
Topic 5

Energy & Power Spectra, and Correlation

In Lecture 1 we reviewed the notion of average signal power in a periodic signal
and related it to the An and Bn coe�cients of a Fourier series, giving a method of
calculating power in the domain of discrete frequencies. In this lecture we want to
revisit power for the continuous time domain, with a view to expressing it in terms
of the frequency spectrum.

First though we should review the derivation of average power using the complex
Fourier series.

5.1 Review of Discrete Parseval for the Complex Fourier Series

You did this as a part of 1st tute sheet

Recall that the average power in a periodic signal with period T = 2�=! is

Ave sig pwr =
1

T

∫ +T=2

�T=2

jf (t)j2 dt =
1

T

∫ +T=2

�T=2

f �(t)f (t) dt :

Now replace f (t) with its complex Fourier series

f (t) =

1∑
n=�1

Cne
in!t :

It follows that

Ave sig pwr =
1

T

∫ +T=2

�T=2

1∑
n=�1

Cne
in!t

1∑
m=�1

(Cm)
�e�im!tdt

=

1∑
n=�1

Cn(Cn)
� (because of orthogonality)

=

1∑
n=�1

jCnj
2 = jC0j

2 + 2

1∑
n=1

jCnj
2 ; using Cn = (C�n)

�:

1
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5.1.1 A quick check

It is worth checking this using the relationships found in Lecture 1:

Cm =


1
2(Am � iBm) for m > 0

A0=2 for m = 0
1
2(Ajmj + iBjmj) for m < 0

For n � 0 the quantities are

jC0j
2 =

(
1

2
A0

)2

2jCnj
2 = 2

1

2
(Am � iBm)

1

2
(Am + iBm) =

1

2

(
A2
n + B2

n

)
in agreement with the expression in Lecture 1.

5.2 Energy signals vs Power signals

When considering signals in the continuous time domain, it is necessary to dis-
tinguish between \�nite energy signals", or \energy signals" for short, and \�nite
power signals".

First let us be absolutely clear that
All signals f (t) are such that jf (t)j2 is a power.

An energy signal is one where the total energy is �nite:

ETot =

∫ 1

�1

jf (t)j2dt 0 < ETot <1 :

It is said that f (t) is \square integrable". As ETot is �nite, dividing by the in�nite
duration indicates that energy signals have zero average power.

To summarize before knowing what all these terms mean: An Energy signal f (t)

� always has a Fourier transform F (!)

� always has an energy spectral density (ESD) given by Ef f (!) = jF (!)j2

� always has an autocorrelation Rf f (�) =
∫1
�1 f (t)f (t + �)dt

� always has an ESD which is the FT of the autocorrelation Rf f (�), Ef f (!)

� always has total energy ETot = Rf f (0) =
1
2�

∫1
�1 Ef f (!)d!

� always has an ESD which transfers as Egg(!) = jH(!)j2Ef f (!)
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A power signal is one where the total energy is in�nite, and we consider average
power

PAve = lim
T!1

1

2T

∫ T

�T

jf (t)j2dt 0 < PAve <1 :

A Power signal f (t)

� may have a Fourier transform F (!)

� may have an power spectral density (PSD) given Sf f (!) = jF (!)j2

� always has an autocorrelation Rf f (�) = limT!1
1
2T

∫ T

�T f (t)f (t + �)dt

� always has a PSD which is the FT of the autocorrelation Rf f (�), Sf f (!)

� always has integrated average power PAve = Rf f (0)

� always has a PSD which transfers through a system as Sgg(!) = jH(!)j2Sf f (!)

The distinction is all to do with avoiding in�nities, but it results in the autocorrela-
tion having di�erent dimensions. Instinct tells you this is going to be a bit messy.
We discuss �nite energy signals �rst.

5.3 Parseval's theorem revisited

Let us assume an energy signal, and recall a general result from Lecture 3:

f (t)g(t),
1

2�
F (!) � G(!) ;

where F (!) and G(!) are the Fourier transforms of f (t) and g(t).

Writing the Fourier transform and the convolution integral out fully gives∫ 1

�1

f (t)g(t)e�i!tdt =
1

2�

∫ 1

�1

F (p)G(! � p) dp ;

where p is a dummy variable used for integration.

Note that ! is not involved in the integrations above | it just a free variable on
both the left and right of the above equation | and we can give it any value we
wish to. Choosing ! = 0, it must be the case that∫ 1

�1

f (t)g(t)dt =
1

2�

∫ 1

�1

F (p)G(�p) dp :
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Now suppose g(t) = f �(t). We know that∫ 1

�1

f (t)e�i!tdt = F (!)

)

∫ 1

�1

f �(t)e+i!tdt = F �(!) )

∫ 1

�1

f �(t)e�i!tdt = F �(�!)

This is, of course, a quite general result which could have been stuck in Lecture
2, and which is worth highlighting:

The Fourier Transform of a complex conjugate is∫ 1

�1

f �(t)e�i!tdt = F �(�!)

Take care with the �!.

Back to the argument. In the earlier expression we had∫ 1

�1

f (t)g(t)dt =
1

2�

∫ 1

�1

F (p)G(�p)dp

)

∫ 1

�1

f (t)f �(t)dt =
1

2�

∫ 1

�1

F (p)F �(p)dp

Now p is just any parameter, so it is possible to tidy the expression by replacing it
with !. Then we arrive at the following important result

Parseval's Theorem: The total energy in a signal is

ETot =

∫ 1

�1

jf (t)j2dt =
1

2�

∫ 1

�1

jF (!)j2 d! =

∫ 1

�1

jF (!)j2 df

NB! The df = d!=2�, and is nothing to do with the signal being called f (t).

5.4 The Energy Spectral Density

If the integral gives the total energy, it must be that jF (!)j2 is the energy per Hz.
That is:

The ENERGY Spectral Density of a signal f (t), F (!) is de�ned as

Ef f (!) = jF (!)j2
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5.5 | Example

[Q] Determine the energy in the signal f (t) = u(t)e�t (i) in the time domain, and
(ii) by determining the energy spectral density and integrating over frequency.

[A] Part (i): To �nd the total energy in the time domain

f (t) = u(t) exp(�t)

)

∫ 1

�1

jf (t)j2dt =

∫ 1

0

exp(�2t)dt

=

[
exp(�2t)

�2

∣∣∣∣1
0

dt

= 0�
1

�2
=

1

2

Part (ii): In the frequency domain

F (!) =

∫ 1

�1

u(t) exp(�t) exp(�i!t)dt

=

∫ 1

0

exp(�t(1 + i!))dt

=

[
�
exp(�t(1 + i!))

(1 + i!)

∣∣∣∣1
0

=
1

(1 + i!)

Hence the energy spectral density is

jF (!)j2 =
1

1 + !2

Integration over all frequency f (not ! remember!!) gives the total energy of∫ 1

�1

jF (!)j2df =
1

2�

∫ 1

�1

1

1 + !2
d!

Substitute tan � = !∫ 1

�1

jF (!)j2df =
1

2�

∫ �=2

��=2

1

1 + tan2 �
sec2 �d�

=
1

2�

∫ �=2

��=2

d�

=
1

2�
� =

1

2
which is nice



5/6

5.6 Correlation

Correlation is a tool for analysing whether processes considered random a priori

are in fact related. In signal processing, cross-correlation Rf g is used to assess
how similar two di�erent signals f (t) and g(t) are. Rf g is found by multiplying
one signal, f (t) say, with time-shifted values of the other g(t + �), then summing
up the products. In the example in Figure 5.1 the cross-correlation will low if the
shift � = 0, and high if � = 2 or � = 5.

t

t

1 2 3 4 5 6

f(t)

g(t)

Low
High High 

Figure 5.1: The signal f (t) would have a higher cross-correlation with parts of g(t) that look

similar.

One can also ask how similar a signal is to itself. Self-similarity is described by the
auto-correlation Rf f , again a sum of products of the signal f (t) and a copy of the
signal at a shifted time f (t + �).

An auto-correlation with a high magnitude means that the value of the signal
f (t) at one instant signal has a strong bearing on the value at the next instant.
Correlation can be used for both deterministic and random signals. We will explore
random processes this in Lecture 6.

The cross- and auto-correlations can be derived for both �nite energy and �nite
power signals, but they have di�erent dimensions (energy and power respectively)
and di�er in other more subtle ways.

We continue by looking at the auto- and cross-correlations of �nite energy signals.

5.7 The Auto-correlation of a �nite energy signal

The auto-correlation of a �nite energy signal is de�ned as follows. We shall deal
with real signals f , so that the conjugate can be omitted.
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The auto-correlation of a signal f (t) of �nite energy is de�ned

Rf f (�) =

∫ 1

�1

f �(t)f (t + �)dt =(for real signals)

∫ 1

�1

f (t)f (t + �)dt

The result is an energy.

There are two ways of envisaging the process, as shown in Figure 5.2. One is to
shift a copy of the signal and multiply vertically (so to speak). For positive � this
is a shift to the \left". This is most useful when calculating analytically.

then sum

f(t)

f(t )+τ

f(t)

f(t)

Figure 5.2: g(t) and g(t + �) for a positive shift � .

5.7.1 Basic properties of auto-correlation

1. Symmetry. The auto-correlation function is an even function of � :

Rf f (�) = Rf f (��) :

Proof: Substitute p = t + � into the de�nition, and you will get

Rf f (�) =

∫ 1

�1

f (p � �)f (p)dp :

But p is just a dummy variable. Replace it by t and you recover the expression for
Rf f (��). (In fact, in some texts you will see the autocorrelation de�ned with a
minus sign in front of the � .)
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2. For a non-zero signal, Rf f (0) > 0.

Proof: For any non-zero signal there is at least one instant t1 for which f (t1) 6= 0,
and f (t1)f (t1) > 0. Hence

∫1
�1 f (t)f (t)dt > 0.

3. The value at � = 0 is largest: Rf f (0) � Rf f (�).
Proof: Consider any pair of real numbers a1 and a2. As (a1 � a2)

2 � 0, we know
that a21 + a22 � a1a2 + a2a1. Now take the pairs of numbers at random from the
function f (t). Our result shows that there is no rearrangement, random or ordered,
of the function values into �(t) that would make

∫
f (t)�(t)dt >

∫
f (t)2dt. Using

�(t) = f (t + �) is an ordered rearrangement, and so for any �∫ 1

�1

f (t)2dt �

∫ 1

�1

f (t)f (t + �)dt

5.8 | Applications

5.8.1 | Synchronising to heartbeats in an ECG (DIY search and read)

5.8.2 | The search for Extra Terrestrial Intelligence

Figure 5.3: Chatty aliens

For several decades, the SETI organization have been look-
ing for extra terrestrial intelligence by examining the auto-
correlation of signals from radio telescopes. One project
scans the sky around nearby (200 light years) sun-like stars
chopping up the bandwidth between 1-3 GHz into 2 billion
channels each 1 Hz wide. (It is assumed that an attempt to
communicate would use a single frequency, highly tuned,
signal.) They determine the autocorrelation each chan-
nel's signal. If the channel is noise, one would observe a
very low autocorrelation for all non-zero � . (See white
noise in Lecture 6.) But if there is, say, a repeated message, one would observe a
periodic rise in the autocorrelation.

τ

increasing

Figure 5.4: Rf f at � = 0 is always large, but will drop to zero if the signal is noise. If the messages

align the autocorrelation with rise.
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5.9 The Wiener-Khinchin Theorem

Let us take the Fourier transform of the cross-correlation
∫
f (t)g(t + �)dt, then

switch the order of integration,

FT

[∫ 1

�1

f (t)g(t + �)dt

]
=

∫ 1

�=�1

∫ 1

t=�1

f (t)g(t + �) dt e�i!� d�

=

∫ 1

t=�1

f (t)

∫ 1

�=�1

g(t + �) e�i!� d�dt

Notice that t is a constant for the integration wrt � (that's how f (t) oated
through the integral sign). Substitute p = t + � into it, and the integrals become
separable

FT

[∫ 1

�1

f (t)g(t + �)dt

]
=

∫ 1

t=�1

f (t)

∫ 1

p=�1

g(p) e�i!pe+i!t dpdt

=

∫ 1

�1

f (t)ei!t dt

∫ 1

�1

g(p) e�i!p dp

= F �(!)G(!):

If we specialize this to the auto-correlation, G(!) gets replaced by F (!). Then

For a �nite energy signal

The Wiener-Khinchin Theorema says that

The FT of the Auto-Correlation is the Energy Spectral Density

FT [Rf f (�)] = jF (!)j2 = Ef f (!)

aNorbert Wiener (1894-1964) and Aleksandr Khinchin (1894-1959)

(This method of proof is valid only for �nite energy signals, and rather trivializes
the Wiener-Khinchin theorem. The fundamental derivation lies in the theory of
stochastic processes.)

5.10 Corollary of Wiener-Khinchin

This corollary just con�rms a result obtained earlier. We have just shown that
Rf f (�), Ef f (!). That is

Rf f (�) =
1

2�

∫ 1

�1

Ef f!)e
i!�d!

where � is used by convention. Now set � = 0
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Auto-correlation at � = 0 is

Rf f (0) =
1

2�

∫ 1

�1

Ef f!)d! = ETot

But this is exactly as expected! Earlier we de�ned the energy spectral density as

ETot =
1

2�

∫ 1

�1

Ef f!)d! ;

and we know that for a �nite energy signal

Rf f (0) =

∫ 1

�1

jf (t)j2dt = ETot :

5.11 How is the ESD a�ected by passing through a system?

If f (t) and g(t) are in the input and output of a system with transfer function
H(!), then

G(!) = H(!)F (!) :

But Ef f (!) = jF (!)j2, and so

Egg(!) = jH(!)j2jF (!)j2 = jH(!)j2Ef f (!)

5.12 Cross-correlation

The cross-correlation describes the dependence between two di�erent signals.

Cross-correlation

Rf g(�) =

∫ 1

�1

f (t)g(t + �)dt

5.12.1 Basic properties

1. Symmetries The cross-correlation does not in general have a de�nite reection
symmetry. However, Rf g(�) = Rgf (�).

2. Independent signals

The auto-correlation of even white noise has a non-zero value at � = 0. This is
not the case for the cross-correlation. If Rf g(�) = 0, the signal f (t) and g(t)
have no dependence on one another.
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5.13 | Example and Application

[Q] Determine the cross-correlation of the signals f (t) and g(t) shown.

1

f(t)

t

1

g(t)

t

2a 3a 4a2a

[A] Start by sketching g(t + �) as function of t.

4a+ τ 4a+ τ 4a+ τ2a+ τ 2a+ τ 2a+ τ4a+ τ2a+ τ

t

1

0 2a

t

1

t t

0 0 02a 2a 2a

11

f (t) is made of sections with f = 0, f = t
2a , then f = 0.

g(t + �) is made of g = 0, g = t
a �

(
2 + �

a

)
, g = 1, then g = 0.

The left-most non-zero con�guration is valid for 0 � 4a + � � a, so that

� For �4a � � � �3a:

Rf g(�) =

∫ 1

�1

f (t)g(t + �)dt =

∫ 4a+�

0

t

2a
� 1 dt =

(4a + �)2

4a

� For �3a � � � �2a:

Rf g(�) =

∫ 1

�1

f (t)g(t+�)dt =

∫ 3a+�

0

t

2a
�

(
t

a
�
(
2 +

�

a

))
dt+

∫ 4a+�

3a+�

t

2a
�1 dt

� For �2a � � � �a:

Rf g(�) =

∫ 1

�1

f (t)g(t+�)dt =

∫ 3a+�

2a+�

t

2a
�

(
t

a
�
(
2 +

�

a

))
dt+

∫ 2a

3a+�

t

2a
�1 dt

� For �a � � � 0:

Rf g(�) =

∫ 1

�1

f (t)g(t + �)dt =

∫ 2a

2a+�

t

2a
�

(
t

a
�
(
2 +

�

a

))
dt

Working out the integrals and �nding the maximum is left as a DIY exercise.
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Figure 5.5:

5.13.1 Application

It is obvious enough that cross-correlation is useful for detecting occurences of
a \model" signal f (t) in another signal g(t). This is a 2D example where the
model signal f (x; y) is the back view of a footballer, and the test signals g(x; y)
are images from a match. The cross correlation is shown in the middle.

5.14 Cross-Energy Spectral Density

The Wiener-Khinchin Theorem was actually derived for the cross-correlation. It
said that

The Wiener-Khinchin Theorem shows that, for a �nite energy signal,

the FT of the Cross-Correlation is the Cross-Energy Spectral Density

FT [Rf g(�)] = F �(!)G(!) = Ef g(!)

5.15 Finite Power Signals

Let us use f (t) = sin!0t to motivate discussion about �nite power signals.

All periodic signals are �nite power, in�nite energy, signals. One cannot evaluate∫1
�1 j sin!0tj

2dt.

However, by sketching the curve and using the notion of self-similarity, one would
wish that the auto-correlation is positive, but decreasing, for small but increasing
� ; then negative as the the curves are in anti-phase and dissimilar in an \organized"
way, then return to being similar. The autocorrelation should have the same period
as its parent function, and large when � = 0 | so Rf f proportional to cos(!0�)
would seem right.

We de�ne the autocorrelation as an average power. Note that for a periodic
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τ

increasing

Figure 5.6:

function the limit over all time is the same as the value over a period T0

Rf f (�) = lim
T!1

1

2T

∫ T

�T

sin(!0t) sin(!0(t + �))dt

!
1

2(T0=2)

∫ T0=2

�T0=2

sin(!0t) sin(!0(t + �))dt

=
!0

2�

∫ �=!0

��=!0

sin(!0t) sin(!0(t + �))dt

=
1

2�

∫ �

��

sin(p) sin(p + !0�))dp

=
1

2�

∫ �

��

[
sin2(p) cos(!0�) + sin(p) cos(p) sin(!0�)

]
dp =

1

2
cos(!0�)

For a �nite energy signal, the Fourier Transform of the autocorrelation was the
energy spectral density. What is the analogous result now? In this example,

FT [Rf f ] =
�

2
[�(! + !0) + �(! � !0)]

This is actually the power spectral density of sin!0t, denoted Sf f (!). The �-
functions are obvious enough, but to check the coe�cient let us integrate over all
frequency f :∫ 1

�1

Sf f (!)df =

∫ 1

�1

�

2
[�(! + !0) + �(! � !0)] df

=

∫ 1

�1

�

2
[�(! + !0) + �(! � !0)]

d!

2�
=

1

4
[1 + 1] =

1

2
:
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This does indeed return the average power in a sine wave. We can use Fourier
Series to conclude that this results must also hold for any periodic function. It
is also applicable to any in�nite energy \non square-integrable" function. We will
justify this a little more in Lecture 61.

To �nish o�, we need only state the analogies to the �nite energy formulae,
replacing Energy Spectral Density with Power Spectral Density, and replacing Total
Energy with Average Power.

The autocorrelation of a �nite power signal is de�ned as

Rf f (�) = lim
T!1

1

2T

∫ T

�T

f (t)f (t + �)dt :

The autocorrelation function and Power Spectral Density are a

Fourier Transform Pair

Rf f (�), Sf f (!)

The average power is

PAve = Rf f (0)

The power spectrum transfers across a system as

Sgg(!) = jH(!)j2Sf f (!)

This result is proved in the next lecture.

5.16 Cross-correlation and power signals

Two power signals can be cross-correlated, using a similar de�nition:

Rf g(�) = lim
T!1

1

2T

∫ T

�T

f (t)g(t + �)dt

Rf g(�), Sf g(!)

5.17 Input and Output from a system

One very last thought. If one applies an �nite power signal to a system, it cannot
be converted into a �nite energy signal | or vice versa.

1To really nail it would require us to understand Wiener-Khinchin in too much depth.


