You have mastered this topic when you can:

1) define or describe BINARY COMPOUNDS, BINARY IONIC COMPOUNDS, and TERTIARY IONIC COMPOUNDS.
2) define or describe valence, univalent metal, and multivalent metal.
3) describe the difference between MONATOMIC and POLYATOMIC IONS.
4) identify the valence of an ion from the formula of an ionic compound.
5) name and write chemical formulae for ionic compounds.

BINARY IONIC COMPOUNDS

I) A binary Compound is a compound composed atoms of two different kinds of elements.

$$
\text { e.g. } \mathrm{NaCl}_{(\mathrm{s})}, \mathrm{MgO}_{(\mathrm{s})}, \mathrm{Sc}_{2} \mathrm{~S}_{3(\mathrm{~s})}, \quad \mathrm{CO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{H}_{2} \mathrm{O} \text {, etc. }
$$

A) A BINARY IONIC COMPOUNDS is a compound composed of atoms of a metal element bonded to atoms of a non-metal element.

$$
\text { e.g. } \mathrm{NaCl}_{(\mathrm{s})}, \quad \mathrm{MgO}_{(\mathrm{s})}, \quad \mathrm{CuO}_{(\mathrm{s})}, \quad \mathrm{Sc}_{2} \mathrm{~S}_{3(\mathrm{~s})}, \quad \mathrm{Ni}_{2} \mathrm{O}_{3(\mathrm{~s})}, \quad \mathrm{Li}_{3} \mathrm{~N}_{(\mathrm{s})} \text {, etc. }
$$

II) WRITING FORMULAE FOR BINARY IONIC COMPOUNDS
A) When writing the formula of an ionic compound, we must use the valence of each element in the compound. REMEMBER that the valence for metals gives the charge of metal ions. Study your Periodic Table while reading the following.

1) The metals found in groups 1,2 and 3 have only one valence. This means that they form one kind of ion. Metals that only form one kind of ion having a single charge are called univalent metals.
a) e.g. Lithium atoms form only one kind of ion, Li^{+}ion; magnesium atoms form only one kind of ion, a Mg^{2+} ion; while scandium atoms form only one kind of ion, a Sc^{3+} ion.
b) On your periodic table, every element that has a single valence is univalent.
2) The metals found in groups 4 through 12 of the transition metals have more than 1 valence. This means that they form more than one kind of ion. Metals that form more than one kind of ion, each having a different charge are called MULTIVALENT METALS. e.g. copper atoms form two kinds of ions: Cu^{2+} and Cu^{1+} ions; nickel atoms form two kinds of ions: Ni^{2+} and Ni^{3+} ions.
a) On your periodic table, every metal element that has more than one valence listed is multivalent. The multivalent metals have the most common valence is listed first.
B) WRITING FORMULAE FOR BINARY IONIC COMPOUNDS CONTAINING UNIVALENT METALS
3) USE THESE STEPS TO WRITE FORMULAE FOR BINARY IONIC COMPOUNDS CONTAINING UNIVALENT METALS
(1) Write the symbol and the valence for the metal followed by the non-metal.
(2) Crisscross the numbers only making them subscripts. Crisscrossing cancels each charge.
(3) Simplify the subscript ratio if possible and omit any 1's to complete the formula.
4) SAMPLE PRObLEMS 1: Write the formula for these ionic compounds: potassium oxide, beryllium iodide, scandium sulphide and barium oxide.
(1) Write the symbol and the valence for the metal followed by the non-metal. potassium oxide beryllium iodide scandium sulphide barium oxide

$$
\begin{array}{lllllll}
\mathrm{K}^{+1} & \mathrm{O}^{-2} & \mathrm{Be}^{+2} & \mathrm{I}^{-1} & \mathrm{Sc}^{+3} & \mathrm{~S}^{-2} & \mathrm{Ba}^{+2}
\end{array} \mathrm{O}^{-2}
$$

(2) Crisscross the numbers only making them subscripts. Crisscrossing cancels each charge.
$\underbrace{\mathrm{O}_{-}^{-2}}_{\mathrm{O}_{2}^{+2}}$
(3) Simplify the subscript ratio if possible and omit any 1's to complete the formula.
$\mathrm{K}_{2} \mathrm{O}_{(\mathrm{s})}$
$\mathrm{BeI}_{2(s)}$
$\mathrm{Sc}_{2} \mathrm{~S}_{3(\mathrm{~s})}$
$\mathrm{Ba} \frac{2}{2} \mathrm{O} \frac{2}{2}=\mathrm{Ba}_{1} \mathrm{O}_{1}$
$\mathrm{BaO}_{(\mathrm{s})}$
© R. Ashby 2017. Duplication by permission only.
C) Required Practice 1: Write the formula of each of these ionic compounds. \{Answers are on page 7 of these notes.\}

1. Potassium chloride
2. Magnesium chloride \qquad
3. Aluminum bromide \qquad
4. Zinc bromide \qquad
5. Aluminum oxide \qquad
6. Sodium phosphide \qquad
7. Barium nitride \qquad
8. Calcium sulphide \qquad
9. Scandium nitride \qquad
10. Strontium selenide \qquad
11. Beryllium phosphide \qquad
12. Yttrium carbide \qquad

III) NOMENCLATURE

A) Due to the infinite variety of compounds possible, chemists quickly realized that a system of naming compounds that the entire world used was necessary to ensure a chemical formula had the same name in all parts of the world. In 1787, Guyton de Morveau, devised a system of naming compounds that was based on the Latin name of the elements. de Morveau's system proved too complex so the International Union of Pure and Applied Chemistry (IUPAC) developed a new system called Chemical nomenclature. This system is based on the names of elements found on the periodic table rather than the Latin or common names of previous systems. Although the name of a compound as determined by chemical nomenclature is preferred over common names, due to their popularity, some common names continue to be used today thus you must memorize them.
B) NAMING BINARY IONIC COMPOUNDS CONTAINING UNIVALENT METALS

1) In the formula of binary ionic compounds, the metal cation always appears first followed by the nonmetal anion (positive before negative). Chemical nomenclature, naming compounds, also follows this pattern: the binary ionic compound's name begins with the full name of the metal followed by the name of the non-metal ending with the suffix "ide".
2) SAMPLE PROBLEMS 2: Names of four binary ionic compounds.

Elements in compound		IUPAC Name
sodium and oxygen	$\mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})}$	sodium oxide
magnesium and nitrogen	$\mathrm{Mg}_{3} \mathrm{~N}_{2(\mathrm{~s})}$	magnesium nitride
aluminum and sulphur	$\mathrm{Al}_{2} \mathrm{~S}_{3(\mathrm{~s})}$	aluminum sulphide
scandium and bromine	$\mathrm{ScBr}_{3(\mathrm{~s})}$	scandium bromide
potassium and phosphorous	$\mathrm{K}_{3} \mathrm{P}_{(\mathrm{s})}$	potassium phosphide

C) Required Practice 2: Write the name of each of these ionic compounds. \{Answers are on page $\mathbf{7}$ of these notes.\}

1. $\mathrm{KF}_{(\mathrm{s})}$ \qquad 7. $\mathrm{Sc}_{2} \mathrm{O}_{3(\mathrm{~s})}$
2. $\mathrm{RbBr}_{(\mathrm{s})}$ \qquad 8. $\mathrm{YN}_{(\mathrm{s})}$ \qquad
3. $\mathrm{NaI}_{(\mathrm{s})}$ \qquad 9. $\mathrm{ScN}_{(\mathrm{s})}$ \qquad
4. $\mathrm{CaCl}_{2(\mathrm{~s})}$
5. $\mathrm{SrO}_{(\mathrm{s})}$ \qquad
6. $\mathrm{Li}_{2} \mathrm{~S}_{(\mathrm{s})}$ \qquad 11. $\operatorname{BeI}_{2(\mathrm{~s})}$ \qquad
7. $\mathrm{Na}_{3} \mathrm{P}_{(\mathrm{s})}$
8. $\mathrm{Ca}_{3} \mathrm{~N}_{2(\mathrm{~s})}$
IV) IONIC COMPOUNDS WITH MULTIVALENT METALS
A) REMEMBER that multivalent metals are metals that are able to form more than one kind of ion, each with its own distinct valence $=$ ion charge. Elements in groups 4 through 12, known as the transition metals, tend to be multivalent as indicated by their having multiple valences: e.g. Iron can form two kinds of ions: Fe^{3+} and Fe^{2+} ions; cobalt can form two kinds of ions: Co^{2+} and Co^{3+} ions. NOTE: Your periodic table is designed to show which of the transition metals are univalent and which are multivalent.
1) The metal is univalent if only one valence is shown.
2) The metal is multivalent if two valences are shown. The valence for the two most common ions is shown. It is possible for multivalent metals to form three or more different kinds of ions each with an individual valence.
B) When making a compound between a multivalent metal and a non-metal, we must indicate which valence (ion charge) is used by the metal. Chemists indicate the metal's valence (ion charge) by including Roman numerals in the compounds name. The Roman numeral states the valence to be used as indicated in this table.

Roman numeral	Valence (ion charge)
I	1
II	2
III	3
IV	4
V	5
VI	6
VII	7

1) e.g. Copper $(\mathrm{I})=\mathrm{Cu}^{+1}, \quad \operatorname{Copper}(\mathrm{II})=\mathrm{Cu}^{+2} ; \quad \operatorname{Nickel}(\mathrm{II})=\mathrm{Ni}^{+2}, \quad \operatorname{Nickel}(\mathrm{III})=\mathrm{Ni}^{+3}$.
2) This system of naming multivalent metals is called the Stock System.
C) USE THESE STEPS TO WRITE FORMULAE FOR BINARY IONIC COMPOUNDS CONTAINING MULTIVALENT METALS
(1) Write the symbol and the valence for the metal followed by the non-metal.
(2) Crisscross the numbers only making them subscripts. Crisscrossing cancels each charge.
(3) Simplify the subscript ratio if possible and omit any 1's to complete the formula.
D) SAMPLE PROBLEMS 3: Write the formula for these ionic compounds: nickel(III) oxide, copper(I) iodide, manganese(IV) nitride and lead(II) sulphide.
(1) Write the symbol and the valence for the metal followed by the non-metal.
nickel(III) oxide
copper(I) iodide
$\mathrm{Cu}^{+1} \mathrm{I}^{-1}$
manganese(IV) nitride
lead(II) sulphide
$\mathrm{Ni}^{+3} \quad \mathrm{O}^{-2}$ $\mathrm{Mn}^{+4} \mathrm{~N}^{-3}$ $\mathrm{Pb}^{+2} \quad \mathrm{~S}^{-2}$
(2) Crisscross the numbers only making them subscripts. Crisscrossing cancels each charge.

(3) Simplify the subscript ratio if possible and omit any 1's to complete the formula.

$$
\mathrm{Ni}_{2} \mathrm{O}_{3(\mathrm{~s})} \quad \mathrm{CuI}_{(\mathrm{s})} \quad \mathrm{Mn}_{3} \mathrm{~N}_{4(\mathrm{~s})} \quad \mathrm{Pb} \frac{2}{2} \mathrm{~S} \frac{2}{2}=\mathrm{Pb}_{1} \mathrm{~S}_{1}
$$

E) Required Practice 3; Write the formula of each of these ionic compounds. \{Answers are on page 7 of these notes.\}

1. Iron(III) chloride \qquad
2. Iron(III) oxide \qquad
3. Lead(II) sulphide \qquad
4. Tin(IV) fluoride \qquad
5. Nickel(II) bromide \qquad
6. Copper(I) oxide \qquad
V) WRITING NAMES FOR BINARY IONIC COMPOUNDS CONTAINING MULTIVALENT METALS
A) The name of a binary ionic compound begins with the full name of the metal cation followed by the name of the non-metal anion ending in "ide". If the metal is multivalent, the name must include a Roman numeral in brackets indicating which valence was used.
1) Sample Problems: CuF : the valence on Cu is $\mathbf{+ 1}$, so its name is copper(I) fluoride.
CuF_{2} : the valence on Cu is $\mathbf{+ 2}$, so its name is copper(II) fluoride.
B) Determining the charge on a multivalent metal. REMEMBER that ionic compounds are neutral which means that the total negative charge supplied by the non-metal anions is equal to the total positive charge supplied by the metal cations. Chemists use this information to calculate the valence (ion charge) of multivalent metals within compounds.
C) Required Practice 4: Write the name of each of these ionic compounds. \{Answers are on page 7 of these notes.\}
1. $\mathrm{FeCl}_{2(\mathrm{~s})}$ \qquad 7. $\mathrm{PbBr}_{2(\mathrm{~s})}$ \qquad
2. $\mathrm{SnBr}_{2(\mathrm{~s})}$ \qquad 8. $\mathrm{Pb}_{3} \mathrm{~N}_{4(\mathrm{~s})}$ \qquad
3. $\mathrm{Mn}_{3} \mathrm{P}_{2(\mathrm{~s})}$ \qquad 9. $\mathrm{NiO}_{(\mathrm{s})}$ \qquad
4. $\mathrm{CuCl}_{2(\mathrm{~s})}$ \qquad 10. $\mathrm{Ni}_{2} \mathrm{O}_{3(\mathrm{~s})}$ \qquad
5. $\mathrm{Cu}_{2} \mathrm{~S}_{(\mathrm{s})}$ \qquad 11. $\mathrm{PbS}_{2(\mathrm{~s})}$ \qquad
6. $\mathrm{Fe}_{2} \mathrm{~S}_{3(\mathrm{~s})}$
7. $\mathrm{PbS}_{(\mathrm{s})}$ \qquad

TERTIARY IONIC COMPOUNDS

I) A TERTIARY COMPOUND IS A COMPOUND COMPOSED OF THREE DIFFERENT KINDS OF ELEMENTS e.g. $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})}, \mathrm{MgMnO}_{4(\mathrm{~s})}, \mathrm{BaSO}_{4(\mathrm{~s})}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, etc.
A) A TERTIARY IONIC COMPOUND is an ionic compound composed of three different kinds of element, one of which is a metal. e.g. $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{~s})}, \mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})}, \mathrm{AgNO}_{3(\mathrm{~s})}, \mathrm{Al}\left(\mathrm{BrO}_{3}\right)_{3(\mathrm{~s})}$, etc.
II) As with all ionic compounds, TERTIARY IONIC COMPOUNDS ARE COMPOSED OF 1 KIND OF CATION AND 1 KIND OF ANION.
A) The cation is a metal ion and the anion is a POLYATOMIC ION. A POLYATOMIC ION is an ion composed of 2 or more different non-metal atoms bonded together.

1) Each polyatomic ion has its own unique formula and behaves as a single particle whose formula does not change when it forms a bond within a compound: e.g. nitrate has the formula $\mathrm{NO}_{3}{ }^{-}$, and it reacts with Mn^{4+} to form $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{4}$: NOTICE that its formula $\left(\mathrm{NO}_{3}{ }^{-}\right)$remains the same.
2) An OXYANION is any polyatomic anion whose formula ends with oxygen [Figure 1, pg. 94].

$$
\text { e.g. } \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}, \mathrm{BrO}_{3}^{-}, \mathrm{CO}_{3}^{2-} \text {, etc. }
$$

a) NOTICE that most polyatomic ions are oxyanions. Your polyatomic ion chart is found the end of this package of notes.
3) Naming polyatomic ions: When looking at the name of a compound, it can be difficult to know whether the anion in a compound is a monatomic non-metal ion or a polyatomic ion. To simplify the identification of anions, chemists decided to end the name of polyatomic ions with "-te" while the names of monatomic anions ($\mathrm{F}^{-}, \mathrm{O}^{2-}$, etc.) end with "- de".
a) SAMPLE PROBLEM: Sodium chlorate: the name ends in $\underline{\underline{\boldsymbol{t}}}$ thus it contains the polyatomic ion $\mathrm{ClO}_{3}{ }^{-1}$ and its formula is NaClO_{3}. Sodium chloride; the name ends in $\underline{\underline{d e}}$ thus it contains the monatomic ion Cl^{-1} and its formula is NaCl .
B) USE THESE STEPS TO WRITE FORMULAE FOR TERTIARY IONIC COMPOUNDS
(1) Write the symbol and the valence for the metal followed by the polyatomic ion. Place brackets around the formula of the polyatomic ion with the charge outside them.
(2) Crisscross the charge numbers only making them subscripts. The charge number goes outside the brackets on the polyatomic ion. Crisscrossing cancels each charge.
(3) Simplify the crisscrossed subscript numbers if possible and omit the 1 's to complete the formula. REMEMBER: NEVER CHANGE THE FORMULA OF THE POLYATOMIC ION, ONLY NUMBERS oUTSIDE THE BRACKETS CAN BE SIMPLIFIED!!!
C) SAMPLE PROBLEMS 5: Write the formula for these ionic compounds: silver chromate, aluminum carbonate, lead(IV) sulphate and nickel(II) sulphite.
(1) Write the symbol and the valence for the metal followed by the polyatomic ion. Place brackets around the formula of the polyatomic ion with the charge outside the brackets.
silver chromate
aluminum carbonate
lead(IV) sulphate
nickel(II) sulphite
$\mathrm{Ag}^{+1}\left(\mathrm{CrO}_{4}\right)^{-2}$
$\mathrm{Al}^{+3}\left(\mathrm{CO}_{3}\right)^{-2}$
$\mathrm{Pb}^{+4}\left(\mathrm{SO}_{4}\right)^{-2}$
$\mathrm{Ni}^{+2}\left(\mathrm{SO}_{3}\right)^{-2}$
(2) Crisscross the charge numbers only making them subscripts. The charge number goes outside the brackets on the polyatomic ion. Crisscrossing cancels each charge.

(3) Simplify the crisscrossed subscript numbers if possible and omit the 1 's to complete the formula. REMEMBER: NEVER change the formula of the polyatomic ion, only numbers outside the brackets can be simplified!!
$\mathrm{Ag}_{2} \mathrm{CrO}_{4(\mathrm{~s})}$
$\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3(\mathrm{~s})}$
$\mathrm{Pb}_{2}^{2}\left(\mathrm{SO}_{4}\right)_{\frac{4}{2}}=\mathrm{Pb}_{\mathbf{1}}\left(\mathrm{SO}_{4}\right)_{\mathbf{2}(\mathrm{s})}$
$\mathrm{Ni} \underset{2}{2}\left(\mathrm{SO}_{3}\right) \underset{2}{2}=\mathrm{Ni}_{1}\left(\mathrm{SO}_{3}\right)_{\mathbf{1}}$
$\mathrm{Pb}\left(\mathrm{SO}_{4}\right)_{2(\mathrm{~s})}$
$\mathrm{NiSO}_{3(\mathrm{~s})}$
D) Required Practice 5; Write the formula of each of these ionic compounds. \{Answers are on page 7.\}

1. Sodium nitrate
2. Calcium carbonate \qquad
3. Potassium sulphate \qquad
4. sodium thiosulphate \qquad
5. zinc hydroxide \qquad
6. barium cyanide \qquad
7. Copper(II) nitrite \qquad
8. Manganese(IV) nitrate \qquad
9. Cobalt(III) bromate \qquad
10. Nickel(III) hydroxide \qquad
11. Lead(IV) dichromate \qquad
12. ammonium chromate \qquad
E) Writing names for tertiary ionic compounds. Tertiary ionic compounds are named using the same rules as previously discussed. REMEMBER to include a Roman numeral for all multivalent metals:
e.g. $\mathrm{Sr}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{3}=$ strontium thiosulphate; $\mathrm{CoPO}_{3}=\operatorname{cobalt}(\mathrm{III})$ phosphite.
F) Required Practice 6: Write the name of each of these ionic compounds. \{Answers are on page 7.\}
13. $\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{~s})}$ \qquad
14. $\mathrm{ZnSO}_{3(\mathrm{~s})}$ \qquad
15. $\mathrm{KClO}_{4(\mathrm{~s})}$ \qquad
16. $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2(\mathrm{~s})}$ \qquad
17. $\mathrm{NH}_{4} \mathrm{Br}_{(\mathrm{s})}$
18. $\mathrm{Au}_{2}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{3(\mathrm{~s})}$
19. $\mathrm{Ni}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{3(\mathrm{~s})}$ \qquad
20. $\mathrm{NH}_{4} \mathrm{NO}_{2(\mathrm{~s})}$
21. $\mathrm{Be}\left(\mathrm{ClO}_{2}\right)_{2(\mathrm{~s})}$
22. $\mathrm{CuCN}_{(\mathrm{s})}$ \qquad
23. $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4(\mathrm{~s})}$ \qquad

BASES \& SALTS \leftarrow MEMORIZE THIS INFORMATION!!

I) BASES ARE IONIC COMPOUNDS THAT CONTAIN THE POLYATOMIC ION HYDROXIDE $=(\mathrm{OH})^{-1}$ e.g. $\mathrm{NaOH}_{(\mathrm{aq})}, \mathrm{KOH}_{(\mathrm{aq})}, \mathrm{NH}_{4} \mathrm{OH}_{(\mathrm{aq})}, \mathrm{Ba}(\mathrm{OH})_{2(\mathrm{aq})}, \mathrm{Al}(\mathrm{OH})_{3(\mathrm{aq})}$, etc.
A) All bases share these properties: bases are electrolytes (they conduct electricity when dissolved in water), bases neutralize acids, and bases cause the compound litmus to change its colour from red to blue.
II) A SALT IS ANY IONIC COMPOUND THAT DOES NOT CONTAIN THE POLYATOMIC ION HYDROXIDE $=\mathbf{O H}^{-1}$, NOR DO THEY BEGIN WITH HYDROGEN $=\mathbf{H}$
e.g. $\mathrm{NaHCO}_{3(\mathrm{~s})}, \quad \mathrm{NaClO}_{(\mathrm{s})}, \mathrm{KCl}_{(\mathrm{s})}, \mathrm{Ba}_{3} \mathrm{~N}_{2(\mathrm{~s})},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3(\mathrm{~s})}, \mathrm{Ni}_{2}\left(\mathrm{~S}_{2} \mathrm{O}_{3}\right)_{3(\mathrm{~s})}, \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2(\mathrm{~s})}$, etc.
A) All salts share these properties: salts are electrolytes (they conduct electricity when dissolved in water), salts are hard brittle solid crystals or powders as SATP.

COMMON NAMES OF SOME IONIC COMPOUNDS

I) Some ionic compounds have been known to chemists for so long that their common name is still used. These names are useful to know, however make sure you are able to name ionic compounds according to the stock or UIPAC rules when requested to do so. The formula, common name and uses of several ionic compounds are listed at the top of the next page in the table on page 632 of your text.
© R. Ashby 2017. Duplication by permission only.

FORMULA
$\mathrm{NaHCO}_{3(\mathrm{~s})}$
$\mathrm{NaClO}_{(\mathrm{s})}$
$\mathrm{NaCl}_{(\mathrm{s})}$
$\mathrm{NaOH}_{(\mathrm{s})}$

COMMON NAME
baking soda
bleach
table salt
lye (caustic soda)

USES
cooking
cleaning seasoning food oven/drain cleaner

ANSWERS TO THE REOUIRED PRACTICE

Required Practice 1 from page 2

1. $\mathrm{KCl}_{(\mathrm{s})}$
2. $\mathrm{MgCl}_{2(\mathrm{~s})}$
3. $\mathrm{AlBr}_{3(\mathrm{~s})}$
4. $\mathrm{ZnBr}_{2(\mathrm{~s})}$
5. $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$
6. $\mathrm{Na}_{3} \mathrm{P}_{(\mathrm{s})}$
7. $\mathrm{Ba}_{3} \mathrm{~N}_{2(\mathrm{~s})}$
8). $\mathrm{CaS}_{(\mathrm{s})}$
8. $\mathrm{ScN}_{(\mathrm{s})}$
9. $\mathrm{SrSe}_{(\mathrm{s})}$
10. $\mathrm{Be}_{3} \mathrm{P}_{2(\mathrm{~s})}$
11. $\mathrm{Y}_{4} \mathrm{C}_{3(\mathrm{~s})}$

Required Practice 2 from page 2

1. potassium fluoride
2. rubidium bromide
3. sodium iodide
4. calcium chloride
5. lithium sulphide
6. sodium phosphide
7. scandium oxide
8. yttrium nitride
9. scandium nitride
10. strontium oxide
11. beryllium iodide
12. calcium nitride

Required Practice 3 from page 4

1. $\mathrm{FeCl}_{3(\mathrm{~s})}$
2. $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$
3. $\mathrm{PbS}_{(\mathrm{s})}$
4. $\mathrm{SnF}_{4(\mathrm{~s})}$
5. $\mathrm{NiBr}_{2(\mathrm{~s})}$
6. $\mathrm{Cu}_{2} \mathrm{O}_{(\mathrm{s})}$
7. $\mathrm{CuO}_{(\mathrm{s})}$
8. $\mathrm{Mn}_{3} \mathrm{P}_{2(\mathrm{~s})}$
9. $\mathrm{CoN}_{(\mathrm{s})}$ 10. $\mathrm{NiCl}_{3(\mathrm{~s})}$ 11. $\mathrm{PbO}_{(\mathrm{s})}$
10. $\mathrm{PbO}_{2(\mathrm{~s})}$

Required Practice 4 from page 4

1. iron(II) chloride
2. tin(II) bromide
3. manganese(II) phosphide
4. copper(II) chloride
5. copper(I) sulphide
6. iron(III) sulphide
7. lead(II) bromide
8. lead(IV) nitride
9. nickel(II) oxide
10. nickel(III) oxide
11. lead(IV) sulphide
12. lead(II) sulphide

Required Practice 5 from page 6

1. $\mathrm{NaNO}_{3(\mathrm{~s})}$
2. $\mathrm{CaCO}_{3(\mathrm{~s})}$
3. $\mathrm{K}_{2} \mathrm{SO}_{4(\mathrm{~s})}$
4. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{~s})}$
5. $\mathrm{Zn}(\mathrm{OH})_{2(\mathrm{~s})}$
6. $\mathrm{Ba}(\mathrm{CN})_{2(\mathrm{~s})}$;
7. $\mathrm{Cu}\left(\mathrm{NO}_{2}\right)_{2(\mathrm{~s})}$
8. $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{4(\mathrm{~s})}$
9. $\mathrm{Co}\left(\mathrm{BrO}_{3}\right)_{3(\mathrm{~s})}$
10. $\mathrm{Ni}(\mathrm{OH})_{3(\mathrm{~s})}$
11. $\mathrm{Pb}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)_{2(\mathrm{~s})}$
12. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CrO}_{4(\mathrm{~s})}$

Required Practice 6 from page 6

1. sodium sulphate
2. zinc sulphite
3. potassium perchlorate
4. calcium bicarbonate
5. manganese(IV) hydrogen phosphate
6. ammonium bromide
7. ammonium nitrite
8. beryllium chlorite
9. copper(I) cyanide
10. gold(III) dichromate
11. nickel(III) thiosulphate
12. ammonium phosphate

$\#$	CATION NAME	CATION FORMULA
1	Ammonium	$\left(\mathrm{NH}_{4}\right)^{1+}$

\#	ANION NAME	ANION FORMULA
1	Acetate	$\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)^{1-}$ or $\left(\mathrm{CH}_{3} \mathrm{COO}\right)^{1-}$
2	Borate	$\left(\mathrm{BO}_{3}\right)^{3-}$
3	Bromate	$\left(\mathrm{BrO}_{3}\right)^{1-}$
4	Carbonate	$\left(\mathrm{CO}_{3}\right)^{2-}$
5	Hydrogen carbonate (bicarbonate)	$\left(\mathrm{HCO}_{3}\right)^{1-}$
6	Hypochlorite	$(\mathrm{ClO})^{1-}$ or $(\mathrm{OCl})^{1-}$
7	Chlorite	$\left(\mathrm{ClO}_{2}\right)^{1-}$
8	Chlorate	$\left(\mathrm{ClO}_{3}\right)^{1-}$
9	Perchlorate	$\left(\mathrm{ClO}_{4}\right)^{1-}$
10	Chromate	$\left(\mathrm{CrO}_{4}\right)^{2-}$
11	Dichromate	$\left(\mathrm{Cr}_{2} \mathrm{O}_{7}\right)^{2-}$
12	Iodate	$\left(\mathrm{IO}_{3}\right)^{1-}$
13	Nitrate	$\left(\mathrm{NO}_{3}\right)^{-}$
14	Nitrite	$\left(\mathrm{NO}_{2}\right)^{1-}$
15	Oxalate	$\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)^{2-}$
16	Permanganate	$\left(\mathrm{MnO}_{4}\right)^{1-}$
17	Phosphate	$\left(\mathrm{PO}_{4}\right)^{3-}$
18	Hydrogen phosphate	$\left(\mathrm{HPO}_{4}\right)^{2-}$
19	Dihydrogen phosphate	$\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)^{1-}$
20	Phosphite	$\left(\mathrm{PO}_{3}\right)^{3-}$
21	Hydrogen phosphite	$\left(\mathrm{HPO}_{3}\right)^{2-}$
22	Dihydrogen phosphite	$\left(\mathrm{H}_{2} \mathrm{PO}_{3}\right)^{1-}$
23	Silicate	$\left(\mathrm{SiO}_{3}\right)^{2-}$
24	Sulphate	$\left(\mathrm{SO}_{4}\right)^{2-}$
25	Hydrogen sulphate (Bisulphate)	$\left(\mathrm{HSO}_{4}\right)^{1-}$
26	Sulphite	$\left(\mathrm{SO}_{3}\right)^{2-}$
27	Hydrogen sulphite (Bisulphite)	$\left(\mathrm{HSO}_{3}\right)^{1-}$
28	Thiosulphate	$\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)^{2-}$
29	Thiocyanate	$(\mathrm{SCN})^{1-}$
30	Cyanide	$(\mathrm{CN})^{1-}$
31	Hydrogen sulphide (Bisulphide)	(HS) ${ }^{1-}$
32	Hydroxide	$(\mathrm{OH})^{1-}$

© R. Ashby 2017. Duplication by permission only.

ASSIGNMENT

At the top of your assignment, please print "T19 - Naming \& Writing Formulae for Ionic Compounds", your LAST then First name, block and date assignment. Complete these questions in the order given here. [Marks indicated in italicized brackets.]

COPY THE QUESTION THEN ANSWER IT. INCLUDE THE STATE FOR FORMULAE. [4]

1. What characteristic do multivalent metals share? [1]
2. Write the formula for these compounds. [6]
a. calcium fluoride
e. copper(II) oxide
b. sodium sulphide
f. copper(I) sulphide
c. aluminum nitride
g. lead(II) bromide
d. aluminum chloride
h. barium nitride
i. iron(II) fluoride
j. nickel(II) bromide
k. cobalt(III) chloride
3. gold(I) chloride
4. Name these formulae. [6]
a. $\mathrm{NaCl}_{(\mathrm{s})}$
b. $\mathrm{CaO}_{(\mathrm{s})}$
c. $\mathrm{CaCl}_{2(\mathrm{~s})}$
d. $\mathrm{MgO}_{(\mathrm{s})}$
e. $\mathrm{Al}_{2} \mathrm{O}_{3(\mathrm{~s})}$
f. $\mathrm{ZnS}_{(\mathrm{s})}$
g. $\mathrm{Cu}_{2} \mathrm{~S}_{(\mathrm{s})}$
h. $\mathrm{PbS}_{2(\mathrm{~s})}$
i. $\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$
j. $\mathrm{MoO}_{3(\mathrm{~s})}$
k. $\mathrm{Ag}_{2} \mathrm{~S}_{\mathrm{s})}$
5. $\mathrm{ZnO}_{(\mathrm{s})}$
6. Write the formula for these compounds. [4]
a. calcium carbonate
e. copper(II) sulphate
b. sodium bicarbonate
f. copper(I) phosphate
c. calcium sulphate
g. lead(II) nitrate
d. ammonium nitrate
h. sodium hydroxide
7. Name these formulae. [4]
a. $\mathrm{NaNO}_{3(\mathrm{~s})}$
b. $\mathrm{NaNO}_{2(\mathrm{~s})}$
c. $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})}$
d. $\mathrm{CuNO}_{3(\mathrm{~s})}$
e. $\mathrm{Al}_{2}\left(\mathrm{SO}_{3}\right)_{3(\mathrm{~s})}$
f. $\mathrm{Ca}(\mathrm{OH})_{2(\mathrm{~s})}$
g. $\mathrm{PbCO}_{3(\mathrm{~s})}$
h. $\mathrm{Sn}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}$
