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Context-Free Grammar (CFG)
Context-free grammars are powerful enough to describe the syntax of most 
programming languages; in fact, the syntax of most programming languages is 
specified using context-free grammars. 
In linguistics and computer science, a context-free grammar (CFG) is a formal 
grammar in which every production rule is of the form

V → w 
Where V  is a “non-terminal symbol” and w is a “string” consisting of terminals 
and/or non-terminals. 
The term "context-free" expresses the fact that the non-terminal V  can always 
be replaced by w, regardless of the context in which it occurs. 
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Definition: Context-Free Grammars
Definition 3.1.1                           (A. Sudkamp book – Language and Machine 2ed Ed.)

A context-free grammar is a quadruple (V, Z, P, S) where:

V is a finite set of variables.

E (the alphabet) is a finite set of terminal symbols.

P is a finite set of rules (Ax).

Where x is string of variables and terminals

S is a distinguished element of V called the start symbol.

The sets V and E are assumed to be disjoint.
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Definition: Context-Free Languages
A language L is context-free 

IF AND ONLY IF 

there is a grammar  G with  L=L(G) .
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Example

 A context-free grammar                 :

A derivation:




S
aSbSG

aabbaaSbbaSbS 

)(GL }0:{ nba nn

(((( ))))
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Derivation Order
ABS .1




A
aaAA

.3

.2



B
BbB

.5

.4

aabaaBbaaBaaABABS
54321


Leftmost derivation:

aabaaAbAbABbABS
32541


Rightmost derivation:



Derivation Trees

ABS 

ABS   |aaAA  |BbB

S

BA
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ABS   |aaAA  |BbB

aaABABS 

a a A

S

BA
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ABS   |aaAA  |BbB

aaABbaaABABS 
S

BA

a a A B b
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ABS   |aaAA  |BbB

aaBbaaABbaaABABS 
S

BA

a a A B b


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ABS   |aaAA  |BbB

aabaaBbaaABbaaABABS 
S

BA

a a A B b

 

Derivation Tree
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aabaaBbaaABbaaABABS 

yield

aab
baa




S

BA

a a A B b

 

Derivation Tree

ABS   |aaAA  |BbB
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Ambiguous Grammars 
problem: compilers use parse trees to interpret the meaning of parsed 
expressions.
 Assigns a unique parse tree to each string in the language is important in many 
application.
A CFG is ambiguous if there is in its language that has at least two different 
parse trees (yield of two or more parse trees).
Two different leftmost / rightmost derivations should produce different parse 
trees.
Definition:
A context-free grammar        is ambiguous if some string                              has: two 
or more leftmost/rightmost derivation trees.

14Q1) give a definition and example of ambiguous Grammars?
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The grammar aEEEEEE |)(|| 
IS ambiguous:

E

EE



a a



EE a

E

EE

EE



a

a a



string aaa  has two derivation trees

Replaces the Second child of the root by E*E Replaces the first child of the root by E+E 



16

aaaEaa
EEaEEEEEE




aaaEaa
EEaEaEEE

*


The grammar aEEEEEE |)(|| 
IS ambiguous:

string aaa  has two derivation trees



Why do we care about ambiguity?

17

222 

?

Lets
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Correct result is ???
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E

EE

EE





6222 

2

2 2

4

2 2

2

6

Correct result =
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We need to remove ambiguity

Therefore,

Ambiguity is bad for programming languages
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Fix the ambiguous grammar:

aEEEEEE |)(|| 

New non-ambiguous grammar:

aF
EF

FT
FTT

TE
TEE










)(
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Unique derivation tree
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The grammar   :   

aF
EF

FT
FTT

TE
TEE










)(

IS non-ambiguous:
Every string has
a unique derivation tree 

G

)(GLw



LL(1) Grammars
“Leftmost derivation, Left-to-right scan, 1 symbol lookahead.”
 First L: scans input from left to right.
 Second L: produces a leftmost derivation.
 1: uses one input symbol of lookahead at each step to make a 

parsing decision.
 A grammar whose parsing table has no multiply-defined entries is 

a LL(1) grammar.
 No ambiguous or left-recursive grammar can be LL(1)
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Definition 16.1.1   from (A. Sudkamp book – Language and Machine 2ed Ed.)

Let G = (V, E, P, S) be a context-free grammar and A    V.
The lookahead set of the variable A, LA(A), is defined by

LA(A) = { x | S * uAv *: ux * }

For each rule A w in P, the lookahead set of the rule A  w is defined by
LA(A -> w) = {x | wv* x where x           * and S * uAv}

LA(A) consists of all terminal strings derivable from strings Av, where uAv is a left

sentential form of the grammar.

LA(A  w) is the subset of LA(A) in which the subderivations Av *x are initiated with the rule 
A  w.
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Example 16.1.1        From (A. Sudkamp book – Language and Machine 2ed Ed.)

The lookahead sets are constructed for the variables and the rules of the 
grammar

G1:   S Aabd |cAbcd
A  a I b I 

LA(S) consists of all terminal strings derivable from S.
LA(S) = {aabd, babd, abd, cabcd, cbbcd, cbcd}
LA(S  Aabd) = {aabd, babd, abd}
LA(S  cAbcd) = {cabcd, cbbcd, cbcd}

Knowledge of the first symbol of the lookahead string is sufficient to select the 
appropriate S rule.
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Lookahead Example  Cont.
We must consider derivations from all the left sentential forms of G1 that contain 
A, to construct the lookahead set for the variable A.
There are only two such sentential forms:

Aabd and cAbcd
The lookahead sets consist of terminal strings derivable from Aabd and Abcd are:

LA(A a) = {aabd, abcd}
LA(A  b) = {babd, bbcd}
LA(A  ) = {abd, bcd}

 The substring ab can be obtained by applying A a to Abcd and by applying 
A to Aabd.
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Length-Three Lookahead
 Looking ahead three symbols (length-three) in the input string provides sufficient 
information to discriminate between these rules.
 A top-down parser with a three-symbol lookahead can deterministically construct 
derivations in the grammar G1.
The length-three lookahead sets for the rules of the grammar G1

G1:       LA3(S  Aabd)  = {aab , bab , abd}

LA3(S  cAbcd) = {cab , cbb , cbc}

LA3(A a) = {aab , abc }

LA3(A  b) = {bab , bbc }

LA(A  ) = {abd, bcd}

Since there is no string in common in the length three lookahead sets of the S rules 
or the A rules, a three symbol lookahead is sufficient to determine the appropriate 
rule of G1.

28
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Example 16.1.4       From (A. Sudkamp book – Language and Machine 2ed Ed.)

The language {ai abci | i > 0} is generated by each of the grammars G1, G2, and 
G3. The minimal length lookahead sets necessary for discriminating between 
alternative productions are given for these grammars.
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Three symbol lookahead is required to determine the appropriate rule

S  aSc and Saabc using (left factoring) technique to reduces 
the length of the lookahead needed to select the rules.

The recursive A rule generates an a while the nonrecursive rule 
terminates the derivation by generating a b.

Q2: Give an example to show the deference  between lookahead sets? 



LL(1) Grammar  Example 
Construct the parse table for the following LL(1) grammar.

This grammar is left-recursive, ambiguous and requires left-factoring. It needs 
to be modified before we build a predictive parser for it:

EE+E
EE*E
E(E)
Eid

EE+T
TT*F
F(E)
Fid

Remove ambiguity:

ETE'
E'+TE'|
TFT'
T'*FT'|
F(E)
Fid

Remove left recursion:



Compute FIRST(X) as follows:

31

◦ if X is a terminal, then FIRST(X)={X}
◦ if X is a production, then add  to FIRST(X)
◦ if X is a non-terminal and XY1Y2...Yn is a production, add FIRST(Yi) 

to FIRST(X) if the preceding Yjs contain  in their FIRSTs



Compute FOLLOW as follows:
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◦ FOLLOW(S) contains EOF
◦ For productions AB, everything in FIRST() except  goes into 

FOLLOW(B)
◦ For productions AB or AB where FIRST() contains  , 

FOLLOW(B) contains everything that is in FOLLOW(A)



Building a parser
The grammar:

ETE'
E'+TE'|
TFT'
T'*FT'|
F(E)
Fid

FIRST(E) = {(, id}
FIRST(T) = {(, id}
FIRST(F) = {(, id}
FIRST(E') ={+, }
FIRST(T') ={*, }
FOLLOW(E) = {$, )}
FOLLOW(E') = {$, )}
FOLLOW(T) = {+, $, )}
FOLLOW(T') = {+, $, )} 
FOLLOW(F) = {*, +, $, )}

(first = first terminal after arc, if not, non-terminal derivation )
(follow= first (next), if null  follow (non-terminal)



Parsing table

E
E'
T
T'
F
+
*
(
)
id
$

+

E'+TE'

T'

match

*

T'*FT'

match

(
ETE'

TFT'

F(E)

match

)

E'

T'

match

id
ETE'

TFT'

Fid

match

$

E'

T'

accept



Eliminating Useless Variables
Context-Free grammars can be badly designed, some variables that 
play no role in the derivation of any terminal string.

A symbol  X  is useful for Grammar   G = {V, T, P, S}, if there is some 
derivation of the form S ═>*  a X b  ═>* w , where w є T*.

X є V   or   X є T.

The sentential form of  a X b  might be the first or last derivation.

If  X  is not useful, then  X is  useless .

35Q3) give example of useless symbols.



Characteristics of useful symbols
1. X  is generating if  X ═>*  w  for some terminal string  w. 

Every terminal is generating since w  can be that terminal 
itself, which is derived by 0 steps.

2. X  is reachable if there is a derivation 

S ═>* a X b  for some  a  and  b.

A symbol which is useful is surely to be both generating 
and reachable.
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Removing All Useless Variables
Step 1: Remove Nullable Variables

Step 2: Remove Unit-Productions

Step 3: Remove Useless Variables
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Nullable Variables

:production A
A

Basis: If there is a production A  ε, then A is nullable.

Induction: If there is a production       A , and all symbols of  are 
nullable, then A is nullable.

Theorem
If L is a CFL, then L-{ε} has a CFG with no ε-productions.
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Removing Nullable Variables

Example Grammar:





M
aMbM

aMbS

Nullable variable
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M




M
aMbM

aMbS

abM
aMbM

abS
aMbS






Final Grammar
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Unit-Productions

BAUnit Production:

(a single variable in both sides)
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Removing Unit Productions

AA

Is removed immediately

Observation:
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Example Grammar:

bbB
AB
BA
aA
aAS






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bbB
AB
BA
aA
aAS







Substitute

BA

bbB
BAB

aA
aBaAS






|

|
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Remove

bbB
BAB

aA
aBaAS






|

|

bbB
AB
aA

aBaAS




 |

BB 
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Substitute

AB 
bbB
aA

aAaBaAS



 ||

bbB
AB
aA

aBaAS




 |
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Remove repeated productions

bbB
aA

aBaAS



 |

bbB
aA

aAaBaAS



 ||

Final grammar

Q4) give example of removing Unit Productions .
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Useless Productions

aAA
AS

S
aSbS






  aAaaaaAaAAS
Some derivations never terminate...

Useless Production
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In general:
IF

wxAyS  

then variable        is usefulA

otherwise, variable        is uselessA

)(GLw

contains only 
terminals
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A production is useless 
if any of its variables is useless

xA

DC
CB
aAA
AS

S
aSbS








Productions
useless

useless

useless

useless

Variables

useless

useless

useless
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Removing Useless Productions
Example Grammar:

aCbC
aaB
aA

CAaSS




 ||



52

First: find all variables that can produce
strings with only terminals

aCbC
aaB
aA

CAaSS




 || },{ BA

AS 

},,{ SBA

Round 1:

Round 2:
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Keep only the variables
that produce terminal symbols:

aCbC
aaB
aA

CAaSS




 ||

},,{ SBA

aaB
aA

AaSS



 |

(the rest variables are useless)

Remove useless productions
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Second: Find all variables
reachable from

aaB
aA

AaSS



 |

S A B

Use a Dependency Graph

not
reachable

S
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Keep only the variables
reachable from S

aaB
aA

AaSS



 |

aA
AaSS


 |

Final Grammar

(the rest variables are useless)

Q5) give example of remove useless productions
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Thank You


