variables.

One way you might choose to defend your data is to make sure
that the missing values created by data errors are not added to
important data sets. For example, we can modify an earlier
example of a data error:
1 DATA cleandata problemdata;

Beginning TutorialsNESUG 15

6

2 SET sasuser.class;
3 X = LOG(Weight-Height);
4 IF (_ERROR_ = 0) THEN
5 OUTPUT cleandata;
6 ELSE
7 OUTPUT problemdata;
8 RUN;
NOTE: Invalid argument to function LOG at line 3
column 9.
name=Sandy sex=F age=11 height=51.3 weight=50.5
X=. _ERROR_=1 _N_=7
NOTE: Mathematical operations could not be
performed at the following places. The results
of the operations have been set to missing
values.
Each place is given by: (Number of times) at
(Line):(Column).
1 at 3:9
NOTE: There were 19 observations read from the
data set SASUSER.CLASS.
NOTE: The data set WORK.CLEANDATA has 18
observations and 6 variables.

NOTE: The data set WORK.PROBLEMDATA has 1
observations and 6 variables.

There are also special statements and statement options which
help your program recover from problems reading external files.
When you are reading multiple records in each iteration of the
DATA step, and the correct number of records is not present, the
LOSTCARD statement can help in resynchronization.
In the following example, the external file should have two
records per student, with a unique identifier (Name) on each
record. One student (Philip) has only one record. The
programmer, having been burnt before, wrote defensive code.
When the DATA step logic detects that Name1 (Philip) is not the
same as Name2 (Robert), then the LOSTCARD statement
executes. The SAS system recovers by assuming that the
defective record is actually the first record for Robert.
43 DATA a (DROP=Name1 Name2);
44 INFILE 'class2records.dat';
45 INPUT #1 @1 Name1 $8.
46 @10 Sex $1.
47 @12 Age 2.
48 #2 @1 Name2 $8.
49 @10 Height 4.1
50 @15 Weight 5.1;
51 IF Name1 = Name2 THEN
52 Name = Name1;
53 ELSE
54 LOSTCARD;
55 RUN;
NOTE: Invalid data for Height in line 32 10-13.
NOTE: Invalid data for Weight in line 33 1-5.
NOTE: LOST CARD.
RULE: ----+----1----+----2----+----3
32 Robert M 12 13
33 Robert 64.8 128.0 19
Name1=Philip Sex=M Age=16 Name2=Robert Height=.
Weight=. Name= _ERROR_=1 _N_=16
Name1=Philip Sex=M Age=16 Name2=Robert Height=.
Weight=. Name= _ERROR_=1 _N_=16
NOTE: 37 records were read from the infile
'class2records.dat'.
NOTE: SAS went to a new line when INPUT
statement reached past the end of a line.
NOTE: The data set WORK.A has 18 observations
and 5 variables.

When using list-style input, you should always use the
MISSOVER option on the INFILE statement in case there are
missing fields on the record.
In the following example, the external file contains missing data
(blanks) for Sharon’s weight. An INFILE statement with default
FLOWOVER behavior causes the INPUT statement to load
another record into the input buffer to find a value for the numeric
variable WEIGHT. Since the first field of each record contains

character data for NAME, a data error results. The resulting data
set has only 18 observations.
250 DATA sasuser.class;
251 INFILE 'class.dat';
252 INPUT Name $
253 Sex $
254 Age
255 Height
256 Weight;
257 RUN;
NOTE: Invalid data for Weight in line 9 1-5.
RULE: ----+----1----+----2----+----3
9 Tammy F 14 62.8 102.5 24
Name=Sharon Sex=F Age=15 Height=62.5 Weight=.
ERROR=1 _N_=8
NOTE: 19 records were read from the infile
'class.dat'.
NOTE: SAS went to a new line when INPUT
statement reached past the end of a line.

NOTE: The data set SASUSER.CLASS has 18
observations and 5 variables.

When you use the MISSOVER option, if SAS runs out of fields
before the INPUT statement is satisfied, remaining variables are
set to missing. SAS does not try to load a record prematurely.
The correct number of observations is created.
275 DATA sasuser.class;
276 INFILE 'class.dat' MISSOVER;
277 INPUT Name $
278 Sex $
279 Age
280 Height
281 Weight;
282 RUN;
NOTE: 19 records were read from the infile
'class.dat'.
NOTE: The data set SASUSER.CLASS has 19
observations and 5 variables.

REROUTE THE PROGRAM
You may wish to change the execution path of your program if
you detect errors. This applies primarily to non-interactive
execution mode.
First, you need to find a programmatic way of detecting an error
and be able to reroute the program accordingly. One way to do
this is to write your program as a macro, check the macro return
code after crucial steps, and branch based on conditional logic.
The global macro variable SYSERR is reset by the SAS system
after DATA steps and many PROC steps. In the following
program, the reports should be executed only if the the data set
WORK.A is correctly created, and SYSERR receives a zero
value. Since there is a missing semicolon in the DATA step,
SYSERR will receive a non-zero value, the reporting procedures
will be bypassed, and a special error page will be produced.
%MACRO TryIt;
DATA a;

SET sasuser.class
WHERE Age > 14;

RUN;

%IF &syserr = 0 %THEN %DO;
TITLE1 'Class Members Older Than 14';
PROC PRINT DATA=a;
RUN;
PROC TABULATE DATA=a;

CLASS Sex;
VAR Height;
TABLE Sex, Height*(N MEAN);

RUN;
%END;

%ELSE %DO;
DATA _NULL_;

FILE PRINT;
PUT 'No output due to DATA step error';

Beginning TutorialsNESUG 15

7

RUN;
%END;
%MEND TryIt;

%TryIt

There are special global macro variables, called SYSLIBRC and
SYSFILRC, which can tell you whether the most recent LIBNAME
or FILENAME statement, respectively, worked correctly. As
before, a zero value indicates success, and a non-zero value
indicates failure.
In the following examples, if the file or directory does not exist,
the program logic branches to write an error message to the log.
%MACRO TryIt;
FILENAME xyz 'Imaginary.dat';
%IF &sysfilrc = 0 %THEN %DO;
DATA sasuser.imaginary;

INFILE xyz;
INPUT @ 1 FirstName $10.

@11 LastName $10.;
RUN;
%END;
%ELSE %DO;
%PUT Warning - External file error!;
%END;
%MEND TryIt;
%TryIt

%MACRO TryIt;
LIBNAME Mouse 'C:\Disney\Characters\Mickey';
%IF &syslibrc = 0 %THEN %DO;
PROC DATASETS LIBRARY=Mouse;

CONTENTS DATA=_ALL_ NODS;
QUIT;
%END;
%ELSE %DO;
%put Fatal Error: Library unavailable or does
not exist.;
%END;
%MEND TryIt;
%TryIt

If you decide that you want to terminate the program whenever
any error occurs, set the ERRORABEND system option. Data
and logic errors are not considered official SAS errors, and so do
not trigger termination.
This option can be (re)set at any time during the session. The
default value is NOERRORABEND.
The SAS system reacts differently to errors when
NOERRORABEND is in effect, depending on execution mode. In
interactive mode, the session continues normally, since the
programmer can intercede easily. In non-interactive mode, the
SAS system displays the following message:
NOTE: SAS set option OBS=0 and will continue to
check statements.
This may cause NOTE: No observations in data
set.

Many programmers refer to this behavior as syntax-check mode.
In the following example, the session will terminate as soon as
the DATA step error is detected, because ERRORABEND has
been set.
OPTIONS ERRORABEND;

DATA a;
SET sasuser.class
IF Age > 14;

RUN;
/* More code */

In a DATA step, you can use the STOP or ABORT statements to
terminate step execution in case of a data error or other
undesirable condition. In addition to terminating execution of the
DATA step, ABORT triggers a run-time error. ABORT also has
an ABEND option which will terminate the entire program, and
optionally send an error code to the operating environment.

1 DATA a;
2 SET sasuser.class;
3 IF Age > 14 THEN
4 STOP;
5 RUN;
NOTE: There were 6 observations read from the
data set SASUSER.CLASS.
NOTE: The data set WORK.A has 5 observations and
5 variables.
NOTE: DATA statement used:

real time 0.06 seconds
cpu time 0.02 seconds

7 DATA a;
8 SET sasuser.class;
9 IF Age > 14 THEN
10 ABORT;
11 RUN;
ERROR: Execution terminated by an ABORT
statement at line 10 column 9.
name=Mary sex=F age=15 height=66.5 weight=112
ERROR=1 _N_=6
NOTE: The SAS System stopped processing this
step because of errors.
NOTE: There were 6 observations read from the
data set SASUSER.CLASS.
WARNING: The data set WORK.A may be incomplete.
When this step was stopped there were 5
observations and 5 variables.

If you prefer that the program continue in syntax check mode
when you encounter an error, even in interactive mode, you can
adopt a programming standard in which you add macro variable
references to RUN and PROC SQL statements. Then, at the
point at which you detect an error, you can assign the value
CANCEL to one macro variable and NOEXEC to the other. (The
values are null otherwise.)
OPTIONS MPRINT;
%MACRO tryit;
%local Cancel

NoExec;

DATA a;
SET sasuser.class
WHERE Age > 13;

RUN;

%IF &syserr NE 0 %THEN %DO;
%LET Cancel = CANCEL;
%LET NoExec = NOEXEC;

%END;

PROC PRINT DATA=a;
RUN &Cancel;

PROC SQL &NoExec;
SELECT Sex,

AVG(Height) AS AverageHeight
FROM sasuser.class
GROUP BY Sex;
QUIT;

%MEND tryit;
%tryit

Because of the missing semicolon in the DATA step, SYSERR is
set to a non-zero value, the CANCEL and NOEXEC macro
variables are set to values equal to their names, and the syntax
of the PROCs is checked, but they do not execute. The end of
the log looks like this:
MPRINT(TRYIT): PROC PRINT DATA=a;
MPRINT(TRYIT): RUN CANCEL;
NOTE: The procedure was not executed at the
user's request.

MPRINT(TRYIT): PROC SQL NOEXEC;

Beginning TutorialsNESUG 15

8

MPRINT(TRYIT): SELECT Sex, AVG(Height) AS
AverageHeight FROM sasuser.class GROUP BY Sex;
NOTE: Statement not executed due to NOEXEC
option.

MPRINT(TRYIT): QUIT;

DEBUG
Once you detect an error, you need to understand why it
happened and remove it. This is the process of debugging.

THE DATA STEP DEBUGGER
The DATA step debugger is an excellent tool for debugging
DATA step logic errors in interactive mode. You invoke it by
adding a DEBUG option to the DATA statement, e.g.:

DATA a / DEBUG;

The debugger displays two special windows. The Debugger
Source window shows the DATA step code, highlighting the
statement which is about to execute. The Debugger Log window
is used to enter commands and show you the results of those
commands.
You control the debugger by issuing commands, which allow you
to:

• step through execution one or several statements at a
time

• move rapidly through execution until a predefined event
occurs (e.g. a particular variable changes its value)

• evaluate expressions
• change the values of variables
• exit the debugger at any time.

If the logic error is data-dependent, you may want to apply tools
such as a WHERE statement or the FIRSTOBS and OBS options
to focus on those observations which are causing problems.

DATA STEP STATEMENTS
The PUT and LIST statements are useful for finding DATA step
logic errors, especially in non-interactive mode. PUT writes
values from the PDV or the input buffer. By default, PUT writes
to the log, which is usually appropriate when your focus is on
debugging. LIST writes values from the input buffer to the log.
Examining the contents of the PDV can often help you debug a
DATA step. Since PUT statements can generate many lines, you
may want to limit the number of PUT statements you use and the
number of iterations in which you execute them. It is also a good
idea to use named PUT syntax and text literals, so that it is easy
to associate variables with values, and PUT statements with lines
in the log.
In the following variation on a previous example (calculating
average heights by Sex), the program correctly outputs once per
group, but the value of AverageHeight is missing. Notes in the
log also indicate that missing values are being generated.
361 DATA avhts (KEEP=Sex AverageHeight);
362 SET sasuser.class;
363 BY Sex;
364 IF FIRST.Sex THEN DO;
365 SumOfHeights = 0;
366 Number = 0;
367 END;
368 SumOfHeights = SumOfHeights + Height;
369 Number = Number + 1;
370 IF LAST.Sex;
371 AverageHeight = SumOfHeights / Number;
372 RUN;
NOTE: Missing values were generated as a result
of performing an operation on missing values.
Each place is given by: (Number of times) at
(Line):(Column).

17 at 368:33 17 at 369:21 2 at 371:34
NOTE: There were 19 observations read from the
data set SASUSER.CLASS.
NOTE: The data set WORK.AVHTS has 2 observations
and 2 variables.

By inserting two PUT statements and examining the log, the
programmer discovers that SumOfHeights is not being
incremented, but is being reset to missing value. Hopefully, the
programmer then realizes that SumOfHeights needs to be
retained.
DATA avhts (KEEP=Sex AverageHeight);
374 SET sasuser.class (OBS=3);
375 BY Sex;
376 IF FIRST.Sex THEN DO;
377 SumOfHeights = 0;
378 Number = 0;
379 END;
380 SumOfHeights = SumOfHeights + Height;
381 Number = Number + 1;
382 PUT Name= Height= SumOfHeights=;
383 IF LAST.Sex;
384 AverageHeight = SumOfHeights / Number;
385 PUT 'End of Group: ' AverageHeight= /;
386 RUN;

name=Alice height=56.5 SumOfHeights=56.5
name=Becka height=65.3 SumOfHeights=.
name=Gail height=64.3 SumOfHeights=.
End of Group: AverageHeight=.

NOTE: Missing values were generated as a result
of performing an operation on missing values.
Each place is given by: (Number of times) at
(Line):(Column).

2 at 380:33 2 at 381:21 1 at 384:34
NOTE: There were 3 observations read from the
data set SASUSER.CLASS.
NOTE: The data set WORK.AVHTS has 1 observations
and 2 variables.

The PUT statement can include special keywords, which can be
useful for debugging:

• _ALL_ refers to the entire PDV (both user and automatic
variables).

• _INFILE_ refers to the contents of the input buffer. PUT
INFILE can only be used after an INPUT statement.

The LIST statement also writes a record from the external file to
the log, but it does not have to follow an INPUT statement, and
also displays a column ruler.

GO FOR THE ROOT CAUSE
Errors rarely occur in isolation. They usually cause further errors
downstream, as the assumptions of later statements and steps
are violated. This means that your log may contain many
warning and error messages, caused by only one mistake on
your part.
Always start the debugging process with the first step in which an
error message occurs. Look at all the messages for that step.
Determine whether a syntax/resource error or a run-time error
has occurred. It rarely makes sense to look at the messages in
subsequent steps unless they recur after you correct the code in
the first step and rerun the program.
Debugging is a skill which improves with experience. The more
errors you make, the better you become at debugging.

SIMPLIFY
When a complex program has errors – especially logic errors - it
may help to simplify the program in an attempt to isolate the
problem.
Here are some guidelines:

• Focus on one step at a time.
• Carefully check the inputs and outputs of that step.
• “Comment out” statements which you think are unrelated

to the problem. If the problem disappears, then add them
back in one or two at a time.

• Focus on intermediate values, using tools such as the
DATA step debugger or the PUT statement.

• Question your assumptions.

Beginning TutorialsNESUG 15

9

THE USUAL SUSPECTS
Whenever you see a syntax error message which makes no
sense, a missing semicolon should be the first thing to consider.
This type of error often confuses SAS software, since what you
intended as two statements now look like one, statement
keywords may look like options, etc. Examine the statement
immediately preceding the one flagged with the error message.
One of the most annoying errors to correct is a mismatched
quote. In non-interactive mode, the rest of the program will
probably not run correctly, if at all. In interactive mode, some of
the symptoms may vary:

• You may see a “step running” message on the title bar of
the editor window.

• The log may display a warning such as:
The TITLE statement is ambiguous
due to invalid options or unquoted
text.

• The log may display a warning such as:
The quoted string currently being
processed has become more than 262
characters long. You may have
unbalanced quotation marks.

but the program will not execute and the usual log notes are
absent.
The best solution for this error is to interrupt the currently
executing step, correct the code, and resubmit the program.
Methods for interrupting a step differ slightly across operating
environments.10

SUSPICIOUS NOTES
There are certain notes which should always make you think
twice, because they so often indicate an error. Data errors and
reading past the end of a record were mentioned earlier. Here
are some other notes which should sound alarms, and possible
solutions:
Propagation of missing values occurs as a result of evaluating
an expression, in which at least one operand has a missing
value.
If your input data contain some missing values, then it may be
both appropriate and expected for those values to be propagated
through expression evaluation.
You may be able to avoid propagation of missing values by using
functions instead of arithmetic operators. For example, the SUM
function ignores missing values, whereas the + operator
propagates them. In any case, it is your responsibility to
determine whether propagation of missing values constitutes an
error in your program.
An uninitialized variable note means that you have referred to a
variable in a DATA step without providing a way for it to receive a
value. The uninitialized variable is assigned a missing value.
In the following example, the programmer misspelled the variable
Weight. Expression evaluation propagates the missing values.
1 DATA a;
2 SET sasuser.class;
3 WeightKg = Wait / 2.2;
4 RUN;

NOTE: Variable Wait is uninitialized.
NOTE: Missing values were generated as a result
of performing an operation on missing values.
Each place is given by: (Number of times) at
(Line):(Column).
19 at 3:21
NOTE: There were 19 observations read from the
data set SASUSER.CLASS.
NOTE: The data set WORK.A has 19 observations
and 7 variables.

Data type conversion messages should make you ask yourself
several questions. Did I intend SAS to do type conversion for
me, or is one of my variables not the type that I expected? Are

the default format and informats which SAS uses appropriate to
the results that I want? Should I do the conversion myself with
PUT or INPUT functions?
In the following example, the programmer is attempting to create
a new variable called SexAge by concatenating Sex and Age.
Since Age is a numeric variable, and the concatenation operator
expects character operands, the SAS system does an implicit
type conversion as it evaluates the expression. The format used
in implict numeric-to-character conversion is BEST12., which
causes SexAge to be 13 bytes long with 10 embedded blanks in
the values.
34 DATA a;
35 SET sasuser.class (OBS=3);
36 SexAge = Sex || Age;
37 PUT SexAge=;
38 RUN;
NOTE: Numeric values have been converted to
character values at the places given by:

(Line):(Column).
36:21

SexAge=F 13
SexAge=F 13
SexAge=F 14

Replace the default implicit conversion with an explicit conversion
using the PUT function and the 2. format:
40 DATA a;
41 SET sasuser.class (OBS=3);
42 SexAge = Sex || PUT(Age,2.);
43 PUT SexAge=;
44 RUN;
SexAge=F13
SexAge=F13
SexAge=F14

A note saying that at least one format was too small to be
printed means that the specified format is not wide enough for
the data value. As a result, some parts of the displayed value
may be modified: commas, dollar signs, places to the right of the
decimal place, etc. If precision and appearance are important to
you, you may consider this to be an error.
In the following example, we want to find out whether the entire
class can safely fit on an elevator whose weight limit is 1200
pounds. The programmer ran a PROC PRINT step with a SUM
statement for the WEIGHT variable. The format 4.1, although
appropriate for individual weight values, is too small for the sum
of all weights.
62 PROC PRINT DATA=sasuser.class NOOBS;
63 SUM Height;
64 FORMAT Height 4.1;
65 RUN;
NOTE: There were 19 observations read from the
data set SASUSER.CLASS.
NOTE: At least one W.D format was too small for
the number to be printed. The decimal may be
shifted by the "BEST" format.

Name Sex Age Height Weight

Alice F 13 56.5 84.0
Becka F 13 65.3 98.0
Gail F 14 64.3 90.0
Karen F 12 56.3 77.0
Kathy F 12 59.8 84.5
Mary F 15 66.5 112.0
Sandy F 11 51.3 50.5
Sharon F 15 62.5 112.5
Tammy F 14 62.8 102.5
Alfred M 14 69.0 112.5
Duke M 14 63.5 102.5
Guido M 15 67.0 133.0
James M 12 57.3 83.0
Jeffrey M 13 62.5 84.0
John M 12 59.0 99.5
Philip M 16 72.0 150.0
Robert M 12 64.8 128.0

Beginning TutorialsNESUG 15

10

Thomas M 11 57.5 85.0
William M 15 66.5 112.0

======
1184

By changing the format to 6.1, the programmer gets a more
attractive and precise sum for the report.
67 PROC PRINT DATA=sasuser.class NOOBS;
68 SUM Height;
69 FORMAT Height 6.1;
70 RUN;
NOTE: There were 19 observations read from the
data set SASUSER.CLASS.

Name Sex Age Height Weight

Alice F 13 56.5 84.0
Becka F 13 65.3 98.0
Gail F 14 64.3 90.0
Karen F 12 56.3 77.0
Kathy F 12 59.8 84.5
Mary F 15 66.5 112.0
Sandy F 11 51.3 50.5
Sharon F 15 62.5 112.5
Tammy F 14 62.8 102.5
Alfred M 14 69.0 112.5
Duke M 14 63.5 102.5
Guido M 15 67.0 133.0
James M 12 57.3 83.0
Jeffrey M 13 62.5 84.0
John M 12 59.0 99.5
Philip M 16 72.0 150.0
Robert M 12 64.8 128.0
Thomas M 11 57.5 85.0
William M 15 66.5 112.0

======

1184.4

TRICKY ERROR MESSAGES
There are certain error messages which can be confusing to a
beginning SAS programmer:
Symbol not recognized means that the SAS system does not
understand a token11. This often means that the token is out of
place, which in turn may mean a missing semicolon.
Illegal array reference means that you have tried to reference
the array as a whole, rather than an individual element.
In the following example, the programmer wants to replace zero
values in the numeric variables with missing values, but is
referencing the array name inside the loop, rather than an array
element.
101 DATA a (DROP=I);
102 SET sasuser.class;
103 ARRAY V {3} Age Height Weight;
104 DO I = 1 TO 3;
105 IF V = 0 THEN
ERROR: Illegal reference to the array V.
106 V = .;
ERROR: Illegal reference to the array V.
107 END;
108 RUN;
NOTE: The SAS System stopped processing this
step because of errors.
WARNING: The data set WORK.A may be incomplete.
When this step was stopped there were 0
observations and 5 variables.
WARNING: Data set WORK.A was not replaced
because this step was stopped.

The corrected program looks like this:
109 DATA a (DROP=I);
110 SET sasuser.class;
111 ARRAY V {3} Age Height Weight;
112 DO I = 1 TO 3;
113 IF V{I} = 0 THEN
114 V{I} = .;
115 END;

116 RUN;
NOTE: There were 19 observations read from the
data set SASUSER.CLASS.
NOTE: The data set WORK.A has 19 observations
and 5 variables.

RESOURCES
You are not entirely on your own. Other debugging resources
available to you include:

• Hardcopy documentation, SAS OnlineDoc
Documentation, and SAS System Help

• SAS Institute Technical Support
• Colleagues
• Books By Users SAS Institute’s Author Service
• The SAS-L email list
• User group proceedings
• The SAS Institute website

DEBUGGING IS NOT TESTING
Remember that debugging is not a synonym for testing. Even
though you may have debugged a program, it should be
rigorously tested by other people if it will be run frequently, is
mission-critical, or is part of a system.

CONCLUSION
Errors are inevitable in any programming project. The key to
coping with them is to recognize the different types of errors, and
to deter, detect, deflect, and debug.

REFERENCES
Burlew, M.M., Debugging SAS Programs: A Handbook of Tools
and Techniques, 2001.
Cody, R., Cody’s Data Cleaning Techniques Using SAS
Software, 1999.
Delwiche and Slaughter: The Little SAS Book, 1995, Chapter 8:
“Debugging Your SAS Programs”.
Step-by-Step Programming with Base SAS Software, 2001,
Chapter 24: “Diagnosing and Avoiding Errors”.
SAS Language Reference: Dictionary, Version 8, 1999, Appendix
3: “DATA Step Debugger”.

CONTACT INFORMATION
Contact the author at:

Roger Staum
 SAS Institute
 787 Seventh Ave., 47th Floor
 New York, NY 10019
 Email: Roger.Staum@sas.com

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. indicates USA registration.
Other brands and product names are registered trademarks or
trademarks of their respective companies.

1 The program, log, and output excerpts which appear in this
paper were run under Windows 2000. The principles which they
illustrate, however, should apply under other variants of Windows,
as well as UNIX and OS/390.
2 A run-time error cannot occur in a global statement.
3 This value is reset to 0 at the top of the next iteration.
4 Of course, you can also use a system editor (such as Notepad
under Windows) for this purpose.
5 There is a system option called DETAILS which causes the
CONTENTS and DATASETS procedures to provide additional
information about library contents. (The default value is
NODETAILS.)

Beginning TutorialsNESUG 15

11

6 The DATA step and the SQL procedure generate different
results when faced with this situation. The DATA step does a
sequential match; PROC SQL produces a Cartesian product.
7 These statements do work interactively, but they are more
useful in non-interactive mode.
8 SKIP; and SKIP 1; are equivalent.
9 It is important not to forget these passwords if you ever need to
modify or delete the data sets.
10 See the SAS Companion manual for your operating
environment.
11 A token is the smallest group of characters which have
meaning to the SAS system. The SAS language consists of
name, numeric constant, character constant, and special
character tokens.

Beginning TutorialsNESUG 15

