
Topics in
Context-Free Grammar CFG’s

HUSSEIN S. AL-SHEAKH

1

Outline
Context-Free Grammar

Ambiguous Grammars

LL(1) Grammars

Eliminating Useless Variables

Removing Epsilon

Nullable Symbols

2

Context-Free Grammar (CFG)
Context-free grammars are powerful enough to describe the syntax of most
programming languages; in fact, the syntax of most programming languages is
specified using context-free grammars.
In linguistics and computer science, a context-free grammar (CFG) is a formal
grammar in which every production rule is of the form

V → w
Where V is a “non-terminal symbol” and w is a “string” consisting of terminals
and/or non-terminals.
The term "context-free" expresses the fact that the non-terminal V can always
be replaced by w, regardless of the context in which it occurs.

3

Definition: Context-Free Grammars
Definition 3.1.1 (A. Sudkamp book – Language and Machine 2ed Ed.)

A context-free grammar is a quadruple (V, Z, P, S) where:

V is a finite set of variables.

E (the alphabet) is a finite set of terminal symbols.

P is a finite set of rules (Ax).

Where x is string of variables and terminals

S is a distinguished element of V called the start symbol.

The sets V and E are assumed to be disjoint.

4

Definition: Context-Free Languages
A language L is context-free

IF AND ONLY IF

there is a grammar G with L=L(G) .

5

Example

 A context-free grammar :

A derivation:

S
aSbSG

aabbaaSbbaSbS

)(GL }0:{ nba nn

(((())))
6

7

Derivation Order
ABS .1

A
aaAA

.3

.2

B
BbB

.5

.4

aabaaBbaaBaaABABS
54321

Leftmost derivation:

aabaaAbAbABbABS
32541

Rightmost derivation:

Derivation Trees

ABS

ABS |aaAA |BbB

S

BA

8

ABS |aaAA |BbB

aaABABS

a a A

S

BA

9

ABS |aaAA |BbB

aaABbaaABABS
S

BA

a a A B b

10

ABS |aaAA |BbB

aaBbaaABbaaABABS
S

BA

a a A B b

11

ABS |aaAA |BbB

aabaaBbaaABbaaABABS
S

BA

a a A B b

Derivation Tree

12

aabaaBbaaABbaaABABS

yield

aab
baa

S

BA

a a A B b

Derivation Tree

ABS |aaAA |BbB

13

Ambiguous Grammars
problem: compilers use parse trees to interpret the meaning of parsed
expressions.
 Assigns a unique parse tree to each string in the language is important in many
application.
A CFG is ambiguous if there is in its language that has at least two different
parse trees (yield of two or more parse trees).
Two different leftmost / rightmost derivations should produce different parse
trees.
Definition:
A context-free grammar is ambiguous if some string has: two
or more leftmost/rightmost derivation trees.

14Q1) give a definition and example of ambiguous Grammars?

G)(GLw

15

The grammar aEEEEEE |)(||
IS ambiguous:

E

EE

a a

EE a

E

EE

EE

a

a a

string aaa has two derivation trees

Replaces the Second child of the root by E*E Replaces the first child of the root by E+E

16

aaaEaa
EEaEEEEEE

aaaEaa
EEaEaEEE

*

The grammar aEEEEEE |)(||
IS ambiguous:

string aaa has two derivation trees

Why do we care about ambiguity?

17

222

?

Lets

18

Correct result is ???

19

E

EE

EE

6222

2

2 2

4

2 2

2

6

Correct result =

20

We need to remove ambiguity

Therefore,

Ambiguity is bad for programming languages

21

Fix the ambiguous grammar:

aEEEEEE |)(||

New non-ambiguous grammar:

aF
EF

FT
FTT

TE
TEE

)(

22

Unique derivation tree

23

The grammar :

aF
EF

FT
FTT

TE
TEE

)(

IS non-ambiguous:
Every string has
a unique derivation tree

G

)(GLw

LL(1) Grammars
“Leftmost derivation, Left-to-right scan, 1 symbol lookahead.”
 First L: scans input from left to right.
 Second L: produces a leftmost derivation.
 1: uses one input symbol of lookahead at each step to make a

parsing decision.
 A grammar whose parsing table has no multiply-defined entries is

a LL(1) grammar.
 No ambiguous or left-recursive grammar can be LL(1)

24

Definition 16.1.1 from (A. Sudkamp book – Language and Machine 2ed Ed.)

Let G = (V, E, P, S) be a context-free grammar and A V.
The lookahead set of the variable A, LA(A), is defined by

LA(A) = { x | S * uAv *: ux * }

For each rule A w in P, the lookahead set of the rule A w is defined by
LA(A -> w) = {x | wv* x where x * and S * uAv}

LA(A) consists of all terminal strings derivable from strings Av, where uAv is a left

sentential form of the grammar.

LA(A w) is the subset of LA(A) in which the subderivations Av *x are initiated with the rule
A w.

25

Example 16.1.1 From (A. Sudkamp book – Language and Machine 2ed Ed.)

The lookahead sets are constructed for the variables and the rules of the
grammar

G1: S Aabd |cAbcd
A a I b I

LA(S) consists of all terminal strings derivable from S.
LA(S) = {aabd, babd, abd, cabcd, cbbcd, cbcd}
LA(S Aabd) = {aabd, babd, abd}
LA(S cAbcd) = {cabcd, cbbcd, cbcd}

Knowledge of the first symbol of the lookahead string is sufficient to select the
appropriate S rule.

26

Lookahead Example Cont.
We must consider derivations from all the left sentential forms of G1 that contain
A, to construct the lookahead set for the variable A.
There are only two such sentential forms:

Aabd and cAbcd
The lookahead sets consist of terminal strings derivable from Aabd and Abcd are:

LA(A a) = {aabd, abcd}
LA(A b) = {babd, bbcd}
LA(A) = {abd, bcd}

 The substring ab can be obtained by applying A a to Abcd and by applying
A to Aabd.

27

Length-Three Lookahead
 Looking ahead three symbols (length-three) in the input string provides sufficient
information to discriminate between these rules.
 A top-down parser with a three-symbol lookahead can deterministically construct
derivations in the grammar G1.
The length-three lookahead sets for the rules of the grammar G1

G1: LA3(S Aabd) = {aab , bab , abd}

LA3(S cAbcd) = {cab , cbb , cbc}

LA3(A a) = {aab , abc }

LA3(A b) = {bab , bbc }

LA(A) = {abd, bcd}

Since there is no string in common in the length three lookahead sets of the S rules
or the A rules, a three symbol lookahead is sufficient to determine the appropriate
rule of G1.

28

Example 16.1.4 From (A. Sudkamp book – Language and Machine 2ed Ed.)

The language {ai abci | i > 0} is generated by each of the grammars G1, G2, and
G3. The minimal length lookahead sets necessary for discriminating between
alternative productions are given for these grammars.

29

Three symbol lookahead is required to determine the appropriate rule

S aSc and Saabc using (left factoring) technique to reduces
the length of the lookahead needed to select the rules.

The recursive A rule generates an a while the nonrecursive rule
terminates the derivation by generating a b.

Q2: Give an example to show the deference between lookahead sets?

LL(1) Grammar Example
Construct the parse table for the following LL(1) grammar.

This grammar is left-recursive, ambiguous and requires left-factoring. It needs
to be modified before we build a predictive parser for it:

EE+E
EE*E
E(E)
Eid

EE+T
TT*F
F(E)
Fid

Remove ambiguity:

ETE'
E'+TE'|
TFT'
T'*FT'|
F(E)
Fid

Remove left recursion:

Compute FIRST(X) as follows:

31

◦ if X is a terminal, then FIRST(X)={X}
◦ if X is a production, then add to FIRST(X)
◦ if X is a non-terminal and XY1Y2...Yn is a production, add FIRST(Yi)

to FIRST(X) if the preceding Yjs contain in their FIRSTs

Compute FOLLOW as follows:

32

◦ FOLLOW(S) contains EOF
◦ For productions AB, everything in FIRST() except goes into

FOLLOW(B)
◦ For productions AB or AB where FIRST() contains ,

FOLLOW(B) contains everything that is in FOLLOW(A)

Building a parser
The grammar:

ETE'
E'+TE'|
TFT'
T'*FT'|
F(E)
Fid

FIRST(E) = {(, id}
FIRST(T) = {(, id}
FIRST(F) = {(, id}
FIRST(E') ={+, }
FIRST(T') ={*, }
FOLLOW(E) = {$,)}
FOLLOW(E') = {$,)}
FOLLOW(T) = {+, $,)}
FOLLOW(T') = {+, $,)}
FOLLOW(F) = {*, +, $,)}

(first = first terminal after arc, if not, non-terminal derivation)
(follow= first (next), if null follow (non-terminal)

Parsing table

E
E'
T
T'
F
+
*
(
)
id
$

+

E'+TE'

T'

match

*

T'*FT'

match

(
ETE'

TFT'

F(E)

match

)

E'

T'

match

id
ETE'

TFT'

Fid

match

$

E'

T'

accept

Eliminating Useless Variables
Context-Free grammars can be badly designed, some variables that
play no role in the derivation of any terminal string.

A symbol X is useful for Grammar G = {V, T, P, S}, if there is some
derivation of the form S ═>* a X b ═>* w , where w є T*.

X є V or X є T.

The sentential form of a X b might be the first or last derivation.

If X is not useful, then X is useless .

35Q3) give example of useless symbols.

Characteristics of useful symbols
1. X is generating if X ═>* w for some terminal string w.

Every terminal is generating since w can be that terminal
itself, which is derived by 0 steps.

2. X is reachable if there is a derivation

S ═>* a X b for some a and b.

A symbol which is useful is surely to be both generating
and reachable.

37

Removing All Useless Variables
Step 1: Remove Nullable Variables

Step 2: Remove Unit-Productions

Step 3: Remove Useless Variables

38

Nullable Variables

:production A
A

Basis: If there is a production A ε, then A is nullable.

Induction: If there is a production A , and all symbols of are
nullable, then A is nullable.

Theorem
If L is a CFL, then L-{ε} has a CFG with no ε-productions.

39

Removing Nullable Variables

Example Grammar:

M
aMbM

aMbS

Nullable variable

40

M

M
aMbM

aMbS

abM
aMbM

abS
aMbS

Final Grammar

41

Unit-Productions

BAUnit Production:

(a single variable in both sides)

42

Removing Unit Productions

AA

Is removed immediately

Observation:

43

Example Grammar:

bbB
AB
BA
aA
aAS

44

bbB
AB
BA
aA
aAS

Substitute

BA

bbB
BAB

aA
aBaAS

|

|

45

Remove

bbB
BAB

aA
aBaAS

|

|

bbB
AB
aA

aBaAS

 |

BB

46

Substitute

AB
bbB
aA

aAaBaAS

 ||

bbB
AB
aA

aBaAS

 |

47

Remove repeated productions

bbB
aA

aBaAS

 |

bbB
aA

aAaBaAS

 ||

Final grammar

Q4) give example of removing Unit Productions .

48

Useless Productions

aAA
AS

S
aSbS

 aAaaaaAaAAS
Some derivations never terminate...

Useless Production

49

In general:
IF

wxAyS

then variable is usefulA

otherwise, variable is uselessA

)(GLw

contains only
terminals

50

A production is useless
if any of its variables is useless

xA

DC
CB
aAA
AS

S
aSbS

Productions
useless

useless

useless

useless

Variables

useless

useless

useless

51

Removing Useless Productions
Example Grammar:

aCbC
aaB
aA

CAaSS

 ||

52

First: find all variables that can produce
strings with only terminals

aCbC
aaB
aA

CAaSS

 || },{ BA

AS

},,{ SBA

Round 1:

Round 2:

53

Keep only the variables
that produce terminal symbols:

aCbC
aaB
aA

CAaSS

 ||

},,{ SBA

aaB
aA

AaSS

 |

(the rest variables are useless)

Remove useless productions

54

Second: Find all variables
reachable from

aaB
aA

AaSS

 |

S A B

Use a Dependency Graph

not
reachable

S

55

Keep only the variables
reachable from S

aaB
aA

AaSS

 |

aA
AaSS

 |

Final Grammar

(the rest variables are useless)

Q5) give example of remove useless productions

References
Elaine A. Rich (2008) Automata, Computability, and Complexity: Theory and Applications,
Pearson Prentice Hall.

T. A. Sudkamp, Languages and machines: an introduction to the theory of computer science.
Reading, MA: Addison Wesley, 1994.

56

57

58

Thank You

