

Welcome to the JTEG Monthly Teleconference

Topic: Corrosion Prevention and Repair

30 March 2015

AGENDA

1300-1310: Welcome and JTEG Background - Greg Kilchenstein (OSD-MPP)

- 1310-1311: Administrative Notes Debbie Lilu (NCMS)
- 1311-1325: Effects of Corrosion on DoD Equipment- Rich Hays (OSD-CPO)
- 1325-1345: OSD Corrosion Policy and Oversight Overview Rich Hays (OSD-CPO)
- 1345-1405: Army Corrosion Control and Prevention Executive Overview Dr. Roger Hamerlinck
- 1405-1425: Navy Corrosion Control and Prevention Executive Overview Mr. Matt Koch
- 1425-1445: Air Force Corrosion Control and Prevention Executive Overview Dr. David Robertson

1445-1500: Review & Wrap Up – JTEG Principals

Joint Technologies Exchange Group (JTEG)

- Provide a forum for the exchange of information on new technology, processes, and equipment developments
- Collect, analyze, and disseminate depot maintenance requirements for new technology, processes and equipment
- Advocate for new technology or equipment with cross-service potential to increase efficiency
- Facilitate joint service technology development

Technology Forum Protocol

- Please keep your phones on mute unless you are presenting. Should you have to temporarily drop off please hang up and call back
- Questions will be addressed via Q&A on DCO
- Presenters slides will be advanced by Greg / Ray
- Briefs (when cleared for public release) and Q&A will be posted on JTEG website

IMPACT OF CORROSION

OFFICE OF THE UNDERSECRETARY OF DEFENSE FOR ACQUISITION, TECHNOLOGY, AND LOGISTICS

Presentation to Joint Technology Exchange Group 30 March 2015

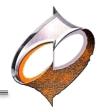
Rich Hays Deputy Director, Corrosion Policy and Oversight Office

DoD Cost of Corrosion Results to Date

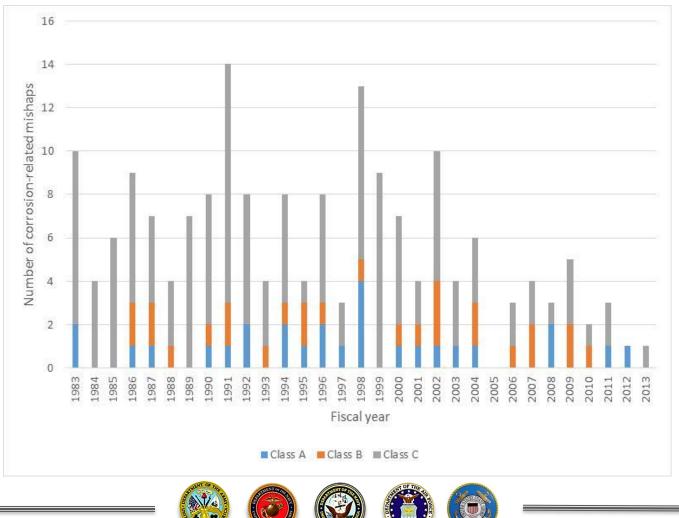
(Most recent studies - \$ in billions)

Study year			Corrosion as a percentage of				
baseline	Study segment	Annual cost of corrosion	maintenance	Data			
2009-2010	Army aviation and missiles	\$1.5	20.9%	FY2007 and FY2008			
	Marine Corps ground vehicles	\$0.3	12.3%	FY2007 and FY2008			
	Navy and Marine Corps aviation	\$2.7	23.0%	FY2008 and FY2009			
2010-2011	Air Force aircraft and missiles	\$5.1	23.9%	FY2008 and FY2009			
	Navy ships	\$3.3	21.6%	FY2008 thru FY2010			
2011-2012	Army ground vehicles	\$1.7	12.3%	FY2008 thru FY2010			
	Marine Corps ground vehicles	\$0.3	14.3%	FY2009 thru FY2011			
2012-2013	DoD facilities and infrastructure	\$3.0	14.4%	FY2009 thru FY2011			
	All other DoD segments	\$3.6	17.9%	FY2009 thru FY2011			
	Army aviation and missiles	\$1.9	21.9%	FY2009 thru FY2011			
2013-2014	Navy and Marine Corps aviation	\$3.6	28.2%	FY2010 thru FY2012			
	Air Force aircraft and missiles	\$6.0	24.9%	FY2010 thru FY2013			
Total DoD annual corrosion cost		\$23.4 billion	20.7%				

DoD Corrosion Impact on Availability Results to Date


CORROSION POLICY AND OVERSIGHT

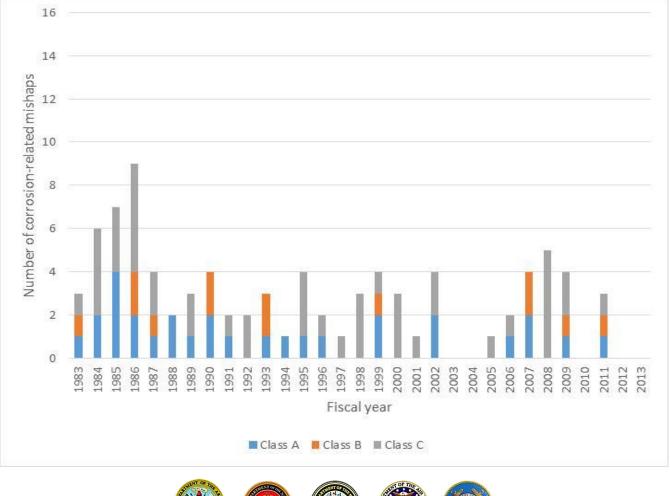
Study year	Study segment	Annual non-available time attributable to corrosion	Average non-availability per end item attributable to corrosion	Data baseline
2010–2011	Army aviation and missiles	1,717,898 hours	17.4 days	FY2008 and FY2009
	Navy and Marine Corps aviation	95,237 days	26.5 days	FY2008 and FY2009
	Air Force	2,102,476 hours	15.9 days	FY2008 and FY2009
2011–2012	Army ground vehicles	662,649 days	1.7 days	FY2008–FY2010
2012–2013	Marine Corps ground vehicles	209,115 days	3.3 days	FY2009–FY2011
	Army aviation and missiles	2,028,590 hours	19.7 days	FY2010–FY2012
2013–2014	Navy and Marine Corps aviation	116,484 days	29.9 days	FY2010–FY2012
	Air Force	2,259,412 hours	16.6 days	FY2010–FY2013



DoD Corrosion Impact on Safety

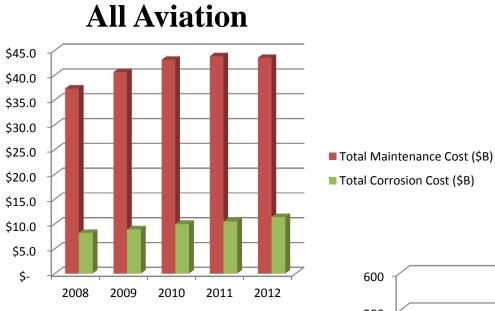
CORROSION POLICY AND OVERSIGHT

Army Aviation Corrosion-related Mishaps



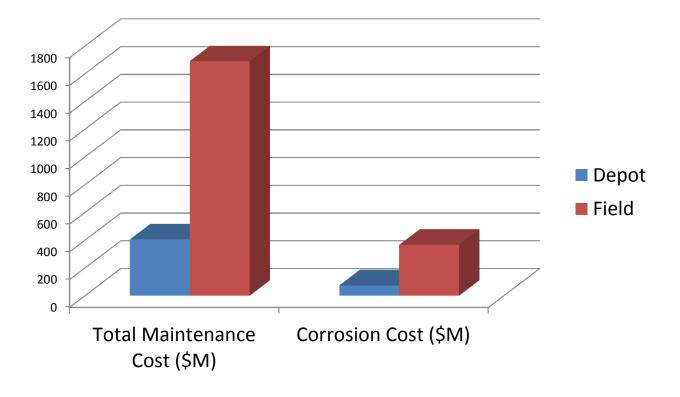
DoD Corrosion Impact on Safety

CORROSION POLICY AND OVERSIGHT


Department of Navy Aviation Corrosion-related Mishaps

Corrosion Impact on Cost

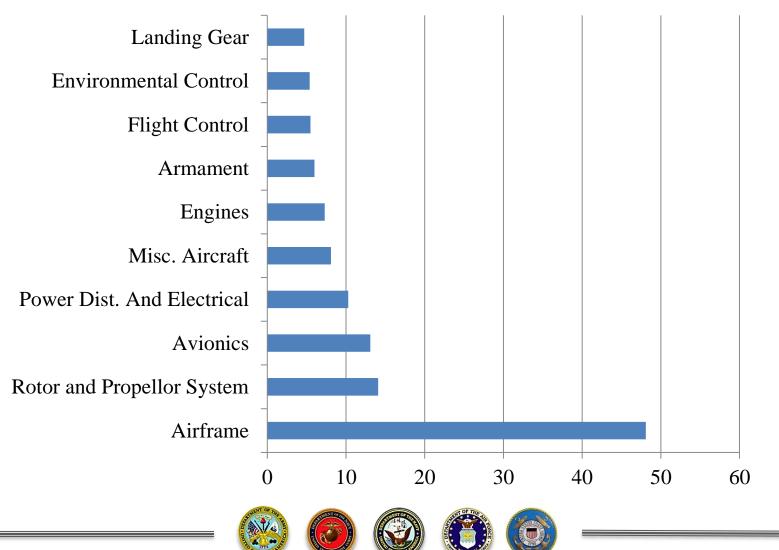
CORROSION POLICY AND OVERSIGHT


Corrosion Impact on Cost – All HH-60 Assets

CORROSION POLICY AND OVERSIGHT =

(\$ in millions)

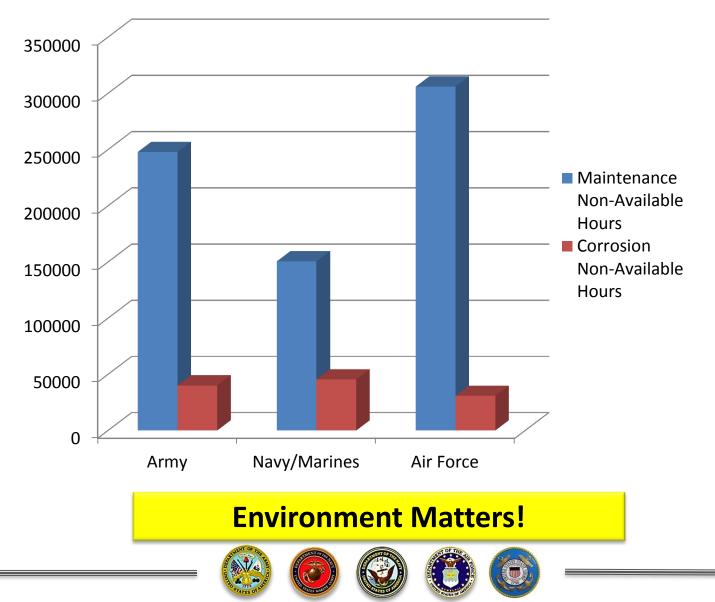
Level of maintenance	Model	Maintenance cost	Corrosion cost	Percent corrosion
Depot	HH-60	\$406.8	\$75.4	18.5%
Field	HH-60	\$1,690.5	\$366.7	21.7%
Total	HH-60	\$2,097.3	\$442.1	21.1%



Corrosion Impact on Cost – All HH-60 Assets

CORROSION POLICY AND OVERSIGHT

Total Corrosion Costs (\$M)



Corrosion Impact on Availability – All HH-60 Assets

Ŷ

CORROSION POLICY AND OVERSIGHT

- Between 10% and 30% of every maintenance dollar is spent to prevent or correct corrosion problems
- Corrosion has a measurable and significant impact on system availability
- Corrosion directly causes, or is a factor in, many safety mishaps
- CPO-sponsored "Impact of Corrosion" studies can be used as a tool to identify and prioritize areas that need to be addressed

CORROSION POLICY AND OVERSIGHT

OFFICE OF THE UNDERSECRETARY OF DEFENSE FOR ACQUISITION, TECHNOLOGY, AND LOGISTICS

Presentation to Joint Technology Exchange Group 30 March 2015

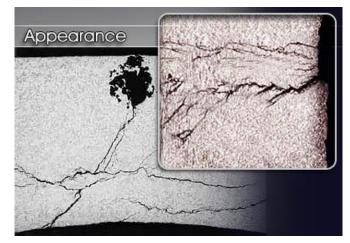
Rich Hays Deputy Director, Corrosion Policy and Oversight Office

• 2nd Law of Thermodynamics

"Every process occurring in nature proceeds in the sense in which the sum of the entropies of all bodies taking part in the process is increased. In the limit, i.e. for reversible processes, the sum of the entropies remains unchanged." (Planck)

• 10 U.S.C. 2228

"...the deterioration of a material or its properties due to a reaction of that material with its chemical environment."

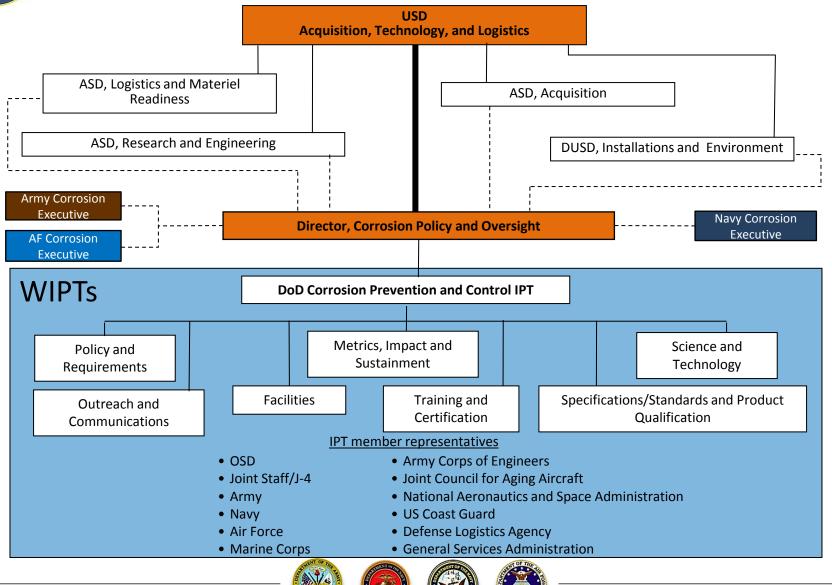

Corrosion Examples

CORROSION POLICY AND OVERSIGHT

General and Crevice Corrosion of Steel

Environmentally Influenced Cracking

Alkali-Silica Reaction in Concrete



uV Degradation of Organic Coating System

DoD Corrosion Organization

What We Do

Activities

- Policy Development and Implementation
- Weapon System and Major Facility Program Reviews
- Workforce Development
- Corrosion Metrics Collection and Analysis
- Specifications and Standards
- Communication and Outreach

Project and Research Sponsorship

- Demonstration/Implementation Projects through Military Departments
- Technical Corrosion Collaboration

- CORROSION POLICY AND OVERSIGHT
- **Draft DoDI 5000.02** *Operation of the Defense Acquisition System* requires CPC planning for all systems (including MAIS, COTS, and GOTS) throughout the lifecycle
 - "....planning for and establishing 1) a management structure for CPC, and 2) the technical considerations and requirements in order to implement an effective CPC regime throughout the life cycle of a program."
 - Planning documented in the Systems Engineering Plan and the Life Cycle Sustainment Plan
- DoDI 5000.67 Prevention and Mitigation of Corrosion on DoD Military Equipment and Infrastructure – establishes structure of DoD Corrosion Program and responsibilities
- DoDD 4151.18 Maintenance of Military Materiel requires that corrosion prevention and control programs and preservation techniques be established throughout the system life cycle.

70% of sustainment costs are locked in by initial design

Oversight of Major Acquisition Programs

CORROSION POLICY AND OVERSIGHT

CORROSION POLICY AND OVERSIGHT

- Most corrosion-related specs and standards eliminated during acquisition reform in the 1990's
 - Causes corrosion requirements to be negotiated individually during acquisition
- Working with MilDeps to reestablish some needed Specs & Stds
 - MIL-STD-1568C, Materials and Processes for Corrosion Prevention and Control in Aerospace Weapon Systems – newly reinstituted as a Mil Std
 - Supported by DI-MFFP-81403, *Corrosion Prevention and Control Plan*, and DI-MFFP-81402, *Metal Finishes and Finishing Processes and Procedures* (a.k.a. finish specification)
 - MIL-HDBK-502A, Product Support Analysis includes CPC planning
- Migrating some requirements to commercial standards
 - Developing new standards with non-governmental standards bodies (e.g. SAE)
 - TA-STD-0017, Product Support Analysis (previously LSA)
 - Assisting in development of Joint SSPC-NACE Std for CPC Planning

DAU CLM-038, *Corrosion Prevention and Control Overview*

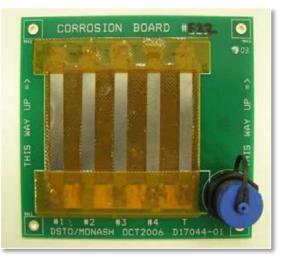
POLICY AND OVERSIG

- **DAU CLE-070,** Corrosion and Polymeric Coatings
- Web-based training modules (<u>www.corrconnect.org</u>)
- Strategic partnership with NACE and SSPC delivering training to active duty military and government employees
- University of Akron BSc. in Corrosion Engineering
- University of Florida developed Distance Learning Course

ROSION POLICY AND OVERSIGH

- <u>www.CorrDefense.org</u> program and technical information
- DoD and Allied Nations Corrosion Conference
- Series of "awareness" videos for leadership and general public
- Educational gaming "CorrSim"
- CorrDefense e-magazine
- www.CorrConnect.org web-based training

CorrDefense DOD News about Preserving Military Assets


ORROSION POLICY AND OVERSIGH

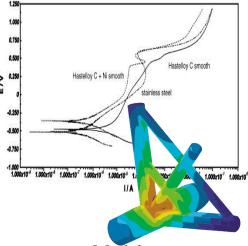
Objective – Implement mature corrosion control technologies in new and existing weapon systems and facilities

- Military Department-generated projects to qualify products and processes
- Demonstrate effectiveness in operational systems
- Update technical and logistics documentation

Objectives

- <u>Produce solutions</u> (knowledge, technologies, processes, materials, etc.) that tangibly reduce the impact of corrosion on DoD weapons systems and infrastructure.
- <u>Produce individuals</u> with education, training and experience, who will form the future core of the corrosion prevention and control technical community within DoD, its support network, and its suppliers.

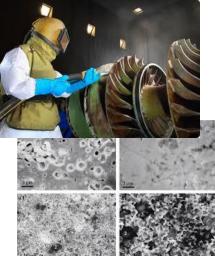
>\$90M Investment Since 2008



TCC Technology Investment Categories

Performance Prediction

- Models
- Accelerated Testing
- Validation
- Design Tools


Assessment of

- Mechanical Properties
- Integrity

•

- Galvanic Interaction
- Degradation Mechanisms

- Mechanical
 - Coating removal
 - Substrate damage
- Adhesion Promotion
- Sacrificial
- Cleanliness
 Requirements

Product Support

- Packaging/Storage
- Shelf-life
- Energy
- Maintenance

CPC Resources

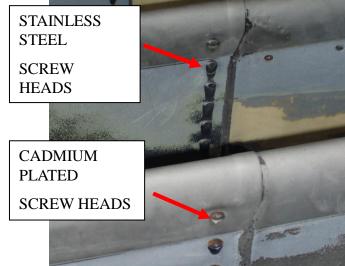
- Corrosion Prevention and Control Guidebook for Military Systems and Equipment
 - Guidance for all military systems and equipment including MAIS and COTS/modified-COTS
 - Beyond general guidance, provides more specific assistance prior to each acquisition phase milestone for six areas of emphasis:
 - Management
 - Systems Engineering
 - Life Cycle Logistics
 - Test & Evaluation
 - Contracting
 - Cost Estimating and Budget
- SEP and LCSP Outlines
- DAG CH 4 and CH 5
- Military Department Corrosion Control and Prevention Executives (CCPE's)

Some Final Thoughts

- Corrosion is rarely just a technical problem
 - Prevent
 - Detect
 - Mitigate
 - Manage

Corrosion doesn't hurt today but it hurts tomorrow

- Easier to invest in corrective than preventive maintenance
- Hard to maintain leadership focus
- Corrosion is often a "people" problem
- Successful corrosion control requires
 - Awareness and buy-in from leadership
 - Teamwork between subject matter experts, designers, and maintainers –
 "Corrosion control is not the most important thing we do."
 - Tools, training, and time for the personnel implementing the processes



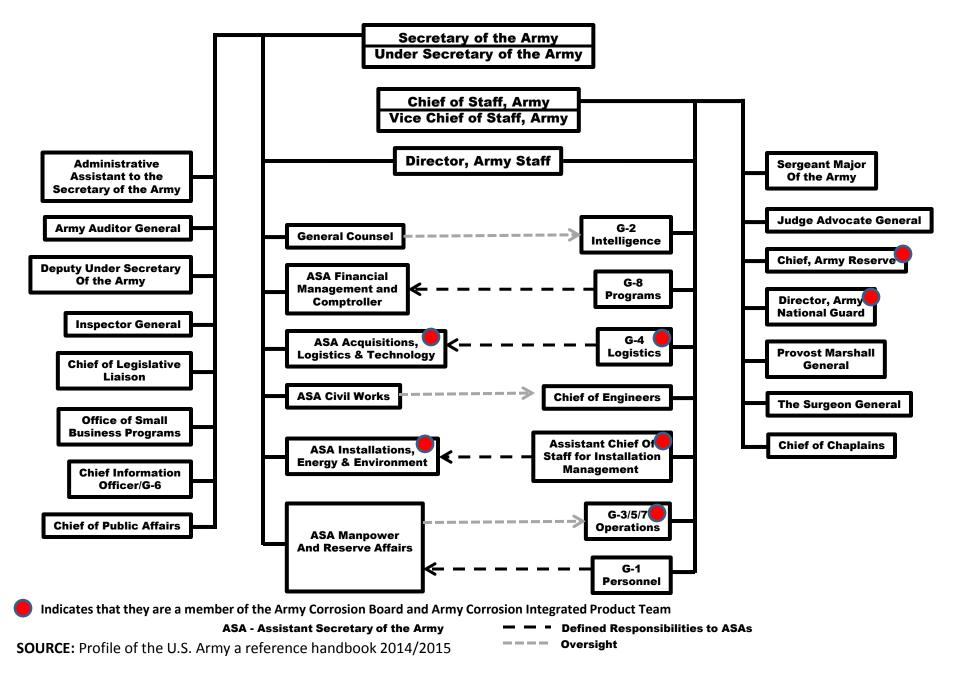
CORROSION POLICY AND OVERSIGHT

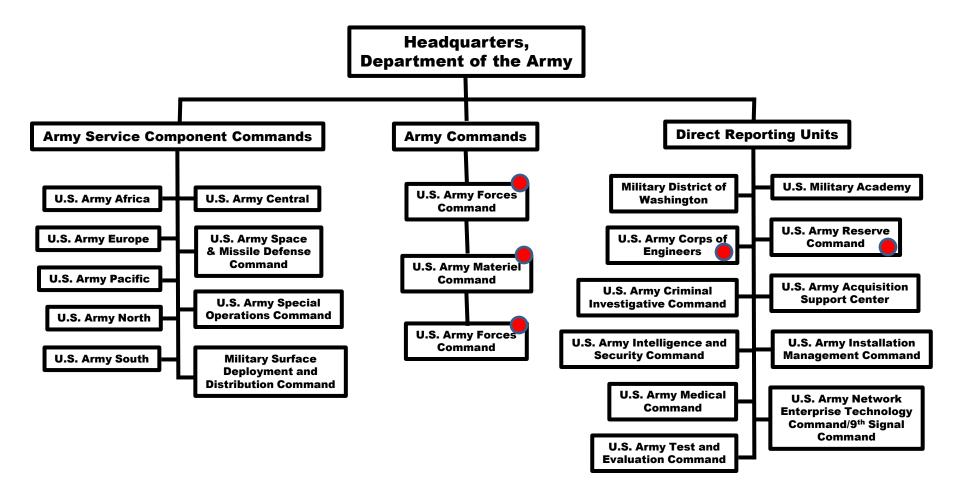
Rotor Blades

Trunion Bearings

Magnesium Engine Housing

Main Landing Gear Brake Assembly


Briefing to the JTEG 30 March 2015


U.S. Army Corrosion Prevention and Control Program

Dr. Roger D. Hamerlinck OASA(ALT), SAAL-PA roger.d.hamerlinck.civ@mail.mil (703) 617-0250

DEPARTMENT OF THE ARMY

ARMY COMMAND STRUCTURE

Indicates that they are a member of the Army Corrosion Board and Army Corrosion Integrated Product Team

SOURCE: Profile of the U.S. Army a reference handbook 2014/2015

CHALLENGES TO TECHNOLOGY INSERTION

- Not needed for every TOE/TDA environment dependent
- How should these solutions be authorized/assigned to the end item
 - Associated Support Item of Equipment (ASIOE)
 - ✓ Separately authorized, separately type classified
 - \circ Component of End Item (COEI)
 - ✓ Looses it visibility when installed on the end item just another part
 - \circ Basic Issue Item (BII)
 - ✓ Emergency maintenance
 - \checkmark Put into operation
 - \checkmark Must be transferred with the item
 - \odot Additional Authorized List (AAL) Item
 - ✓ Discretionary item
 - \checkmark Unit funds the acquisition and re-procurement
- These solutions need maintenance and parts Added resource requirements
- Availability of funding affordability
- Does technology truly resolve the root cause for why it corroded

CONCLUSION

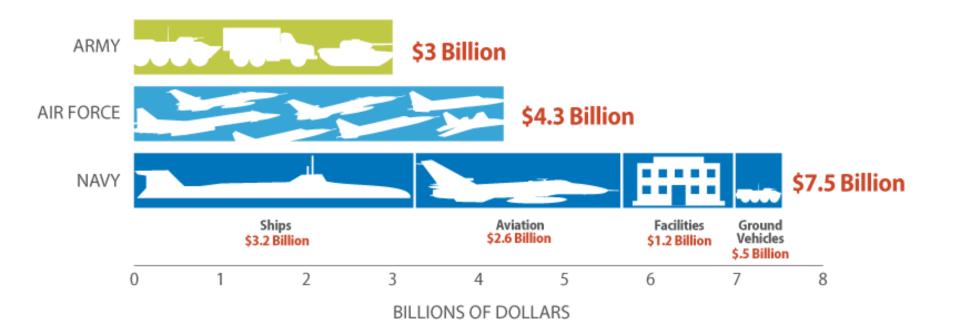
If the Army is to succeed in reducing the cost, readiness, and safety impacts of corrosion, I need you to:

- Be the example perform preventive maintenance
- Establish a command culture that emphasizes prevention of corrosion
- Take the time to file Quality Deficiency Reports (QDRs) and Storage Deficiency Reports (SDRs)
- When you have a "good" idea, let us know, but remember we need the analysis too!

DON CORROSION PREVENTION AND CONTROL EXECUTIVE

JTEG Brief

Mr. Matthew Koch DON Corrosion Control & Prevention Executive ASN RD&A-DASN RDT&E



IMPACT OF CORROSION

\$22.4 Billion/Year Problem for DoD

ACTIONS TO ADDRESS CORROSION

- Congress enacted legislation to address corrosion and DoD has developed policy and guidance
- GAO audits military departments on compliance with USC § 2228 requirements and reports findings to Congress

2003	Congress establishes DoD Corrosion Executive (P.L. 107-314, 10 USC § 2228					
2005	DoD implements corrosion planning requirements (DoDI 5000.02					
2008	Congress establishes Service Corrosion Executives (P.L. 110-417, 10 USC § 2228					
2009	DON appoints Corrosion Executive, stands up Corrosion Cross-Functional Team, and delivers first annual report to Congress					
2010	DoD requires Corrosion Prevention and Control Plan (CPCP) for all ACAT I program (DoDI 5000.02)					
2013	Corrosion Planning requirement expanded to both the Systems Engineering Plan (SEP) and the Life Cycle Sustainment Plan (LCSP)—(Interim DODI 5000.02)					

ROLE OF NAVY CORROSION EXECUTIVE

- Policy (DON-Level and Alignment with OSD & SYSCOM Policies)
- Develop Strategic Plan for Addressing Corrosion in the DON
- Annual Report to Congress on DON Corrosion Health, Needs, and Initiatives
- Corrosion Planning Review in SEP, LCSP, CPCP during Acquisition
- Annual Assessment of Department CPC Program(s)
- Hex- Chrome Waiver Authorization



ROLE OF NAVY CORROSION EXECUTIVE

- Primary POC for Interaction with OSD AT&L Corrosion Policy & Oversight – (Projects, Reports, etc.)
- Lead Cross-DON CPC Communication (Chair Corrosion CFT)
- Facilitate Cross-DOD CPC Standards/Specifications
- Adjudication of Cross-DON CPC Issues
- Response to DON Corrosion-Related Congressional Inquires executed by GAO

DON CORROSION ORGANIZATION

Corrosion Cross Functional Team (CFT) is chartered by Flag Officer panel and represented by SYSCOM SME

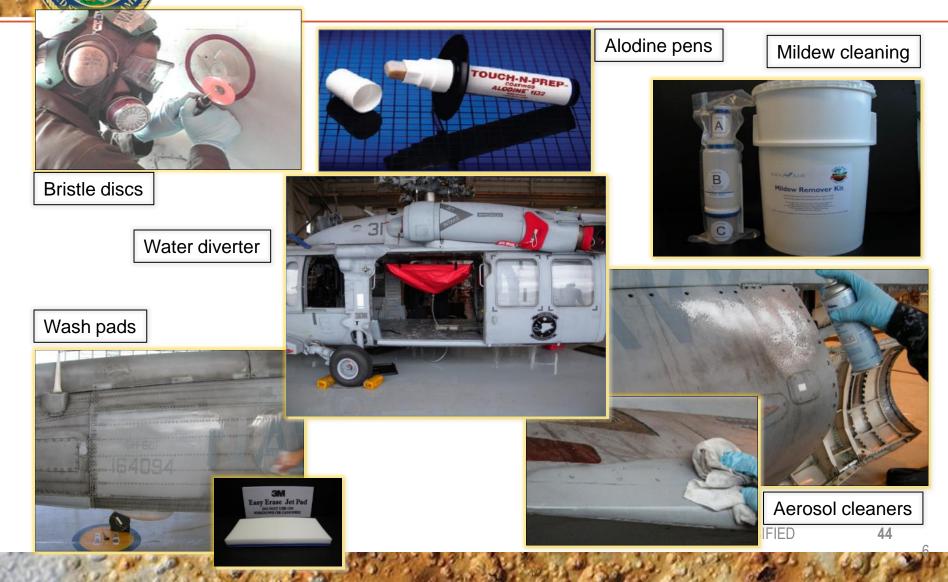
UNCLASSIFIED

CORROSION CROSS FUNCTIONAL TEAM

- The Corrosion Cross Functional Team (CFT) includes members from OPNAV, SYSCOMS, ONR, and US Coast Guard
- Meets Bi-Monthly to ensure ongoing and up to date forum on the state of corrosion health and challenges in the Navy
- Encourages cross talk between acquisition, research, logistics, and sustainment communities
- CFT members provide a direct link between the corrosion office and various activities, program managers, engineers, and assets
- Creates an up to date, knowledgeable community capable of identifying and addressing systematic corrosion issues

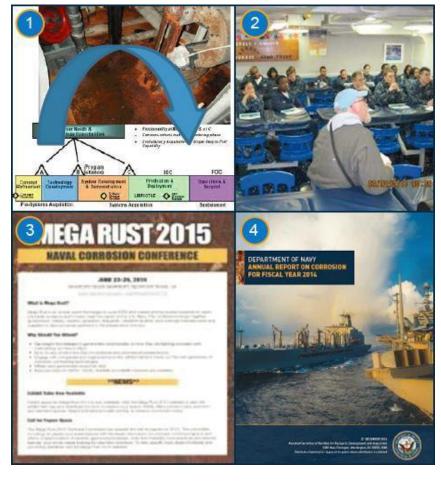
ORGANIZATIONAL-LEVEL CORROSION SUSTAINMENT EFFORTS IN DON

- AIR Maintenance Readiness Teams (MRT)
 - Provides Organizational-level corrosion prevention, detection and repair at fleet aviation command locations


SHIPS – Corrosion Control Assistance Teams (CCAT)

 Provides ship-board tools, training and technical expertise on organizational level corrosion repair

GROUND VEHICLES – Corrosion Service Teams (CST)


- Rate the current corrosion condition of the asset
- Provides on-the-lot organizational level corrosion repair and application of corrosion preventative compounds

EXAMPLES OF ORGANIZATIONAL-LEVEL CORROSION MITIGATION TECHNOLOGIES (NAVAIR)

CORROSION EXECUTIVE FOCUS AREAS

- 1. Feedback into Acquisition
- 2. Training and education opportunities
- 3. Communication and Collaboration
- 4. Proper representation in Annual reporting

DON FY-14 ANNUAL REPORT ON CORROSION

01 DECEMBER 201 ett Secretary of the Naxy for Research, Development, and Acquisitis 1000 Naxy Pensagen, Washington, DC 20030-100 ethlunion Statement D - Approvet The public relevant distribution is extensio

Requirement

• Title 10 USC § 2228

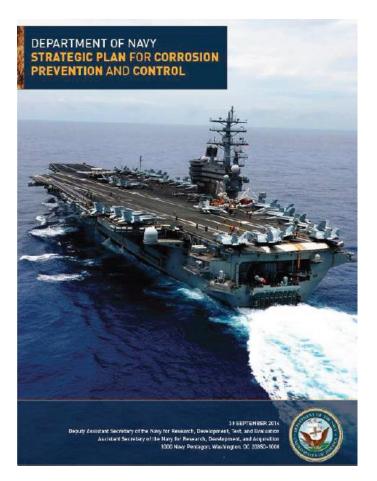
Scope

- CPC accomplishments & activities
- Current FY focus areas & funding levels

Recommendations pertaining to Department CPC activities

- Audience
- Department of the Navy
- Secretary of Defense
- United States Congress

DON FY-15 STRATEGIC PLAN FOR CORROSION


- Requirement
 - ► Title 10 USC § 2228
- Goals & Objectives
 - Institutionalize Corrosion Prevention & Control
 - CPC in Policy & Guidance
 - CPC in Technology Development & Integration
 - Education & Training for CPC Workforce
 - Communication & Collaboration as a Tool

Performance Metrics

Quantifiable metrics for success

Audience

- Department of the Navy
- Secretary of Defense
- United States Congress

MEGA RUST 2015 JUNE 23-25, 2015 | NEWPORT NEWS , VA

AMERCIAN SOCIETY OF NAVAL ENGINEERS

The most current Navy-wide preservation issues will be discussed by a wide range of key leaders and practitioners in the government, military, shipyards, intermediate and depot level repair activities, research facilities, ship owners/operators, and coatings manufacturers & suppliers.

DON Corrosion Executive is orchestrating Government approvals for conference travel to facilitate this event. For 2015, this event encompasses all Navy.

Newport News Marriott 740 Town Center Drive Newport News, VA 23606

Questions: meetings@navalengineers.org (703) 836-6727

UNCLASSIFIED

CORROSION EXECUTIVE STAFF

Mr. Matthew Koch DEPARTMENT OF NAVY *Corrosion Control & Prevention Executive* Pentagon BF963 Washington, DC 20350 Cell: 302-723-9268 (best option) Pentagon: 703-614-3440 Quantico: 703-432-3471 Matthew.E.Koch@navy.mil

DON CCPE Staff

Lauren Paladino Chief of Staff LPaladino@elzly.com

Ms. Elena Lucas DEPARTMENT OF NAVY Deputy Corrosion Control & Prevention Executive, Program Assessments

Pentagon BF963 Washington, DC 20350 Cell: 202-834-3483 Pentagon: 703-614-0097 NRL: 202-767-4294 (best option) Elena.Lucas@navy.mil

Stephen Spadafora Advisor, CCPE 2011-2014 Stephen.J.Spadafora@leidos.com


Dail Thomas Advisor, CCPE 2009-2011 Elvin.D.Thomas@leidos.com

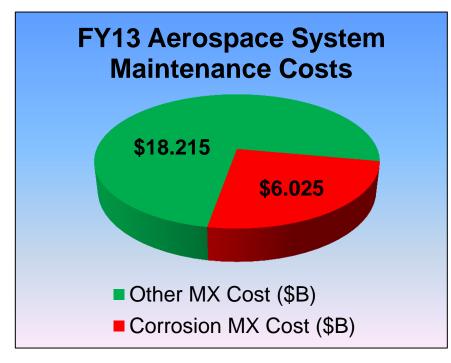
UNCLASSIFIED

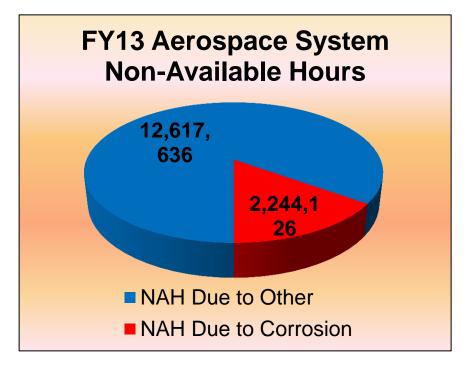
Headquarters U.S. Air Force

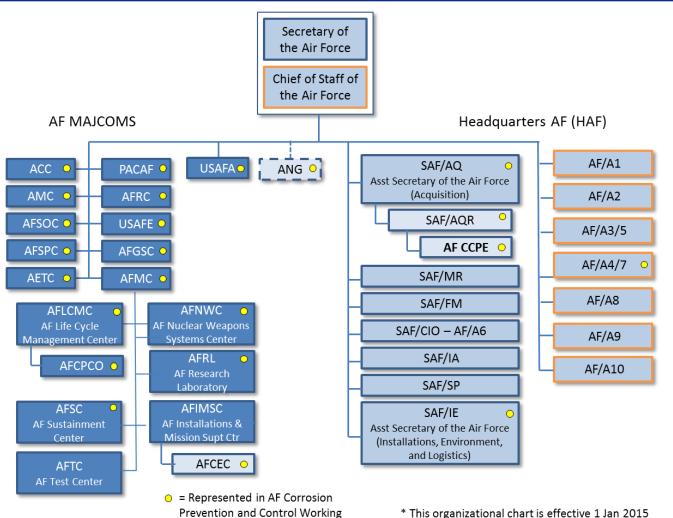
Integrity - Service - Excellence

JTEG Overview of Air Force Corrosion Prevention and Control

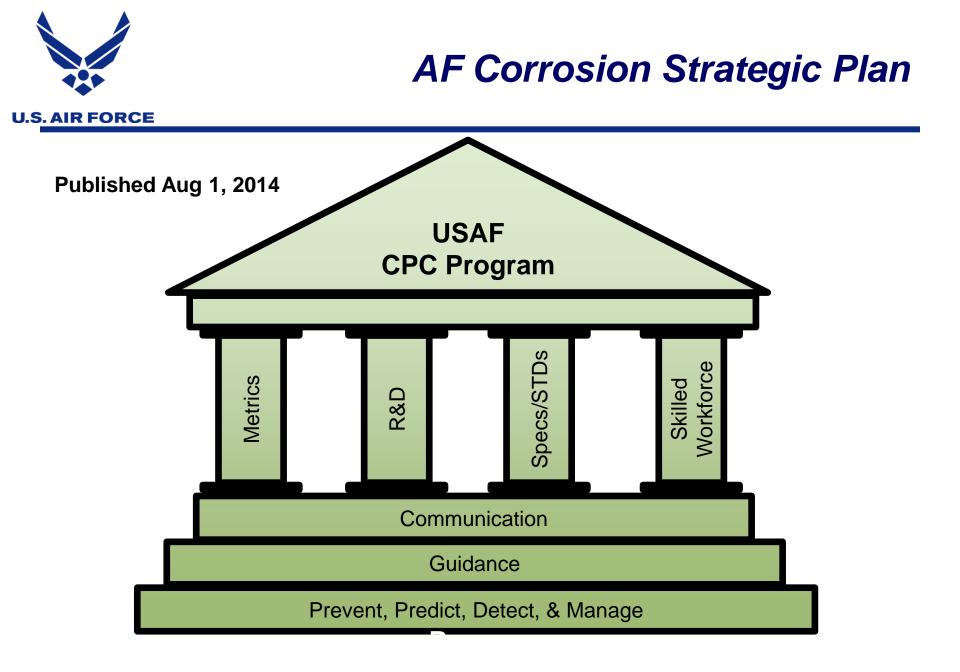
U.S. AIR FORCE




- Impact to AF
- AF Organization
- Strategic Plan and Policies
- Technology Implementation Example


The depot portion of corrosion MX is \$3.4B

Integrity - Service - Excellence



* This organizational chart is effective 1 Jan 2015

Integrity - Service - Excellence

Group (CPC WG)

Integrity - Service - Excellence

Acquisition Oversight Weapon Systems

- AF Policy AFI 63-101, Integrated Life Cycle Management
 - Requires a CPCP approved by PEO (ACAT 1 to 3) (Table 4.1)
 - Lead Systems Engineer is to ensure the RFP considers corrosion (5.1.4.1.2)
 - PM is to integrate CPC into the program integrity efforts (5.4.1.3.1)
 - CPC planning is to be integrated into the SEP and LCSP (5.4.6)
 - For ACAT 1, PM must include CPC Planning in the MS A SEP under "Design Considerations" and prepare a CPC Plan at MS B and C. PM must provide the CPC Plan to the CCPE prior to PEO approval (5.4.6.1)
 - For new starts, the PM is to obtain early CCPE involvement (5.4.6.3)
 - PM must obtain PEO approval and CCPE coordination for Cr6+ use (5.4.6.4 and DFARS reference)
 - PSM is accountable to the PM for CPC (6.1.1)
- Mil-Std-1568C, Materials and Processes for CPC in Aerospace Weapon Systems
- Mil-Std-1530C, Aircraft Structural Integrity Program
- ASIP Reviews

U.S. AIR FORCE

AF CPC Enterprise On-going Activities

- Implementation of improved materials and processes
 - Assessment and assistance for field implementation of new materials (AFLCMC, AFRL)
 - Military standard for CPC of aerospace systems (AFRL, other MilDeps, AQR, OSD, AFLCMC)
 - Electronics CPC standard with SAE (OSD, other MilDeps, AFRL, AQR)
 - Integration of corrosion with the Aircraft Structural Integrity Program (AFLCMC, AQR)
 - MAJCOM corrosion surveys (AFLCMC/CPCO, MAJCOMs)
- Communication and collaboration
 - AF CPC Working Group telecons (HAF, MAJCOMs, AFMC Centers)
 - DoD CPC IPT and supporting WIPTs (OSD, other MilDeps, AQR, AFRL, AFLCMC/CPCO)
 - Technical Corrosion Collaboration program (OSD, other MilDeps, AFRL, AQR, various universities, USAFA, AFIT)
- Information and training
 - Technical Order updates for improved materials and processes (AFLCMC/CPCO)
 - Information clearinghouse for maintainers and engineers (AFLCMC/CPCO)
 - Training development and implementation (AFLCMC/CPCO)
- Research
 - Technologies that track aircraft exposure, enabling CBM and improved depot workload planning (AFRL, AFLCMC)
 - Coatings development, testing, and integration (AFLCMC, AFRL)
 - Corrosion-conscious engineering design tools (AFRL)
 - Structural integrity effects of corrosion (AFRL, USAFA, AFIT)
 - Realistic accelerated corrosion testing (AFRL)

Example of Focused Technology Implementation Effort

- The AF CPC enterprise recognizes that coating decoating activities are among the biggest drivers of depot cost and risk
- CrVI is a big ESOH risk and cost for the depots
- CPC enterprise is utilizing a balanced, risk-based approach, to implement CrVI replacements
- Initial focus is on replacements for CrVI with biggest sustainability impacts and low corrosion risk

AF CPC Risk-Based Prioritization Framework

(Hexavalent Chromium Replacement)

(0		Corrosion and Mishap Risk Posed by this Application Area (Green indicates application area will tolerate less capable alternatives)		(Green indicates application poses lower ESOH risks to AF personnel and installation environment)		Risk Assessment of the Use of Alternatives in this Application Area (Green indicates adoption of alternatives would not increase risk in these areas)		
	CrVI Applications	Life Cycle Corrosion	Life Cycle Mishap	DoD Worker Exposure Risk if CrVI Used	ESOH Life Cycle Cost	Corrosion Prevention Performance	Technical Maturity Risk	Life Cycle Cost
Near-term Focus Areas for Implementation	Primer on support equipment and infrastructure	Visible and repairable		Larger source of worker CrVI	Larger source of installation ESOH			
	Aircraft Outer Mold Line (OML) Primer	Sometimes		exposure	costs			Some alternatives require more frequent inspection and
	Bare metal surface treatments/Conversio n Coatings/"Sealers"	improve performance of outer mold line replacement						alternatives still require exposure controls
	Sealants							
Longer-term Focus Areas	Adhesive bonding primers							
	primer	Hidden, difficult to inspect or access Frequent corrosion;	Known life cycle structural integrity risk	Limited or no expected worker exposure	Limited or no installation ESOH costs			Higher life cycle probability of loss of
	Fuel tank primers, coatings, and sealants		Known life cycle mishap risk					aircraft or of availability

Integrity - Service - Excellence

Examples of OSD-funded AF CPC projects

- C-130 Non-Chrome Field Test
- Universal Primer on Ground Support Equipment
- F-16 Reduced Chrome Study
- Evaluation of Non-Chrome Paint Systems in Field Environments
- AF CPC enterprise partnering with lab, ESOH, product support, life cycle management communities to focus on AF aircraft outer mold line (OML) coating systems
 - MIL-PRF-32239A, Coating System, Advanced Performance, for Aerospace Applications
 - Supported by data from outdoor exposure testing

- The CPC enterprise in the AF encompasses many organizations and activities
- A strategic plan is in place along with policy to focus the efforts
- Technology transition and implementation is important to realize improved CPC and reduce costs

Questions?

Integrity - Service - Excellence

Corrosion Prevention and Repair Forum

Review & Wrap-Up

30 March 2015