WESTERN MICHIGAN
UNIVERSITY

Topics In
Context-Free Grammar CFG’s

HUSSEIN S. AL-SHEAKH

Outline

1Context-Free Grammar

JAmbiguous Grammars
CLL(2) Grammars
CJEliminating Useless Variables
JRemoving Epsilon

INullable Symbols

Context-Free Grammar (CFG)

JContext-free grammars are powerful enough to describe the syntax of most
programming languages; in fact, the syntax of most programming languages is
specified using context-free grammars.

JIn linguistics and computer science, a context-free grammar (CFG) is a formal
grammar in which every production rule is of the form

Vow

Where V is a “non-terminal symbol” and w is a “string” consisting of terminals
and/or non-terminals.

IThe term "context-free” expresses the fact that the non-terminal V can always
be replaced by w, regardless of the context in which it occurs.

Definition: Context-Free Grammars

IDefinition 3.1.1 (A. Sudkamp book — Language and Machine 2ed Ed.)

A context-free grammar is a quadruple (V, Z, P, S) where:
V is a finite set of variables.

E (the alphabet) is a finite set of terminal symbols.

P is a finite set of rules (A->x).
Where x is string of variables and terminals
Sis a distinguished element of V called the start symbol.

The sets V and E are assumed to be disjoint.

Definition: Context-Free Languages

A language L is context-free
IF AND ONLY IF
there isa grammar G with L=L(G).

Example

0 A context-free grammar 5 S —ash
S ¢
A derivation: S = aSbh = aaSbb = aabb

L(G)={a"b" :n>0}

(O
.

Derivation Order

1. S—> AB 2. A— aaA 4. B— Bb
3. Aoe 5. B—e
Leftmost derivation:
1 2 3 4 5

S= AB=aaAB=aaB=aaBb=aab
Rightmost derivation:

1 4 5 2 3
S= AB= ABb—= Ab— aaAb—=aab

Derivation Trees

S > AB A — aaAle B— Bble

S—= AB

(S)

SERC

S > AB A — aaA e B—Bble

S = AB = aaAB

%
£

\@

S > AB A — aaA |e B - Bb [e

S = AB = aaAB = aaABb

s)
A
o & &

S — AB A—> aaA e B—>Bble

S = AB — aaAB — aaABb = aaBb

S — AB A—aaAle B —Bble

S = AB = aaAB — aaABb = aaBb = aab
Derivation Tree @

S— AB A — aaAle B — Bble
S = AB = aaAB = aaABb — aaBb = aab

Derivation Tree

A, \l

@ @Q @ @ aaceb

=aab
oG

Ambiguous Grammars

Jproblem: compilers use parse trees to interpret the meaning of parsed
expressions.

] Assigns a unique parse tree to each string in the language is important in many
application.

A CFG is ambiguous if there is in its language that has at least two different
parse trees (yield of two or more parse trees).

Two different leftmost / rightmost derivations should produce different parse
trees.

_IDefinition:

A context-free grammar G is ambiguous if some string \W & L(G) has: two
or more leftmost/rightmost derivation trees.

The grammar E>E+E \E*E\(E)\a
IS ambiguous:

string d+ ad*ad hastwo derivation trees

The grammar E>E+E ‘ E*E\(E)\a
IS ambiguous:

string d+ad*ad hastwo derivation trees

E>E+E=a+E=a+E=*E

—a+a*E=>a+a*a
E—-oExE=E+Ex*xE—=>a+E=*E

—Sat+a*E—=a+a*xa

S

Why do we care about ambiguity?

at+a*a

Lets =2
& 2+ 2%2 &

ONTQ

242%2=6 2+2%2=8

Correct result is ???

24 4
!

()
N
—E

Correctresult= 2+2%2=06
6
2./ l }4
i é |

Therefore,

Ambiguity Is bad for programming languages

We need to remove ambiguity

Fix the ambiguous grammar:

E>E+E | E*E | (E) | a
E—>E+T

New non-ambiguous grammatr: E -

T o>T=*F

> F
F—(E)
F—>a

S

E=FE+T=>T+TT=>F+TN=>a+T=>a+T*F
—a+F*F=a+a*F=>a+a*a

g at+a*a
E—SE+T
E) T
E—>T E@
T >T*F (T (T (F)
T > F

(P (F) (a)

F—(F)

Unique derivation tree
F—a (@ (@

The grammar (5 . E—>E+T
E>T
T >T*F
T—>F
F— (E)

_ F—o>a
IS non-ambiguous:
Every string We L(G) has
a unique derivation tree

S

LL(1) Grammars

“Leftmost derivation, Left-to-right scan, 1 symbol lookahead.”
J First L: scans input from left to right.
] Second L: produces a leftmost derivation.

1 1: uses one input symbol of lookahead at each step to make a
parsing decision.

1 A grammar whose parsing table has no multiply-defined entries is
a LL(1) grammar.

1 No ambiguous or left-recursive grammar can be LL(1)

Defi n itl O n 1 6 . 1 . 1 from (A. Sudkamp book — Language and Machine 2ed Ed.)

dLet G=(V, E, P, S) be a context-free grammarand A€ V.
The lookahead set of the variable A, LA(A), is defined by

LA(A) ={x | S 2*uAv =>*:ux €2 *}

For each rule A = w in P, the lookahead set of the rule A > w is defined by
LA(A ->w) = {x | wv 2* xwherex €2 *andS >* uAv}
ILA(A) consists of all terminal strings derivable from strings Av, where uAv is a left
sentential form of the grammar.

CILA(A = w) is the subset of LA(A) in which the subderivations Av - *x are initiated with the rule
A 2>w.

Exal I I p I e 1 6 . 1 . 1 From (A. Sudkamp book — Language and Machine 2ed Ed.)

JThe lookahead sets are constructed for the variables and the rules of the
grammar

G1l. S->Aabd |cAbcd
A->albl
LILA(S) consists of all terminal strings derivable from S.
LA(S) = {aabd, babd, abd, cabcd, cbbcd, cbcd}
LA(S = Aabd) = {aabd, babd, abd}
LA(S = cAbcd) = {cabcd, cbbcd, cbcd}

IKnowledge of the first symbol of the lookahead string is sufficient to select the
appropriate S rule.

Lookahead Example Cont.

JWe must consider derivations from all the left sentential forms of G1 that contain
A, to construct the lookahead set for the variable A.

There are only two such sentential forms:
Aabd and cAbcd
The lookahead sets consist of terminal strings derivable from Aabd and Abcd are:
LA(A -a) ={aabd, abcd}
LA(A - b) = {babd, bbcd}
LA(A = €) ={abd, bcd}
] The substring ab can be obtained by applying A-> a to Abcd and by applying
A-> € to Aabd.

Length-Three Lookahead

J Looking ahead three symbols (length-three) in the input string provides sufficient
iInformation to discriminate between these rules.

] A top-down parser with a three-symbol lookahead can deterministically construct
derivations in the grammar GL1.

The length-three lookahead sets for the rules of the grammar G1
Gl: LA3(S - Aabd) ={aab, bab, abd}
LA3(S = cAbcd) = {cab, cbb, cbc}
LA3(A -a) ={aab, abc}
LA3(A - b) = {bab , bboc }
LA(A > €) = {abd, bed}

ISince there is no string in common in the length three lookahead sets of the S rules
orlthef,b(\3 rlules, a three symbol lookahead is sufficient to determine the appropriate
rule o .

Exam p I e 1 6 . 1 . 4 From (A. Sudkamp book — Language and Machine 2ed Ed.)

The language {a' abc' | i > 0} is generated by each of the grammars G1, G2, and
G3. The minimal length lookahead sets necessary for discriminating between
alternative productions are given for these grammars.

Rule Lookahead Set
Gi: S— aSc {aaa) _ _ . .
S — aabe (aab) Three symbol lookahead is required to determine the appropriate rule
Gy: S—adA
A — Sc {aa} s > aScand S>aabc using (left factoring) technique to reduces
A — abc {ab} the length of the lookahead needed to select the rules.
Gi: S — aaAc
A— aAc {a} The recursive A rule generates an a while the nonrecursive rule
A—b (b} terminates the derivation by generating a b.

LL(1) Grammar Example

IConstruct the parse table for the following LL(1) grammar. EETE
E—>E*E
E—(E)
E—id

This grammar is left-recursive, ambiguous and requires left-factoring. It needs
to be modified before we build a predictive parser for it:

Remove ambiguity: Remove left recursion:
EE+T ESTE
ToT*F E'>+TE e
F->(E) TR
i T >*FT'|e
F—>(E)
F—id

Compute FIRST(X) as follows:

oif X is a terminal, then FIRST(X)={X}
o If X—>¢ is a production, then add ¢ to FIRST(X)

o1f XIs @ non-terminal and X—Y,Y,...Y, is a production, add FIRST(Y))
to FIRST(X) if the preceding Y;s contain ¢ in their FIRSTs

Compute FOLLOW as follows:

> FOLLOW(S) contains EOF

o For productions A—aBf, everything in FIRST(B) except € goes into
FOLLOW(B)

o For productions A—aB or A—»>aB where FIRST(B) contains e,
FOLLOW(B) contains everything that is in FOLLOW(A)

Building a parser

The grammar: FIRST(E) = {(, id}

. FIRST(T) ={(, id}
CTE FIRST(F) = {(, id}
ToFT FIRST(E") ={+, ¢}

T >*FT"|e FIRST(T") ={*, &}
igeR FOLLOW(E) = {$,)}

FOLLOW(E") = {$,)}
FOLLOW(T) = {+, $,)}
FOLLOW(T") = {+, $,)}
FOLLOW(F) = {*, +, $,)}

(First = first terminal after arc, if not, non-terminal derivation)
(Follow= first (next), if null - follow (non-terminal)

Parsing table

+ * () id $
E E>TE" E->TE"
E'| E">+TE" E'—e¢ E'—e¢
T T>FT" To>FT"
T T'>e T'>*FT" T'—>¢ T'—>¢
F F—(E) F—id
+ match
* match
(match
) match
id match
$ accept

Eliminating Useless Variables

Context-Free grammars can be badly designed, some variables that
play no role in the derivation of any terminal string.

A symbol X is useful for Grammar G ={V, T, P, S}, if there is some
derivation of the form S=>* aXb =>*w, where w e T*.

UXeV or XeT.
The sentential form of a X b might be the first or last derivation.
If X is not useful, then X is useless.

Characteristics of useful symbols

1. X isgenerating if X=>* w for some terminal string w.
Every terminal is generating since w can be that terminal
itself, which is derived by 0 steps.

2. X Is reachable if there is a derivation
S=>*aXb forsome a and b.

JA symbol which is useful is surely to be both generating
and reachable.

Removing All Useless Variables
Step 1: Remove Nullable Variables

Step 2: Remove Unit-Productions

Step 3: Remove Useless Variables

Nullable Variables

Theorem
If L is a CFL, then L-{e} has a CFG with no -productions.

Basis: If there is a production A = ¢, then A is nullable.

e —production: A _y ~

Induction: If there is a production . A-> «, and all symbols of o are
nullable, then Aisnullable. A= ... =&

Removing Nullable Variables

Example Grammar:

S - aMb
M — aMb
M —oe

=

Nullable variable

Final Grammar

S —> aMb S —>aMb
M—o>aMb @M —>e> > —ab

E] { M — aMb

M — ab

S

Unit-Productions

Unit Production: A— B

(a single variable in both sides)

Removing Unit Productions

Observation:

A—> A

Is removed immediately

Example Grammar:

S —>aA
A—a
A—B
B—> A
B — bb

S

S —>aA

S—>aAlaB
A—a
Substitute > A _) a
M A—B B> AlB
5 A B —hb

B—bb

S —>aAlaB S —>aAlaB

A_)a Remove A_)a
B> A

B—bb B—bb

ve
\
>
Rt
ve

S—>aAlaB

S —>aAlaB|aA
A_)a Substitute
B>A_ _ BoA >A*a

B—Dbb

B—bb

S

Remove repeated productions Final grammar

S —aA|aB|ak S —>aA|aB
A—a A—a
B —bb B —bb

S

Useless Productions

S — aSh
S >e€
S>> A

@ Useless Production

Some derivations never terminate...

S=>A—=aA— adA—=...—~aa...aA=...

In general: .
IE contains only

S=..=XAy=>...=>WwW terminals

Towe L(G)

then variable A is useful

otherwise, variable A is useless

S

A production A — Xis useless
If any of its variables Is useless

S —> aSh
S ¢ Productions

Variables @ useless
TA
useless @_ED useless

useless @ useless

Removing Useless Productions

Example Grammar:

S—aS|A|C
A—a

B —>aa
C —»>aCb

RIS find all variables that can produce

strings with only terminals

S s>aS|A|c foundl {AB}

S—> A

C — aChb round2: {A,B,S}

S

Keep only the variables
that produce terminal symbols{A, B,S}

(the rest variables are useless)

A3 S—>aS\A

B aa » A—a

M B —aa

Remove useless productions

S

Second: Find all variables
reachable from S

Use a Dependency Graph
S—>aS|A %
A—a — A B
B — aa not
reachable

S

Keep only the variables
reachable from S

(the rest variables are useless)

Final Grammar

S—>aS|A
A— a

M A—a

S—>aS|A
.

S

References

Elaine A. Rich (2008) Automata, Computability, and Complexity: Theory and Applications,
Pearson Prentice Hall.

T. A. Sudkamp, Languages and machines: an introduction to the theory of computer science.
Reading, MA: Addison Wesley, 1994,

Thank You

