
Toolkit Design for
Interactive Structured Graphics

Benjamin B. Bederson, Jesse Grosjean, and Jon Meyer

Abstract—In this paper, we analyze toolkit designs for building graphical applications with rich user interfaces, comparing polylithic

and monolithic toolkit-based solutions. Polylithic toolkits encourage extension by composition and follow a design philosophy similar to

3D scene graphs supported by toolkits including Java3D and OpenInventor. Monolithic toolkits, on the other hand, encourage

extension by inheritance, and are more akin to 2D Graphical User Interface toolkits such as Swing or MFC. We describe Jazz (a

polylithic toolkit) and Piccolo (a monolithic toolkit), each of which we built to support interactive 2D structured graphics applications in

general, and Zoomable User Interface applications in particular. We examine the trade offs of each approach in terms of performance,

memory requirements, and programmability. We conclude that a polylithic approach is most suitable for toolkit builders, visual design

software where code is automatically generated, and application builders where there is much customization of the toolkit.

Correspondingly, we find that monolithic approaches appear to be best for application builders where there is not much customization

of the toolkit.

Index Terms—Monolithic toolkits, polylithic toolkits, object-oriented design, composition, inheritance, Zoomable User Interfaces

(ZUIs), animation, structured graphics, Graphical User Interfaces (GUIs), Pad++, Jazz, Piccolo.

�

1 INTRODUCTION

APPLICATION developers rely on User Interface (UI)
toolkits such as Microsoft’s MFC and .NET Windows

Forms, and Sun’s Swing and AWT to create visual user
interfaces. However, while these toolkits are effective for
traditional widget-based applications, they fall short when
the developer needs to build a new kind of user interface
component-one that is not bundled with the toolkit. These
components might be simple widgets, such as a range slider
or more complex objects, including interactive graphs and
charts, sophisticated data displays, timeline editors, zoom-
able user interfaces, or fisheye visualizations.

Developing application-specific components usually
requires significant quantities of custom code to manage a
range of features, many of which are similar from one
component to the next. These include managing which
areas of the window need repainting (called region manage-
ment), repainting those regions efficiently, sending events to
the internal object that is under the mouse pointer,
managing multiple views, and integrating with the under-
lying windowing system.

Writing this code is cumbersome, yet most standard 2D

UI toolkits provide only rudimentary support for creating

custom components—typically, just a set of methods for

drawing 2D shapes and methods for listening to low-level

events.
Some toolkits such as Tcl/Tk [19] include a “structured

canvas” component, which supports basic structured

graphics. These canvases typically contain a collection of
graphical 2D objects, including shapes, text, and images.
These components could in principal be used to create
application-specific components. However, structured can-
vases are designed primarily to display graphical data, not
to support new kinds of interaction components. Thus, for
example, they usually do not allow the application to
extend the set of objects that can be placed within the
canvas. We have found that many developers bypass these
structured canvas components and follow a “roll-your-
own” design philosophy, rewriting large quantities of code
and increasing engineering overhead, particularly in terms
of reliability and programmability. There are also commer-
cial toolkits available such as Flash [6] and Adobe SVG
Viewer [2]. But, these approaches are often difficult to
extend and integrate into an application.

We believe future user interface toolkits must address
these problems by providing higher-level libraries for
supporting custom interface components. However, there
is still an open question regarding which design philosophy
to adopt for these higher-level toolkits. The core issue we
address here is whether toolkits should be designed so that
the inevitable complexity and extension of the components
are supported primarily through composition (which we
call polylithic) or inheritance (which we call monolithic).

In this paper, we consider these two design approaches
for interactive structured graphics toolkits through two
toolkits we built: Jazz,1 a polylithic toolkit; and Piccolo,2 a

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004 1

. The authors are with the Human-Computer Interaction Laboratory,
Institute for Advanced Computer Studies, Computer Science Department,
University of Maryland, College Park, MD 20742.
E-mail: {bederson, jesse, meyer}@cs.umd.edu.

Manuscript received 16 Sept. 2003; accepted 16 Mar. 2004.
Recommended for acceptance by D. Weiss.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0145-0903.

1. The name Jazz is not an acronym, but rather is motivated by the
music-related naming conventions that the Java Swing toolkit started. In
addition, the letter “J” signifies the Java connection, and the letter “Z”
signifies the zooming connection. Jazz is open source software according to
the Mozilla Public License, and is available at: http://www.cs.umd.edu/
hcil/jazz.

2. The name Piccolo is motivated by the music connection of Jazz and
Swing, and because it is so small (approximately one tenth the size of Jazz).
Piccolo is open source software according to the Mozilla Public License, and
is available at: http://www.cs.umd.edu/hcil/piccolo.

0098-5589/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

monolithic toolkit [14]. We provide a qualitative and
quantitative analysis to compare code written using these
two toolkits, looking at application speed and size, memory
usage, and programmability. We are concerned primarily
with issues related to data presentation, painting, event
management, layout, and animation. We do not address
many issues that modern UIs often include such as
accessibility, localization, keyboard navigation, etc.

2 RELATED WORK

There are a number of research [18], [22] and commercial
[4], [19] structured canvas toolkits available. However, most
structured canvas components provide a fixed vocabulary
of the kinds of shapes they support within the canvas. It can
be difficult to create new classes of objects to place on the
canvas.

The InterViews framework [21], for example, supports
structured graphics and user interface components. Fresco
[29] was derived from InterViews and unifies structured
graphics and user interface widgets into a single hierarchy.
Both Fresco and later versions of InterViews support
lightweight glyphs and provide a hierarchy of graphical
objects. However, these systems handle large numbers of
visual objects poorly and do not support multiple views
onto a single scene graph, or dynamic scene graphs. They
also do not support advanced visualization techniques such
as fisheye views and context sensitive objects.

A number of 2D GUI toolkits provide higher-level
support for creating custom application widgets, or provide
support for structured graphics. Amulet [22] is a toolkit that
supports widgets and custom graphics, but it has no
support for arbitrary transformations (such as scaling),
and multiple views.

The GUI toolkit that perhaps comes closest to meeting
the needs for custom widgets is SubArctic [18]. It is typical
of other GUI toolkits in that it is oriented toward more
traditional graphical user interfaces. While SubArctic is
innovative in its use of constraints for widget layout and
rich input model, it does not support multiple cameras or
arbitrary 2D transformations (including scale) on objects
and views.

Morphic [27] is another interesting toolkit that supports
many of our listed requirements. Morphic’s greatest
strength is in the toolkits uniform and concrete implemen-
tation of structured graphics, making it both flexible and
easy to learn. But, Morphic’s support for arbitrary node
transforms and full screen zooming and panning is weak. It
also provides no support for multiple cameras.

There were several prior implementations of Zoomable
User Interfaces toolkits as well. These include the original
Pad system [23] and, more recently, Pad++ [11], [12], [13],
[15], as well as other systems [16], [24], [25], and a few

commercial ZUIs that are not widely accessible [26,
Chapter 6]. All of these previous ZUI systems are
implemented in terms of a hierarchy of objects. However,
like GUI toolkits, they use a monolithic class structure
that places a large amount of functionality in a single top-
level class.

3 POLYLITHIC VERSUS MONOLITHIC DESIGNS

Object-oriented software engineers advocate the use of
“concrete” class hierarchies in which there is a strong
mapping between software objects and real-world things.
These hierarchies tend to be easier for people to learn [20].
Modern GUI toolkits typify this design, using classes that
strongly mirror real-world objects such as buttons, sliders,
and containers. Similarly, toolkits for two-dimensional
structured graphics usually adopt a class hierarchy whose
root class is a visual object, with subclasses for the various
shapes, lines, labels and images (Fig. 1).

In these toolkits, runtime parent/child relationships are
used to define a visual tree, where each object in the tree is
mapped to a portion of the display and has a visual
representation. Many of the complex mechanisms necessary
for modern graphical interfaces (navigation, rendering,
event propagation) are contained within the class structure.

Three-dimensional graphics toolkits provide an impor-
tant counterexample. Toolkits such as Java3D [5] and
OpenInventor [7] use a more abstract model. Here, distinct
classes are used to represent materials, lighting, camera
views, layout, behavior, and visual geometry. Instances of
these classes are organized at runtime in a semantic graph
(usually a DAG) called a scene graph. Some nodes in the
scene graph correspond to visual objects on the screen, but
many of the nodes in the scene graph represent nonvisual
data such as behaviors, coordinate transforms, cameras, or
lights (Fig. 2). This design provides opportunities for
introducing abstractions and promoting code reuse, though
the downside is that it tends to yield a greater number of
overall classes. While scene graphs are very common in
3D graphics, they are rarely used with 2D graphics.

The most important distinction between these two
approaches is the style that is used to combine and add
new features. The 3D scene graphs focus on the use of

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

Fig. 1. Class hierarchy of a GUI toolkit (left) and a structured-graphics toolkit (right).

Fig. 2. Class hierarchy of a typical 3D graphics toolkit.

runtime composition to organize the many small classes in
support of the desired solution. Each class represents an
isolated bit of functionality, and they are designed
independent of each other. In this sense, polylithic designs
are more similar to Prototype-based programming systems
such as Self [30] or ECMAScript [3], which use runtime
instancing to create derived types.

The focus on design through composition offers the
potential of reusability and customizability. By having
features instantiated in small independent classes, it is
likely that these classes will be useful in other contexts and
may be combined in unforeseen ways. Furthermore, the
ability to compose a scene graph at runtime makes such
systems a good match for authoring programs which can
support nonprogrammers to construct new models. This is
evidenced by a broad set of 3D modeling tools such as
SoftImage [8] and 3D Studio Max [1]. We call the 3D toolkit
design approach polylithic because it consists of many small
classes combined together with composition, each repre-
senting an isolated bit of functionality where several are
often linked together to represent one semantic unit.

An alternative design approach is to use compile-time
inheritance to define new widgets. This approach, as is
commonly used in 2D GUI toolkits, defines a single large
base class with support for all the functionality commonly
used in the toolkit’s widget set. New widgets, even ones
with only modest new behavior are created by defining a
new class that inherits from an existing one.

We call this concrete design approach monolithic because
these toolkits have a few large classes containing all the core
functionality likely to be used by applications. These
toolkits tend to be complex and have large numbers of
methods. The functionality provided by each class is hard to
reuse in new widgets. To support code reuse, toolkit
designers often place large amounts of generally useful
code in the top-level class that is inherited by all of the
widgets in the toolkit. This decision leads to a complex
hard-to-learn top-level class. In addition, application devel-
opers are forced to accept the functionality provided by the
toolkit’s top-level class—they often cannot add their own
reusable mechanisms to enhance the toolkit.

3.1 Composing Functionality

A design goal of polylithic systems is to compose
functionality by using a runtime graph of nodes. Each node
in the runtime graph contributes a specific piece of
functionality according to its type. Polylithic systems thus
shift complexity from the static class hierarchy into the
runtime data structure. This contrasts strongly with mono-
lithic systems, which rely heavily on the static class
inheritance hierarchy to compose functionality.

Consider the following example to point out the
distinctions between the two approaches. Let us imagine a
simple application that renders 50 rectangles to the screen at
random positions. Then, we extend that application so the
transparency of each rectangle is dependent on its position.
The point here is to understand what is involved in
modifying the application. The example here is trivial, but
the same ideas apply when, say, extending a button widget
to include a checkbox.

In our example, we will start with a base Node class and
a Rectangle class which extends Node that renders a
rectangle. The traditional monolithic approach extends
Rectangle to create a FadeRectangle with the desired
functionality. The new application then creates 50 FadeR-

ectangles. The polylithic approach, on the other hand,
creates a simpler Fade object by extending Node and then
creates a scene graph where each new rectangle consists of a
Fade object with a child Rectangle object (Fig. 3 shows
the class structure and runtime scene graph of this example,
and the complete code is included in the digital library as
supplementary material).

In this example, each approach yields identical output.
But, by using composition rather than inheritance to add
transparency, the same Fade class could be reused for many
different applications, not just for rectangles. And, of course,
similar functionality can be achieved in general using
polylithic toolkits resulting in greater reusability in general.

However, this example also immediately demonstrates
the main drawback of polylithic systems: The application
code is longer than that for the monolithic system because
the application programmer has to create, understand, and
manage more objects. Monolithic systems also tend to be
more familiar to programmers used to languages such as
Java or C#. On the other hand, because polylithic systems
explicitly separate node types based on their functionality,
they potentially encourage designers to think of useful
abstractions from the outset, yielding more flexible class
hierarchies.

The flexibility of a polylithic approach is likely to be
especially useful when applications and objects are built
dynamically at runtime. This frequently happens in proto-
typing systems and within design tools. In these contexts, it
could be quite powerful to dynamically load a new object
(potentially downloaded from the Web) and insert it into an
existing scene graph-changing the behavior or look of an
object at runtime in ways not imagined by the original
author. Thus, there is a trade off between application code
complexity and flexibility.

Monolithic and Polylithic designs as we have described
them are ideals, but, in practice, real toolkits are usually a
combination of each. Even in the example above, the
polylithic design has a base class with some functionality
from which the other nodes inherit. Similarly, even in a
monolithic toolkit, there is nothing stopping a developer
from creating, say, a transparency node and inserting it into
the scene graph using composition. Nevertheless, the
differences in design are real and these monolithic and
polylithic patterns can be found as we describe in the
above-referenced literature. Furthermore, the design of a
toolkit influences its users to build on it following the
suggested patterns. So, this paper does not attempt to
partition toolkits exclusively into one camp or the other.
Rather, we hope that, by identifying and studying these

B. BEDERSON ET AL.: TOOLKIT DESIGN FOR INTERACTIVE STRUCTURED GRAPHICS 3

patterns, future developers will be able to better understand
the trade offs of each approach.

4 THE JAZZ POLYLITHIC TOOLKIT

We built two toolkits that explore the design space of
polylithic and monolithic systems. We describe them each
here to serve as a basis for understanding the trade offs in
design approaches.

Jazz is a general-purpose polylithic toolkit for creating
structured graphics with explicit support for Zoomable
User Interface (ZUI) applications. Jazz is built entirely in
Java and uses the Java2D renderer. Fig. 4 shows a screen
snapshot of PhotoMesa [9], a zoomable photo browser
application we built using Jazz.

Jazz follows a polylithic design, offering functionality
by composing a number of simple objects within a “scene
graph” hierarchy. These objects are frequently nonvisual
(e.g., layout nodes), or serve to “decorate” nodes beneath
them in the hierarchy with additional appearance or

functionality (e.g., selection nodes). Jazz, therefore, tackles
the complexity of a graphical application by dividing
object functionality into small, easily understood and
reused node types.

Fig. 5 shows a complete standalone Jazz program that
displays “Hello World!”. Default navigation event handlers
let the user pan with the left mouse button and zoom with
the right mouse button by dragging right or left to zoom in
or out, respectively. Jazz automatically updates the portion
of the screen that has been changed, so no manual repaint
calls are needed.

The polylithic design of Jazz leads to decoupled features
that do not depend on each other; so, applications only pay
for features when they use them. For instance, since not all
nodes will be repositioned or resized, the base node type
does not contain a transform. Instead, a transform node is
created when needed and inserted above any node that
should be transformed. Jazz includes similar compositional
nodes to support layers, selection, transparency, hyperlinks,
fading, spatial indexing, layout, and constraints.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

Fig. 3. (a) Polylithic and monolithic class hierarchy for rectangle example. (b) Polylithic and monolithic runtime scene graph for rectangle example.

Fig. 4. Screen snapshot of PhotoMesa, written using Jazz. It uses a Zoomable User Interface to give users the ability to see many images at once,
grouped by directory. PhotoMesa is available at http://www.cs.umd.edu/hcil/photomesa.

4.1 The Jazz Architecture

A Jazz scene graph contains three basic kinds of objects:
nodes, visual components, and cameras. Fig. 6 shows the
object hierarchy of Jazz’s core objects. Fig. 7 shows the
runtime object structure of a typical application with several
objects and a camera.

4.1.1 Nodes and Visual Components

The Jazz scene graph consists of a hierarchy of nodes that

represent relationships between objects. Hierarchies of

nodes are used to implement “groups” and “layers” that

are found in most drawing programs and to facilitate
moving a collection of objects together. A Jazz node has no
visual appearance on the screen. Rather, there are special
objects, called visual components, which are attached to
certain nodes in a scene graph (specifically to visual leaf
nodes and visual group nodes), and which define geometry
and color attributes.

In other words, nodes establish where something is in the
scene graph hierarchy, whereas visual components specify
what something looks like. All nodes have a single parent
and follow a strict tree hierarchy. Visual components can be
reused—the same visual component can appear in multiple
places in the scene graph and, thus, can have multiple
parents.

There is a clear separation between what is implemented
in a node and what is handled by a visual component.
Nodes contain characteristics that modify all of that node’s
descendants. For example, a transform node’s affine trans-
forms modifies the transform used for all child nodes.
Similarly, a transparency node defines the transparency for
groups of child objects.

Visual components are purely visual. They do not have a
hierarchical structure and do not specify a transformation.
Each visual component simply specifies how to render
itself, what its bounds are, and how to pick it (i.e., how to
detect if the mouse is over the component).

This split between nodes and visual components clearly
separates code that is aware of the scene graph hierarchy

B. BEDERSON ET AL.: TOOLKIT DESIGN FOR INTERACTIVE STRUCTURED GRAPHICS 5

Fig. 5. Complete Jazz “Hello World!” program that supports panning and
zooming. Alternatively, one can create a “ZCanvas” and place that
anywhere a Swing JComponent can go.

Fig. 7. Runtime object structure in a typical Jazz application. This scene contains a single camera looking onto a layer that contains an image and a
group consisting of some text and a polyline. Nodes are depicted with ovals and visual components are in rectangles.

Fig. 6. Partial object hierarchy of Jazz shows the core objects used to construct visual scene graphs.

from code that operates independently of any hierarchy. It
enables hierarchical structuring of scene graph nodes, and
also reuse of visual components. It also separates the
structure from the content. Visual components are inter-
changeable, making it possible to, say, replace all the circles
with squares in a subtree of the scene graph without
affecting the grouping or position of objects.

4.1.2 Cameras

A camera is a visual component that displays a view of a
Jazz scene graph. It specifies which portion of the scene
graph is visible using an affine transform. Multiple cameras
can be setup looking at a single scene graph. Cameras can
be mapped to a Swing widget so Jazz interfaces can be
embedded in any Swing application, wherever a Swing
JComponent widget is expected. In addition to being
mapped to drawing surfaces, cameras can be embedded in
a Jazz scene graph, so that nested views of a surface can be
embedded recursively in a scene. Cameras used in this way
are called internal cameras and act like nested windows (in
Pad and Pad++, we called these “portals” [13], [28].)

4.1.3 Layers

Each camera contains a list of layer nodes specifying which
layers in the scene graph it can see. A camera renders itself
by first rendering its background and then rendering all the
layers in its layer list. This approach lets an application
build a single very large scene graph and control which
portion of the scene graph is visible in each camera.

4.1.4 Rendering

Nodes are rendered in a top-to-bottom, left-to-right, depth-
first fashion. Consequently, visual components are ren-
dered in the order that their associated nodes appear in the
scene graph. Changing the order of a node within a parent
node will change the rendering order of the associated
visual component.

4.1.5 Culling

All scene graph objects include a method to compute their
bounding rectangle. Jazz uses this to decide which objects
are visible and, thus, avoid rendering or picking objects that
are not visible in a given view. Bounds are cached at each
node in the current relative coordinate system. Objects that
regularly change their dimensions can specify that their
bounds are volatile. This tells Jazz not to cache their bounds
and, instead, to query the object directly every time the
bounds are needed to make a visibility decision.

4.1.6 Events

Jazz supports interaction through Java’s standard event
listener model. There are two categories of events—input
events and change events. Input events result from user
interaction with a graphical object, such as a mouse press.
Change events result from a modification to the scene
graph, such as a transformation change or a node insertion.

4.1.7 Node Management

A drawback of the polylithic approach adopted by Jazz is
that it places a burden on the application programmer since
they must manage a scene graph containing many nodes

and node types. Adding a new element to a scene can take
several steps. In practice, there is typically a primary node
that the application cares about (usually the visual leaf
node) and then there are several decorator nodes above it.
We added support for managing these kinds of scene graph
structures, using the notion of scene graph editor objects.

An editor instance can be created for any node on the
scene graph. It has methods for obtaining parents of the
node that are of a specific type. It uses lazy evaluation to
create those parent nodes as they are required. With this
structure, if an application wants to obtain a transform node
for a given node in the scene graph, it can simply call:

node.editor().getTransformGroup();

4.2 Legacy Java Code

In Jazz, visual components can be defined to wrap legacy
Java code that is written without awareness of Jazz. Those
components can then be panned, zoomed, and interacted
with by placing them in a scene graph. For example, it is
possible to take some pre-existing code that draws a scatter
plot and make it available as a Jazz visual component on a
surface.

Similarly, any lightweight Java Swing component can be
embedded into a Jazz scene graph by placing it in a special
Jazz visual component in the scene graph. The Swing
component can then be panned and zoomed like other Jazz
components, or can appear in multiple views. This means
that fully functioning existing Java Swing code with
complete GUIs can be embedded into a Jazz surface, and
mixed and matched with custom graphics within Jazz.

5 THE PICCOLO MONOLITHIC TOOLKIT

Piccolo is a Java toolkit that we built from scratch based on
our experience with Jazz. We have also recently ported
Piccolo to C#. Piccolo supports essentially the same core
feature set as Jazz (except for embedded Swing widgets),
but its design is monolithic rather than polylithic. This
design change came from our experience building applica-
tions with Jazz. We found that the polylithic approach in
Jazz met our original design goals of being easy to
understand, maintain, and extend. But, managing all of
the node types was too big a burden for the application
programmer.

Piccolo gives up on the idea of separating each feature
into a different class, and instead puts all the core
functionality into the base object class, PNode. In the
interest of simplicity, Piccolo also eliminates the separation
between “node” and “visual component” types. Instead,
every node can have a visual characteristic. In practice, this
nearly halves the number of objects since most nodes
ended up having a visual representation in Jazz, requiring
two objects.

The Piccolo PNode class is thus bigger than Jazz’s ZNode
class, having 140 public methods compared with Jazz’s
64 public methods. Piccolo also supports hierarchies,
transforms, layers, zooming, internal cameras, etc., as does
Jazz. The “Hello World” program in Piccolo (Fig. 8) looks
very similar to the Jazz version.

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

The Piccolo object hierarchy (Fig. 9) is also similar to

Jazz, but again, is greatly simplified since many node types

are merged into the core class. There are also fewer visual

node types because they have been generalized. Fig. 10

shows a runtime scene graph using Piccolo.
As with Jazz, Piccolo caches bounds of objects and their

children, and has a very careful implementation of the core

scene graph traversal and modification mechanisms. It also

supports region management which automatically redraws

the portion of the screen that corresponds to objects that

have changed.

6 CASE STUDIES

We now try to develop a better understanding of polylithic

and monolithic designs through a series of approaches. We

first look at some sample applications implemented with

the Jazz and Piccolo toolkits. We then analyze the

performance of each toolkit. Finally, we end with a

discussion of our practical experience using each toolkit

and try to draw some conclusions from all of this.
It must be noted that there are many differences between

Jazz and Piccolo independent of the polylithic and mono-

lithic designs (i.e., the combination of multiple shape node

types into a single ”path” node). Furthermore, as mentioned

at the outset of this paper, neither toolkit represents a pure

design of its type. So, we present the case studies briefly

and with caution in the hope that this will aid our overall

understanding, but without making the claim that they in

themselves prove any point.

6.1 Scatter Plot

The first case is a scatter plot that displays two-dimensional
numerical data along with axes and labels (Fig. 11). The
scatter plot also shows a tool tip with more detailed
information about the point that the mouse pointer is over.

6.1.1 Piccolo

As is often the case with applications with structured
graphics, there are two basic designs based on the
granularity of the objects we create.

The simpler way to implement the scatter plot with
Piccolo is to use very fine granularity and create one scene
graph node for each point in the data set. This approach
takes full advantage of the toolkit’s capabilities. For
example, the event handler is trivial since Piccolo finds
the item under the mouse pointer and directs the event to
the point the user is interacting with. Piccolo also performs
region management so that only the portion of the screen
that needs to be repainted actually does get repainted. The
downside here is the overhead of the scene graph, in both
memory and speed. The actual performance measurements
are summarized at the end of this section.

A second implementation with coarse granularity uses a
custom Piccolo node that represents all the points of the
scatter plot. This node renders and picks each point in the
scatter plot and additional nodes are used for axes and
labels. This approach loses Piccolo’s support for picking
and region management per dot.

6.1.2 Jazz

Jazz could be used with either a fine or coarse granularity
design, analogously to Piccolo. But, since the issues for
these trade offs are similar to Piccolo, we chose just the fine
granularity design.

B. BEDERSON ET AL.: TOOLKIT DESIGN FOR INTERACTIVE STRUCTURED GRAPHICS 7

Fig. 8. Piccolo “Hello World!” program that supports panning and
zooming. Or, one can create a “PCanvas” and place that anywhere a
Swing JComponent can go.

Fig. 9. Partial Piccolo object hierarchy showing the core classes needed
to create a visual scene graph.

Fig. 10. Runtime object structure in a typical Piccolo application. This is
the same scene that is represented by the Jazz scene graph of Fig. 7.

Fig. 11. Screen shot of scatter plot example.

6.1.3 Analysis

For each case, we measured the time it took to render the
whole scene as well as the time it took to mouse over and
select one dot (Table 1). We also measured code length by
counting the number of lines of code as well as the size of
the compiled class files. For lines of code, we excluded
blank lines and comments, and included everything else.
While the number of lines of code is not always a strong
indicator of code complexity, we believe it is useful here
since we wrote all examples using consistent formatting
and style. In addition, we included the compiled class size
which may be a clearer metric.

In this and all memory reports, we rely on the Java
memory API. While this API is not promised to be
completely accurate, we did several things to minimize
problems. Before calling any memory APIs, we garbage
collected, ran all finalization methods, and went to sleep for
100 milliseconds, and did that five times sequentially. In
addition, before running any of our tests, we performed
garbage collection and went to sleep for 100 milliseconds to
minimize the chance that garbage collection would be
performed during our tests. Finally, we ran all tests three
times in succession, and only recorded the results of the
third trial. This is intended to give the VM time to perform
optimizations, just-in-time compilation, etc. We performed
all tests using the standard 64 MB Java memory allocation.

Finally, we looked at the amount of memory used to
run the application.3 We tested the scatter plot code with
10,000 dots. This and all measurements reported in this
paper was run on a 2.4 GHz Pentium 4 computer running
Windows 2000 and Java 1.4.1 with a NVIDIA GeForce4 Ti
4600 graphics card.

These results show that there is not a major difference
between Jazz and Piccolo (they are within 15 percent of
each other in every metric). Rather, the major difference
can be found in fine versus coarse granularity. Using a
toolkit node per dot results in a performance improvement
of nearly 20 times for interaction speed (because the
toolkit’s region management code means that only the dots
that changed were redrawn). The speedup comes at the
cost of memory—approximately 1.5 megabytes which
works out to ~150 bytes per node, which is in fact about
the size of a Piccolo dot node.

Since the application is so simple, there is not a major
conceptual difference in the polylithic and monolithic
approaches; although, the polylithic implementation takes

a little longer to manage the extra nodes. In both cases
(using fine granularity), there is not much more to the scene
graph than a list of dot nodes. However, this example does
show Jazz and Piccolo have similar performance and, thus,
gives future comparisons more meaning.

6.2 Range Slider

The second case is a simple range slider widget. A range
slider is similar to a traditional slider, but instead of using it
to specify one value, users control two values. Thus, the
model contains four values:minimum,maximum, lowValue,
and highValue. Users control the two values (lowValue and
highValue) bymoving special areas on the left and right sides
of the “thumb.” Only simple features of the widget are
implemented (i.e., no keyboard control, focus management,
etc.) However, functionality is identical in all three examples.

6.2.1 Piccolo

The Piccolo implementation of the range slider follows the
model-view-controller architecture [20]. A scene graph of
objects is created to represent the subcomponents of the
range slider, and Piccolo’s layout mechanism is used to
position them (Fig. 12).

Each component is defined by subclassing the core
Piccolo node type and overriding its paint method. The base
node RangeSliderNode also overrides layoutChil-

dren() which is called whenever Piccolo determines that
the layout needs to be updated, either because the widget
size or model has changed. Piccolo also takes care of
managing what and when to paint. The nodes are laid out
in a local coordinate system that matches the model values
which makes calculation straight forward. The node is then
scaled to the requested size.

Finally, the controller is defined by an event handler that
updates the model, but since Piccolo transforms the mouse
coordinates into the node’s local coordinate system (which
was designed to match the model), the application does not
have to convert between screen and model coordinates.

6.2.2 Jazz

The Jazz implementation is very similar to the Piccolo
implementation. The main differences are in the node
structure and the layout. Jazz’s polylithic design requires
several extra nodes (Fig. 13). The Jazz layout mechanism is
part of the polylithic design, and a ZLayoutGroup node
encapsulates the layout algorithm that is applied to the
ZVisualGroup’s children.

6.2.3 Analysis

It turns out that while rendering is almost always the
bottleneck in graphical applications, that is not true in this
case. The widget is rendered with small simple rectangles

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

TABLE 1
Performance Results of the

Four Implementations of the Scatter Plot

Fig. 12. Screen shot and scene graph for Piccolo implementation of the
range slider.

3. This and all examples are included as supplementary material in the
digital library.

which with our hardware was rendered by the graphics
chip and, thus, was extremely fast. Table 2 shows the speed
of rendering the entire range slider widget (measured by
taking the average of rendering it 1,000 times). The code
length and memory usage was similar in each case.

In terms of code design, there is a clear difference in the
number of objects that have to be created and managed
(Figs. 12 and 13). There is also an important difference in the
structure of the code which can affect maintainability.

In the case of Piccolo changing the look of the arrow
would require modifying the paint method of the arrow
node, which means writing code.

In Jazz, on the other hand, the nodes that form the arrow
are just a node within the scene graph. There is no
LeftArrow type. Instead, there are just instances of scene
graph nodes that form a tree representing the left arrow. So,
to change the look, you would replace just the visual
component representing the arrow, possibly via a visual
authoring tool, without writing any code.

Similarly, to change the layout of the RangeSlider, in
Piccolo you must modify the layoutChildren method,
which means writing code and adding properties to the
range slider. But, what happens if you then want a third
layout (e.g., diagonal)? In Jazz, layout managers are objects
which are disassociated from the things they lay out. You can
replace the layout manager with any other substitute layout
manager, for example, a vertical layout. Again, this could
potentially be done with a visual authoring tool without any
coding while the monolithic version requires coding.

A key distinguishing factor between monolithic and
polylithic approaches is that monolithic toolkits favor
coders who want to create subclasses and add methods.
Polylithic toolkits favors designers who want to manipulate
graphs of generic types rather than write code.

6.3 DateLens

The last example we looked at was an animated fisheye
distortion calendar visualization. We picked this because it
is a complex animated graphic display which represents an
actual application we wrote called DateLens [10]. We felt
this was a particularly challenging task for a toolkit-based
solution because we wrote DateLens ourselves using a
custom approach because we were fearful of the overhead
that the toolkits would add.

We abstracted the core visualization and interaction
component of DateLens and implemented it with polylithic
and monolithic approaches. In this case, we also imple-
mented a third “custom” version without either toolkit in
the hope of developing an understanding of how these

toolkits might influence code design. The result is a simple
application with a grid of dates. Clicking on one date
enlarges that date while shrinking the others using
animation for the transition. Clicking on any other date
animates a focus change to the clicked on date (Fig. 14).

As with the other two examples, the trade offs of
polylithic versus monolithic approaches were similar. In
addition, we saw that the toolkits added noticeable overhead
in comparison to the custom approach since there are many
small nodes.We analyzed the three solutions aswith the first
two examples, and the results are summarized in Table 3.

We did in fact observe an interesting phenomena with
the custom solution. It’s rendering speed was significantly
faster than the toolkit solutions, but this was not because of
the overhead of the scene graph traversal. Rather, it was
because we used a faster rendering technique in the custom
solution (drawing a single background and horizontal and
vertical lines on top of it). The toolkits encouraged a
rendering technique with localized rendering for each
object, so we drew one rectangle per date which was
slower. This points out a subtle cost of toolkits which is that
their structure sometimes encourages nonoptimal designs.

7 PERFORMANCE STUDIES

Toolkits have two major performance costs: rendering and
scene graph maintenance. So, this section looks at the speed
of these two tasks, comparing the Jazz and Piccolo toolkits
to each other for both tasks and to custom rendering for the
first task.

Since the structure of the scene graph can affect
performance, we performed rendering tests with four
different structures with varying breadth and depth. We
performed all tests using the Java2D renderer to paint
10,000 100 x 100 pixel rectangles. Times are reported as the
average over 10 measurements. The results for the tests
described here are summarized in Table 4.

These results show that the toolkits incurred an average
4 percent performance penalty for scene graph traversal.
Obviously, this percentage depends on the complexity of
the objects being rendered. But, since many application
graphics are more complicated than a rectangle, we could
expect to see the relative cost of the scene graph traversal to
decrease for many real applications. We also see that the
penalty for traversing deeper scene graphs where many
parent child traversals must be made is modest.

7.1 Scene Graph Manipulation Performance

Adding, removing, and modifying scene graph nodes can
take a significant amount of time because the toolkits cache
various properties such as hierarchical bounds. Jazz caches

B. BEDERSON ET AL.: TOOLKIT DESIGN FOR INTERACTIVE STRUCTURED GRAPHICS 9

Fig. 13. Scene graph for Jazz implementation of the range slider.

TABLE 2
Range Slider Measurements

Lines of code for the range slider widget implementations.

somewhat more than Piccolo, including both the local and
global bounds of each node. Since this can speed up
interaction performance, we thought at the time that this
was the right design, but it turns out that the cost of
maintaining both of these caches makes significant mod-
ification of the scene graph quite expensive. Piccolo caches
just the local bounds of each node (i.e., the size of the node
and its children, maintained in the parent’s coordinate
system.) This is much less expensive to maintain and
compute, while still offering performance benefits.

We ran tests to analyze how long it takes to build,
translate, and add 10,000 nodes with varying hierarchical
structures (not counting the time spent to instantiate the
nodes) to a scene graph for both toolkits (Table 5). The
“Build” times are the time to add and create the nodes.

This table shows the overhead of both toolkits compared
to a custom application where there is no scene graph and,
thus, no cost for modifying the visual representation of the
data (since there is none). The most important result here is
that the overhead for animating a significant number of
objects within Piccolo is acceptable. If our performance goal
is 30 frames per second (i.e., 33 msec per frame) and only
0.4 msec is spent on scene graph manipulation, then only
about 1 percent of the total time per frame is spent on
Piccolo scene graph manipulation.

8 OUR EXPERIENCE

The last way to understand the differences between
polylithic and monolithic approaches is through personal
experience. Our group has built a number of applications
with both Jazz and Piccolo of moderate complexity

(approximately 10,000 - 50,000 lines of code each). Our
applications are all end-user visualization-based systems. In
addition, others have written a number of applications
using both toolkits (which are described on the toolkit
Webpages.4) The more significant applications that we
wrote are:

. PhotoMesa—A zoomable photo browser (Jazz and
rewritten for Piccolo.NET).

. ICDL—The International Children’s Digital Library
(Jazz).

. KidPad—A children’s storytelling program (Jazz).

. SpaceTree—A Piccolo-based generic tree browser
(Piccolo).

. TaxonTree—A biological taxonomy tree browser
(Piccolo).

Between teaching new users about Jazz and building
these applications on top of Jazz, we found that managing
the polylithic node structure was a significant programming
burden. Even after we added the “editor” concept to help
hide the details of the node structure, we found that the
multiple nodes remained a problem. The primary reason is
that programmers had to keep an understanding of the
scene graph in their heads. Bugs often occurred when
someone did not point to the right node. For instance,
deleting a node would mean finding the top-most node
associated with that node and deleting a chain of nodes
down to the bottom-most node associated with that chain. If
the right nodes were not deleted, hard-to-debug problems
would occur, such as when an extra node was left in the
scene graph.

When we switched to Piccolo, we found that not only did
we stop having the type of problems associated with
multiple nodes per conceptual object—but it was also much
easier to learn. Even though the overall functionality is very
similar to Jazz, it is conceptually much simpler—and, this is
largely due to the monolithic approach.

Furthermore, our experience with performance and size
of code is consistent with the case studies described
previously. While the Jazz code was often harder to write
and maintain, it’s performance was similar to Piccolo, and
the actual amount of code was not significantly different.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

4. All referenced applications are available for download from http://
www.cs.umd.edu/hcil.

Fig. 14. Screen shots from the calendar example during an animated transition.

TABLE 3
Performance Results of the Three Implementations

of the Graphic Calendar

9 CONCLUSION

We have found that composition (polylithic) and inheri-

tance (monolithic) based approaches each have their merits.

The difficulty for the toolkit designer is deciding how far

down the composition path to go.

In our experience, there is little to indicate that

composition yields significantly different performance

characteristics than inheritance. In addition, code sizes for

the two approaches are similar. Deciding between composi-

tion and inheritance is, therefore, mainly a matter of

identifying who the users of the toolkit are, and what the

expected lifecycle of the toolkit will be.

Toolkit designers use composition because it defers

implementation decisions until runtime, using nodes in a

runtime graph to represent application functionality. Doing

this offers the toolkit implementers and component writers

greater freedom to design, modify, extend, and maintain

the toolkit, e.g., by substituting one node type for another in

the runtime graph. However, the penalty is that the toolkit

objects becomes more abstract, and the application writer

must learn to work with a greater number of classes and

with more relationships between objects. For certain classes

of users, this may make the toolkit too hard to use. We have

observed that significantly greater learning time is required

to learn to use compositional toolkits. The resulting code

quality may suffer, or users may be unable to discover how

to implement a working solution at all.

As an alternative, toolkit designers may use inheritance

and hardwire design decisions into the class hierarchy. This

yields a toolkit which, in our experience, is far easier to

learn and to program against. The resulting code is also

slightly more compact and easier to read. But, the penalty is

that the policies adopted by the toolkit are harder to modify

or repurpose.
When the toolkit designer can anticipate the needs of the

application writer or if the application writer is anticipated

to be a student or a nonprofessional programmer, we

believe that inheritance is a more appropriate strategy. In

our case, an inheritance-style design is appropriate for

Piccolo since it is designed primarily with educational and

research users in mind.

Also, since it is a fourth generation implementation, we
have been able to create an inheritance-based class
hierarchy that we believe represents a “sweet-spot” of the
functionality required for our application scenarios.

As requirements for software interfaces change and
grow (e.g., with the addition of new features, such as
accessibility aids or automation features), static class
hierarchy decisions may prove too limiting and hard to
work within. For platforms that are designed to survive
extended evolution, the extra complexity added by compo-
sition is probably worthwhile. In particular, larger engi-
neering teams may benefit from the loose coupling offered
by compositional designs.

One interesting area of future research is hybrid systems
which offer the characteristics of both inheritance and
compositional approaches. This might be achieved present-
ing multiple compositional nodes as a single “super-node,”
for example, as we attempted to do with the Jazz “editors.”
Another approach is to follow the inheritance design
pattern, but delegate pieces of functionality to helper
objects that can be plugged in. We do not yet have clear
guidelines for these hybrid approaches.

B. BEDERSON ET AL.: TOOLKIT DESIGN FOR INTERACTIVE STRUCTURED GRAPHICS 11

TABLE 4
Rendering Speed for a Tight Custom Loop, Piccolo, and Jazz for 10,000 Rectangles with Four Different Scene Graph Structures

TABLE 5
Scene Graph Manipulation Times for Piccolo and Jazz

The notation “n x m rects” means n groups of m rectangles.

ACKNOWLEDGMENTS

The authors enjoyed their collaborations with those

involved with Pad++, especially Jim Hollan, Jason Stewart,

Allison Druin, Britt McAlister, George Furnas, and Ken

Perlin. They would like to thank their fellow members of

the HCIL, especially Jim Mokwa and Maria Jump for their

early contributions to Jazz. Most importantly, the many

users of Jazz and Piccolo have helped them design, debug,

and understand the requirements of both toolkits, and have

made them much more broadly useful than would have

been possible otherwise. This work was funded by

DARPA’s Command Post of the Future and Semantic

Web projects.

REFERENCES

[1] 3D Studio Max, http://www.3dmax.com, 2003.
[2] Adobe SVG Viewer, http://www.adobe.com/svg/, 2003.
[3] ECMA Script, http://www.ecma-international.org, 2003.
[4] ILog, www.ilog.com, 2003.
[5] Java3D, http://java.sun.com/products/java-media/3D/ 2003.
[6] Macromedia Flash, http://www.macromedia.com/software/

flash/, 2003.
[7] SGI OpenInventor, http://www.sgi.com/software/inventor/,

2003.
[8] SoftImage, http://www.softimage.com, 2003.
[9] B.B. Bederson, “PhotoMesa: A Zoomable Image Browser Using

Quantum Treemaps and Bubblemaps,” Proc. ACM Symp. User
Interface Software and Technology, CHI Letters, vol. 3, no. 2, pp. 71-
80, 2001.

[10] B.B. Bederson, A. Clamage, M.P. Czerwinski, and G.G. Robertson,
“DateLens: A Fisheye Calendar Interface for PDAs,” ACM Trans.
Computer-Human Interaction, vol. 11, no. 1, pp. 90-119, 2004.

[11] B.B. Bederson and J.D. Hollan, “Pad++: A Zooming Graphical
Interface for Exploring Alternate Interface Physics,” Proc. User
Interface and Software Technology (UIST 94), pp. 17-26, 1994.

[12] B.B. Bederson, J.D. Hollan, K. Perlin, J. Meyer, D. Bacon, and G.W.
Furnas, “Pad++: A Zoomable Graphical Sketchpad for Exploring
Alternate Interface Physics,” J. Visual Languages and Computing,
vol. 7, pp. 3-31, 1996.

[13] B.B. Bederson and J. Meyer, “Implementing a Zooming User
Interface: Experience Building Pad++,” Software: Practice and
Experience, vol. 28, no. 10, pp. 1101-1135, 1998.

[14] B.B. Bederson, J. Meyer, and L. Good, “Jazz: An Extensible
Zoomable User Interface Graphics Toolkit in Java,” Proc. ACM
Symp. User Interface Software and Technology, CHI Letters, vol. 2,
no. 2, pp. 171-180, 2000.

[15] B.B. Bederson and J.D. Hollan, “Pad++: A Zooming Graphical
Interface System,” Proc. Conf. Human Factors in Computing Systems
(CHI 95), 1995.

[16] D. Fox, “Tabula Rasa: A Multi-Scale User Interface System,”
doctoral dissertation, New York Univ., New York 1998.

[17] G.W. Furnas, “Generalized Fisheye Views,” Proc. Conf. Human
Factors in Computing Systems (CHI 86), pp. 16-23, 1986.

[18] S.E. Hudson and J.T. Stasko, “Animation Support in a User
Interface Toolkit,” Proc. Conf. User Interface and Software Technology
(UIST 93), pp. 57-67, 1993.

[19] J.K. Ousterhout, Tcl and the Tk Toolkit. Addison-Wesley, 1994.
[20] B.E. Krasner and S.T. Pope, “A Description of the Model-View-

Controller User Interface Paradigm in the Smalltalk-80 System,”
J. Object-Oriented Programming, vol. 1, no. 3, pp. 26-49, 1988.

[21] M.A. Linton, J.M. Vlissides, and P.R. Calder, “Composing User
Interfaces With InterViews,” IEEE Software, vol. 22, no. 2, pp. 8-22,
1989.

[22] B.A. Myers, R.G. McDaniel, R.C. Miller, A.S. Ferrency, A.
Faulring, B.D. Kyle, A. Mickish, A. Klimovitski, and P. Doane,
“The Amulet Environment: New Models for Effective User
Interface Software Development,” IEEE Trans. Software Eng.,
vol. 23, no. 6, pp. 347-365, 1997.

[23] K. Perlin and D. Fox, “Pad: An Alternative Approach to the
Computer Interface,” Proc. Computer Graphics Conf. (SIGGRAPH),
pp. 57-64, 1993.

[24] K. Perlin and J. Meyer, “Nested User Interface Components,” Proc.
ACM Symp. User Interface Software and Technology, CHI Letters,
vol. 1, no. 1, pp. 11-18, 1999.

[25] S. Pook, E. Lecolinet, G. Vaysseix, and E. Barillot, “Context and
Interaction in Zoomable User Interfaces,” Proc. Conf. Advanced
Visual Interfaces (AVI 2000), pp. 227-231, 2000.

[26] J. Raskin, The Humane Interface. Addison Wesley, 2000.
[27] R.B. Smith, J. Maloney, and D. Ungar, “The Self-4. 0 User Interface:

Manifesting a System-Wide Vision of Concreteness, Uniformity,
and Flexibility,” Proc. Conf. Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 95), pp. 47-60, 1995.

[28] M.C. Stone, K. Fishkin, and E.A. Bier, “The Movable Filter as a
User Interface Tool,” Proc. Conf. Human Factors in Computing
Systems (CHI 94), pp. 306-312, 1994.

[29] S.H. Tang and M.A. Linton, “Blending Structured Graphics and
Layout,” Proc. Conf. User Interface and Software Technology (UIST 94),
pp. 167-174, 1994.

[30] D. Ungar and R.B. Smith, “Self: The Power of Simplicity,” Proc.
Conf. Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA 87), pp. 227-241, 1987.

Benjamin B. Bederson received the BS degree
from Rensselaer Polytechnic Institute in 1986,
the MS degree in 1989, and the PhD degree in
1992 at New York University in the Courant
Institute of Mathematical Sciences in Computer
Science. He is an assistant professor of com-
puter science and director of the Human-
Computer Interaction Lab at the Institute for
Advanced Computer Studies at the University of
Maryland, College Park. His work is on informa-

tion visualization, interaction strategies, and digital libraries. He is also
the president and CEO of Windsor Interfaces which commercializes
software developed at the HCIL. From 1990-1992, he was a research
scientist at Vision Applications, Inc. working on miniature robotics and
computer vision. He worked as a research scientist at Bellcore in the
Computer Graphics and Interactive Media research group, and as a
visitor at the New York University Media Research Laboratory in 1993
and 1994. From 1994-1997, he was an assistant professor of computer
science at the University of New Mexico.

Jesse Grosjean writes and sells Mac OS X
software on the Web at www.hogbaysoftware.
com. He also provides support for the University
of Maryland’s Piccolo open-source project. After
graduating from Macalester College in 1999, he
spent a year in a basement, developing zooming
interfaces at Cognective, a Cambridge, Massa-
chusetts-based startup. From 2000-2003, he
focused on implementing zooming interfaces
and toolkits, as a research associate at the

University of Maryland’s Human-Computer Interaction Lab.

Jon Meyer received the BA degree in artificial
intelligence from Sussex University and the MS
degree in computer science from New York
University. He is a computer scientist, teacher,
and artist. He has 15 years of experience in the
software industry, as a software engineer and a
researcher, specializing in computer graphics,
animation, and user interfaces. He has worked
as a program manager at Microsoft and as a
research scientist at New York University’s

Media Research Laboratory.

. For more information on this or any computing topic, please visit
our Digital Library at www.computer.org/publications/dlib.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 8, AUGUST 2004

