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The median, mode and quantile function

The mean gives us the centre of gravity of a distribution and is one way of summarizing it. Other

measures are:

Definition: (Median) For any random variable X, a median of the distribution of X is defined as a point m

such that P(X≤m)≥ 1
2 and P(X≥m)≥ 1

2

Definition (Mode): For a discrete r.v. X, we say that c is the mode of X if it maximizes the PMF:

P(X = c)≥ P(X = x)∀x. For a continuous r.v. X, c is a mode if it maximizes the PDF: f(c)≥ f(x)∀x.

Definition: (Quantiles) When the distribution function of a random variable X is continuous and one-to-one

over the whole set of possible values of X, we call the function F−1 the quantile function of X. The value of

F−1(p) is called the pth quantile of X or the 100 ∗pth percentile of X for each 0 < p < 1.

Example: X ∼ Unif[a,b], so F(x) = x−a
b−a over this interval, 0 for x≤ a and 1 for x > b. Given a

value p, we simply solve for the pth quantile: x = pb+(1 −p)a. Compute this for p = .5, .25, .9, . . .

Now think about how this pth quantile would change if your density is increasing or decreasing

on its support?

What quantile is the median? In what contexts are each of these useful? How can the quantile

function give us a median?
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Finding quantiles: examples

A distribution can have multiple medians and modes, but the multiple medians have to occur

side by side, whereas modes can occur all over a distribution. Examples:

1. P(X = 1) = .1 P(X = 2) = .2 P(X = 3) = .3 P(X = 4) = .4

2. P(X = 1) = .1 P(X = 2) = .4 P(X = 3) = .3 P(X = 4) = .2

3. The p.d.f of a random variable is given by:

f(x) =

 1
8x for 0≤ x≤ 4

0 otherwise

Find the value of t such that P(X≤ t) = 1
4 and P(X≥ t) = 1

2

(Answers: 2,
√

8)

4.

f(x) =


1
2 for 0≤ x≤ 1

1 for 2.5≤ x≤ 3

0 otherwise
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The MAE and MSE

Result: Let m and µ be the median and the mean of the distribution of X respectively, and let d be any other

number. Then the value d that minimizes the mean absolute error is d =m:

E(|X−m|)≤ E(|X−d|)

and the value of d that minimizes the mean squared error is d = µ:

E(X−µ)2 ≤ E(X−d)2

The proofs are straightforward and in your textbook.
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Moments of a random variable

Moments of a random variable are special types of expectations that capture characteristics of

the distribution that we may be interested in (its shape and position). Moments are defined

either around the origin or around the mean

Definition ( Moments): Let X be a random variable. The kth moment of X is the expectation E(Xk). This

moment is denoted by µ
′
k and is said to exist if and only if E(|X|k) <∞.

• Clearly, µ
′
0 = 1 and µ

′
1 is the mean of X which we denote by µ

• If a random variable is bounded, all moments exist, and if the kth moment exists, all lower

order moments exist.

Definition (Central moments): Let X be a random variable for which E(X) = µ. Then for any positive

integer k, the expectation E[(X−µ)k] is called the kth central moment of X and denoted by µk

• Now µ1 is zero and the variance is the second central moment of X

• If the distribution of X is symmetric with respect to its mean µ, and the central moment

exists for a given odd integer k, then it must be zero because the positive and negative

terms of the corresponding expectation will cancel one another.
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Sample moments

If we have a sample of i.i.d random variables, a natural way to estimate a population mean is to

take the sample mean, the same is true for other moments of a distribution

Definition (Sample moments): Let X1, . . .Xn be i.i.d. random variables. The kth sample moment is the

random variable

Mk =
1

n

n∑
j=1

Xkj .

The sample mean X̄n = 1
n

n∑
j=1
Xj is the first sample moment.

All sample moments are unbiased estimators of population moments- this just follows from the

linearity of expectations.

Result (Mean and variance of sample mean): Let X1, . . .Xn be i.i.d. random variables with mean µ and

variance σ2. Then the sample mean X̄n is unbiased for estimating µ:

E(X̄n) = µ

Since the Xi are independent, the variance of the sample mean is:

Var(X̄n) =
1

n2
Var(X1 + · · ·+Xn) =

σ2

n
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Moment generating functions

Definition (Moment generating function or MGF): The moment generating function (MGF) of a

random variable X is M(t) = E(etX), as a function of t, if this is finite on some open interval (−a,a)

containing 0. Otherwise we say the MGF of X does not exist.

• If X is bounded, the above expectation exists for all values of t, if not, it may only exist for

some values of t.

• M(t) is always defined at t = 0 and M(0) = E(1) = 1

If you are ever asked to derive an MGF, this is a useful check.
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Moments via derivatives of the MGF

Result (Moments via derivates of the MGF): Given the MGF of X, we can obtain the kth moment of X

by evaluating the kth derivative of the MGF at 0.

Proof. The function ex can be expressed as the sum of the series 1 + x+ x2

2! + . . . and so etx can be expressed

as the sum 1 + tx+ t2x2

2! + . . . and the expectation E(etx) =
∞∑
x=0

(1 + tx+ t2x2

2! + . . . )f(x). If we differentiate

this w.r.t t and then set t = 0, we’re left with only the second term in parenthesis, so we have
∞∑
x=0
xf(x) which is

defined as the expectation of X. Similarly, if we differentiate twice, were left with
∞∑
x=0
x2f(x), which is the

second moment. For continuous distributions, we replace the sum
∞∑
x=0

with an integral.
∞∫
0

(. . . )dx
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Moment generating functions ..an example

Suppose a random variable X has the density function f(x) = e−xI(0,∞), we can use its MGF to

compute the mean and the variance of X as follows:

• M(t) =
∞∫
0

ex(t−1)dx = ex(t−1)

t−1

∣∣∣∞
0

= 0 − 1
t−1 = 1

1−t for t < 1

• Taking the derivative of this function with respect to t, we get ψ′(t) = 1
(1−t)2 , and

differentiating again, we get ψ′′(t) = 2
(1−t)3 .

• Evaluating the first derivative at t = 0, we get µ = 1
(1−0)2 = 1.

• The variance σ2 = µ
′
2 −µ2 = 2(1 − 0)−3 − 1 = 1.

Do you remember what this distribution is called?
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Properties of MGFs

• Result 1 (MGF determines the distribution): If two random variables have the same MGF, they

must have the same distribution.

• Result 2 (MGF of location-scale transformations ) : Let X be a random variable for which the

MGF is M1 and consider the random variable Y = aX+b, where a and b are given constants. Let the

MGF of Y be denoted by M2. Then for any value of t such that M1(t) exists,

M2(t) = ebtM1(at)

• Result 3 (MGF of a sum of independent r.v.s) : Suppose that X1, . . . ,Xn are n independent

random variables and that Mi is the MGF of Xi. Let Y = X1 + · · ·+Xn and the MGF of Y be given by

M. Then for any value of t such that Mi(t) exists for all i = 1, 2, . . . ,n,

M(t) =

n∏
i=1

Mi(t)

Examples: If f(x) = e−xI(0,∞) as in the above example, the MGF of the random variable

Y = (X− 1) = e−t

1−t for t < 1 (using the first result above, setting a = 1 and b = −1) and if Y = 3 − 2X,

the MGF of Y is given by e3t

1+2t for t >− 1
2
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Bernoulli and Binomial MGFs

Consider n Bernoulli r.v.s Xi with parameter p

• The MGF for each of the Xi variables is given by

etP(Xi = 1)+ (1)P(Xi = 0) = pet+q.

• Using the additive property of MGFs for independent random variables, we get the MGF

for X = X1 + . . .Xn as

M(t) = (pet+q)n

For two Binomial random variables each with parameters (n1,p) and (n2,p), the MGF of their

sum is given by the product of the MGFs, (pet+q)n1+n2
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Geometric and Negative Binomial MGFs

• The density of a Geometric r.v. is f(x;p) = pqx over all natural numbers x

• the MGF is given by E(etX) = p
∑∞
x=0(qe

t)x = p
1−qet

for t < log( 1
q)

• We can use this function to get the mean and variance, µ = q
p and σ2 = q

p2

• The negative binomial is just a sum of r geometric variables, and the MGF is therefore

( p
1−qet

)r and the corresponding mean and variance is µ = rq
p and σ2 = rq

p2
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The Poisson MGF

Recall:

P(X = k) =
e−λλk

k!

for k = 0, 1, 2, . . .

E(etX) =
∞∑
x=0

etxe−λλx

x! = e−λ
∞∑
x=0

(λet)x

x! = eλ(e
t−1)

(Using the result that the series 1 + λ+ λ2

2! + λ3

3! + . . . converges to eλ)

We see from the form of the above MGF that the sum of k independently distributed Poisson

variables has a Poisson distribution with mean λ1 + . . .λk.
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The Gamma MGF

Recall the density function for Gamma(α,β):

f(x;α,β) =
βα

Γ(α)
xα−1e−βxI(0,∞)(x)

The MGF is therefore:

MX(t) =

∞∫
0

etxf(x)dx

=
βα

Γ(α)

∞∫
0

xα−1e−(β−t)xdx

=
βα

Γ(α)

1

(β− t)α

∞∫
0

yα−1e−ydy ( where y = (β− t)x)

=
( β

β− t

)α
Since a χ2

v distribution, is Gamma( v2 , 1
2), MX(t) = 1

(1−2t)
v
2

.
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Gamma transformations

Result ( Gamma additivity): Let X1, . . .Xn be independently distributed random variables with respective

gamma densities Gamma(αi,β). Then

Y =

n∑
i=1

Xi ∼ Gamma(

n∑
i=1

αi,β)

Proof: The MGF of Y is the product of the individual MGFs, i.e.

MY(t) =

n∏
i=1

MXi(t) =

n∏
i=1

( β

β− t

)αi
=
( β

β− t

) n∑
i=1
αi
for t < β
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The Normal MGF

Let’s begin deriving the MGF of Z ∼N(0, 1):

MZ(t) =

∞∫
−∞
etz

1
√

2π
e−z

2
2 dz

= e
t2
2

∞∫
−∞

1
√

2π
e

−(z−t)2

2 dz

We completed the square and the term inside the integral is a N(t, 1) PDF, so integrates to 1.

Therefore:

MZ(t) = e
t2
2

Any r.v. X ∼N(µ,σ2) can be written as X = µ+σZ, so we can now use the location-scale result

for MGFs to obtain

MX(t) = eµtMZ(σt)

So for a Normal r.v. X ∼ (µ,σ2):

MX(t) = eµt+
1
2σ

2t2

Practice obtaining the moments of the distribution by taking derivatives of this function.
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Normal transformations

Result 1: Let X ∼N(µ,σ2) and Y = aX+b, where a and b are given constants and a 6= 0, then Y has a

normal distribution with mean aµ+b and variance a2σ2

Proof: The MGF of Y can be expressed as MY (t) = ebteµat+
1
2σ

2a2t2
= e(aµ+b)t+ 1

2 (aσ)2t2
. This is simply the

MGF for a normal distribution with the mean aµ+b and variance a2σ2

Result 2: If X1, . . . ,Xk are independent and Xi has a normal distribution with mean µi and variance σ2
i,

then Y = X1 + · · ·+Xk has a normal distribution with mean µ1 + · · ·+µk and variance σ2
1 + · · ·+σ2

k.

Proof: Write the MGF of Y as the product of the MGFs of the Xi’s and gather linear and squared terms

separately to get the desired result.

We can combine these two results to derive the distribution of sample mean:

Result 3: Suppose that the random variables X1, . . . ,Xn form a random sample from a normal distribution

with mean µ and variance σ2, and let X̄n denote the sample mean. Then X̄n has a normal distribution with

mean µ and variance σ2

n .

Note: We already knew the mean and variance of the sample mean, we now have its distribution

when the sample is Normal. The CLT extends this to other distributions for large samples.
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Transformations of Normals to χ2 distributions

Result 4 : If X ∼N(0, 1), then Y = X2 has a χ2 distribution with one degree of freedom.

Proof:

MY(t) =

∞∫
−∞
ex

2t 1
√

2π
e−x

2
2 dx

=

∞∫
−∞

1
√

2π
e− 1

2 x
2(1−2t)dx

=
1√

(1 − 2t)

∞∫
−∞

1
√

2π 1√
(1−2t)

e− 1
2 (x
√

(1−2t))2
dx

=
1√

(1 − 2t)
for t <

1

2

( the integrand is a normal density with µ = 0 and σ2 = 1
(1−2t) ).

The MGF obtained is that of a χ2 random variable with v = 1 since the χ2 MGF is given by

MX(t) = (1 − 2t)−
v
2 for t < 1

2 .
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Normals and χ2 distributions...

Result 5 : Let X1, . . .Xn be independent random variables with each Xi ∼N(0, 1), then Y =
n∑
i=1
X2
i has a χ2

distribution with n degrees of freedom.

Proof:

MY(t) =

n∏
i=1

MX2
i
(t)

=

n∏
i=1

(1 − 2t)−
1
2

= (1 − 2t)−
n
2 for t <

1

2

which is the MGF of a χ2 random variable with v = n. This is the reason that the parameter v is

called the degrees of freedom. There are n freely varying random variables whose sum of squares

represents a χ2
n-distributed random variable.
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