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Preface

In the winter of 2010, I taught a topics graduate course on random matrix
theory, the lecture notes of which then formed the basis for this text. This
course was inspired by recent developments in the subject, particularly with
regard to the rigorous demonstration of universal laws for eigenvalue spacing
distributions of Wigner matrices (see the recent survey [Gu2009b]). This
course does not directly discuss these laws, but instead focuses on more
foundational topics in random matrix theory upon which the most recent
work has been based. For instance, the first part of the course is devoted
to basic probabilistic tools such as concentration of measure and the cen-
tral limit theorem, which are then used to establish basic results in random
matrix theory, such as the Wigner semicircle law on the bulk distribution of
eigenvalues of a Wigner random matrix, or the circular law on the distribu-
tion of eigenvalues of an iid matrix. Other fundamental methods, such as
free probability, the theory of determinantal processes, and the method of
resolvents, are also covered in the course.

This text begins in Chapter 1 with a review of the aspects of prob-
ability theory and linear algebra needed for the topics of discussion, but
assumes some existing familiarity with both topics, as well as a first-year
graduate-level understanding of measure theory (as covered for instance in
my books [Ta2011, Ta2010]). If this text is used to give a graduate course,
then Chapter 1 can largely be assigned as reading material (or reviewed as
necessary), with the lectures then beginning with Section 2.1.

The core of the book is Chapter 2. While the focus of this chapter is
ostensibly on random matrices, the first two sections of this chapter focus
more on random scalar variables, in particular, discussing extensively the
concentration of measure phenomenon and the central limit theorem in this
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x Preface

setting. These facts will be used repeatedly when we then turn our attention
to random matrices, and also many of the proof techniques used in the scalar
setting (such as the moment method) can be adapted to the matrix context.
Several of the key results in this chapter are developed through the exercises,
and the book is designed for a student who is willing to work through these
exercises as an integral part of understanding the topics covered here.

The material in Chapter 3 is related to the main topics of this text, but
is optional reading (although the material on Dyson Brownian motion from
Section 3.1 is referenced several times in the main text).

This text is not intended as a comprehensive introduction to random
matrix theory, which is by now a vast subject. For instance, only a small
amount of attention is given to the important topic of invariant matrix
ensembles, and we do not discuss connections between random matrix theory
and number theory, or to physics. For these topics we refer the reader
to other texts such as [AnGuZi2010], [DeGi2007], [De1999], [Fo2010],
[Me2004]. We hope, however, that this text can serve as a foundation for
the reader to then tackle these more advanced texts.
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random matrices, Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), no. 2, 177–204.

[GuSt1982] V. Guillemin, S. Sternberg, Convexity properties of the moment mapping,
Invent. Math. 67 (1982), no. 3, 491–513.

[Gu2009] A. Guionnet, Large random matrices: lectures on macroscopic asymptotics.
Lectures from the 36th Probability Summer School held in Saint-Flour, 2006. Lecture
Notes in Mathematics, 1957. Springer-Verlag, Berlin, 2009.

[Gu2009b] A. Guionnet, Grandes matrices aléatoires et théorèmes d’universalité (d’aprés
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The field of random matrix theory has seen an explosion of 
activity in recent years, with connections to many areas of 
mathematics and physics. However, this makes the current 
state of the field almost too large to survey in a single book. 
In this graduate text, we focus on one specific sector of the 
field, namely the spectral distribution of random Wigner matrix 
ensembles (such as the Gaussian Unitary Ensemble), as well as 
iid matrix ensembles. The text is largely self-contained and starts with a review 
of relevant aspects of probability theory and linear algebra. With over 200 exer-
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seeking to enter the field.
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