
Communicator Spring 2007

�9

First steps in structure: an overview
Many experienced FrameMaker users may have never used
structured documents. Steve Rickaby attempts a beginner’s guide.

Tools

This article and its successors are intended
to provide an easy introduction to structured
working in FrameMaker for readers who have
not used structured documents before.

FrameMaker users who have upgraded beyond
Version 6 will have noticed that it now supports
both unstructured and structured working.
A version of FrameMaker that supported
structured documentation has in fact been
available since FrameBuilder, which was an
alternative to FrameMaker 3.0 in the early 1990s.
With its acquisition of FrameMaker in 1995,
Adobe introduced a separate FrameMaker+SGML
product. FrameMaker 7.0 saw the fusion of
‘plain’ FrameMaker and FrameMaker+SGML into
one application.

Here we will introduce the idea of structured
working and describe some of its advantages,
while later articles will delve into the mechanics
of setting up a simple structure definition.

What is a structured document?
Every document possesses structure: it is
obvious that a book, for example, contains
chapters made up of sections, paragraphs,
lists and so on. A structured document is one
that adds some form of notation to provide a
description of its organisation that is separate
from the document’s presentation. A suitable
notation in this context is one that can be used
to define a concrete language that describes

document structure. SGML and HTML are well-
known examples of languages for describing
document structure (although SGML is, strictly
speaking, a metalanguage).

FrameMaker users are familiar with the use
of paragraph and character tags to define and
control the appearance of text objects. There is a
one-to-one correspondence between a paragraph
or a character sequence and the tag applied to
it. For example, a chapter document may have a
chapter title, sections with headings to which a
Heading tag is applied, body paragraphs to which
a Body tag is applied, list paragraphs to which a
Bulleted tag has been applied, and so on.

However, beyond its physical placement,
there is no concept of the heading to which
a specific body paragraph ‘belongs’. Equally,
there is nothing to stop an author following one
Heading with another: the only indication of the
document’s structure is the physical placement
of its component objects.

Enter structured documents: in a structured
document, a separate syntax describes the
document’s structure independently of its
presentation. For the simple example above,
a sequence of heading and body paragraphs
might be wrapped in a Section, and sections in a
Chapter.

FrameMaker uses the term element to describe
the objects that represent structure. It’s helpful to
think of elements as a separate level of document
organisation from the language of tags, table
styles, markers and so on that you already know
(although these still work as before). This separate
level of organisation is hierarchical: sections
contain a title and body paragraphs, and are
themselves contained in chapters — or whatever
document structure suits your purpose.

Figure 1 illustrates this: in the structured
version, the section title, body and list elements
‘know’ that they are part of a section. We’ll see
how this is achieved later.

When thinking about elements, it’s helpful
to remember that an element may exist only
to contain other elements, as with Section in
Figure 1. Others, such as Body elements, clearly
must contain text. There is no default relation-
ship between elements and paragraph tags.

The extra level of organisation provided by
elements can be used by FrameMaker to apply
rules, to:
 Control the document’s structure by restricting

the elements allowed in a specific context.
 Apply formatting to text objects automatically

based on their context, relieving authors from this
task and allowing them to concentrate on writing.

Figure 1. Chaos and order: applying a simple structure

Chapter

Chapter title

With structure — elements

Without structure —
just a sequence of paragraphs

Chapter title

Heading

Body

Bulleted

Bulleted

Section

Bulleted list

Section title

Body

List para

List para

Communicator Spring 2007

�0 Tools

Why should I use structured documents?
The introduction of a structural description of
documents brings many advantages:
 A much greater level of automation becomes

possible, such as the context-dependent
application of formatting mentioned above.

 A document’s structure can be validated, that
is, checked against the structure definition
and any errors and omissions flagged.

 Structure enables design devices that would
be tedious and error-prone to apply in
unstructured FrameMaker to be wrapped in
elements and used much more easily.

 The ability to interact with documents at a
structural level makes edits to the structure
easier and less error-prone, as well as making
objects such as markers much easier to select.

 Formatting rules within the structure
definition enable document content to be
reformatted in response to structural changes,
for example changing one element into
another with a single command and having all
child elements reformat automatically.

 Meaning can be introduced into document
structures. For example, the documentation
of a software programming interface might
include name, interface definition, parameter
definition list, usage and error messages
for each procedure call. Such elements can
be given descriptive names in the structure
definition, and completeness can be checked
and enforced.

 Locally applied formatting can be removed
by reapplying the structure definition to a
document.

 Document contents can be repurposed much
more easily.

 Extra information about parts of a document
can be introduced through the use of attributes,
data fields that ‘belong’ to elements but which
do not appear in the document itself.

 Inter-working with document tagging formats
such as SGML and XML becomes possible.

As with everything, there is a downside. Setting up a
structured writing environment carries a reasonably
high overhead, which includes getting to grips with
structure definitions, analysing your documents,
defining and testing the required structures, and
becoming familiar with the parts of FrameMaker’s
user interface concerned with structure. Acquiring
deep proficiency with these, as with unstructured
FrameMaker, make take years. However, the
message behind these articles is that making a
start is not as difficult as you might think — and
not as difficult as it’s sometimes made out to be.

By now, readers who are familiar with Word’s
Outline view may be wondering what all the fuss
is about. However, Outline view only understands
Word’s predefined heading styles and body
text. In structured FrameMaker, by contrast,
every object within a document is controlled by
the structure definition, and that definition is
completely under the documenter’s control.

How structure is defined
Until now we’ve purposely referred only to the
‘structure definition’ for a document, without
describing how it is achieved. FrameMaker
uses an element definition document (EDD) to
hold the structure definition for a document
or family of documents. An EDD contains the
element definitions, and is itself a structured
FrameMaker document. The language required
to define elements and their rules in an EDD is
built into FrameMaker itself.

Just as you can import the unstructured
aspects of a document — paragraph and
character tags, page layouts, table definition,
variables and so on — from one FrameMaker
document to another, so you can import element
definitions between an EDD and a FrameMaker
document, and between FrameMaker documents.
Importing element definitions into a structured
FrameMaker document reapplies the structural
definitions to the document, and you can
opt to remove local formatting overrides,
enforcing the formatting defined by the EDD.
However, importing element definitions into an
unstructured FrameMaker document sadly does
not magically apply structure — we’ll see how
that can be achieved in a future article.

There is a strong correspondence between
FrameMaker’s EDD and the document type
definition document (DTD) used in SGML — indeed,
FrameMaker can create a DTD from an EDD and
vice versa. The significant difference is that while
a DTD defines only structure, an EDD can also
include additional rules to control formatting
and other issues in the target document.

Structured documents in FrameMaker
When you first start FrameMaker Version
7.x, it asks you whether you want to work in
structured or unstructured mode. If you choose
unstructured, structure commands are excluded
from FrameMaker’s menus. In fact there’s little
point to this, as it’s perfectly possible to work
with unstructured documents in structured

Figure 2. Extra icons in the document view

Show the element catalog

Enter attributes

Show the structure view

Communicator Spring 2007

�1

Steve Rickaby BSc MISTC
has been a freelance
technical author and
editor for 16 years, and
has used FrameMaker for
most of that time.
E: srickaby@
wordmongers.com
W: www.wordmongers.
com

FrameMaker and just ignore the structure
features. (The converse is not true.)

The most significant thing you notice when
first invoking the structured interface is that
the top right of the document view sprouts a
few extra icons, as Figure 2 shows. Of these,
the most interesting at this stage is the icon to
display the structure view.

The structure view
FrameMaker’s structure view, which is independent
of the document view, shows a document in terms
of its elements and their relationships.

Figure 3 shows an imaginary example. Here a
chapter consists of a Chapter element, Chapter
Number and Title elements, and six Section
elements. The presentation of the elements
indicates that all except the Chapter and
Chapter Number contain child elements that are
hidden from view. Clicking on the ‘+’ toggles the
expansion and collapse of these child elements,
enabling you to ‘zoom’ in and out on details of
the document’s structure. The view also shows
the titles of each section, while Id, Author and
Language are attributes of the Chapter element.

You can use the structure view both to select
elements and to edit the document’s structure.
Clicking on an element selects it and all its contents,
while dragging a selected element in the structure
view moves its physical position in the document.
For the simple example shown in Figure 3, this
would provide an easy way to re-order sections.

The structure view also shows missing
elements and invalid structure. If an element is
required by the EDD but is not present in the

document, the structure shows a red square.
Equally, if the existence or location of an
element makes the document’s structure invalid
with respect to the EDD, the structure shows a
dotted red line. Figure 4 illustrates these.

Future articles
The next article in this series will look at
working with structured documents more
closely, at the advantages and disadvantages of
using off-the-shelf EDDs, and will describe the
construction of a simple EDD. Later articles will
go into more detail about element definitions,
rules and how they are used.

For more information
The FrameMaker User Guide does not attempt
to cover anything other than merely working
with structured documents, so you need extra
material to help you get to grips with EDD
creation. FrameMaker is supplied with an online
guide, the Structure Application Developer’s
Guide Online Manual. This runs to over 500
pages of densely written technical information,
and although comprehensive, is quite enough to
put anyone new to structure off it for good.

Sarah O’Keefe and Sheila Loring’s book
Publishing Fundamentals: FrameMaker 7,
mentioned here before, neatly plugs the gap
between these two extremes. Scriptorium Press
also offers a range of self-training material that
uses this book: the most relevant here is probably
Advanced Structured FrameMaker: Building EDDs.
For details, visit www.scriptorium.com/books/
frametrainingseries.html. C

Figure 4. Defects in structure

Figure 3. Structure view of a simple imaginary document

Missing element

Invalid structure

Communicator Summer 2007

�9

First steps in structure: EDDs
Steve Rickaby continues his beginner’s guide to structured working in
FrameMaker by looking more closely at element definition documents.

Tools

The previous article in this series (Communicator
Spring 2007) introduced the concept of structured
working in FrameMaker and described some of
its advantages. Now we can look in more detail at
how editing operates in structured documents,
and at defining a simple element definition
document (EDD), which holds the structure
definition for a document or document family.

Working in structured documents
The process of writing and editing structured
documents in FrameMaker is substantially
different to that for unstructured documents. In
the latter case, writers often go through a repeated
cycle of entering text, applying mark-up from
the paragraph or character palettes, more typing,
applying more mark-up, and so on. Thus there is
permanent division of labour, and concentration,
between the writing task and the typesetting task.

In structured documents, in contrast, the writer
chooses the required element from the Element
Catalog, and just writes: mark-up is applied auto-
matically under the control of the EDD. A carriage
return creates a new element of the required type.
When a different element type is required, the Element
Catalog presents only those elements that are valid
in the current context. No interaction with the para-
graph or character palettes is necessary, let alone
with the Paragraph or Character Designer dialogs.

Figure 1 illustrates this. As this picture was
captured when the insertion point was in a
body paragraph, only character and marker
elements are shown. <TEXT> means that
free text is also allowed. As the figure shows,

FrameMaker provides controls for inserting an
element, wrapping selected text in an element, and
changing a selected element’s type via this palette.

As well as the document view, you can use the
structure view, described in the previous article,
to set the insertion point and to cut, paste and
drag elements. In fact, it is often preferable to use
the structure view to position the insertion point:
although FrameMaker offers options to make element
boundaries visible in the document view, they are
much more visually disruptive than the View>Text
Symbols option, as Figure 2 demonstrates.

As you work with a structured document,
FrameMaker synchronises the document view
and the structure view, so that:
 Selecting an element in the structure view

highlights it in the document view.
 Selecting any text range in the document view

highlights its lowest-level parent element that
is currently visible in the structure view.

FrameMaker also uses different icons in the
structure view to show whether the insertion
point is at the start of, in the middle of, or at the
end of an element, illustrated by Figure 3.

Designing an EDD
You cannot create structured documents without
an EDD. How you get hold of a suitable EDD,
however, is fenced about with a small forest of
decisions. The first of these you can think of as…

‘BigSmall’
…to borrow a phrase from recent Toyota
advertisements. The first decision you have to

Figure 1. The Element Catalog Figure 2. Exposed element boundaries in the document view

Communicator Summer 2007

�0 Tools

make is whether to use an ‘off the shelf’ EDD
(the ‘big’ approach), or to create your own (the
‘small’ approach). There are strong arguments
for and against both:
 If your project must conform to an existing

standard, such as DITA (Darwin Information Typing
Architecture), you have little choice, and must
specialise the DITA DTDs for your purposes. Adobe
has been doing substantial work on DITA recently,
and it seems likely that FrameMaker Version 8,
due this year, will include specific DITA support.

 General-purpose EDDs such as DocBook (supplied
with FrameMaker) are quite relaxed in their
application of context rules, which can result in
poor document structure, and may also contain
many element definitions that are irrelevant to you.

 If you are new to structure, as we assume here,
adapting an existing EDD like DocBook to your
needs is a large-scale and rather daunting task.

 Conversely, developing your own small-scale EDD
is a great way to learn about structured documents.

For the examples here, we’ll assume that you
plan to develop your own small-scale EDD.

Separation of concerns
Once you’ve opted to create your own EDD, you
are faced with a second major decision: where to
control formatting.

The principle from software engineering known
as separation of concerns states, in brief, that
each entity should have only a single purpose.
When applied to EDDs, this can refer to how
document formatting should be applied. In
structured FrameMaker it is possible to include
formatting instructions in the EDD itself, to refer
out of the EDD to a document’s paragraph and
character tags, or to use a combination of both.

There is not room here to elaborate the
advantages and disadvantages of these
approaches, and in any case opinions differ
amongst experienced practitioners. A reasonable
starting position is to keep all formatting
within the FrameMaker document template
by referencing paragraph and character tags
from the EDD, but to remain aware that some
formatting operations are simplified by including
formatting instructions directly in the EDD. This

approach confers the substantial advantage
that all the structure information is in the EDD
and all the presentation information is in the
document template. This means that the visual
appearance of content can be changed without
any need to change the structure definition.

Document analysis
The next step in designing your own EDD is a
rigorous analysis of the documents you intend
to structure. As the EDD will both represent and
control their structure, clearly a full knowledge
of permissible structures is a prerequisite.
Modelling document structure with a DTD is a
good approach, as FrameMaker allows you to
import a DTD and create an EDD from it.

A simple example will be enough to illustrate the
principles here. We will assume that you are creating
an EDD to represent documents that consist of a
sequence of sections containing headings, body
paragraphs, and bullet lists. From that, you should
be equipped to extend the EDD to include other
document structures up to the book level.

Defining the structure
What does an EDD contain? A FrameMaker EDD
is itself a structured document, and typically
contains a sequence of element definitions and
optional comments, as well as other controls.
Each element definition consists of:
 The element’s name
 The element’s type
 A general rule (for container elements,

described below)
 An optional attribute list
 A sequence of formatting rules
…as well as many other optional controls. The
essential aspects are described below: you can find
complete documentation on element definitions
in the Structure Application Developer’s Guide
Online Manual supplied with FrameMaker.

Element names
When selecting names for your elements, try to
make them short and meaningful, as you would
for paragraph and character tag names. If your
application needs to support SGML or XML at any
stage, bear in mind that their rules for element
names are more restrictive than FrameMaker’s. The
relevant standards contain full details, but a good
approach is to start element names with a letter,
stick to alphanumeric characters, and avoid spaces.

Element types
FrameMaker supports some sixteen element
types, but by far the most common is Container.
A container element, as its name implies, contains
other elements and/or text. Other element types
support graphics, equations, cross-references,
footnotes, variables and the various parts of tables.

In the simple document structure we’ll use to
illustrate EDDs in these articles, we’re going to
include sections, headings, body paragraphs, and

Figure 3. Insertion points in the structure view

Communicator Summer 2007

�1

Steve Rickaby BSc MISTC
has been a freelance
technical author and
editor for 16 years, and
has used FrameMaker for
most of that time.
E: srickaby@
wordmongers.com
W: www.wordmongers.com

bullet lists. All these are modelled using container
elements, as is the top-level element, which we’ll call
Chapter. In a later article we’ll flesh out the structure
with object elements, a term used collectively to
describe elements that support only one object, such
as a marker, cross-reference, variable or graphic.

It’s worth noting that the distinction that
FrameMaker makes between paragraph and
character tags does not exist for elements: both
paragraph and character entities are modelled using
container elements, although the details differ.

Rules in the structure definition
Rules are the essence of the power of structured
FrameMaker. There are many types of rule, but
here we will mainly consider three:
 General rules. Every container element definition

must include a general rule, which specifies
the element’s permitted contents. FrameMaker
uses the same terse but powerful syntax as
SGML for general rules, described below.

 Formatting rules. Any formatting control that
is accessible in unstructured FrameMaker can
be included in an EDD and referenced in an
element definition.

 Context rules. You can insert rules that make
an element behave differently depending on
its context within the document’s structure.
Context rules can check the identity of parent
elements, the level of the element in the
document, or its ordering (first, last and so on).

Figure 4 shows what an actual element definition
might look like in the document view of the EDD.
We’ll describe what this means below.

General rules
The syntax used to define the permissible child
elements of a container in general rules are:
 Element — the element is required and must

occur only once.
 Element+ — the element is required and may

occur more than once.
 Element? — the element is optional but may

occur only once if used.
 Element* — the element is optional and may

occur more than once if used.
In addition, you can group element declarations in
general rules using braces and these connectors:
 , (comma) — elements must occur in the order

given.
 & (ampersand) — elements may occur in any order.
 | (vertical bar) — elements are alternatives to

each other.
These correspond to the syntax of an XML DTD
content model.

We are now in a position to make sense of
the element definition in Figure 4. The general
rule specifies that a Section element must
contain only one Heading element, which must
occur first, followed by zero or more Para,
UnorderedList or Section elements, which may
occur in any order. Automatic Insertions is an
additional rule that inserts an empty Heading
element whenever a Section element is created,
giving the structure shown in Figure 5. Here
FrameMaker has created the Section element,
automatically inserted a Heading element, and
is waiting for further input (the heading text).

If, instead, you define the Section element as
shown in Figure 6, creating a Section element in a
document results in the structure shown in Figure
7. It is showing a red square to indicate that the
structure is incomplete, because the Para element
made mandatory by the modified general rule
(shaded in Figure 6) has not been created.

The element definitions in Figure 4 and Figure 6
are greatly simplified: in practise you might use a
more complex general rule to specify, for example,
that a section cannot start with a list. They are not a
complete EDD: definitions of the Chapter, Heading,
Para and UnorderedList elements are also required.
We’ll see how these are defined in the next article. C

Figure 6. A modified Section element definition

Figure 4. A (very) simple element definition

Figure 7. Results of creating the
Section element defined in Figure 6

Figure 5. Results of creating the
Section element defined in Figure 4

First steps in structure: rules
Steve Rickaby continues a beginner’s guide to structured working
in FrameMaker to cover further rule types supported in an EDD.

Communicator Autumn 2007

�� Tools

The previous article in this series
(Communicator Summer 2007) looked at how
editing works in structured documents, and
made a start on defining a simple EDD (element
definition document). This article goes into more
detail about rules in the EDD and how you can
use them to automate your writing environment.

Rules in the structure definition
As we saw in the last article, rules convey the
power of structured FrameMaker. The following
three rule types are essential:
 General rules. Every container element defini-

tion must include a general rule, which specifies
the element’s permitted contents. The previous
article illustrated simple uses of general rules.

 Formatting rules. Any formatting control that is
accessible in FrameMaker can be included in an
EDD and referenced in an element definition.

 Context rules. These make an element behave
differently depending on its context within a
document’s element hierarchy. Context rules

can test the identity of ancestor elements,
the level of the element in the document
hierarchy, or its ordering.

Formatting rules
When designing an EDD, you have to decide
whether to control document formatting in the
EDD, in the document using paragraph and
character tags, or a combination of both.

Formatting rules enable you to use the
first and last of these options. However, it’s
important to note that in an EDD — in the
absence of other controls — formatting is
inherited by child elements from their parents.
This allows, for example, nested lists to be
formatted easily, by inheriting paragraph
formatting and adding only the required indent.

To define explicit formatting in the EDD, you
create a named format change list. A format
change list is a little like an element, but does
nothing by itself, and is referenced by other
elements. It can access any of the properties
specified by the Paragraph Designer. Figure 1
shows what a format change list looks like.

The figure also illustrates something unique
about format control in an EDD: in contrast
to paragraph tag definitions, format change
list specifications can be relative. The example
shows how you could increase the indent by
0.33 inch, or 2 pica.

Figure 2 shows how the format change list
defined in Figure 1 can be used in an element
definition. It also shows our first context rule, an
all-contexts rule. We’ll return to context rules later.

Using format change lists and inheritance enables
you to keep an EDD relatively simple. It is also
possible, however, for an EDD to apply paragraph
and character tags from the document. Figure
3 shows a simple example of this by expanding
on the definition of the Section element given in
the previous article. Here the paragraph tag Body
will be applied to a Section element’s contents
and that of its descendents unless overridden.

If, when an EDD is imported into a document,
any of the paragraph tags that it references
do not exist in the document, FrameMaker
creates default definitions for them. If this is
unexpected, it’s sometimes a hint that you’ve
misspelled a tag name in the EDD.

Context rules
Context rules could be said to be where the
fun starts with structured FrameMaker. They
are typically where the greatest complexity of
an EDD lies. Using a context rule, you can both
enforce and automate formatting in a document

Figure 1. A format change list to set indents

Figure 2. Referencing a format change list

Figure 3. Specifying a base paragraph format

Communicator Autumn 2007

��

during writing and editing. Context rules enable
FrameMaker to test:
	The level of an element in the document’s

element hierarchy
	The position of an element relevant to its siblings:

first, last, only, middle, not first, not last and so on
	The types of an element’s ancestors.
They also enable FrameMaker to apply
formatting to the relevant elements
automatically based on the above, using the
methods described in the previous section.
Context rules are checked and re-applied every
time the structure of a document is changed.

Figure 4 shows a level rule that applies the
relevant paragraph tag (Heading1, Heading2,
Heading3) to the contents of a Heading element
depending on the nesting level of its parent
Section element. Although simple, this rule
ensures that if sections are moved within a
document’s hierarchy — which you can do merely
by dragging them in the structure view — the
section headings are reformatted automatically.

Note that in all these examples the various
parts of element definitions are not entered by
hand, but are themselves predefined elements
built into FrameMaker itself and inserted using
the Element Catalog. We’ll see how this works in

the next section.
Figure 5 shows just one way in which you could

apply context rules to paragraph tags depending
on the ordering of an element. The two element
definitions specify Para and OrderedList, in which
each child element is of type Para, inserting the
first list element automatically. In the definition
of the Para element, a context rule first checks
to see if the element is a child of an OrderedList.
If so, it uses a nested subrule (1.1) to check
whether it is the first child of the list element.
If it is, FrameMaker applies the paragraph tag
NumericalList1 (which should reset the list
counter): if not, it applies the paragraph tag
NumericalList, which just increments it.

Context rules are particularly useful for
handling formatting issues such as this. Notice
how the two element definitions work together to
create the desired result. In the target document,
the writer inserts an OrderedList element from
the Element Catalog, then simply uses carriage
returns to add more list elements: FrameMaker
applies the paragraph formatting automatically.

As well as checking the immediate context
of an element, as shown in Figure 5, a rule can
also check the ancestors of the current element.
FrameMaker offers the notations shown in Table 1

Table 1. Context rule notations

Notation Interpretation

ElementA < ElementB ElementA is the parent, and ElementB is its parent.

ElementA < * < ElementB ElementA is the parent, and one of its ancestors is ElementB.

ElementA < (ElementB | ElementC) ElementA is the parent, and either ElementB or ElementC is its parent.

You can combine positional indicators with ancestor rules, too. For example:

{first} < ElementA The current element is the first sibling of ElementA.

ElementA {after ElementB} < ElementC ElementA is the parent, and immediately follows an ElementB whose parent is ElementC.

Figure 4. A simple level context rule

Figure 5. A simple positional context rule

Communicator Autumn 2007

�� Tools

Steve Rickaby BSc MISTC has been a freelance
technical author and editor for 16 years, and has used
FrameMaker for most of that time.
E: srickaby@wordmongers.com
W: www.wordmongers.com

for this. The Structure Application Developer’s
Guide Online Manual, supplied with FrameMaker,
elaborates the entire syntax, with examples.

In reality, an EDD is likely to be far more
complex than the simple examples shown here.
However, they demonstrate the principles, and the
rules shown do work, despite their simplification.

Creating the EDD
So far we’ve talked about analysing document
structure and defining an EDD, but we’ve not
looked at how it’s actually done.

You create a new EDD in FrameMaker by
selecting File>Structure Tools>New EDD. You
will notice when you do this that FrameMaker
has a whole host of structure-specific
commands collected under File>Structure Tools
and File>Utilities. The New EDD command
creates a blank EDD as a structured document
that contains only the declarations shown in
Figure 6, which shows both the structure and
document views.

The default declaration Automatically create
formats on import refers to FrameMaker’s
ability to create format definitions (paragraph,
character, table or cross-reference) when you
import an EDD that refers to such formats
into a document that does not already contain
them. If you do not want this to happen, you
can select the CreateFormats element and,
using the Element Catalog, change it to a
DoNotCreateFormats element. This is the better
option if you are creating formats manually.

FrameMaker has also created the first, blank,
element declaration. The process of defining
elements is guided by the choices presented in the
Element Catalog. To take a very simple example,
the sequence required to create the Chapter
element definition shown in Figure 7 is as follows:
1. Position the entry point in the Element field

that FrameMaker has created by default. The
Element Catalog shows <TEXT>, indicating
that only text is allowed here.

2. Enter ‘Chapter’ and press Return. The Element
Catalog changes to show all the elements that are
now valid — these are the element type definitions.

3. In the Element Catalog, double-click on Container.
FrameMaker automatically inserts a GeneralRule
element and places the entry point in its text field.
Once again, the Element Catalog shows <TEXT>.

4. Enter the general rule, ‘Section*’ and press
Return.

5. Again the contents of the Element Catalog
changes to show valid elements. Double-
click on ValidHighestLevel, and the Chapter
element definition is complete.

This demonstrates how a structure definition
guides and enforces valid document structure — in
this case the structure definition for EDDs that is
built into FrameMaker itself. Of course, the example
is a very simple element: in reality some iteration
is often required to complete element definitions.

Future articles
The next article in this series will flesh out
the simple EDD examples shown so far with
other essentials such as text range (character
formatting), marker and cross-reference elements,
and look at testing EDDs. Further articles will
describe how to apply structure to unstructured
documents, and how to set up bidirectional
interchange between FrameMaker and XML.

For more information
For information on working with structured
documents and creating EDDs, Sarah
O’Keefe and Sheila Loring’s book Publishing
Fundamentals: FrameMaker 7 is recommended.
Scriptorium Press also offers a range of self-
training material that uses this book: the most
relevant here is probably Advanced Structured
FrameMaker: Building EDDs. www.scriptorium.
com/training/frame7train.html. There is also a
useful collection of white papers at www.adobe.
com/products/framemaker/indepth.html.

For wider information on structured docu-
mentation, see A Gentle Introduction to SGML,
www.isgmlug.org/sgmlhelp/g-index.htm. C

Figure 6. The contents of a new EDD, structure and document views

Figure 7. A Chapter element definition

First steps in structure: elements
Steve Rickaby continues a beginner’s guide to structured working
in FrameMaker by looking at different types of elements.

Communicator Winter 2007

�� Tools

cross-reference elements can specify a default
cross-reference format, while marker elements can
specify a default marker type. A graphic element
can specify whether a blank anchored frame
should merely be inserted into a document, or
the Import File dialog also displayed.

Figure 2 shows some simple element definitions
to support graphics. The element Graphic offers
the choice of AnchoredFrame or ImportedGraphic
child elements, while applying the paragraph tag
FigureAnchor to the paragraph that contains
the graphic frame’s anchor.

Attributes
Attributes are separate items of information
that are associated with a specific element. They
have three main purposes:
 They can be used to track extra information

about a document or element, such as author,
version, dates and so on.

 They can be used to control special processing
applied to elements when content is saved as
XML or another tagged format.

 Read-only attributes are required to support
cross-references if content is to be saved to
XML or SGML, as these formats only support
cross-references in this form.

Figure 3 shows the typical appearance of attributes

The previous article in this series (Autumn 2007
Communicator) described rules in the Element
Definition Document (EDD) and how you can use
them to automate your writing environment. This
article explains how other document objects
such as character formatting, marker and cross-
reference elements are defined in an EDD, and
discusses testing EDDs.

Types of elements
Structured FrameMaker supports the following
element categories and types:
 Container elements. We have already looked at

container elements in previous articles in this
series. Container elements can hold other elements
and/or text, and can be recursively nested.

 Object elements. This is the collective term for
elements that contain only one object. Object
element types exist for cross-references,
equations, graphics, markers and system variables.

 Table elements. As their name implies, table
elements define the various parts of a table.
Table element types exist to model the whole
table, table body, table cell, table footing, table
heading, table row and table title.

You may notice that this list makes no mention
of character formatting elements. In structured
FrameMaker, a character formatting element is
also a container element, but one that specifies the
Text Range property. Thus the distinction between
paragraph and character formatting that exists
at the document level is removed in the structure
definition. However, the context-sensitive nature
of the Element Catalog ensures that only valid
elements are presented in any specific context.

Figure 1 shows an example of a character
formatting element, defining an element type
Emphasis that can be used to wrap a range of text
and automatically apply the character tag Emphasis
to it. (If you find such duplication of names
confusing, you can of course use different names
for your elements and the corresponding tags.)

This definition is over-simplified, as the <TEXT>
general rule means that no other elements, such as
marker elements, can be nested inside an Emphasis
element, which would not be the case in practice.

Adding object element definitions
The process of defining object elements is the
same as previously outlined in this series for
container elements: the context rules built into
FrameMaker itself guide what is offered in the
Element Catalog while you build each element
definition. However, some object elements have
additional properties that allow you to automate
the target environment further. For example,

Figure 1. A character formatting element

Figure 2. Object elements: graphics element definitions

Note

This series of articles on
structured working refers
to the menu options
available in FrameMaker
versions 7 to 7.2. There
is a new Structure Tools
menu in FrameMaker 8
(see page 16 of this issue).

Communicator Winter 2007

��
in the structure view. Here Id is a read-only attribute
used to support structured cross-references to the
chapter, Author is a free text attribute and Language
is a multiple-choice attribute with predefined values.
When a new chapter element is created, FrameMaker
displays the dialog shown in the lower part of
the figure. The widget on the right displays
option values for multiple-choice attributes.

Testing a structure definition
The process of creating and testing a ‘real’ EDD
from scratch is usually iterative:
1. Create a new blank EDD.
2. Create a simple test document.
3. Create or modify one or more new element

definitions.
4. Import the EDD into the test document.
5. Optionally, create or refine the required para-

graph or character tags in the test document.
6. Test the behaviour of the new elements.
7. Return to step 3 until done.
FrameMaker does its best to help you: when you
import element definitions into a document it
checks all the element definitions in the EDD.
If it finds errors, it displays them using the
Element Catalog Manager Report dialog, such
as the example in Figure 4. The element names
in this report — in this case Emphasis and
IndentedPara — are hyperlinks to the respective
element definitions in the EDD being imported.
The report shown in the figure indicates that
the EDD defines these elements but they are not
referenced in the general rules of any container
element definitions (this is not really an error,
just a warning). The opposite of this — elements
that are referenced in a general rule but not
defined in the EDD — definitely is an error.

As is often the case with compiler errors, if
importing an EDD creates pages and pages of
error messages, it is often only the first few that
are relevant. A common cause of errors is mis-
typing an element name in a general rule. If the
Element Catalog Manager Report indicates that
FrameMaker has created one or more new tags in
the target document, again, this is often caused
by mis-typing the respective tag name in a context
rule in the EDD. For example, if your document
defines a paragraph tag called Body, but a
context rule in the EDD instead refers to body,
FrameMaker will create a default body tag when
you import the EDD because case is significant.

FrameMaker offers other tools for debugging
structure definitions. While testing an EDD, there will
be times when you think that your test document
should be valid, but it may not be due to errors
in the EDD. You can validate a document using
Element>Validate, which produces the dialog shown
in Figure 5. As Sarah O’Keefe helpfully points
out in Publishing Fundamentals: FrameMaker 7,
if you think of this as the structural equivalent
of a spell-checker, its operation becomes clear.

The most complex part of any EDD, particularly
one designed to provide a high degree of control

Figure 4. An Element Catalog Manager Report

Figure 3. Attributes for a chapter element, and their entry dialog

Figure 5. The Element Validation dialog

Communicator Winter 2007

�� Tools

Structuring unstructured documents
Importing element definitions into a structured
FrameMaker document reapplies the structural
definitions to the document. Sadly, importing
element definitions into an unstructured Frame-
Maker document does not magically apply
structure. FrameMaker does, however, offer
tools to do this, in the form of conversion tables.
The process of applying structure consists of
successively wrapping paragraph tags in elements,
and elements within other elements, in a ‘bottom
up’ fashion, until an entire document is structured.

A conversion table is like any other FrameMaker
table, and exists within its own document. It has
columns to control the paragraph tag or element
to be wrapped, the element used to wrap it, and
an optional qualifier that is used to indicate
temporary elements. You apply a conversion
table to an unstructured FrameMaker document
using the File>Utilities>Structure Current
Document command. The next article will look
at conversion tables in detail.

For more information
For information on working with structured
documents and creating EDDs, Sarah O’Keefe and
Sheila Loring’s book Publishing Fundamentals:
FrameMaker 7 is recommended. Scriptorium
Press also offers a range of self-training material
that uses this book: the most relevant here is
probably Advanced Structured FrameMaker:
Building EDDs. www.scriptorium.com/training/
frame7train.html.

FrameMaker is supplied with a comprehensive
online guide, the Structure Application Developer’s
Guide Online Manual, which is useful for
reference. C

Steve Rickaby BSc MISTC
has been a freelance
technical author and
editor for 16 years, and
has used FrameMaker for
most of that time.
E: srickaby@
wordmongers.com
W: www.wordmongers.com

and formatting automation, is going to be its context
rules. Their programmatic if/elseif/else structure
can lead to unexpected behaviour in the target
document, and some sort of debugging tool is vital.

FrameMaker provides the File>Structure
Tools>Show Element Context command for
this. For any selected element, this displays
the element’s ancestors and the context rules
‘fired’ by the element. In Figure 6 the insertion
point is in the first Para element of an ordered
list that uses the element definitions shown
in Figure 5 of the Autumn 2007 article in this
series. The element hierarchy is shown on the
left, while on the right-hand side of the dialog
the arrows show that the first context rule — the
If OrderedList rule — and the If {first} rule have
both fired. The dialog obscures it, but this has
resulted in the paragraph tag NumericalList1
being applied, resetting the list counter.

Figure 6. Results of a Show Element Context command

First steps in structure: wrapping up
Steve Rickaby completes a beginner’s guide to structured working in
FrameMaker by looking at conversion tables and round-tripping.

Communicator Spring 2008

�� Tools

 Body paragraphs wrapped in Para elements
 Headingx paragraphs wrapped in Title elements
 Title elements and all their child Para elements

wrapped in Section elements
 Section elements connected with the correct

hierarchy
 All Section elements, plus the ChapterHeading,

wrapped in a Chapter element.
This will give the structure shown in Figure 2. For
clarity, the element names differ from the paragraph
tag names, although this is not mandatory.

The key is to think of this as a sequential process
that builds the element structure from the lowest
level of detail to the highest — hence bottom-up — as
FrameMaker processes the conversion table row
by row. Here is what we need to do:
1. Wrap each Body paragraph in a Para element.
2. Wrap each Heading2 paragraph in a Title element.
3. Wrap each Heading1 paragraph in a Title

element.
4. Wrap each Title element and one or more

Para elements in a Section element.
5. Wrap (sub)Section elements in Section elements.
6. Wrap the ChapterHeading paragraph in a

Title element.

The previous article in this series (Communicator
Winter 2007) looked at the various types of
elements you can define in a structured document,
and touched on how to apply structure to
unstructured documents. This article completes
the series by going into more detail about
structuring unstructured documents, and finishes
with a brief overview of ‘round-tripping’ — setting
up a FrameMaker <–> XML or SGML environment.

Structuring unstructured documents
In the previous article, we saw that importing
element definitions into an unstructured
FrameMaker document does not magically apply
structure. FrameMaker does offer a way to do
this, in the form of conversion tables. Conversion
tables, also known as wrapping tables, allow
structure to be applied to an unstructured
FrameMaker document by successively wrapping
named unstructured objects in elements, and
elements within other elements, in a ‘bottom up’
fashion, until the entire document is structured.

A conversion table is like any other FrameMaker
table, and exists within its own document.
FrameMaker can create a default conversion table
for you with the File>Structure Tools>Generate
Conversion Table command. When you do this in
an unstructured document, FrameMaker populates
the table with all the paragraph, character, and
table tags used in the document.

A conversion table has a minimum of three
columns:
 Wrap this object or objects. This column lists

the object to be wrapped. FrameMaker uses a
prefix to indicate the object type, for example
‘C’ for character tag, ‘P’ for paragraph tag, ‘E’
for element and so on.

 In this element. For each object listed in the
first column, this column lists the element in
which the objects should be wrapped.

 With this qualifier. The final column enables
you to apply an optional, temporary qualifier.
FrameMaker tags the wrapping element with
this qualifier, but only uses it internally. Its
purpose is to allow two-stage wrapping: we’ll
look at this in more detail later.

You can also add additional columns for
explanations (probably a good idea).

Let’s see how this works in practice. Consider a
(very) simple unstructured FrameMaker document
that consists only of body paragraphs — paragraph
tag Body — and two levels of heading, Heading2
and Heading1, plus a chapter heading, as shown
in Figure 1. To keep things simple we’ll exclude lists
from the example. Assuming a suitable Element
Definition Document (EDD), we want to end up with:

Figure 1. Unstructured
paragraphs Figure 2. The intended structure

ChapterHeading

Body

Body

Body

Body

Body

Body

Heading1

Heading1

Heading2

Chapter

Title

Section

Title

Para

Para

Section

Title

Para

Para

Section

Title

Para

Para

Communicator Spring 2008

��
7. Wrap all Section elements and the chapter’s

Title element in a Chapter element.
Figure 3 shows a first attempt at what a
conversion table might look like.

Wrapping in stages
Once you have imported the element definitions
from the EDD into an unstructured document
using File>Import>Element Definitions,
you apply a conversion table using the
File>Utilities>Structure Current Document
command. When you do this, FrameMaker
creates a copy of the unstructured document
and applies the structure defined by the
conversion table to it, processing the conversion
table row by row from the first to last rows.

Unfortunately, the conversion table shown in
Figure 3 will not produce the required results.
In fact, what happens is that the (unstructured)
subsection with the Heading2 heading appears
in the structure as a third top-level section.
Why? Let’s run through the table line by line:
 The first line wraps Body paragraphs in Para

elements.
 The second line wraps Heading2 paragraphs

in Title elements.
 The third line wraps Heading1 paragraphs in

Title elements.
 The fourth line wraps all Title elements that

are followed by one or more Para elements in
a Section element.

 The fifth line wraps all Title elements that
are followed by one or more Para or Section
elements in a Section element.

 The sixth line wraps the ChapterHeading
paragraph in a Title element

 The last line wraps the chapter’s Title element
and all Section elements in a Chapter element.

Because the fourth line wraps all Title and
Para element sequences in Section elements,
it will apply this process both to sections
having a Heading1 heading and sections having
a Heading2 heading. Thus the fact that the
Heading2 section is a subsection is lost, and the
fifth line of the conversion table is redundant;
all Title elements have already been wrapped.

The trick in this case is to preserve the fact that
the Heading2 section should be nested in its parent
Heading1 section when structure is applied.
This is where the third column of the conversion
table comes in. It allows the element applied by a
specific row of the conversion table to be tagged
with a qualifier, so that it has the same element,
but a temporarily different element name, later in
the conversion process. The element qualifier has
no existence outside the conversion process.

Consider the conversion table shown in
Figure 4. As before, the first line wraps all Body
paragraphs in Para elements. However, the
second line uses an element qualifier nested
to tag the Title elements that wrap Heading2
paragraphs, such that their identity becomes
Title[nested]. The third line of the table similarly

creates a Title[outer] element, while the fourth
line wraps only the nested Title elements and
their child Para elements in Section elements,
and again applies the nested qualifier to give
Section[nested]. Now the fifth line of the
conversion table has something to do, namely
wrapping the remaining unwrapped top-level
Title elements with their child Para elements
and Section[nested] elements in a top-level
Section[outer] element. This table has the desired
effect, producing the structure shown in Figure
2. You can extend this method to deeper levels
of subsection nesting if required, and also use as
many different element qualifiers as you need.

Another example of a situation in which you
need to use element qualifiers is in wrapping
different types of list. Your EDD may — in
fact, probably should — use the same ListItem
element for all list items. However, you will
probably have both bulleted lists and numeric
lists, making it essential to be able to distinguish
between the two types of list item during the
wrapping process, so that they can be wrapped
in the correct parent element for the list type.

Testing conversion tables
For very simple structuring such as the example
here it is possible to debug a conversion table by
letting it run to completion, examining the results,
applying a fix, and trying again. However, for ‘real’
applications in which a conversion table may have
many tens of lines, it can be hard to guess the
problem when the results are not what you expect.

A useful technique is to take advantage of
the fact that table rows can be conditionalised.
Because FrameMaker executes a conversion table
row by row, this enables you to selectively ‘switch
off’ lower rows of a conversion table so that you
can examine intermediate results of the process

Figure 4. Conversion table: second try

Figure 3. Conversion table: first try

Communicator Spring 2008

�� Tools

FrameMaker needs the following files:
 An EDD
 A DTD
 A document template
 An optional set of read/write rules.
Collectively, FrameMaker refers to this group
of files as a structured application. Structured
applications — that is, the lists of such groups of
files — are stored as named entities in FrameMaker’s
structapps.fm file. When you ask FrameMaker to
open a markup file, or save to a markup format,
FrameMaker asks you which structured application
you want to use (Figure 5). The overall process is
illustrated diagrammatically in Figure 6.

However, markup languages such as XML and
SGML differ from FrameMaker in the way in which
they represent content, so the full development and
refinement of a structured application is likely to be
considerably more complex than is described here.
If starting with an EDD and creating a DTD from it,
for example, some simplification of the DTD may
be required, particularly for XML. This is because
FrameMaker’s EDDs support a richer object model
than those of many markup languages. Figure 7
illustrates this: the first element definition contains

a general rule that specifies a single graphic
element. This is not valid for XML: the closest valid
general rule for an XML DTD is shown below it,
which allows any number of Graphic elements.
This type of variability can be encoded in an EDD
conveniently using conditional text.

If round-tripping is not required — perhaps
for a workflow that must combine some XML
content with plain text, format it in FrameMaker
and publish to PDF — the full complexity is
not required and the job of developing the
structured application is simplified. The online
Structure Application Developer’s Guide contains
all the information required for these tasks.

Read/write rules
Read/write rules are written in plain text and
contained in a FrameMaker document that forms
part of your structured application. They have a
simple syntax not unlike C. For example:
element “xyz” {
is fm element “pdq”;
attribute “aa” is fm attribute “bb”
}

defines a bidirectional rule for translating an
element name and one of its attributes between
the markup and the FrameMaker domains.

FrameMaker offers a default application that
translates markup elements to FrameMaker

and pin down where an error is occurring.
Creating and testing a conversion table requires

substantial effort when moving unstructured
FrameMaker documents to a new EDD. However,
provided that the unstructured documentation
makes consistent and controlled use (that is, no
overrides) of a stable template, it should only
have to be done once.

Setting up round‑tripping to other formats
‘Round-tripping’ refers to the bidirectional
interchange of content between FrameMaker-
native format and a markup language such as XML
or SGML. This section can only scrape the surface
of this subject, but the key point for those new
to structured FrameMaker is that it is entirely
possible to store FrameMaker content in, say, XML,
but have it appear and behave as conventional
structured content in FrameMaker when the
XML file is opened or saved. Once implemented,
FrameMaker applies the appropriate conversions
entirely behind the scenes.

But what is ‘implemented’? To be able to
open a markup format file and convert it to
FrameMaker structured content, FrameMaker
needs extra information in the form of an
EDD, a valid template, and optionally a set of
read/write rules. When opening a markup file,
FrameMaker applies the read/write rules, the
EDD and the template to convert the markup
data to FrameMaker structured content.

When saving to a markup language, this
process is reversed, except that instead of using
the EDD, FrameMaker uses a corresponding
Document Type Definition (DTD) to validate the
markup data produced.

From this it is possible to see that to handle
conversion to and from markup format,

Figure 5. Specifying a structured application

Structured application
Markup

environment
FrameMaker
environment

Read/write rules

Application definition

Object declarations

DTD

Entities

EDD

FrameMaker template

FrameMaker Open / Save As commands

Markup document FrameMaker document

Figure 6. A FrameMaker structured application

Communicator Spring 2008

�9
elements of the same name and markup attributes
to FrameMaker attributes, and vice versa. Read/write
rules enable you to modify this behaviour, for
example in the case in which markup attributes
correspond to FrameMaker formatting properties.

There are several situations in which you may
require read/write rules:
 Constructs such as tables, graphics or cross-

references may require special translation
between markup and FrameMaker that cannot
be specified in a DTD. When translating such
constructs, FrameMaker makes assumptions
about them that may not be what is required.

 Elements and attributes may need to be renamed
in the markup domain. FrameMaker allows quite
luxurious naming, which can conflict with the
stricter rules of XML and SGML.

 Translating entities in XML or SGML that
represent special characters into the actual
characters in the FrameMaker domain.

 Making structural information that is implicit
in XML or SGML explicit in FrameMaker, such
as the number of columns in a table.

 Flattening structural hierarchies that are
required in one domain but not in the other.

FrameMaker read/write rules form a
comprehensive ‘language’ of over 70 commands
that cover the translation of elements, attributes,
books, cross-references, entities, equations,
footnotes, graphics, markers, tables, text, text
insets and variables. Where read/write rules
cannot handle the differences between markup
format and FrameMaker format, you can write
a structured client that controls FrameMaker

through its API (application programming
interface). FrameMaker’s API enables you to exert
arbitrary control over its processing, although
using it does require programming skills. We
hope to make this the subject of a future article.

Read/write rules, unlike element definitions,
are not context-sensitive: an element is treated
the same way irrespective of its parents.

For more information
For information on working with structured
documents and creating EDDs, Sarah O’Keefe and
Sheila Loring’s book Publishing Fundamentals:
FrameMaker 7 is recommended. Scriptorium Press
also offers a range of self-training material that
uses this book: the most relevant here is probably
Advanced Structured FrameMaker: Building EDDs.
www.scriptorium.com/training/frame7train.html.

Finally, in the long journey to get to here with
structure, I have had sterling help and support

from the assorted gurus on the FrameUsers
group (www.FrameUsers.com). I cannot commend
or thank them too highly. Special mention should
be made of my stalwart and patient reviewers:
Jane Dards, Marcus Carr of Allette Systems,
Sydney, and Lynne A Price, of Text Structure
Consulting, Inc, California. C

Figure 7a. Element definition valid for EDD but not for XML

Figure 7b. Element definition valid for XML

Training in structured
FrameMaker

Reviewer Lynne A Price
is president of Text
Structure Consulting
Inc, which specialises in
training, consulting and
application development
in structured FrameMaker.
See www.txstruct.com
for tips and free tools
dealing with EDDs,
read/write rules and
structure application
definitions, as well as
descriptions of training
and consulting services.
Users new to structure
may be interested in
the self-study course
on Editing Structured
Documents: A Course for
Experienced FrameMaker
Users (details from Lynne
at lprice@txstruct.com).

Lynne is willing to run
training in the UK if there
is enough demand.
Interested readers
should contact Marian
Newell at journal.editor@
istc.org.uk with details of
the type of training that
would be useful to them.

Steve Rickaby BSc MISTC has been a freelance
technical author and editor for 17 years and has used
FrameMaker for most of that time.
E: srickaby@wordmongers.com
W: www.wordmongers.com

