Tools of Geometry Unit

1-2 Points, Lines, Planes

Undefined or Defined Term	Diagram	Name
point undefined term -a location in space, but has no s	A •	А
line undefined term -a straight infinite path in two oppout it has no thickness.	osite directions, A	ĀĒ
plane undefined term -a flat surface that extends infin	itely,	P
but it has no thickness. segment -a piece of a line.	<u>A</u> <u>B</u>	ĀB
-a piece of a line that begins at a	n endpoint and extends forever in one	AB e direction.
opposite rays -otherwise known as a line.	A C B	₹Ā, ₹B

Collinear - points that lie on the same line

Coplanar - points and lines that lie on the same plane

Postulate (Axiom) - an accepted statement of fact

Through any two points, there is exactly one line.

Through any three non-collinear points, there is exactly one plane.

See if you can match the items below?

Column A Column B

- . plane HGE
- . BF
- plane DAE
- . line y
- point A

- intersection of \overline{AB} and line z
- plane AEH
- line through points F and E
- intersection of planes ABF and CGF
- plane containing points E, F, and G

4	\sim			\frown	1 .	. ('	
1	-h	Hag	\sim 1.5		netri	uctio	ne
	-0	Dav	טוכ	\mathbf{C}	าวแบ	ましいし	IJ

Constructions - a geometric figure drawn using a straightedge and a compass

You will need to be able to make the following constructions:

congruent segment perpendicular bisector angle bisector

1-3 Measuring Segments

Congruent - exactly the same size and shape

- symbol

How to Mark Segments Congruent

Coordinate - the location of a point

Distance - taking the absolute value of the difference of two points

- find the distance between S and U below

Segment Addition Postulate - If T V, then TU + UV = TV.

In the diagram, JL = 120. What are JK and KL?

Midpoint - the point that divides the segment into two congruent segments

Bisector - something that divides a segment or angle in half

U is the midpoint of \overline{TV} . What are TU, UV, and TV?

1-4 Measuring Angles

Vocabulary - Angle, Vertex, Angle Types (Acute, Right, Obtuse, Straight), Angle Addition Postulate

Angles -

Definition

An **angle** is formed by two rays with the same endpoint.

The rays are the **sides** of the angle. The endpoint is the **vertex** of the angle.

How to Name It You can name an angle by IF there is only one angle to be named!!!!

 a point on each ray and the vertex

• a number

Diagram

Naming Angles

What are two other names for $\angle KML$?

How to Mark Angles Congruent

Angle Addition Postulate - If

, then no JMK + no MKL = no JML.

 $\angle DEF$ is a straight angle. What are $m \angle DEC$ and $m \angle CEF$?

1-5 Exploring Angle Pairs

Angle Pair	Definition
Adjacent angles	Two coplanar angles with a common side, a common vertex, and no common interior points
Vertical angles	Two angles whose sides are opposite rays
Complementary angles	Two angles whose measures have a sum of 90
Supplementary angles	Two angles whose measures have a sum of 180

Draw a line from each word in Column A to the angles it describes in Column B.

Column A	Column B
10. supplementary	$\angle 1$ and $\angle 2$
11. adjacent	$\angle 2$ and $\angle 3$
12. vertical	$\angle 2$ and $\angle 5$
13. complementary	$\angle 3$ and $\angle 6$

Got lt? Use the diagram at the right. Are $\angle AFE$ and $\angle CFD$ vertical angles? Explain.

- **14.** The rays of $\angle AFE$ are \overrightarrow{FE} and $\overrightarrow{FC}/\overrightarrow{FA}$.
- **15.** The rays of $\angle CFD$ are \overrightarrow{FC} and \overrightarrow{FD} / \overrightarrow{FA} .

Complete each statement.

- **16.** \overrightarrow{FE} and are opposite rays.
- 17. \overrightarrow{FA} and are opposite rays.
- **18.** Are $\angle AFE$ and $\angle AFE$ vertical angles?

Yes / No

take note

Postulate 1-9 Linear Pair Postulate

If two angles form a linear pair, then they are supplementary.

21. If $\angle A$ and $\angle B$ form a linear pair, then $m \angle A + m \angle B =$

Got lt? Reasoning $\angle KPL$ and $\angle JPL$ are a linear pair, $m\angle KPL = 2x + 24$, and $m\angle JPL = 4x + 36$. How can you check that $m\angle KPL = 64$ and $m\angle JPL = 116$?

1-7 Midpoints and Distance Formula

Midpoint

Definition: A *midpoint* of a segment is a point that divides the segment into two congruent segments.

On a Number Line In the Coordinate Plane The coordinate of the midpoint M of \overline{AB} With endpoints at a and b is $\frac{a+b}{2}$. Given $A(x_1, y_1)$ and $B(x_2, y_2)$, the coordinates of the midpoint of \overline{AB} are $M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

Find the midpoint on a number line of a segment that has -3 and 5 as endpoints.

Got lt? The midpoint of \overline{AB} has coordinates (4, -9). Endpoint A has coordinates (-3, -5). What are the coordinates of B?

Distance

Formula The Distance Formula

The distance between two points $A(x_1, y_1)$ and $B(x_2, y_2)$ is $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$.

Got lt? \overline{SR} has endpoints S(-2, 14) and R(3, -1). What is SR to the nearest tenth?