
Top 5 Timing Closure Techniques
Greg Daughtry

• Correct Timing Constraints

• Analyze Before Doing

• Implementation Strategies and Directives

• Congestion and Complexity

• Advanced Physical Optimization

 Create constraints: Four key steps
1. Create clocks
2. Define clocks interactions
3. Set input and output delays
4. Set timing exceptions

 Use Timing Constraint Wizard
– Powerful Constraint Creation Tool

 Validate constraints at each step
– Monitor unconstrained objects
– Validate timing
– Debug constraint issue post-synthesis

• Analysis will be faster

Create Good Timing Constraints

Baseline Constraints

XDC and TIMING DRCs

report_timing_summary

check_timing

report_clocks (Note: Tcl only)

report_clock_networks

report_clock_interaction

Report CDC

 Disable user XDC file(s)
– Leave IP XDC files as is

 Create baseline XDC file, set as target

 Run Timing Constraints Wizard
– Constrain all clocks and clock interactions

– Flag CDC issues by running Report CDC

 Skip IO constraints in first pass

 Iterate through P&R stages, validate timing at every stage
– Add exception constraints where necessary

– Core Flop-to-Flop timing can be met

 Add IO & other exception constraints in subsequent passes
– Iterate through P&R stages, validate timing at every stage of flow

Establish a Good Starting Point
Baseline with Timing Constraint Wizard

• Correct Timing Constraints

• Analyze Before Doing

• Implementation Strategies and Directives

• Congestion and Complexity

• Advanced Physical Optimization

World Class Analysis
Make Sense of Your Design Data

• 45 Reports Give Critical Design Info
– Clocks and clock interaction

– Timing Analysis and Constraints

– Design Complexity

– Utilization

– Power

• Log files have Context-sensitive Information
– Every action in order of execution

– Severity levels: Info, Warning, Critical Warning, and Errors

• Progressive Estimation Accuracy
– As stages progress from pre-synth to final route “signoff”

– Placer/Router/Optimization Status

– DRC

– Control Sets

– IP Upgrade Status

Vivado% help report_*

 Timing
– Key netlist, timing and physical critical path characteristics

– Combination of characteristics that lead to timing violations

– Logic levels distribution per destination clock

 Complexity
– Logical netlist complexity

– Metrics and problematic cell distribution

 Congestion
– Congestion seen by placer, router

– Top contributors to SLR crossings

Report Design Analysis
Report Types

Complexity may lead to
Congestion

 Setup analysis: show the paths before and after the critical
path
report_design_analysis -extend -setup

Extended Timing Report

...

See how much slack is available from surrounding paths

 Number of logic levels in top 5000 critical paths
– Default number of paths cannot be changed (2015.3 will fix this)

– Table can be generated for specific paths using -of_timing_paths

 Identify longest paths (outliers) and modify the RTL
– Reduces placer focus on few difficult paths only

– Expands placer solutions and optimization range

Logic Level Distribution
report_design_analysis

 Identifies CDC topologies
– Reports unsafe crossings and constraint issues

 Structural issues reported even if exception constraints exist

 Excellent cross-probing support
– View schematics and exact line number in RTL

Clock Domain Crossing Report
report_cdc

• Correct Timing Constraints

• Analyze Before Doing

• Implementation Strategies and Directives

• Congestion and Complexity

• Advanced Physical Optimization

 Launch a run for every strategy
– Easy To Try

– Pick the best one from design runs table

 Runs Infrastructure Supports “Grid” Computing
– Built-in parallel runs on different hosts (Linux)

– LSF and Sun Grid Engine

 Don’t Expect This Will Solve All Your Problems

Try All The Tool Options
SmartXplorer Style

 Directive: “directs” command behavior to try alternative algorithms

– Enables wider exploration of design solutions

– Applies to opt_design, place_design, phys_opt_design, route_design

 Strategy: combination of implementation commands with directives

– Performance-centric: all commands use directives for higher performance

– Congestion-centric: all commands use directives that reduce congestion

– Flow-centric: modifies the implementation flow to add steps to Defaults

 power_opt_design

 post-route phys_opt_design

Vivado Implementation Strategies and Directives

Faster

Compile

Higher

Performance

Quick Runtime

Optimized

Default Explore

Implementation Strategies

Strategy Name Objectives

Defaults Balance between timing closure effort and compile time

Performance_Explore
Performance_ExplorePostRoutePhysOpt

Multiple passes of opt_design and phys_opt_design, advanced
placement and routing algorithms, and post-route placement
optimization. Optionally add post-route phys_opt_design.

Performance_NetDelay_* Makes delays more pessimistic for long distance and higher fanout
nets with the intent to shorten their overall wirelength. Low,
medium, and high settings (high = high pessimism).

Performance_WLBlockPlacement Prioritize wirelength minimization for BRAM/DSPs

Congestion_SpreadLogic_* Spread logic to aggressively avoid congested regions (low, medium,
and high settings control degree of spreading)

Performance_ExploreSLLs Timing-driven optimization of SLR partitioning

Congestion_BalanceSLLs
Congestion_BalanceSLRs
Congestion_SpreadLogicSLLs
Congestion_CompressSLR

Algorithms for alleviating congestion in SSI designs: Balance SLLs
between SLRs, balance utilization in each SLR, spread logic (SSI-
tailored algorithms), compress logic in SLRs to reduce SLLs

• Correct Timing Constraints

• Analyze Before Doing

• Implementation Strategies and Directives

• Congestion and Complexity

• Advanced Physical Optimization

 Physical regions with
– High pin density
– High utilization of routing resources

 Placer congestion
– Congestion-aware: balances congestion vs. wirelength vs. timing slack

 Cannot always eliminate congestion
 Cannot anticipate potential congestion introduced by hold fixing
 Timing estimation does not reflect detours due to congestion

– Reports congested areas seen by placer algorithms

 Router congestion
– Routing detours are used to handle congestion at the expense of timing
– Reports largest square areas with routing utilization close to 100%

Congestion

Placer congestion tends to be more conservative than router

“Smear” Maps

 Complex modules in lower hierarchy

report_design_analysis -complexity [-hierarhcial_depth N]

Complexity Report

High Rent (β), Avg fanout on larger instances

High LUT6%, MUXF* utilization

Rent’s Rule:

𝑵𝒑 = 𝑲𝒑𝑵𝒈
𝜷

 Placer congestion section

 Note: In 2015.3 -congestion must be run in same session as
place_design and route_design

Congestion Report Example
report_design_analysis -congestion

Window defined in CLB tiles Top contributors to the region

Largest congested region
find cells using:

get_cells -hier <Name>

Placer Congestion Report Example

 Placed tile-based section (smear metrics tables)

Top contributors to the region

find using: get_cells -hier <Name>

 Graphical View

 Text Report

Routing Congestion
report_design_analysis -congestion

Actual routing

resource utilization

Window dimensions
Size of region

 Reduce Logic or Pick a Bigger Device

– Look for wide bus and mux structures

 Optimize modules in congested regions

– Disable LUT combining design-wide or in congested instances

 Globally with synth_design -no_lc

 set_property SOFT_HLUTNM “” [get_cells -hier -filter {name =~ instance/*}]

– Consider OOC synthesis with different options, strategies

– Turn off cross-boundary optimizations in synthesis

 Globally with synth_design -flatten_hierarchy none

 On specific modules with KEEP_HIERARCHY in RTL

 Try several implementation strategies or placer directives

– Try congestion-oriented placer strategies and directives first

– Try other strategies and placer directives

=> Re-use some or all RAMB and DSP placement from good runs

 Try floorplanning the congested logic

– Prevent complex modules from overlapping

– Consider dataflow through device

Potential Solutions for Congestion

• Correct Timing Constraints

• Analyze Before Doing

• Implementation Strategies and Directives

• Congestion and Complexity

• Advanced Physical Optimization

Post-Place Physical Optimization
Can Make a Big Difference

 Many useful Tricks are implemented
– Replication (based on fanout, timing or specified nets)

– BRAM/DSP/SRL register optimization

– Retiming

– Moving cells to better location after each optimization

 Not part of the default strategies
– You need to choose the tradeoff in extra runtime

 Designed to be “Re-entrant”
– This means you can run it multiple times in a script

 Primary goal: improve WNS as much as
possible
– WNS limits max frequency

 Secondary goal: improve TNS as much as
possible
– TNS increases stress on router algorithms, which

can impact WNS & WHS

 Run phys_opt_design until timing is met
(or close), or until WNS and TNS do not
improve

 Insert into run flow as a hook script

Post-Place Physical Optimization Looping

Open placed
Checkpoint

phys_opt_design -directive
write_checkpoint

WNS
> 0?

route_design
write_checkpoint

WNS
> 0?

Done!

No

Yes

No

Yes

Using Post-Place Physical Optimization

 DO NOT RUN post-place physical optimization if
– Worst paths can only be fixed by changing the RTL

– Haven’t tried several placer directives first

– The design has not been properly baselined first

– There are CRITICAL WARNINGs that have not been dealt with

 RUN post-place physical optimization if
– Timing constraints are known to be good

– Worst timing violations are related to
 High fanout nets

 Nets with loads placed far apart

 High RAMB/DSP/SRL delay impact

– WNS and TNS are “reasonable” (WNS > -1ns, TNS > -10,000ns)
 Try several placer directives to identify the best placement startpoint

 Recommended technique to over-constrain a design
– XDC command: set_clock_uncertainty

– Fine granularity: clock pair

– Setup and Hold separately constrained

– Easy to reset: set_clock_uncertainty 0 <clockOptions>

– Does not affect clock relationships
 Modified clock periods can make CDC paths overly tight or asynchronous

 Where and when to add/remove user clock uncertainty
– Add before place_design or phys_opt_design (Hook Script)

 Increases optimization range to provide better timing budget for router

 Reduces impact of delay estimates variation or congestion

– Remove before route_design in most cases
 Over fixing hold is bad

Over-Constraining with Clock Uncertainty

Review Physical Optimization Timing QoR

Directive WNS TNS Failing Endpoints

Best Placement Result -0.247 -289.95 3498

Add 200ps user clock uncertainty

Popt1 (AggressiveExplore) -0.329 -866 7829

Remove 200ps user clock uncertainty

Popt2 (AggressiveExplore) -0.060 -1.971 182

Popt3 (AggressiveFanoutOpt) -0.029 -0.243 31

Routed 0.003 0.000 0

 WNS and/or TNS improve after each phys_opt_design

 Example (below) with partial over-constraining

Analyze the Physical Optimizations Log

 Reviewing detailed information
– Type of optimization, object name

– Intermediate timing numbers

– Optimizations prevented by DONT_TOUCH

 Applying some of the changes to RTL
– RAMB/DSP register optimization

– Some register replication on RAMB/DSP or IO paths

 Using scripting to identify the optimizations with more
impact
– Example: grep -P '(Optimized|Estimated)‘ vivado.log

vivado.log:INFO: [Physopt 32-619] Estimated Timing Summary | WNS=-0.367 | TNS=-1139.370 |

vivado.log-INFO: [Physopt 32-29] End Pass 1. Optimized 33 nets. Created 119 new instances.

vivado.log:INFO: [Physopt 32-619] Estimated Timing Summary | WNS=-0.367 | TNS=-1071.577 |

vivado.log-INFO: [Physopt 32-661] Optimized 98 nets. Re-placed 98 instances.

vivado.log:INFO: [Physopt 32-619] Estimated Timing Summary | WNS=-0.343 | TNS=-1055.180 |

vivado.log-INFO: [Physopt 32-608] Optimized 33 nets. Swapped 36 pins.

vivado.log:INFO: [Physopt 32-619] Estimated Timing Summary | WNS=-0.329 | TNS=-865.770 |

Post-Route Physical Optimization Expectations

 When should I run post-route phys_opt_design?
=> For fixing small violations only

– WNS > -0.2ns

– TNS > -10ns

 How many times should I run post-route phys_opt_design?
=> ONLY ONE TIME!!

– Very high runtime

 Cost Function
– Timing, Congestion and Architecture device model rules

 Timing first but congestion impacts timing

 Architecture rules also impact timing

 Targets critical paths first
– Number of Logic levels impacts router algorithms

– Lower level logic paths may fail timing after route_design

 Addresses TNS and WNS
– WNS first priority, TNS second

Router and Timing Closure

 Timing closure – A difficult problem
– Start with good constraints

– Analyze and Understand issues

– Investigate RTL changes to improve timing first

 Vivado has powerful analysis utilities:
– Basic: report_timing, check_timing, report_exceptions, report_clock_utilization …

– Advanced: report_design_analysis, report_cdc, Baselining,

– Methodology: UltraFast Design Methodology …

 Powerful optimization techniques
– Phys opt looping, post-route phys opt, over constraining, floor-planning etc.

Summary

