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Abstract

The Personal Software Process is a process im-
provement methodology aiming at individual
software engineers. It claims to improve soft-
ware quality (in particular defect content), ef-
fort estimation capability, and process adapta-
tion and improvement capabilities. We have
tested some of these claims in an experiment
comparing the performance of participants who
had just previously received a PSP course to
a di�erent group of participants who had re-
ceived other technical training instead. Each
participant of both groups performed the same
task.
We found the following positive e�ects:
The PSP group estimated their productivity
(though not their e�ort) more accurately, made
fewer trivial mistakes, and their programs per-
formed more careful error-checking; further,
the performance variability was smaller in the
PSP group in various respects. However, the
improvements are smaller than the PSP pro-
ponents usually assume, possibly due to the
low actual usage of PSP techniques in the PSP
group.
We conjecture that PSP training alone does not
automatically realize the PSP's potential ben-
e�ts (as seen in some industrial PSP success
stories) when programmers are left alone with
motivating themselves to actually use the PSP
techniques.

Keywords: process improvement, quality manage-

ment, e�ort estimation, reliability, productivity, ex-

periment

1 The Personal Software Pro-
cess (PSP) methodology

The Personal Software Process (PSP) method-
ology for improving the software process was
introduced in 1995 by Watts Humphrey [6].
PSP is an application of the principles of the
Capability Maturity Model (CMM, [5]) on the
level of an individual software engineer. In
contrast to the CMM, however, which allows
only for assessment of process quality, the PSP
makes concrete methodological and learning
suggestions, down to the level of a 15-week
course with rather speci�c procedural content.
The goals of the PSP are that an individual
software engineer learns

� how to accurately estimate, plan, track,
and re-plan the time required for individ-
ual software development e�orts,

� how to work according to a well-de�ned
process,

� how to de�ne and re�ne the process,

� how to use reviews e�ectively and e�-
ciently for improving software quality and
productivity (by �nding defects early),
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� how to avoid defects,

� how to analyze measurement data for im-
proving estimation, defect removal, and
defect prevention,

� how to identify and tackle other kinds of
process de�ciencies.

The main basic techniques used are gathering
objective measurement data on many aspects
of the process (for obtaining a solid basis for
process change decisions), spelling out the pro-
cess into forms and scripts (for precise control
of such changes and for making the process re-
peatable), and analyzing the collected data (for
deciding where and how to change the process).

1.1 Previous evidence for PSP e�ec-

tiveness

The PSP methodology relies a lot on objective
measurement data and so does the argumenta-
tion of the PSP proponents. Watts Humphrey
has published data from several PSP courses
in 1996 [7] and several experience reports from
other PSP practitioners report similar results.
Since no other information was available, these
results rely on the very data collected by the
course participants during their course exer-
cises 1 through 10, regarding real and estimated
development time as well as inserted and re-
moved defects, both for each of the various
development phases. These data show for in-
stance that the estimation accuracy increases
considerably, the number of defects introduced
per 1000 lines of code (KLOC) decreases by a
factor of two, the number of defects per KLOC
to be found late during development (i.e., in
test) decreases by a factor of three or more,
and productivity is not reduced despite the
substantial overhead factor for bookkeeping in-
volved when the tasks are as small as they are.
See [4] for a detailed analysis of these e�ects
based on data from 23 courses.

Additional evidence comes from industrial suc-
cess reports on PSP usage, in which the ex-
pected PSP bene�ts were actually found in sev-
eral small industrial projects whose engineers
used PSP [3].

Unfortunately, both kinds of evidence have se-
vere drawbacks. Observations directly from the
course are distorted in several ways. First, the
process de�nition underlying the data changes
from exercise to exercise, making exact inter-
pretation di�cult. Second, the PSP course is
the Hawthorne e�ect [9] at its best: the par-
ticipants constantly monitor their performance
and their central objective is improving this
performance | in contrast to industrial soft-
ware practice, where individual performance
is only a means to an end. Third, individual
participants may consciously or subconsciously
manipulate their time measurement and defect
recording towards better results. Fourth, the
exercises 4 through 10 are not only quite sim-
ple in terms of design and implementation com-
plexity, but also have unusually clear and easy-
to-understand requirements, which may make
the results overly optimistic. Finally, and most
importantly, there is no control. Nobody knows
how performance would change during these 10
programming assignments if no PSP training
and self-monitoring occurs at all. A validation
of the PSP by direct comparison to non-PSP-
trained persons is missing.

The industrial case studies are di�cult to in-
terpret (due to their complex context) and also
lack control. Either comparisons to non-PSP
data are missing or they are based on a be-
fore/after comparison of the same persons (not
controlling for maturation) or an A/B compar-
ison to di�erent projects. Besides many other
relevant di�erences, such comparison projects
might have engineers that are less capable than
the vanguard that chose to learn PSP �rst.
Again, a study with a higher degree of control
is called for.

1.2 Experiment motivation and

overview

When we learned the PSP ourselves and then
started teaching it to our graduate students, we
soon obtained the impression that the method-
ology has a lot of bene�ts, but is not with-
out problems, too. In particular, many pro-
grammers appear to be unable to keep up the
discipline required for the data gathering and
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for following a spelled-out process script; this
may also underlie some of the PSP data quality
problems observed by Johnson and Disney [8].
Furthermore, many course participants misun-
derstand the concrete techniques and proce-
dures taught in the PSP course as dogmas, al-
though they are meant only as starting points
for one's own process development. They do
not understand that (and how) they should
adapt the proposed techniques to their own
preferences and needs.

We estimated that a majority of our course par-
ticipants would probably use little or nothing
of the PSP techniques in their later daily work
and we wondered whether, under these circum-
stances, PSP training would be more e�ective
than any other technical training with respect
to the PSP goals.

We hence conducted the experiment as de-
scribed in Section 2, where we compared a
group of students right after a PSP course to
a group of other students right after a di�erent
(technical rather than methodological) course;
see Section 2.2. Each participant had to solve
the same programming task (see Section 2.3),
which was quite di�erent from all of the assign-
ments of either course.

We observed several aspects of each subject's
development process and software product to
analyze the e�ects of the PSP course in com-
parison to a more technical course, in particular
the accuracy of the subjects' e�ort estimation
and the reliability of the programs they pro-
duced. The results are discussed in Section 3.

The experiment and its results are described
in more detail in a technical report [11], which
also includes the actual experiment materials.
The report also contains various less important
additional measurement results not discussed
in this article. The materials and raw result
data are also available in electronic form from
http://wwwipd.ira.uka.de/EIR/.

2 Description of the experi-
ment

2.1 Experiment design

The experiment uses a single-factor, posttest-
only, inter-subject design [1]; see Table 1 for
an overview. The independent variable was
whether the experimental subjects had just
previously participated in a PSP course (exper-
iment group, subsequently called \P") or in an
alternative course (comparison group, subse-
quently called \N" for \non-PSP"). Each sub-
ject of either group solved the same task and
worked under the same conditions. The assign-
ment of subjects to groups could not be ran-
domized; this threat is discussed in Section 2.6.
The observed dependent variables for each sub-
ject were a variety of measures of personal ex-
perience, various estimations of development
time for the task (in particular estimated to-
tal time), various measurements of the devel-
opment process (in particular total time), and
various measurements of the delivered product
(in particular program reliability).

group N group P

treatment PSP course KOJAK/other
task phoneword phoneword
observed work time, estim. time,

reliability, etc.

Table 1: The experiment design. For details see

the following subsections.

2.2 Subjects

Overall, 48 persons participated in the exper-
iment, 29 in the PSP group P and 19 in the
non-PSP group N. All of them were male Com-
puter Science master students. The P group
had previously participated in a 15-week grad-
uate lab course introducing the PSP method-
ology, involving ten small programming assign-
ments and �ve process improvement assign-
ments, both as described in Humphreys book
[6, Appendix D]. All but eight members of the
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N group had participated in a 6-week grad-
uate compact lab course on component soft-
ware in Java (KOJAK), involving �ve larger
programming assignments. This course cov-
ered technical topics such as Swing, Beans,
and RMI. It was shorter than the PSP course,
but much more intensive, so that the over-
all amount of practical programming experi-
ence gained was similar. The other eight of
the N participants came from other lab courses
of similar magnitude. In contrast to all oth-
ers, who were obliged to participate (but not
to succeed) in the experiment for passing their
course, these eight were volunteers. The sub-
jects participated in the experiment between 0
to 3 months after their respective course was
�nished. There were two instances of the PSP
course (1997 and 1998), both run by the same
teacher and with the same content.

On average, these 50 students were in their
8th semester at the university, they had a me-
dian programming experience of 8 years total
and estimated they had a median of 600 hours
of programming practice beyond their assign-
ments from the university education and had
written a median of 20.000 LOC total. None of
these measures was signi�cantly di�erent be-
tween the two groups. During the experiment,
24 of the participants used Java (JDK), 13 used
C++(g++), 9 used C (gcc), 1 used Modula-2
(mocka), and 1 used Sather-K (sak).

8 participants dropped out of the experiment
and will be ignored in the subsequent data
analysis. They chose to give up after zero to
three unsuccessful attempts at passing the ac-
ceptance test that forms the end of the experi-
ment (see Section 2.4). All dropouts said they
were frustrated by the di�culty of the task; we
could not �nd any connection to group mem-
bership. The fraction of dropouts is the same in
the P group (5 out of 29, 17 percent) as in the
N group (3 out of 19, 16 percent) so that ignor-
ing the dropouts does not introduce a bias into
the experiment. This leaves 40 participants for
the evaluation.

2.3 Experiment task

The task to be solved in this experiment is
called phoneword . It consists of writing a pro-
gram that encodes the digits of long telephone
numbers (program input) into corresponding
sequences of words (program output, the words
come from a large dictionary also provided as
input) according to the �xed, given letter-to-
digit mapping shown in Table 2: A single digit
is allowed to encode itself in the output i�
no other digit precedes it and no word from
the dictionary can represent the digits starting
from that point. All possible complete encod-
ings must be found and printed. Many phone
numbers have no complete encoding at all, even
with a large dictionary. Dashes and quotes
in the words as well as dashes and slashes in
the phone numbers must be ignored for the en-
coding but still be printed in the result. Any
phone number and any word in the dictionary
was known to be at most 50 characters long.
The dictionary was known to be at most 75000
words long. Dictionary and phone numbers are
read from two text �les containing one word or
phone number per line.

Here is an example program output for the in-
put \3586-75", using a German dictionary:

3586-75: Dali um

3586-75: Sao 6 um

3586-75: da Pik 5

The requirements for this program were de-
scribed thoroughly in natural language and re-
maining ambiguities were resolved by examples
of correct and incorrect encodings.

The requirements description stated program
reliability as the single top objective for the
participants. Productivity, program e�ciency,
etc. were to be less important. For complete
text of the requirements speci�cation see [11,
pp. 66{68].

2.4 Experimental procedure

The experiment was run between February
1997 and October 1998, mostly during the
semester breaks. Most subjects started at
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E J N Q R W X D S Y F T A M C I V B K U L O P G H Z
0 1 2 3 4 5 6 7 8 9

Table 2: Prescribed letter-to-digit mapping for the phoneword task. The mapping was constructed

such as to balance the letter frequency for each digit across the German dictionary used.

about 9:30 in the morning. Both groups were
handled exactly alike. In particular, the PSP
subjects were not speci�cally asked to use PSP
techniques. The experiment materials were
printed on paper and consisted of two parts.
Part one was issued at the start of the ex-
periment and contained a personal informa-
tion questionnaire, the task description, and
an e�ort estimation questionnaire. After �lling
these questionnaires in and reading the task de-
scription, the subjects worked on the task using
a speci�c Unix account that provided the au-
tomatic monitoring infrastructure, which non-
intrusively protocoled login/logout times, all
compiled source versions with timestamps, etc.
The subjects could modify the setup of the ac-
count as necessary, make work pauses when-
ever required, and use any methods and ap-
proaches for solving the problem they deemed
appropriate. In particular, a few subjects im-
ported source code of reusable procedures (for
�le handling etc.) from other accounts and a
few subjects imported and installed small per-
sonal tools. The input, output, and dictionary
data used in the example in the task require-
ments description was provided to the subjects,
the large 73113-word dictionary later used for
evaluating all programs was also available.

When a subject thought his program worked
correctly, he could call for an acceptance test.
This was based on randomly generating a set
N of 500 phone numbers, computing the mul-
tiset of corresponding outputs S(N) using the
subject's program, and computing the correct
outputs C(N) using a reference implementa-
tion (\gold" program). The gold program had
been written by the authors using stepwise re-
�nement with semi-formal veri�cation based on
preconditions and postconditions. The gold
program had run correctly right from its �rst
test and no defect was ever found in it (de-
spite harsh protests from several participants
and thorough investigations of their validity).

The entire expected output C(N) and actual
output S(N) was shown, but the acceptance
test used a 20946-word dictionary not available
to the subjects. The output reliability r was de-
�ned as the fraction of correct outputs within
all actual outputs (whether expected or incor-
rect), i.e. r = jS(N) \ C(N)j=jS(N) [ C(N)j.
To pass the acceptance test, r had to be at least
95 percent.

Misuse of the acceptance test as a convenient
automatic testing facility was avoided by the
following reward scheme: Each participant re-
ceived a payment of DM 50 (approx. 30 US
dollars) for successful participation, i.e., pass-
ing the acceptance test, but for each failed ac-
ceptance test, DM 10 were deducted.

12 of the successful subjects �nished the day
they started, 10 others required a second day,
and the other 18 took between three and eleven
days. Similarly, 15 subjects passed the �rst
acceptance test, 24 the second to �fth, only 1
required six. Both of these measures showed no
signi�cant di�erences between the two groups.

After passing the acceptance test, the subject
were given part 2 of the experiment materials,
a short postmortem questionnaire. After �ll-
ing that in, the subjects were paid and their
participation was complete.

2.5 Hypotheses

The experiment investigated the following hy-
potheses (plus a few less important ones not
discussed here, see [11]).

� Reliability: PSP-trained programmers
produce a more reliable program for the
phoneword task than non-PSP-trained
programmers.

� Estimation accuracy: PSP-trained pro-
grammers estimate the time they need
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for solving the phoneword task more ac-
curately than non-PSP-trained program-
mers.

We also sort of expect that PSP-trained pro-
grammers may solve the phoneword task faster
than non-PSP-trained programmers. Produc-
tivity improvement is not an explicit claim or
goal of the PSP, but for the given task it might
be a side e�ect of improved quality, because
locating a problem detected in the acceptance
test is relatively di�cult.

2.6 Threats to internal validity

The control of the independent variable is
threatened by the fact that group assignment
was not done by randomization but rather was
due to earlier self-selection of the course taken.
In principle, there might be systematic di�er-
ences between the types of programmers tak-
ing either decision. However, we do not believe
that such di�erences, if any, are substantial.
For instance, several of the participants of the
KOJAK course and several of the volunteers
from other courses later chose the PSP course
and vice versa.

The choice of programming language might
also in
uence our results, because the di�er-
ent languages have di�erent frequency in the
two groups. However, the structure of our task
is such that the language used has only modest
impact. In particular, neither object-oriented
language features nor particular memory man-
agement mechanisms are very relevant for the
given task. (See, however, the discussion of
program crashes at the end of Section 3.1.)

2.7 Threats to external validity

There are several important threats to the ex-
ternal validity (generalizability) of our experi-
ment.

First, and most importantly, di�erent work
conditions than found in the experiment may
positively or negatively in
uence the e�ective-
ness of the PSP training. This is discussed in
Section 4.

Second, the PSP education of our subjects was
only a short time ago. Long-term e�ects would
be more interesting to see.

Third, our task was unusual in several respects
(small size, precise requirements, acceptance
test indicates expected outputs). It is unknown
how these properties might in
uence the com-
parison.

Finally, professional software engineers may
have di�erent levels of skill than our partic-
ipants. A higher skill and experience level
may leave less room for improvement, but may
also sharpen the eye as to where improvements
are most desirable or most easy to achieve
with PSP techniques. Conversely, lower skill
(which will occur, because our students are
more skilled than most of the non-computer-
scientists that frequently start working as pro-
grammers today) may leave more room for im-
provement but may also impede applying PSP
techniques correctly or at all.

3 Results and discussion

We will now describe and discuss the results for
estimation accuracy, reliability, and productiv-
ity with respect to the hypotheses.

The data will be presented using boxplots (see
the �gures below) indicating the individual
data points, the 10% and 90% quantiles1 (as
whiskers), the 25% and 75% quantiles (by the
edges of the box), the median (50% quantile,
by a fat dot), the mean (by a capital M), and
one standard error of the mean (by a dashed
line). The two distributions of the groups N
and P are shown side-by-side.

Formal tests of the hypotheses are performed
by one-sided statistical hypothesis tests for dif-
ferences of the mean or the median. We use a
Wilcoxon rank sum test for comparing medians
and a bootstrap resampling test [2] for compar-
ing the means without relying on the assump-
tion of a normal distribution. When we report
for instance \mean test p = 0:07" this means

1For instance, the 10% quantile of a set of values

is an interpolated x such that 10% of the values are
smaller or equal to x and 90% are larger or equal to x.
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that the test comparing the means of the two
groups indicates that the observed di�erence
has a 7% probability p of being purely acciden-
tal (i.e., no real di�erence exists). At values at
or below 5% we will call such p-values \signi�-
cant" and believe that the di�erences are real.
See [11, pp.20{25] for a more detailed descrip-
tion of boxplots and the tests.

3.1 Reliability

We measured the reliability (as de�ned in Sec-
tion 2.4) of the delivered programs on eight dif-
ferent randomly generated input data sets, in
which each of the possible letters /, {, 0, 1,
2, 3, 4, 5, 6, 7, 8, and 9 had the same proba-
bility at each position of each number in each
�le (with one exception mentioned below). The
data sets contained either 100, 1000, 10000, or
100000 telephone numbers. Since some of the
programs were extremely slow (over 15 seconds
per input), we could not exercise the largest
tests on all of the programs and will hence re-
port the results for the test sets of size 1000
only (but see [11, pp.31{39] for the other re-
sults).

There were two di�erent 1000-number data
sets, a standard one and a surprising one. The
surprising one used exactly the distribution of
telephone numbers mentioned above with uni-
formly random lengths between 1 and 50 char-
acters. This set is surprising because when
thinking of these inputs as telephone numbers,
intuitively one would not expect to see some-
thing not containing any digit at all, such as
\/" or \{/-/", even though the requirements
description of the task had de�ned \A tele-
phone number is an arbitrary(!) string of
dashes, slashes, and digits." (emphasis is in the
original). An empty encoding must be output
for a phone number without digits. In contrast,
the \standard" input set suppressed numbers
not containing any digit and generated a new
one until at least one digit was present.

Note that both of these tests are harder than
the acceptance tests: The dictionary is larger
(73113 words versus 20946 words), there are
twice as many phone numbers, and the critical

phone numbers of length 1 or 50 had arti�cially
been made less frequent in the acceptance test.

The results for the standard data set are shown
in the rather degenerated box plots of Figure 1.
As we see, the reliability of the programs is gen-
erally high in both groups, both medians are at
100%. We do not �nd any evidence for superior
reliability in the P group. Instead, there even is
a slight advantage for the N group, but the dif-
ference is not signi�cant (median test p = 0:32,
mean test p = 0:33).
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output reliability on standard data set [percent]

Figure 1: Output reliability (as de�ned in Sec-

tion 2.4) for the data set with at least one digit

per phone number.
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output reliability on surprising data set [percent]

Figure 2: Output reliability for the data set with

possibly no digit in a phone number.

The results for the surprising data set are dif-
ferent (Figure 2). Again, some programs work
perfectly, but many other programs from the N
group and also a few from the P group crash2

at the �rst telephone number that contained no
digit, which resulted in a reliability of 10.7% for
the given data set. As a result the reliability is
signi�cantly lower in the N group (median test
p = 0:00, mean test p = 0:01).

Note that faulty Java programs were more
likely to crash than faulty C or C++ programs,
due to the Java run time checks of array in-
dices etc. Since the fraction of Java programs

2Our measurement ignores the crash and just records
its consequences: no further output arrives.
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Figure 3: Output reliability for the data set with

possibly no digit in a phone number, measured

only for the Java programs.

is higher in the N group, the above result may
thus be biased in favor of the P group. There-
fore, we also compared the Java programs alone
(see Figure 3) and found that the above group
di�erence indeed becomes less signi�cant, but
does not disappear (median test p = 0:04, mean
test p = 0:07). For the other languages there
are not enough data points for a meaningful
comparison.

These results provide some evidence for higher
reliability in the P group. Speci�cally, although
P group program reliability is not generally
higher, the P group programs perform better
error checking and handling of unexpected sit-
uations. See also the discussion of program
length in Section 3.3. We conclude that the
reliability hypothesis is supported, though not
clearly con�rmed by the experiment.

3.2 Estimation accuracy

For comparing the e�ort estimation capabilities
of the groups, we consider the estimation of
the total working time the subjects made after
reading the task description. We compute the
mis-estimation in percent from the quotient of
actual and estimated time, see Figure 4.

The median mis-estimations are essentially
identical (median test p = 0:48). The worst
estimations of the N group are worse than in
the P group, so that the mean mis-estimation
tends to be larger in the N group; but the dif-
ference is not signi�cant (mean test p = 0:18).
This is no convincing evidence that the P group
produces better estimates.

PSP estimation is based on program size esti-
mation and historical data on personal produc-
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Figure 4:
�
�
�
twork
testim

� 1
�
�
�: Amount of mis-estimation

of the total working time for the task. Most es-

timations were too optimistic, only four in each

group were too pessimistic.
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Figure 5: prodestim
prodactual

: Quotient of estimated and

actual productivity, each measured in lines of

code per hour.

tivity (measured in lines of code produced per
hour). If we compare the subjects' expected
productivity to the actual productivity (Fig-
ure 5), we �nd the estimations of the N group
are clearly worse than in the P group (median
test p = 0:00, mean test p = 0:00). This shows
that the PSP group knows their historical data,
but did not produce a size estimation that was
good enough for converting this knowledge into
an estimation advantage. We conclude that,
overall, the hypothesis of better time estima-
tion in the PSP group is not supported by the
experiment.

3.3 Productivity

Since all subjects worked on exactly the same
task, we might take the view that their produc-
tivity should best be expressed simply as the
\number of tasks solved per time unit", which
is just the inverse of the total working time and
is shown in Figure 6.

From this point of view, in contrast to our ex-
pectations the productivity is not larger, but
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Figure 6: 1

twork
: Productivity measured as the in-

verse of total working time (number of programs

per hour, one could say).

rather tends to be smaller in the P group (me-
dian test p = 0:10, mean test p = 0:06). We do
not know the degree to which the PSP book-
keeping overhead accounts for this tendency,
but probably the degree is low, because few
subjects actually had any signi�cant PSP over-
head (see Section 3.5).

However, the P group generally wrote longer
programs, partly because of more careful error
checking. For instance, in the Java programs
the average number of `catch' statements with
non-empty exception handlers is signi�cantly
larger in the P group than in the N group (4.4
versus 2.5, p = 0:02). As we saw above, this
additional e�ort tended to result in better reli-
ability. So maybe the more conventional view
of productivity as the number of lines of code
written per hour is more appropriate. This
quotient is shown in Figure 7; the productivity
di�erence has essentially disappeared (median
test p = 0:42, mean test p = 0:30).
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productivity [LOC/hour]

Figure 7: LOC
twork

: Productivity measured as the

number of statement LOC written per hour.

Curiously, if we consider the working time di-
rectly (instead of its inverse), as shown in Fig-
ure 8, the N group has a lower median (me-
dian test p = 0:10), but a slightly higher mean
due to some very slow subjects (mean test
p = 0:28).
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total working time [hours]

Figure 8: twork: Total number of working hours.

As we see, the notion of productivity is slip-
pery for software and must be handled with
care. However, the hope that the productivity
of PSP-trained persons would be higher is not
supported in the experiment (and is also not
claimed by the PSP in general).

3.4 Variance within each group

One rather unexpected insight from this exper-
iment was that even where no improvement of
the average occurred, the variability was usu-
ally smaller in the P group than in the N group.
The e�ect occurred for most of the measures
we have investigated. We can quantify this by
providing a bootstrap resampling test for dif-
ferences of the length of the box (\interquartile
range", iqr test), which is a rather robust mea-
sure of variability.

For instance for the productivity and estima-
tion comparisons shown in the �gures above,
smaller P group variability is visible as a ten-
dency for the reliability on surprising inputs
(Figure 2, iqr test p = 0:12) work time mis-
estimation (Figure 4, iqr test p = 0:24) and the
total work time (Figure 8, iqr test p = 0:39)
and is statistically signi�cant for the produc-
tivity estimation (Figure 5, iqr test p = 0:01),
the productivity in terms of working time (Fig-
ure 6, iqr test p = 0:05), and the productivity
in LOC per hour (Figure 7, iqr test p = 0:04).

The reduction of variability in the PSP group
may be a bene�t. Teams with lower interper-
sonal performance variability can be more 
exi-
ble, because any member could take over a task
without changing the schedule. Schedule risk
may also be an issue, as is outlined in [12].
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3.5 PSP usage

For only 6 of the 24 PSP participants (25 per-
cent), we found evidence3 that they had actu-
ally used PSP techniques. This low percentage
may imply that the size of the di�erences found
above re
ect the degree of actual PSP use more
than the e�ect of PSP use.

Furthermore, we found a surprising correlation.
Among those 5 PSP participants who had given
up in the experiment, as many as 4 (or 80 per-
cent) showed evidence of actual usage of PSP
techniques | a signi�cantly higher fraction
than among the successful participants (Fisher
exact p = 0:036). Apparently the least capable
subjects had a much higher inclination to use
PSP techniques, presumably because they feel
more clearly that these techniques help them.

3.6 Other results

We have collected other measures (not directly
connected to our hypotheses) as well and found
several areas where some advantage was visible
for the P group. For instance they estimated
the average time required for �xing a defect or
the reliability of their program more accurately
than the N group. Furthermore, they made
fewer trivial mistakes that led to compilation
errors and tended to write more comments into
their programs. See [11] for details.

In the informal postmortem interview, many
of the P subjects (but none of the N sub-
jects) said something along the lines of \I re-
ally should have performed design and code re-
views. Damn that I didn't."

4 Conclusion

Our experiment comparing a group of PSP-
trained programmers (P group) to a simi-
lar group of programmers who received other
training (N group) produced the following ma-
jor �ndings:

3In all cases this evidence included a time and defect
log, in some cases also a PSP estimation form.

� The programs produced by members of
the P group are slightly more reliable than
those of the N group as far as robustness
against unusual (but legal) inputs is con-
cerned. For more standard types of inputs
we did not �nd a reliability di�erence.

� The members of the P group estimated
their productivity (in lines of code per
hour) better than the N group, but did
not produce better total e�ort estimates.

� The total time for �nishing the task tended
to be longer in the P group than in the
N group. However, at least to some de-
gree this additional time is invested in the
error checking that leads to the improved
robustness. The productivity in lines of
code per hour was hardly di�erent in both
groups.

� For many performance metrics the vari-
ability within the P group was substan-
tially smaller than the variability within
the N group.

� Apparently a majority of the P group par-
ticipants did not use PSP techniques at
all.

When one compares these results to some of the
improvements known from the PSP course, one
may be disappointed; for instance, participants
of a PSP course on average achieve an at least
fourfold reduction of the number of defects to
be found in test during their course exercises 1
through 10. There were no such dramatic dif-
ferences in this experiment. We see two major
reasons. First, the PSP course with its con-
stant measurement and feedback is a typical
Hawthorne e�ect situation [9], so that results
from the course overestimate the improvements
available in the long run. Second, too few of
our subjects from the PSP group actually used
PSP techniques during the experiment; most
of them did not keep up the necessary self-
discipline.

We o�er three explanations for the low degree
of actual PSP usage: First, it may be a re-
sult of di�erent temperaments of the program-
mers. In our experience, a few pick up and use
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the PSP techniques quite easily and enthusias-
tically, a majority can adapt them only with
e�ort and will later use them to a modest de-
gree at best, and some appear to be completely
unable to maintain the discipline required for
applying the PSP techniques. The proportions
may be culture-dependent, so subjects from
other countries may turn out di�erent in this
respect. Our course has won several awards for
best teaching (as evaluated by the students) in
our department, so we rule out low quality of
teaching as a reason.

Second, when asked shortly before the end of
the course, a majority of the PSP course partic-
ipants claimed they would use PSP techniques
for \larger" tasks, but not for small ones. If one
is willing to believe this statement, it may be
that we would have found larger PSP bene�ts
if your experiment had used a larger task.

Third, and maybe most importantly, Watts
Humphrey suggests that a working environ-
ment which actively encourages PSP usage is
a key ingredient for PSP success. Our subjects
were working alone and hence had no such en-
vironment.

Summing up, we conjecture that PSP training
alone provides only a fraction of the expected
bene�ts. Later encouragement towards actual
PSP use appears to be necessary before large
improvements are realized. Nevertheless, we
believe that, in principle, the PSP is worth-
while and that our experiment provides sup-
port for this opinion.

Given the low degree of use of the actual PSP
techniques despite a 15-week course, it appears
a worthwhile research topic whether and how
the PSP bene�ts can be obtained with a much

smaller training program than the standard
PSP course. We are pursuing such research
and have already obtained �rst results [10].
Further, the experiment shows that we need
to understand better how to make people use

methods: what technical, social, and organiza-
tional means improve the level of actual use of
a method as opposed to just the level of train-
ing or infrastructure provided?
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Appendix: Raw result data

Data of the 24 successful participants of the
PSP-trained group:

time estim A reli reliS LOC lang

3.8 5.0 2 100.0 98.4 258 Java

4.0 3.0 2 76.5 92.1 325 C

6.9 8.3 1 100.0 100.0 274 C++

7.3 5.0 1 100.0 100.0 174 Java

7.3 6.0 2 99.2 100.0 303 C

7.8 5.0 1 100.0 100.0 427 Java

8.2 3.5 2 0.0 89.5 199 C

9.7 6.0 1 100.0 100.0 433 Java

9.8 10.0 2 100.0 10.2 211 Java

10.1 18.0 1 100.0 98.4 226 C++

10.9 10.0 1 100.0 98.4 365 C

11.2 6.3 1 100.0 100.0 505 C++

11.9 5.2 2 100.0 100.0 287 C++

13.3 10.0 3 0.0 0.0 245 Sather-K

13.8 4.3 2 100.0 10.2 437 Java

15.2 4.0 5 100.0 98.4 274 C++

16.1 6.7 2 98.9 96.8 391 C

17.8 10.0 3 100.0 10.2 729 Java

19.1 12.6 2 100.0 98.4 334 C++

19.6 4.0 4 98.5 100.0 583 C++

19.7 12.0 3 100.0 100.0 467 Java

20.5 7.2 2 100.0 98.4 386 Modula-2

25.3 11.2 1 98.1 100.0 605 C++

27.6 11.4 4 98.9 96.3 323 Java

time is the actual work time in hours, estim
the estimated work time. A is the number of ac-
ceptance tests needed. reli is the reliability on
the standard data set, reliS is the reliability
on the \surprising" data set. LOC is the length
of the delivered program (excluding only empty
lines), lang is the programming language used.

Data of the 16 successful participants of the
non-PSP-trained group:

time estim A reli reliS LOC lang

3.0 3.0 1 99.2 98.4 168 C++

3.5 2.0 1 100.0 98.4 152 C++

3.8 8.0 1 100.0 10.2 249 Java

4.8 6.0 1 100.0 10.2 199 Java

5.0 4.0 1 100.0 98.4 267 Java

6.2 3.5 2 100.0 10.1 204 Java

7.1 5.0 1 99.2 98.4 396 Java

7.4 8.0 1 100.0 10.2 165 Java

7.5 10.0 2 0.0 1.1 309 C++

8.7 5.0 2 98.9 90.9 185 Java

13.0 5.0 3 100.0 10.2 422 Java

15.1 6.0 3 100.0 10.2 143 Java

18.1 5.0 3 100.0 100.0 355 Java

39.7 16.0 6 100.0 97.9 640 Java

48.9 6.7 2 100.0 10.2 667 Java

63.2 6.7 3 99.6 10.2 360 Java
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