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Abstract

Projection and backprojection operators are the numerically inten-
sive part of iterative methods in tomographic reconstruction. Some
alternatives based on interpolation over a regular grid on the Fourier
space or on nonequispaced fast Fourier transforms were developed in
order to alleviate the computational cost. Both approaches substan-
tially speed up the computation of the iterations of classical algorithms,
but the incremental methods, such as osem, ramla, saem, among oth-
ers, cannot benefit from these techniques. In this paper, it is presented
an efficient approach where the nonequispaced fast Fourier transform
(nfft) is used in each sub-iteration of the incremental method “or-
dered subsets for transmission tomography” (ostr) to perform the
most expensive calculations: the projection and backprojection. The
proposed method is applied to synchrotron radiation tomography and
the results show a good performance.
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1. Introduction

The problem in tomography is to recover a function f : R2 → R from
its arc length integrals along straight lines, defined by the Radon transform
[10]. An analytical strategy to solve this problem is the filtered backpro-
jection (fbp), a method based on the inverse Fourier transform (ift) and
the Fourier slice theorem, which consists in two steps: the filtering of data
in the frequency domain and the backprojection of the filtered data. De-
spite the quality of reconstructed images, the computational cost involved
to obtain an image of dimension n2 is O(n3), which is concentrated in the
backprojection.
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Considering that the data set provided by tomographs generates a finite
number of Radon transform samples, the function f to be reconstructed is
discrete. Thus, the problem can be modeled by a system of linear equations.
However, direct elimination methods cannot be applied to solve the system
because of the huge data and image dimensions, ill-posedness of the matrix
of the system combined with noisy and incomplete data, among others. In
this way, iterative methods can be used, such as the algebraic reconstruction
techniques (art) [10].

In order to reduce the effects of noise in the resulting images, statistical
models (maximum likelihood - ml) were developed for emission tomography
initially [14], and the expectation maximization (em) algorithm to solve
the resulting optimization problem [15]. Even with improvements in recon-
structed images when compared to fbp, the em algorithm requires a lot
of iterations to obtain acceptable images. As each iteration cost is O(n3),
algorithms to achieve good results in fewer iterations are required.

The class of incremental algorithms was developed aiming to speed up
iterative methods for tomographic reconstruction. Ordered subsets expec-
tation maximization (osem) [9], row-action maximum likelihood algorithm
(ramla) [3], string-averaging expectation-maximization (saem) [8], and or-
dered subsets for transmission tomography (ostr) [5] are some examples.
Such methods process the data into subsets in each iteration, which accel-
erates the convergence of the results.

On the other hand, some techniques have been developed in the litera-
ture seeking to decrease the computational cost involved in each iteration
of iterative methods, such as the fast slant stack [2], the hierarchical de-
composition algorithm [7], the technique based on Fourier in log-polar grids
[1] and the nonequispaced fast Fourier transform (nfft) [13], where the
computation of projection/backprojection operator has a time complexity
of O(n2 log n).

Thus, the aim of this study is to propose an approach that combines the
incremental method ostr and the fast computation of projection/ backpro-
jection operators using nfft in order to reconstruct tomographic images
efficiently. The proposed method was applied to reconstruct an image of an
apple seed, using data obtained from synchrotron x-ray micro/nano tomog-
raphy, which is a tomographic modality of high resolution and generates a
large amount of data. The obtained results of this implementation show a
good performance of the proposed method.



2. Transmission Tomography

The main modality of transmission tomography is based on x-rays. In
this type of scan one wants information about the physical constitution of
the study object. During the process, x-ray beams are emitted, which pass
through the object in various directions and positions, and finally, these
intensities are detected. It results in images of transversal sections of the
object, obtained from radiation attenuation measurements [10].

This process can be modeled as line integrals along straight lines as-
sociated to each ray beam, known as projections. Thus, the tomographic
reconstruction problem is to recover the image f : R2 → R from its projec-
tions at various angles, defined by Radon transform (rt):

R [f ] (θ, t) :=

∫
R
f

(
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(
cos θ

sen θ

)
+ s

(
− sen θ

cos θ

))
ds. (1)

An alternative to obtain the inverse of the the rt in order to reconstruct
the image f is the Fourier slice theorem. This theorem states that the Fourier
transform of a projection with angle θ is equal to a slice with the same angle
of the Fourier transform of the image. So, it is possible to reconstruct the
image using the inverse Fourier transform. But only a finite number of
samples is determined and the other samples are obtained by interpolation,
which degrades the quality of images. Strategies with better performance
are based on the solution of the discrete reconstruction problem, defined in
the following section.

2.1. Discrete Problem

The reconstruction problem from projections can be fully-discretized by
the following system of linear equations:

Rx = b (2)

where R ∈ Rm×n is the discretized rt, x is the desired image to be deter-
mined and b ∈ Rm contains the rt samples measured by the tomographic
scan. The products Rx and RT b represents projection and backprojection
operators, respectively.

The ill-posedness of the matrix of the system combined with noisy and
incomplete data obtained greatly affect the quality of reconstructed images.
The statistical model for transmission tomography is presented in order to
diminish the effect of these kind of errors.



2.2. Statistical Model for Transmission Tomography

The statistical model for transmission tomography based on the Poisson
distribution [5] is given by:

min
x>0
−L(x) :=

m∑
i=1

hi ((Rx)i) . (3)

where hi(l) = fie
−l + di − yi log(fie

−l + di), such that fi is the blank scan
count, di is the mean number of background events and yi represents trans-
mission events detected in the ith detector, and (Rx)i =

∑n
j=1 rijxj is the

ith projection. The following sections present the proposed approach to
solve this problem.

3. Proposed Aproach: OSTR and NFFT

Solving problem (3) using incremental methods is not an innovation. In
this paper, it is proposed a new approach to solve the cited problem using
the nfft technique that computes the projection and backprojection oper-
ators with complexity O(n2 log n) flops and accelerates each sub-iteration of
the incremental method ostr. The description of the proposed strategy is
presented in the following sections.

3.1. Ordered Subsets for Transmission Tomography

The incremental method ordered subsets for transmission tomography
(ostr) presented in this paper is proposed by Erdoğan and Fessler [5]. In
this method, the ordered subsets principle, first proposed by Hudson and
Larkin in the osem method [9], is applied to the separable paraboloidal
surrogates algorithm (sps) [6].

The index set {1, 2, . . . ,m} is divided into s subsets U1, U2, . . . , Us such
that

⋃s
i=1 Ui = {1, 2, . . . ,m} and Ui ∩ Uj = ∅ if i 6= j. The image is

updated after processing the data in each subset. Thus, each iteration of
this method is defined as passing through all subsets, using as starting point
the reconstruction obtained by the previous sub-iteration.

The full form of the ostr algorithm is presented below. Note that
the calculation of projection is required in the precomputation of γi in (4)
and in l̂i, represented by (6) in each sub-iteration. The coefficients d∗j in

precomputation (4) and x(k,l) shown in (8), in each sub-iteration, require
the computation of the backprojection operator.



Algorithm 1: ostr

Input: x0 ∈ Rn+ and U1, . . . , Us
Precompute:

d∗j =

m∑
i=1

rijγi
(yi − di)2

yi
, where γi =

∑
j

rij (4)

Output: lim
k→∞

xk, resulting from the calculations:

x(k,0) = x(k) (5)

l̂i =
n∑
j=1

rijx
(k,l−1) (6)

h̄i =

(
yi

fiel̂i + di
− 1

)
fie

l̂i (7)

x(k,l) = x(k,l−1) −
s
∑

i∈Ul
rij h̄i

d∗j
, l = 1, . . . , s (8)

x(k+1) = x(k,s) (9)

3.2. Nonequispaced Fast Fourier Transform

The nonequispaced fast Fourier transform (nfft) generalizes the calcu-
lation of the fast Fourier transform (fft) from equally spaced to arbitrary
sampling points or spatial nodes [11]. In the image reconstruction, data are
sampled regularly, and applying fft, the data set remains in a regular grid,
but using nfft data can be obtained in an irregular grid. In this way, it
is possible to use the Fourier slice theorem without explicit interpolation.
Thereby, applying the two-dimensional nfft followed by one-dimensional
inverse ffts (iffts), it is possible to obtain the projections of the image,
and thus the rt.

The nfft is used to compute the nonequispaced discrete Fourier trans-
form (ndft) in a fast and robust way [13]. Given the Fourier coefficients
f̂k ∈ C, k ∈ IN , the ndft is defined as the evaluation of the corresponding
trigonometric polynomial f ∈ TN at the set of M arbitrary nodes X, given
by the following sum:

f(x ) :=
∑
k∈IN

f̂ke
−2πikx (10)

where N = (Nt)t=0,...,d−1 is the multibandlimit and the possible frequencies

k ∈ Zd are collect in the multi-index set:



IN :=

{
k = (kt)t=0,...,d−1 ∈ Zd : −Nt

2
≤ kt <

Nt

2
, t = 0, . . . , d− 1

}
.

This method is presented seeking to obtain a fast and efficient way to
calculate the projections and backprojections to be evaluated in the sub-
iterations of ostr method, and achieve reasonable images in less time than
existing strategies. In this paper, we use the C subroutine library named
NFFT 3 [11], in the ostr sub-iterations to compute the aforementioned
operators.

4. Results

The computational tests were performed using data from an apple seed,
which were obtained from synchrotron x-ray micro/nano tomography in the
x-ray imaging (imx) beamline of the Brazilian Synchrotron Light Laboratory
(lnls). Radon data was sampled in 512 angles between 0 and π and the
projection and reconstructed images has dimension of 2048 × 2048 pixels.
From the data acquisition it was possible to obtain the sinogram, shown in
Figure 1, and apply the proposed method to solve the statistical model of
transmission tomography.

Figure 1 - rt of an apple seed.

We have considered algorithms using the full data set (equivalent to the
sps [6] without the ordered subsets principle), and data divided into 2, 4, 8
and 16 subsets in order to realize the results analysis, the complete data set
data set. Figure 2 presents the images obtained in the first iteration of the
mentioned configurations of the ostr method, using nfft in sub-iterations.

Figure 2 shows that the number of subsets is proportional to the amount
of detail in the image obtained. However, the processing time of the itera-
tions of the different ostr method configurations increases with the number



of subsets. The average time per iteration of the proposed method with full
data set, 2, 4, 8 and 16 subsets, was 1.64, 2, 2.55, 4.03 and 5.96 seconds,
respectively.

Figure 2 - First iteration of ostr method using nfft, with full data set,
2, 4, 8 and 16 subsets, respectively.

Figure 3 - Last iteration of the ostr method using nfft, with full data
set, 2, 4, 8 and 16 subsets, respectively.

The configurations of the ostr method using nfft in the sub-iterations
were compared in a period of 30 seconds. The reconstructed images obtained
by the proposed method with full data set, 2, 4, 8 and 16 subsets in the end of
the 30 seconds period are presented in Figure 3. Figure 4 shows the objective
function values of the statistical model, achieved by the configurations in the
same period of time.

Figure 4 - Objective function values after 30 seconds of the execution of
all configurations of the ostr method using nfft.



The ostr configurations proposed with full data set, 2, 4, 8 and 16 sub-
sets take 19, 16, 12, 6 and 5 iterations, respectively, to achieve the presented
results for the determined period of time. As presented in Figure 4, the high-
est value obtained for the objective function was −145, 765.664× 106, from
ostr method with full data set. While the lowest value was −145, 779.939×
106, found by ostr method with 16 subsets. The images obtained by the
ostr method with full data set and 16 subsets after 30 seconds are shown
in Figure 5.

Figure 5 - Comparison between the worse (full data set) and the best (16
subsets) performance of ostr using nfft.

Figure 5 shows some details caused by ring artifacts in the image ob-
tained by the final iteration of the proposed method. This problem can
be solved using the generalized Tiratenko’s algorithm, proposed by Mique-
les et. al [12], which removes the rings of the image through the sinogram
processing before the reconstruction.

5. Final Considerations

An efficient implementation of the ostr method using in each sub-
iteration the nfft was proposed in this paper. The nfft was used to
compute the projection and backprojection operator and to reduce compu-
tational cost to O(n2 log n) flops. This method was applied to synchrotron
light tomography and the results show a good performance, with images of
quality in a efficient time.

The implementation of ostr penalized method, using in each
sub-iteration the nfft, is one of the proposals for future work, as well as the
implementation of ostr with other techniques that perform the calculation



of projection and backprojection operators with complexityO(n2 log n), such
as the Fourier technique in a log-polar grid [1].
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