Topic2: ACIDS, BASES AND SALTS

Sub topic- Acid- Base Indicators

L.O: To differentiate acids and bases using indicators

Acids	Bases
– Sour in taste	- Bitter in taste
Change blue litmus to red	- Change red litmus to blue
– eg. Hydrochloric Acid HCl	- Eg. Sodium hydroxide NaOH
Sulphuric Acid H2SO ₄	Potassium hydroxide KOH
Nitric Acid HNO ₃	Calcium hydroxide $Ca(OH)_2$
Acetic Acid CH ₃ COOH	Ammonium hydroxide NH ₄ OH

Acid- Base Indicators

- Substances which indicate whether a substance is acidic or basic by change in colour.
- Litmus solution is a natural indicator. It is a purple dye extracted from lichens.
- Substances whose odour changes in acidic or basic media are called **olfactory** indicators. (eg : clove oil, vanilla essence, onion).
- Turmeric, a natural indicator, turns reddish brown in basic medium but remains yellow in acidic and neutral medium. http://youtu.be/Olezbt9cxfo

	Indicator	ACIDS	BASES
1	Red litmus solution	Remains red	Turns blue
2	Blue litmus solution	Turns red	Remains blue
3	Phenolphthalein solution	Remains colourless	Pink
4	Methyl orange solution	Orange red	Golden yellow

Sub topic- Chemical Properties of Acids and Bases

L.O: To analyze the chemical properties of acids and bases

.....

1. With Metals http://youtu.be/e-Njp175AiM

Acid+Metal \longrightarrow Salt+HydrogenActive metals displace hydrogen gas from the acid.

2HCl +	Zn	\longrightarrow ZnCl ₂	+	H 2
2HNO3 +	Zn	\longrightarrow Zn (NO ₃) ₂	+	H2
$H_2SO_4 +$	Zn	\longrightarrow ZnSO ₄	+	H2
2CH ₃ COO	DH + Zn	\longrightarrow (CH ₃ COO) ₂ Zn	+	H2

Base	+	Metal –	\longrightarrow Salt	+	Hydrogen
Note –	Such	reactions a	re not possib	ole wit	h all the metals.

NaOH +	Zn	$\longrightarrow Na_2ZnO_2$	+	H 2
		Sodium zincate		

2. Action of Acids with Metal Carbonates and Metal Hydrogencarbonates

http://youtu.be/CreO-rVrxT0

Metal Carbonate	+ Acid —	\longrightarrow Salt	+ Carbondioxide	+ Water
$Na_2CO_3(s)$	+ 2 HCl(aq) —	\longrightarrow 2 NaCl(aq)	+ CO ₂ (g)	$+ H_2O(l)$
Metal hydrogencar	bonate + Acid	\longrightarrow Salt	+ Carbondioxide	+ Water
NaHCO ₃	+ HCl	\longrightarrow NaCl	+ CO2	+ H2O

Lime water Test :

On passing CO₂ gas, lime water turns milky.

On passing excess CO₂, the white precipitate disappears. $CaCO_{3(s)} + H_{2O(l)} + CO_{2(g)} \xrightarrow{Ca(HCO_{3})_{2}} aq$ Soluble in water

3. Reactions of acids and bases with each other

Neutralisation Reactions

- The reaction between an acid and a base to give salt and water.
- The effect of a base is nullified by an acid (and vice versa) to give salt and water.

Acid	+	Base	\longrightarrow	Salt	+	Water
HCl(aq)	+	NaOH(aq)	\longrightarrow	NaCl(aq)	+	$H_2O(l)$

4. Reactions of oxides with acids and bases

 An oxide is the compound formed by the reaction of an element with oxygen. Metallic oxides: CaO, MgO, CuO, Fe₂O₃ Non-metallic oxides: CO₂, SO₂, SO₃

(a) Reaction of metallic oxides with acids

Metal Oxide	+	Acid	\longrightarrow Salt	+	Water
CuO (s)	+	2HCl(aq)	$\longrightarrow CuCl_{2(aq)}$	+	$H_2O(1)$
Black		· -	blue-green		

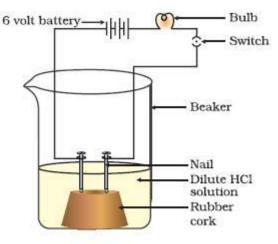
Metallic oxides give salt and water on reacting with acids. Hence, **metallic oxides are basic in nature. MOB**

(b) Reaction of Non Metallic Oxide with Base						
Non metallic oxide	+	Base	\longrightarrow	Salt	+	Water
CO ₂ (g)	+	$Ca(OH)_{2(aq)}$	\longrightarrow	CaCO ₃ (s)	+	$H_2O(l)$

Non-metallic oxides give salt and water on reacting with acids. Hence, **non-metallic oxides are** acidic in nature.

Bases and alkalis

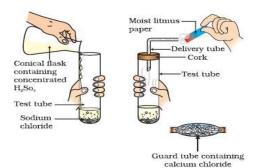
- Bases are oxides or hydroxides of metals.
- All bases do not dissolve in water
- Soluble bases are called alkalis. They are soapy to touch, bitter and corrosive.


• All alkalis are bases, but all bases are not alkalis.

L.O: To investigate what do all acids and all bases have in common

.

T.B page 22, activity 2.8

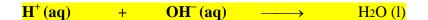

- Repeat the experiment with dilute sulphuric acid, glucose solution, alcohol solution, sodium hydroxide solution, calcium hydroxide solution.
- Glowing of bulb indicates that there is a flow of electric current through the solution carried by the **H**⁺ (**aq**) ions or **OH**⁻ (**aq**) ions in solution.
- Conclusion:
 - i. All acidic solutions and basic solutions conduct electricity.
 - ii. All acids produce $\mathbf{H}^+(\mathbf{aq})$ ions in solution, which are responsible for their acidic properties.
 - iii. All bases produce OH⁻ (aq) ions in solution, which are responsible for their basic properties.

.....

.

L.O : To analyze what happens to an acid or a base in a water solution

T.B Activity 2.9, page 23



- Acids produce H⁺ ions in the presence of water.
- The separation of H+ ions from an acid cannot occur in the absence of water. (**Dry** HCl gas does <u>not</u> change the colour of **dry** blue litmus paper to red)
- H^+ ion cannot exist alone. It combines with water molecules and exists as $H^+(aq)$ or hydronium ion (H_3O^+) .

$$H^+ + H_2O \longrightarrow H_3O^+$$

- Acids give $H^+(aq)$ or (H_3O^+) in water. HCl + H₂O \longrightarrow H₃O⁺ + Cl⁻
- Soluble bases (alkalis) provide OH⁻ (aq) ions in water NaOH (s) in water \longrightarrow Na⁺ (aq) + OH⁻ (aq)
- Neutralization reaction: The net reaction???

Acid	+	Base	\longrightarrow	Salt	+	Water
HX (aq)	+	MOH(aq)	\longrightarrow	MX (aq)	+	H2O (l)

• Mixing of water with an acid or a base.

Warning sign - concentrated acids & bases

- The process of dissolving an acid or a base in water is highly exothermic.
- Add acid <u>slowly</u> to water with constant stirring.
- Never add water to concentrated acids. Why??
 - The heat generated during mixing may cause the mixture to splash out and cause burns.
 - \circ $\;$ The glass container may break due to excessive local heating.
- When an acid or a base is mixed with water they become dilute. This results in decrease in the concentration of H₃O⁺ or OH⁻ per unit volume in acids and bases respectively.

Dilution

• The process of <u>decreasing</u> the concentration of H_3O^+ or OH^- per unit volume by the mixing of an acid or base with water is called dilution.

- On dilution, the acid or base is said to be diluted.
- When dilution increases, concentration per unit volume decreases; and vice versa.

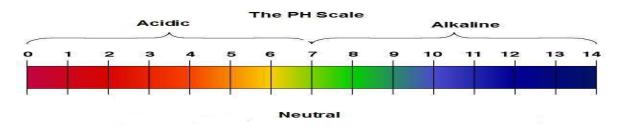
Process	Result
Adding water to an acid or base	Dilution - increases. Concentration of H_3O^+ or OH^- per unit volume - decreases.
Adding excess acid to acid solution or Adding excess base to basic solution	Dilution - decreases Concentration of H ₃ O ⁺ or OH ⁻ per unit volume - increases.

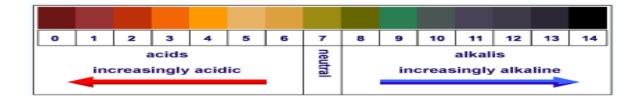
.....

Sub topic: Strength of acids and bases, pH scale

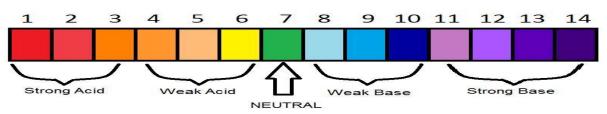
L.O: 1.To analyze the strength of acid or base solutions

2.To predict the nature of a substance from its pH value


.....


Universal indicator:

- Is a mixture of several indicators
- Shows different colours at different concentrations of H⁺ ions in a solution; thus helps to identify how strong a given acid or base is.
- Used for measuring the $\mathbf{p}^{\mathbf{H}}$ of a solution. ($\mathbf{pH} = \mathbf{Potenz Hydrogen}$. In German, $\mathbf{potenz} = \mathbf{power}$)


p^H / **p**^H scale

- $\mathbf{p}^{\mathbf{H}}$ is the number which indicates the acidic or basic nature of a solution.
- $\mathbf{p}^{\mathbf{H}}$ scale measures the \mathbf{H}^+ ion concentration, $[\mathbf{H}^+]$ in a solution
- Measures p^H from **zero** (very acidic) to **14** (very alkaline)
- Higher the H⁺ ion concentration, lower is the p^H value.
- p^{H} of a neutral solution is 7.
- p^{H} value less than 7 represents acidic solution; $[H^{+}]$ is high; $[OH^{-}]$ is low.
- p^{H} value greater than 7 represents basic solution; $[H^{+}]$ is low; $[OH^{-}]$ is high.

THE PH SCALE

Strength of acids and bases:

- Strength of acids and bases depends on the no. of H⁺ ions and OH⁻ ions produced respectively.
 - a. Strong acids give rise to more H^+ ions. eg. HCl, H₂SO₄, HNO₃.
 - b. Weak Acids give less H⁺ ions eg. CH₃COOH, H₂CO₃ (Carbonic acid)
 - c. Strong bases give rise to more OH^- ions. eg. NaOH, KOH, Ca(OH)₂
 - d. Weak bases give less OH⁻ions. Eg. NH4OH

Substance	pH	Inference (nature)
Pure water	7	Neutral
Gastric juice (HCl)	1.2	Highly acidic
Acid rain	5.5	Slightly acidic
Blood	7.4	Very slightly basic
Milk of Magnesia	10	Mild base
Sodium hydroxide solution	14	Highly basic

.....

H.W

You have two solutions A and B. The pH of solution A is 6 and that of solution B is 8. Which solution has more hydrogen ion concentration? Why?

.....

Importance of pH in everyday life

• Importance of pH in our digestive system –

pH level of our body regulates our digestive system. In case of indigestion, to get relief from pain in our stomach, antacids like milk of magnesia are used. Antacids neutralize the excess acid and we get relief.

- **pH of Acid Rain** : When pH of rain water is less than 5.6 it is called Acid Rain. When this acidic rain flows into rivers these also get acidic, which causes a threat to the survival of aquatic life.
- **pH of Soil** : Plants require a specific range of pH for their healthy growth. If pH of soil of any particular place is less or more than normal than the farmers add suitable fertilizers to it.
- **Our body** functions between the pH range of 7.0 to 7.8. Living organisms can survive only in the narrow range of pH change.
- **Tooth decay and pH** : Bacteria present in the mouth produce acids by degradation of sugar and food particles remaining in the mouth. Using toothpaste which is generally basic can neutralize the excess acid and prevent tooth decay.
- **Bee sting or Nettle sting** contains methanoic acid which causes pain and irritation. Using a weak base like baking soda on it gives relief.

Acid	Substance	
Acetic acid	Vinegar	
Citric acid	Lemon, orange	
Tartaric acid	Tamarind, grapes	
Ascorbic acid (Vitamin C)	All citrus fruits	
Lactic acid	Milk, yoghurt	
Malic acid	Apples and Pears	
Formic acid	Ant stings	

Some naturally occurring acids

Sub topic- More about salts

L.O: 1. To identify the acid and base from which a salt is formed.

- 2. To distinguish different family of salts
- 3. To suggest the pH of salts

.....

SALTS

• Salts are formed by the neutralization of an acid with a base

Name of Salt	Formula	Derived from (Base)	Derived from (Acid)
Potassium Sulphate	K2SO4	КОН	H2SO4
Sodium Sulphate	Na2SO4	NaOH	H2SO4
Sodium Chloride	NaCl	NaOH	HCl
Ammonium Chloride	NH4Cl	NH4OH	HCl

Family of salts

• Salts having the same positive or negative radicals are said to belong to a family.

Eg:		
Chloride salts	Sodium salts	Sulphate salts
Na <mark>Cl</mark>	NaCl	Na_2SO_4
KC1	NaNO ₃	K_2SO_4
NH ₄ Cl	Na ₂ SO ₄	CaSO ₄
AlCl ₃	Na ₂ CO ₃	ZnSO ₄

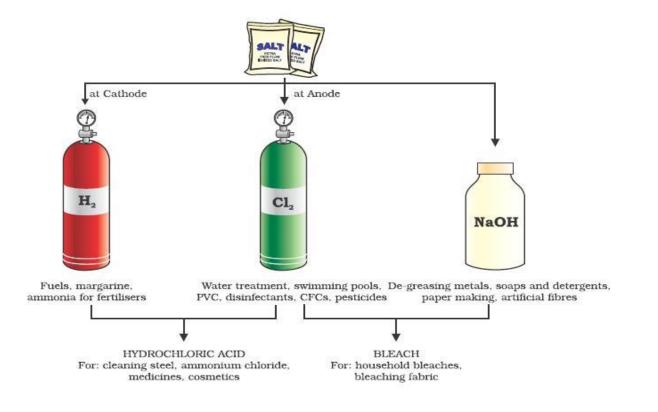
pH of salts

Salt of	Example	Nature of the salt	pH of the salt
Strong acid & strong base	NaCl	Neutral	Equals 7
Strong acid & weak base	NH ₄ Cl	Acidic	Less than 7
Weak Acid & strong base	Na ₂ CO ₃	Basic	Greater than 7

Sub topic- Chemicals from Common Salt

L.O: To analyze the preparation, properties and uses of chemicals derived from common salt

Sodium chloride:


- Known as common salt which is used in our food. It is derived from seawater.
- Common salt is an important raw material for making sodium hydroxide, baking soda, washing soda, bleaching powder etc.

1. Sodium hydroxide - NaOH

- **Preparation**: Chlor Alkali Process
- Products are chlorine and an alkali NaOH (thus the name chlor-alkali process)
- Aqueous Solution for sodium chloride (called **brine**) is electrolyzed. At anode- Chlorine gas is given off At cathode- Hydrogen gas is given off Sodium hydroxide is formed near the cathode.

 $2 \operatorname{NaCl} (aq) + 2H_2O(l) \rightarrow 2 \operatorname{NaOH} (aq) + Cl_2(g) + H_2(g)$

Important products from the chlor- alkali process

2. Bleaching Powder : CaOCl₂ , Calcium oxy chloride.

• <u>Preparation</u> : Action of chlorine (from chlor-alkali process) on dry slaked lime

 $Ca(OH)_2 \quad + \qquad Cl_2 \quad \rightarrow \qquad CaOCl_2 \qquad + \qquad H_2O$

- Uses:
 - 1. For bleaching
 - cotton and linen in the textile industry
 - wood pulp in paper industry
 - washed clothes in laundry.
 - 2. As an oxidizing agent in chemical industries.
 - 3. For disinfecting drinking water to make it germ free.

3. <u>Baking Soda</u> – NaHCO₃ – Sodium hydrogencarbonate

• Preparation:

Raw Materials: NaCl, NH₃, H₂O, CO₂ NaCl + H₂O + CO₂ + NH₃ \rightarrow NH₄Cl + NaHCO₃

• Properties:

Mild non-corrosive base. While cooking, baking soda gives out CO_2 and Na_2CO_3 Heat $2 NaHCO_3 \rightarrow Na_2CO_3 + H_2O + CO_2$

- Uses :
 - o Used as an antacid, being alkaline neutralizes excess acid in the stomach
 - Used in Soda-acid fire extinguishers
 - For making baking powder (mixture of baking Soda + tartaric acid).
 When baking powder is mixed with water or heated, following reaction takes place
 - $\circ \text{ NaHCO}_3 + H^+ \rightarrow \text{ CO}_2 + H_2\text{O} + \text{ Sodium salt of acid}$ (from acid)
 - $\circ~CO_2\,produced$ in the reaction makes the cake fluffy, soft and spongy.
- 4. Washing Soda $(Na_2 CO_3.10 H_2O) Sodium carbonate decahydrate$
- Preparation:

On heating baking soda, we get sodium carbonate. It is crystallized on adding water.

 $\begin{array}{ccc} & \text{Heat} \\ 2\text{NaHCO}_3 & \rightarrow & \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2 \\ \text{Na}_2\text{CO}_3 + 10 \text{ H}_2\text{O} & \rightarrow & \text{Na}_2\text{CO}_3.10 \text{ H}_2\text{O} \\ (10 \text{ H}_2\text{O} \text{ is water of crystallization}) \end{array}$

- Uses:
 - Used in making glass, soap and paper
 - \circ Used in manufacture of sodium compounds such as borax (Na₂B₄O₇)
 - As cleaning agent for domestic purposes
 - To remove permanent hardness of water

Water of Crystallization:

• The fixed number of water molecules present in one formulae unit of a salt.

Eg.	CuSO ₄ . 5 H ₂ O Na ₂ CO ₃ . 10H ₂ O CaSO ₄ . 2H ₂ O		 Copper Sulphate Washing Soda Gypsum 		
CuSO ₄ . 5H ₂ (hydrated) Blue		\rightarrow on heating		SO ₄ + hydrous) white	5H ₂ O
CuSO ₄ White	+	5H ₂ O	\rightarrow	CuSO ₄ . 5H ₂ O Blue	

Plaster of Paris: CaSO₄ ¹/₂ H₂O (Calcium sulphate hemihydrate)

On heating at 373K, gypsum (CaSO₄. $2H_2O$) loses water molecules to form plaster of Paris.

Uses :

- Used in making toys, decoration materials, for making surfaces smooth.
- Used in plastering fractured bone

Reason: Plaster of Paris on mixing with water changes to gypsum and sets into hard solid mass.

 $CaSO_4 \frac{1}{2} H_2O \qquad + \qquad 1 \frac{1}{2} H_2O \qquad \rightarrow \qquad CaSO_4. 2H_2O$

* ¹⁄₂ H₂O- as water of Crystallization is shown.
Explanation: 2CaSO₄ molecules are attached with one water molecule.
Hence 2 formula units of CaSO₄ share one molecule of water or one formula unit share half a molecule of water.

Refer:

Acids, bases, salts- lesson

http://youtu.be/y5xfZPWTfL0