Topological expansions, Random matrices and operator algebras

Alice GUIONNET

CNRS & ENS Lyon

Algebra, Geometry and Physics Bonn/Berlin seminar

Joint work with V. Jones and D. Shlyakhtenko.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What is in common between

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What is in common between

And

ロト・日本・モト・モー・ショー・ショー

What is in common between

And

And

Maps

Random Matrices and the enumeration of maps

SD equations

Loop models

Subfactors theory

Transport

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - わへで

Topological expansions, Random matrices and operator algebras

Maps

Random Matrices and the enumeration of maps

SD equations

Loop models

Subfactors theory

Transport

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ の < @

What is a map?

A map is a connected graph which is properly embedded into a surface, that is embedded in such a way that its edges do not cross and the faces (obtained by cutting the surface along the edges of the graph) are homeomorphic to disks. The genus of a map is the genus of such a surface.

By Euler formula,

 $2 - 2g = \#{vertices}$ +#{faces} - #{edges}. = 2 + 3 - 3

What is a map?

Maps are connected graphs which are properly embedded into a surface, that is embedded in such a way that its edges do not cross and the faces (obtained by cutting the surface along the edges of the graph) are homeomorphic to disks. The genus of a map is the genus of such a surface.

By Euler formula,

 $2 - 2g = \#\{vertices\}$ +#{faces} - #{edges}. = 2 + 1 - 3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Enumeration of maps

Being given vertices with given valence, how many maps with genus g can we build?

Enumeration of maps

Being given vertices with given valence, how many maps with genus g can we build?

Recipe :

• Draw labeled vertices with labeled half-edges on a surface of genus g,

- Match the end points of these half-edges,
- Check the resulting map is properly embedded and could not be properly embedded on a surface with genus smaller than g,
- Count such matchings (which are the same only if matched labelled half-edges are the same).

Enumeration of maps

Being given vertices with given valence, how many maps with genus g can we build? Recipe :

- Draw vertices with labeled half-edges on a surface of genus g,
- Match the end points of these half-edges,
- Check the resulting map is properly embedded and could not be properly embedded on a surface with smaller genus,
- Count such matchings (which are the same only if matched labelled half-edges are the same).

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Topological expansions, Random matrices and operator algebras

Maps

Random Matrices and the enumeration of maps

SD equations

Loop models

Subfactors theory

Transport

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The law of the GUE and the enumeration of maps Let X^N be a matrix following the Gaussian Unitary Ensemble, that is a $N \times N$ Hermitian matrix with i.i.d centered complex Gaussian entries with covariance N^{-1} , that is

$$d\mathbb{P}(X^N) = \frac{1}{Z^N} \exp\{-\frac{N}{2} \operatorname{Tr}((X^N)^2)\} dX^N$$

The law of the GUE and the enumeration of maps Let X^N be a matrix following the Gaussian Unitary Ensemble, that is a $N \times N$ Hermitian matrix with i.i.d centered complex Gaussian entries with covariance N^{-1} , that is

$$d\mathbb{P}(X^N) = \frac{1}{Z^N} \exp\{-\frac{N}{2} \operatorname{Tr}((X^N)^2)\} dX^N$$

Theorem (Harer-Zagier 86) For all $p \in \mathbb{N}$

$$\int \frac{1}{N} \operatorname{Tr}((X^N)^{2p}) d\mathbb{P}(X^N) = \sum_{g \ge 0} N^{-2g} M(2p;g).$$
equals $\sum_{n=1}^{N} \binom{N}{n} (2p-1)!! 2^{n-1} \binom{p}{n-1}. M(2p;g)$ denotes the number of maps with genus g build over a vertex of valence 2p.

Proof "Feynman diagrams"

$$\mathbb{E}[\frac{1}{N} \text{Tr}((X^N)^p)] = \frac{1}{N} \sum_{i(1),\dots,i(p)=1}^N \mathbb{E}[X^N_{i(1)i(2)} X^N_{i(2)i(3)} \cdots X^N_{i(p)i(1)}]$$

Wick formula : If (G_1, \dots, G_{2n}) is a centered Gaussian vector,

$$\mathbb{E}[G_1G_2\cdots G_{2n}] = \sum_{\substack{1\leq s_1< s_2\ldots < s_n\leq 2n\\ r_i>s_j}} \prod_{j=1}^n \mathbb{E}[G_{s_j}G_{r_j}].$$

Example : If $G_i = G$ follows the standard Gaussian distribution

 $E[G^p] = #\{ \text{ pair partitions of p points} \}$

イロト 不得 トイヨト イヨト

-

Proof "Feynman diagrams"

$$\mathbb{E}[\mathrm{Tr}(X^N)^p] = \sum_{i(1),\dots,i(p)=1}^N \mathbb{E}[X^N_{i(1)i(2)}X^N_{i(2)i(3)}\cdots X^N_{i(p)i(1)}]$$

As $\mathbb{E}[X_{ij}^N X_{k\ell}^N] = N^{-1} \mathbf{1}_{ij=\ell k}$, only matchings so that indices are constant along the boundary of the faces contribute.

$$\mathbb{E}[\operatorname{Tr}((X^N)^p)] = \sum_{\substack{\text{graph 1 vertex} \\ \text{degree p}}} N^{\#\text{faces}-p/2}$$
$$= \sum N^{-2g+1} M((x^p, 1); g) \text{ by Euler formula}$$

200

Random matrices and the enumeration of maps 't Hooft 74' and Brézin-Itzykson-Parisi-Zuber 78'

Let $\mathbf{t} = (t_i)_{1 \le i \le n} \in \mathbb{R}^n$ and set $V_{\mathbf{t}} = \sum_{i=1}^n t_i x^i$. Formally,

$$\frac{1}{N^2} \log \int e^{N \operatorname{tr}(V_{\mathfrak{t}}(X^N))} d\mathbb{P}(X^N)$$

$$= \sum_{k_1,..,k_n \in \mathbb{N}} \sum_{g \ge 0} N^{-2g} \prod_{j=1} \frac{(t_j)^{s_j}}{k_j!} M((k_i)_{1 \le i \le n};g)$$

with

 $M((k_i)_{1 \le i \le n}; g) = \sharp\{\text{maps of genus } g \text{ with } k_i \text{ vertices of degree } i\}$

Enumeration of colored maps

Consider vertices with colored half-edges and enumerate maps build by matching half-edges of the same color.

Such vertices are in bijection with monomials :

to $q(X_1, \ldots, X_d) = X_{i_1}X_{i_2}\cdots X_{i_p}$ associate a "star of type q" given by the vertex with p drawn on the plan so that the first half-edge has color i_1 , the second color i_2 etc until the last which has color i_p . $M((q_i, k_i)_{1 \le i \le m}, g)$ denotes the number of maps with genus gbuild on k_i stars of type q_i , $1 \le i \le m$. Random matrices and the enumeration of maps 't Hooft (1974) and Brézin-Itzykson-Parisi-Zuber (1978)

Let (q_1, \ldots, q_n) be monomials. Let $\mathbf{t} = (t_i)_{1 \le i \le n} \in \mathbb{R}^n$ and set $V_{\mathbf{t}}(X_1, \ldots, X_m) = \sum_{i=1}^n t_i q_i(X_1, \ldots, X_m)$. Formally,

$$F_{V_{\mathbf{t}}}^{N} = \frac{1}{N^{2}} \log \int e^{N \operatorname{tr}(V_{\mathbf{t}}}(A_{1}, \cdots, A_{m})) d\mathbb{P}^{N}(A_{1}) \cdots d\mathbb{P}^{N}(A_{m})$$

$$= \sum_{k_1,..,k_n \in \mathbb{N}} \sum_{g \ge 0} N^{-2g} \prod_{j=1}^n \frac{(t_j)^{k_j}}{k_j!} M((q_i,k_i)_{1 \le i \le n},g)$$

with

 $M((q_i, k_i)_{1 \le i \le n}, g) = \sharp\{\text{maps of genus } g \text{ with } k_i \text{ vertices of type } q_i\}$

where maps are constructing by matching half-edges of the same color.

Example : The Ising model on random graphs Take $q_1(X_1, X_2) = X_1 X_2$, $q_2(X_1, X_2) = X_1^4$, $q_3(X_1, X_2) = X_2^4$ represented by

Then.

$$\frac{1}{N^2}\log\int e^{N\mathrm{Tr}(\sum_{i=1}^3 t_i q_i(X_1^N,X_2^N))}d\mathbb{P}(X_1^N)d\mathbb{P}(X_2^N)$$

is a generating function for the enumeration of the

the Ising model on random graphs. Solved by Mehta (1986).

Random matrices, maps and tracial states

't Hooft 74' and Brézin-Itzykson-Parisi-Zuber 78' Let (q_1, \dots, q_n) be monomials, $V_{\mathbf{t}} = \sum_{i=1}^n t_i q_i$ and put

 $d\mathbb{P}_{V_{\mathbf{t}}}(X_1^N,\cdots,X_m^N)=e^{-N^2F_{V_{\mathbf{t}}}^N+N\operatorname{Tr}\left(V_{\mathbf{t}}(X_1^N,\cdots,X_m^N)\right)}d\mathbb{P}(X_1^N)\cdots d\mathbb{P}(X_m^N)$

Formally, for any monomial P

$$\begin{aligned} \tau_{\mathbf{t}}^{N}(P) &:= \int \frac{1}{N} \operatorname{Tr} \left(P(X_{1}^{N}, \dots, X_{m}^{N}) \right) d\mathbb{P}_{V_{\mathbf{t}}}(X_{1}^{N}, \dots, X_{m}^{N}) \\ &= \partial_{s} F_{V_{\mathbf{t}}+sP/N^{2}}^{N}|_{s=0} \\ &= \sum_{g \geq 0} N^{-2g} \sum_{k_{1}, \dots, k_{n} \in \mathbb{N}} \prod_{j=1}^{n} \frac{(t_{j})^{k_{j}}}{k_{j}!} M((P, 1), (q_{i}, k_{i})_{1 \leq i \leq n}; g) \end{aligned}$$

Random matrices, maps and tracial states

't Hooft 74' and Brézin-Itzykson-Parisi-Zuber 78' Let (q_1, \dots, q_n) be monomials, $V_{\mathbf{t}} = \sum_{i=1}^n t_i q_i$ and put

 $d\mathbb{P}_{V_{\mathbf{t}}}(X_1^N,\cdots,X_m^N)=e^{-N^2F_{V_{\mathbf{t}}}^N+N\operatorname{Tr}\left(V_{\mathbf{t}}(X_1^N,\cdots,X_m^N)\right)}d\mathbb{P}(X_1^N)\cdots d\mathbb{P}(X_m^N)$

Formally, for any monomial P

$$\begin{aligned} \tau_{\mathbf{t}}^{N}(P) &:= \int \frac{1}{N} \operatorname{Tr} \left(P(X_{1}^{N}, \dots, X_{m}^{N}) \right) d\mathbb{P}_{V_{\mathbf{t}}}(X_{1}^{N}, \dots, X_{m}^{N}) \\ &= \partial_{s} F_{V_{\mathbf{t}}+sP/N^{2}}^{N} |_{s=0} \\ &= \sum_{g \geq 0} N^{-2g} \sum_{k_{1}, \dots, k_{n} \in \mathbb{N}} \prod_{j=1}^{n} \frac{(t_{j})^{k_{j}}}{k_{j}!} M((P, 1), (q_{i}, k_{i})_{1 \leq i \leq n}; g) \\ &\tau_{\mathbf{t}}^{N} \text{ is a tracial state } : \\ &\tau_{\mathbf{t}}^{N}(PP^{*}) \geq 0, \tau_{\mathbf{t}}^{N}(1) = 1, \tau_{\mathbf{t}}^{N}(PQ) = \tau_{\mathbf{t}}^{N}(QP). \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What is a non-commutative law?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What is a non-commutative law?

What is a classical law on \mathbb{R}^d ? It is a non-negative linear map

$$Q:f\in \mathcal{C}_b(\mathbb{R}^d,\mathbb{R})
ightarrow Q(f)=\int f(x)dQ(x)\in \mathbb{R}, \quad Q(1)=1$$

What is a non-commutative law?

What is a classical law on \mathbb{R}^d ? It is a non-negative linear map

$$Q:f\in \mathcal{C}_b(\mathbb{R}^d,\mathbb{R})
ightarrow Q(f)=\int f(x)dQ(x)\in \mathbb{R}, \quad Q(1)=1$$

A non-commutative law τ of *n* self-adjoint variables is a linear map

$$\tau: P \in \mathbb{C}\langle X_1, \cdots, X_d \rangle \to \tau(P) \in \mathbb{C}$$

It should satisfy

- $\tau(PP^*) \ge 0$ for all P, $(zX_{i_1}\cdots X_{i_k})^* = \overline{z}X_{i_k}\cdots X_{i_1}$.
- $\tau(1) = 1$
- $\tau(PQ) = \tau(QP)$ for all $P, Q \in \mathbb{C}\langle X_1, \cdots, X_d \rangle$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

The law of free semicircle variables Take X_1^N, \dots, X_d^N be independent GUE matrices, that is

$$\mathbb{P}\left(dX_1^N,\cdots,dX_d^N\right) = \frac{1}{(Z^N)^d} \exp\{-\frac{N}{2}\operatorname{Tr}(\sum_{i=1}^d (X_i^N)^2)\} \prod dX_i^N.$$

Theorem (Voiculescu(91)) For any polynomial $P \in \mathbb{C}\langle X_1, \cdots, X_d \rangle$

$$\lim_{N\to\infty} \mathbb{E}[\frac{1}{N} \mathrm{Tr}(P(X_1^N,\cdots,X_d^N))] = \sigma(P)$$

 σ is the law of d free semicircle variables.

If $P = X_{i_1}X_{i_2}\cdots X_{i_k}$, $\sigma(P)$ is the number of planar maps build over a star of type P. From formal to asymptotic topological expansions For $m \in \mathbb{N}$ and (q_1, \dots, q_n) monomials, $V_t = \sum_{i=1}^n t_i q_i, M > 2$

$$d\mathbb{P}_{V_{\mathbf{t}}}^{M}(X_{1}^{N},\cdots,X_{m}^{N})=\frac{1_{||X_{i}^{N}||\leq M}}{Z_{V}^{N,M}}e^{N\operatorname{Tr}\left(V_{\mathbf{t}}(X_{1}^{N},\ldots,X_{m}^{N})\right)}d\mathbb{P}(X_{1}^{N})\cdots d\mathbb{P}(X_{m}^{N})$$

For M > 2, all $K \in \mathbb{N}$, t_i small enough so that $V_t = V_t^*$, for any monomial P

$$\tau_{\mathbf{t}}^{N}(P) = \int \frac{1}{N} \operatorname{Tr} \left(P(X_{1}^{N}, \dots, X_{m}^{N}) \right) d\mathbb{P}_{V_{\mathbf{t}}}^{M}(X_{1}^{N}, \dots, X_{m}^{N})$$
$$= \sum_{g=0}^{K} N^{-2g} \sum_{k_{1}, \dots, k_{n} \in \mathbb{N}} \prod_{j=1}^{n} \frac{(t_{j})^{k_{j}}}{k_{j}!} M((P, 1), (q_{i}, k_{i})_{1 \leq i \leq n}; g) + o(N^{-2K})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

From formal to asymptotic topological expansions For $m \in \mathbb{N}$ and (q_1, \dots, q_n) monomials, $V_t = \sum_{i=1}^n t_i q_i, M > 2$

$$d\mathbb{P}_{V_{\mathbf{t}}}^{M}(X_{1}^{N},\cdots,X_{m}^{N})=\frac{1_{||X_{i}^{N}||\leq M}}{Z_{V}^{N,M}}e^{N\operatorname{Tr}\left(V_{\mathbf{t}}(X_{1}^{N},\ldots,X_{m}^{N})\right)}d\mathbb{P}(X_{1}^{N})\cdots d\mathbb{P}(X_{m}^{N})$$

For M > 2, all $K \in \mathbb{N}$, t_i small enough so that $V_t = V_t^*$, for any monomial P

$$\tau_{t}^{N}(P) = \int \frac{1}{N} \operatorname{Tr} \left(P(X_{1}^{N}, \dots, X_{m}^{N}) \right) d\mathbb{P}_{V_{t}}^{M}(X_{1}^{N}, \dots, X_{m}^{N})$$
$$= \sum_{g=0}^{K} N^{-2g} \sum_{k_{1}, \dots, k_{n} \in \mathbb{N}} \prod_{j=1}^{n} \frac{(t_{j})^{k_{j}}}{k_{j}!} M((P, 1), (q_{i}, k_{i})_{1 \leq i \leq n}; g) + o(N^{-2K})$$

-m = 1: Ambjórn et al. 95', Albeverio, Pastur, Scherbina 01', Ercolani-McLaughlin 03' $-m \ge 2$: G-Maurel-Segala 06', G-Shlyakhtenko 09', Dabrowski 18' Jekel 19'

Topological expansions, Random matrices and operator algebras

Maps

Random Matrices and the enumeration of maps

SD equations

Loop models

Subfactors theory

Transport

- * ロ * * @ * * 注 * 注 * * うへぐ

Schwinger-Dyson equations

Both matrix integrals and map enumerations are related with a third mathematical objects : The Schwinger-Dyson equations.

- They describe relations between moments, obtained thanks to integration by parts, for matrix integrals,
- They describe the induction relations for the enumeration of maps.

First loop equation

Let V be a polynomial and set

$$d\mathbb{P}_V(X_1^N,\ldots,X_m^N)=(Z_V^N)^{-1}e^{N\operatorname{Tr}\left(V(X_1^N,\ldots,X_m^N)\right)}d\mathbb{P}(X_1^N)\cdots d\mathbb{P}(X_m^N)$$

Then, for any polynomial P, any $i \in \{1, \ldots, m\}$

$$\int \frac{1}{N} \operatorname{Tr} \otimes \frac{1}{N} \operatorname{Tr} (\partial_i P(X_1^N, \dots, X_m^N)) d\mathbb{P}_V(X_1^N, \dots, X_m^N)$$
$$= \int \frac{1}{N} \operatorname{Tr} ((X_i - D_i V) P(X_1^N, \dots, X_m^N)) d\mathbb{P}_V(X_1^N, \dots, X_m^N)$$

where for any monomial q

$$\partial_i q = \sum_{q=q_1 X_i q_2} q_1 \otimes q_2 \qquad D_i q = \sum_{q=q_1 X_i q_2} q_2 q_2$$

Proof : Based on $\int f'(x)e^{-V(x)}dx = \int f(x)V'(x)e^{-V(x)}dx$.

First order asymptotics

Let V be a polynomial and set

$$d\mathbb{P}_V(X_1^N,\ldots,X_m^N)=(Z_V^N)^{-1}e^{N\mathrm{Tr}\left(V(X_1^N,\ldots,X_m^N)\right)}d\mathbb{P}(X_1^N)\cdots d\mathbb{P}(X_m^N)$$

Assume V small (and add a cutoff if needed). The limit points τ_V of

$$\tau_{X^N}(P) := \frac{1}{N} \operatorname{Tr}(P(X_1^N, \dots, X_d^N))$$

satisfy

$$\begin{aligned} (A) \quad \tau_V(X_iP) &= \tau_V \otimes \tau_V(\partial_iP) + \tau_V(D_iVP) \\ \text{with } \partial_i q &= \sum_{q=q_1X_iq_2} q_1 \otimes q_2, \quad D_i q = \sum_{q=q_1X_iq_2} q_2q_1, \\ (B) \quad |\tau_V(X_{i_1}\cdots X_{i_k})| \leq 4^k. \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

First order asymptotics

Let V be a polynomial and set

$$d\mathbb{P}_V(X_1^N,\ldots,X_m^N)=(Z_V^N)^{-1}e^{N\operatorname{Tr}\left(V(X_1^N,\ldots,X_m^N)\right)}d\mathbb{P}(X_1^N)\cdots d\mathbb{P}(X_m^N)$$

Assume V small (and add a cutoff if needed). The limit points τ_V of

$$\tau_{X^N}(P) := \frac{1}{N} \operatorname{Tr}(P(X_1^N, \dots, X_d^N))$$

satisfy

$$\begin{aligned} (A) \quad \tau_{V}(X_{i}P) &= \tau_{V} \otimes \tau_{V}(\partial_{i}P) + \tau_{V}(D_{i}VP) \\ \text{with } \partial_{i}q &= \sum_{q=q_{1}X_{i}q_{2}} q_{1} \otimes q_{2}, \quad D_{i}q = \sum_{q=q_{1}X_{i}q_{2}} q_{2}q_{1}, \\ (B) \quad |\tau_{V}(X_{i_{1}}\cdots X_{i_{k}})| \leq 4^{k}. \end{aligned}$$

Proof : as \mathbb{P}_{V} is log-concave, $\tau_{X^{N}}$ self-averages and satisfies (B) for $k \leq \sqrt{N}$. Hence (A) comes from the loop equation $\int \tau_{X^{N}} \otimes \tau_{X^{N}}(\partial_{i}P) d\mathbb{P}_{V} = \int \tau_{X^{N}}((X_{i} - D_{i}V)P) d\mathbb{P}_{V}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

First order asymptotics

If V is small enough, there exists a unique solution to

$$(A) \quad \tau_V(X_iP) = \tau_V \otimes \tau_V(\partial_iP) + \tau_V(D_iVP)$$
$$\Leftrightarrow \tau_V(X_iq) = \sum_{q=q_1X_iq_2} \tau_V(q_1)\tau_V(q_2) + \sum_j t_j \sum_{q_j=q_1^jX_iq_2^j} \tau_V(q_2^jq_1^jq)$$

 $(B) \quad |\tau_V(X_{i_1}\cdots X_{i_k})| \leq 4^k \,,$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

First order asymptotics

If V is small enough, there exists a unique solution to

$$(A) \quad \tau_{V}(X_{i}P) = \tau_{V} \otimes \tau_{V}(\partial_{i}P) + \tau_{V}(D_{i}VP)$$
$$\Leftrightarrow \tau_{V}(X_{i}q) = \sum_{q=q_{1}X_{i}q_{2}} \tau_{V}(q_{1})\tau_{V}(q_{2}) + \sum_{j} t_{j} \sum_{q_{j}=q_{1}^{j}X_{i}q_{2}^{j}} \tau_{V}(q_{2}^{j}q_{1}^{j}q)$$
$$(B) \quad |\tau_{V}(X_{i_{1}}\cdots X_{i_{k}})| \leq 4^{k},$$

Hence τ_{X^N} converges to this solution.

First order asymptotics

If V is small enough, there exists a unique solution to

$$(A) \quad \tau_{V}(X_{i}P) = \tau_{V} \otimes \tau_{V}(\partial_{i}P) + \tau_{V}(D_{i}VP)$$
$$\Leftrightarrow \tau_{V}(X_{i}q) = \sum_{q=q_{1}X_{i}q_{2}} \tau_{V}(q_{1})\tau_{V}(q_{2}) + \sum_{j} t_{j} \sum_{q_{j}=q_{1}^{j}X_{i}q_{2}^{j}} \tau_{V}(q_{2}^{j}q_{1}^{j}q)$$
$$(B) \quad |\tau_{V}(X_{i_{1}}\cdots X_{i_{k}})| \leq 4^{k},$$

Hence τ_{X^N} converges to this solution.

It is the generating function of planar maps

$$\tau_{V}(P) = \sum \prod \frac{t_{i}^{k_{i}}}{k_{i}!} M((P, 1), (q_{i}, k_{i}); 0).$$

Induction relations and non-commutative derivatives

Tutte's surgery =Induction relations on maps. Let M(p, n) be the number of planar maps with p vertices of degree 3 and one of degree n.

$$M(p,n) = \# \{ Y \times Y \}$$
$$= \# \{ Y \times Y \} + \# \{ Y \times Y \}$$

Induction relations and non-commutative derivatives

Tutte's surgery =Induction relations on maps. Let M(p, n) be the number of planar maps with p vertices of degree 3 and one of degree n.

$$M(p,n) = \# \{ Y \times Y \}$$
$$= \# \{ Y \times Y \} + \# \{ Y \times Y \}$$

$$= 3pM(p-1, n+1) + \sum_{k=0}^{n-2} \sum_{\ell=0}^{p} C_{p}^{\ell} M(\ell, k) M(p-\ell, n-k-2)$$

Induction relations and non-commutative derivatives

Tutte's surgery =Induction relations on maps. Let M(p, n) be the number of planar maps with p vertices of degree 3 and one of degree n.

$$M(p,n) = \# \{ Y \times Y \}$$
$$= \# \{ Y \times Y \} + \# \{ Y \times Y \}$$

$$= 3pM(p-1, n+1) + \sum_{k=0}^{n-2} \sum_{\ell=0}^{p} C_{p}^{\ell} M(\ell, k) M(p-\ell, n-k-2)$$

 $M_t(x^n) = \sum_{p \geq 0} rac{t^p}{p!} M(p,n)$ satisfies the loop equation with $V = x^3$

(A)
$$M_t(x^n) = tM_t(x^{n-1}3x^2) + M_t \otimes M_t(\partial x^{p-1})$$

(B) $|M_t(x^n)| \le 4^n$.

Topological expansions, Random matrices and operator algebras

Maps

Random Matrices and the enumeration of maps

SD equations

Loop models

Subfactors theory

Transport

D equations

Loop models

The Temperley-Lieb elements (TLE) are boxes with boundary points connected by non-intersecting strings, a shading and a marked boundary point.

Let S_1, \ldots, S_n be (TLE) and β_1, \cdots, β_n be small real numbers. The loop model is given, for any Temperley-Lieb element S,by

$$\mathrm{Tr}_{eta,\delta}(S) = \sum_{n_i \geq 0} \sum \prod_{1 \leq i \leq n} rac{eta_i^{n_i}}{n_i!} \delta^{\sharp\mathrm{loops}}$$

where we sum over all planar maps with n_i elements S_i and one element S.

Main results Theorem (G-Jones-Shlyakhtenko-Zinn Justin 10') Let S_1, \ldots, S_n be Temperley-Lieb elements, $\beta_1, \ldots, \beta_n \in \mathbb{R}^n$ and

consider the loop model

$$\operatorname{Tr}_{\beta,\delta}(S) = \sum_{n_i \ge 0} \sum \prod_{1 \le i \le n} \frac{\beta_i^{n_i}}{n_i!} \delta^{\sharp \operatorname{loops}}$$

Then, for $\delta \in I := \{2\cos(\frac{\pi}{n})\}_{n\geq 3} \cup [2,\infty[\text{ and } \beta_i \text{ small enough }]$ $Tr_{\beta,\delta}$ is a limit of matrix models.

Main results Theorem (G-Jones-Shlyakhtenko-Zinn Justin 10') Let S_1, \ldots, S_n be Temperley-Lieb elements, $\beta_1, \ldots, \beta_n \in \mathbb{R}^n$ and

consider the loop model

$$\operatorname{Tr}_{\beta,\delta}(S) = \sum_{n_i \ge 0} \sum \prod_{1 \le i \le n} \frac{\beta_i^{n_i}}{n_i!} \delta^{\sharp \operatorname{loops}}$$

Then, for $\delta \in I := \{2\cos(\frac{\pi}{n})\}_{n\geq 3} \cup [2,\infty[$ and β_i small enough $Tr_{\beta,\delta}$ is a limit of matrix models.

For the Potts model, i.e
$$S_1 = \bigcup_{i=1}^{n} S_2 = \bigcup_{i=1}^{n} S_i$$

Theorem (G-Jones-Shlyakhtenko-Zinn Justin 10')

For $\delta \in I$ and a Temperley-Lieb element S of the form

there exists an explicit formula for $\operatorname{Tr}_{\beta,\delta}(S)$.

Cf Bousquet-Melou-Bernardi, Borot, Duplantier, Eynard, Kostov, Staudacher ... ◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ Random matrices and loop enumeration; $\beta = 0$ Let $\delta = m \in \mathbb{N}$. For a (TLE) *B*, we denote $p \stackrel{B}{\sim} \ell$ if a string joins the *p*th boundary point with the ℓ th boundary point in *B*, then we associate to *B* with *k* strings the polynomial

$$q_B(X) = \sum_{\substack{i_j = i_p \text{ if } j \stackrel{\mathcal{B}}{\sim}_p \\ 1 \leq i_\ell \leq m}} X_{i_1} \cdots X_{i_{2k}}.$$

$$q_B(X) = \sum_{i,j,k=1}^n X_i X_j X_j X_i X_k X_k \Leftrightarrow$$

Theorem

If ν^{N} denotes the law of m independent GUE matrices,

$$\lim_{N\to\infty}\int \frac{1}{N}tr(q_B(X))\nu^N(dX) = \sum m^{\sharp \text{loops}} = Tr_0(B)$$

where we sum over all planar maps that can be built on B.

SD equations

Loop models

Subfactors theory T

・ロト ・ 日本・ 小田 ・ 小田 ・ 今日・

Transport

Proof

By Voiculescu's theorem, if B =

$$\lim_{N \to \infty} \int \frac{1}{N} \operatorname{tr}(q_B(X)) \nu^N(dX)$$

=
$$\sum_{i,j,k=1}^n \lim_{N \to \infty} \int \frac{1}{N} \operatorname{tr}(X_i X_j X_j X_i X_k X_k) \nu^N(dX)$$

 $=\sum n^{\text{$||}loops|}$

because the indices have to be constant along loops.

Non integer fugacities, $\beta = 0$

Based on the construction of the planar algebra of a bipartite graph, Jones 99'. Recall $p \stackrel{B}{\sim} j$ if a string joins the *p*th dot with the *j*th do in the TL element B

 $q_B(X) = \sum_{i_j=i_p \text{ if } j \stackrel{B}{\sim} p} X_{i_1} \cdots X_{i_{2k}} \Rightarrow q_B^v(X) = \sum_{e_j=e_p^o \text{ if } j \stackrel{B}{\sim} p} \sigma_B(w) X_{e_1} \cdots X_{e_{2k}}$

Non integer fugacities, $\beta = 0$

Based on the construction of the planar algebra of a bipartite graph, Jones 99'. Recall $p \stackrel{B}{\sim} j$ if a string joins the *p*th dot with the *j*th do in the TL element B

$$q_B(X) = \sum_{i_j = i_p \text{ if } j \stackrel{B}{\sim} p} X_{i_1} \cdots X_{i_{2k}} \Rightarrow q_B^v(X) = \sum_{e_j = e_p^o \text{ if } j \stackrel{B}{\sim} p} \sigma_B(w) X_{e_1} \cdots X_{e_{2k}}$$

• e_i edges of a bipartite graph $\Gamma = (V = V_+ \cup V_-, E)$ so that the adjacency matrix of Γ has eigenvalue δ with eigenvector $(\mu_v)_{v \in V}$ with $\mu_v \ge 0$ (\exists for any $\delta \in \{2\cos(\frac{\pi}{n})\}_{n \ge 3} \cup [2, \infty[)$

Non integer fugacities, $\beta = 0$

Based on the construction of the planar algebra of a bipartite graph, Jones 99'. Recall $p \stackrel{B}{\sim} j$ if a string joins the *p*th dot with the *j*th do in the TL element B

$$q_B(X) = \sum_{i_j = i_p \text{ if } j \stackrel{B}{\sim} p} X_{i_1} \cdots X_{i_{2k}} \Rightarrow q_B^v(X) = \sum_{e_j = e_p^o \text{ if } j \stackrel{B}{\sim} p} \sigma_B(w) X_{e_1} \cdots X_{e_{2k}}$$

• e_i edges of a bipartite graph $\Gamma = (V = V_+ \cup V_-, E)$ so that the adjacency matrix of Γ has eigenvalue δ with eigenvector $(\mu_v)_{v \in V}$ with $\mu_v \ge 0$ (\exists for any $\delta \in \{2\cos(\frac{\pi}{n})\}_{n\ge 3} \cup [2,\infty[)$ • The sum runs over loops $w = e_1 \cdots e_{2k}$ in Γ which starts at v. $v \in V_+$ iff * is in a white region.

Non integer fugacities, $\beta = 0$

Based on the construction of the planar algebra of a bipartite graph, Jones 99'. Recall $p \stackrel{B}{\sim} j$ if a string joins the *p*th dot with the *j*th do in the TL element B

$$q_B(X) = \sum_{i_j = i_p \text{ if } j \stackrel{B}{\sim} p} X_{i_1} \cdots X_{i_{2k}} \Rightarrow q_B^v(X) = \sum_{e_j = e_p^o \text{ if } j \stackrel{B}{\sim} p} \sigma_B(w) X_{e_1} \cdots X_{e_{2k}}$$

• e_i edges of a bipartite graph $\Gamma = (V = V_+ \cup V_-, E)$ so that the adjacency matrix of Γ has eigenvalue δ with eigenvector $(\mu_v)_{v \in V}$ with $\mu_v \ge 0$ (\exists for any $\delta \in \{2\cos(\frac{\pi}{n})\}_{n \ge 3} \cup [2, \infty[)$

- The sum runs over loops $w = e_1 \cdots e_{2k}$ in Γ which starts at v. $v \in V_+$ iff * is in a white region.
- $\sigma_B(w)$ is a well chosen weight.

Non integer fugacities, the matrix model, $\beta = 0$

For $e \in E$, e = (s(e), t(e)), X_e^M are independent (except $X_{e^o} = X_e^*) [M\mu_{s(e)}] \times [M\mu_{t(e)}]$ matrices with i.i.d centered Gaussian entries with variance $1/(M_{\sqrt{\mu_{s(e)}\mu_{t(e)}}})$.

Recall
$$q_B^v(X^M) = \sum_{w=e_1\cdots e_{2k}\in L_B \atop s(e_1)=v} \sigma_B(w) X_{e_1}^M \cdots X_{e_{2k}}^M$$

Theorem (G-Jones-Shlyakhtenko 07')

Let Γ be a bipartite graph as before. Let B be Temperley-Lieb element. For all $v \in V$

$$\lim_{M\to\infty} E[\frac{1}{M\mu_{\nu}} tr(q_B^{\nu}(X^M))] = \operatorname{Tr}_{0,\delta}(B) = \sum \delta^{\sharp \operatorname{loops}}$$

where the sum runs above all planar maps built on B.

(日) (同) (三) (三) (三) (○) (○)

Non integer fugacities, the matrix model, $\beta = 0$

For $e \in E$, e = (s(e), t(e)), X_e^M are independent (except $X_{e^o} = X_e^*) [M\mu_{s(e)}] \times [M\mu_{t(e)}]$ matrices with i.i.d centered Gaussian entries with variance $1/(M_{\sqrt{\mu_{s(e)}\mu_{t(e)}}})$.

Recall
$$q_B^v(X^M) = \sum_{w=e_1\cdots e_{2k}\in L_B \atop s(e_1)=v} \sigma_B(w) X_{e_1}^M \cdots X_{e_{2k}}^M$$

Theorem (G-Jones-Shlyakhtenko 07')

Let Γ be a bipartite graph as before. Let B be Temperley-Lieb element. For all $v \in V$

$$\lim_{M\to\infty} E[\frac{1}{M\mu_{\nu}}tr(q_{B}^{\nu}(X^{M}))] = \operatorname{Tr}_{0,\delta}(B) = \sum \delta^{\sharp \text{loops}}$$

where the sum runs above all planar maps built on B. Based on $\sum_{e \in E: s(e) = v} \mu_{t(e)} = \delta \mu_{v}$.

Non integer fugacities, $\beta \neq 0$

Let B_i be Temperley Lieb elements with * with color $\sigma_i \in \{+, -\}$, 1 < i < p. Let Γ be a bipartite graph whose adjacency matrix has eigenvalue δ as before. Let ν^M be the law of the previous independent rectangular Gaussian matrices and set

$$d\nu^{M}_{(B_{i})_{i}}(X_{e}) = \frac{1_{\|X_{e}\|_{\infty} \leq L}}{Z^{N}_{B}} e^{M \operatorname{tr}(\sum_{i=1}^{p} \beta_{i} \sum_{v \in V_{\sigma_{i}}} \mu_{v} q^{v}_{B_{i}}(X))} d\nu^{M}(X_{e}).$$

Theorem (G-Jones-Shlyakhtenko-Zinn Justin 10')

For any L > 2, for β_i small enough real numbers, for any Temperley-Lieb element B with color σ , any $v \in V_{\sigma}$,

$$\lim_{M\to\infty}\int \frac{1}{M\mu_{\nu}}tr(q_{B}^{\nu}(X))d\nu_{(B_{i})_{i}}^{N}(X)=\sum_{n_{i}\geq0}\sum\delta^{\sharp \text{loops}}\prod_{i=1}^{p}\frac{\beta_{i}^{n_{i}}}{n_{i}!}$$

where we sum over the planar maps build on n_i TL elements B_i and one B. This is $\operatorname{Tr}_{\beta,\delta}(B)$.

Topological expansions, Random matrices and operator algebras

Maps

Random Matrices and the enumeration of maps

SD equations

Loop models

Subfactors theory

Transport

▲□▶ ▲□▶ ▲注▶ ▲注▶ 三注 - 釣��

Transport

Application to subfactors theory

Temperley-Lieb elements are boxes containing non-intersecting strings. We can endow this set with the multiplication :

T.S=

and the trace given by

$$\tau(S) = \sum_{R \in \mathrm{TL}} \delta^{\sharp \mathsf{loops in } S.R}$$

Theorem (G-Jones-Shlyakhtenko 07 ', Popa 89' and 93') Take $\delta \in I := \{2\cos(\frac{\pi}{n})\}_{n \ge 4} \cup]2, \infty[$ $-\tau$ is a tracial state, as a limit of matrix (or free var.) models.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへの

/ Transpo

Application to subfactors theory

Temperley-Lieb elements are boxes containing non-intersecting strings. We can endow this set with the multiplication :

T.S=

and the trace given by

$$\tau(S) = \sum_{R \in \mathrm{TL}} \delta^{\sharp \text{loops in } S.R}$$

Theorem (G-Jones-Shlyakhtenko 07 ', Popa 89' and 93') Take $\delta \in I := \{2\cos(\frac{\pi}{n})\}_{n \ge 4} \cup]2, \infty[$ - τ is a tracial state, as a limit of matrix (or free var.) models. -The corresponding von Neumann algebra is a factor.

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

T.S=

Application to subfactors theory

Temperley-Lieb elements are boxes containing non-intersecting strings. We can endow this set with the multiplication :

and the trace given by

$$\tau(S) = \sum_{R \in \mathrm{TL}} \delta^{\sharp \text{loops in } S.R}$$

Theorem (G-Jones-Shlyakhtenko 07 ',Popa 89' and 93') Take $\delta \in I := \{2\cos(\frac{\pi}{n})\}_{n \geq 4} \cup]2, \infty[$ $-\tau$ is a tracial state, as a limit of matrix (or free var.) models. -The corresponding von Neumann algebra is a factor. -A tower of factors with index δ^2 can be built.

Topological expansions, Random matrices and operator algebras

Maps

Random Matrices and the enumeration of maps

SD equations

Loop models

Subfactors theory

Transport

|▲□▶ ▲圖▶ ▲国▶ ▲国▶ | 国|||の��

Convergence of the empirical distribution of matrices Let $X^N = (X_1^N, ..., X_d^N)$ be a sequence of $N \times N$ (random) Hermitian matrices and let $\hat{\mu}_N$ be its empirical distribution

$$\hat{\mu}_N(P) = \frac{1}{N} \operatorname{Tr}(P(X^N))$$

Assume that for any polynomial P

$$\lim_{N\to\infty}\hat{\mu}_N(P) = \lim_{N\to\infty}\frac{1}{N}\mathrm{Tr}(P(X^N)) = \tau(P).(*)$$

Then au is a tracial state :

 $au(PP^*) \geq 0, \quad au(PQ) = au(QP), au(I) = 1.$

Convergence of the empirical distribution of matrices Let $X^N = (X_1^N, ..., X_d^N)$ be a sequence of $N \times N$ (random) Hermitian matrices and let $\hat{\mu}_N$ be its empirical distribution

$$\hat{\mu}_N(P) = \frac{1}{N} \operatorname{Tr}(P(X^N))$$

Assume that for any polynomial P

$$\lim_{N\to\infty}\hat{\mu}_N(P) = \lim_{N\to\infty}\frac{1}{N}\mathrm{Tr}(P(X^N)) = \tau(P).(*)$$

Then au is a tracial state :

$$au(PP^*) \ge 0, \quad au(PQ) = au(QP), au(I) = 1.$$

Connes Question : For any tracial state τ can you find a sequence of matrices X^N such that (*) holds?

・ロト ・ 日・ ・ 田・ ・ 日・ うらぐ

Convergence of the empirical distribution of matrices Let $X^N = (X_1^N, \dots, X_d^N)$ be a sequence of $N \times N$ (random) Hermitian matrices and let $\hat{\mu}_N$ be its empirical distribution

$$\hat{\mu}_N(P) = \frac{1}{N} \operatorname{Tr}(P(X^N))$$

Assume that for any polynomial P

$$\lim_{N\to\infty}\hat{\mu}_N(P) = \lim_{N\to\infty}\frac{1}{N}\mathrm{Tr}(P(X^N)) = \tau(P).(*)$$

Then τ is a tracial state :

$$au(PP^*) \geq 0, \quad au(PQ) = au(QP), au(I) = 1.$$

Connes Question : For any tracial state τ can you find a sequence of matrices X^N such that (*) holds? Z. Ji, A. Natarajan, T. Vidick, J. Wright and H. Yuen (2020) : Answer is no (MIP*=RE). But a mystake in the proof was found and a patch posted.

The classification problem

Let τ, μ be two non-commutative laws of d (resp. m) variables. Can we find "transport maps" $T = (T_1, \ldots, T_m)$ and $T' = (T_1, \ldots, T'_d)$ of d (resp. m) variables so that for all polynomials P, Q

 $\tau(P(X_1,\ldots,X_d)) = \mu(P(T_1(Y_1,\ldots,Y_m),\ldots,T_d(Y_1,\ldots,Y_m)))$ $\mu(Q(Y_1,\ldots,Y_m)) = \tau(Q(T'_1(X_1,\ldots,X_d),\ldots,T'_m(X_1,\ldots,X_d)))$

The free group isomorphism problem : Does there exists transport maps from σ_d to σ_m , the law of d (resp. m) free variables with $d \neq m$?

Classical transport

Let P, Q be two probability measures on \mathbb{R}^d and \mathbb{R}^m respectively. A transport map from P to Q is a measurable function $T : \mathbb{R}^d \to \mathbb{R}^m$ so that for all bounded continuous function f

Fact (von Neumann [1932]) : If $P, Q \ll dx$, T exists. According to Ozawa [2004], transport map can not "always" exists as in the classical case, i.e there is no "universal" von Neumann algebras such as dx in the non-commutative case.

э.

Free transport

Recall that

$$\tau_W(P) = \lim_{N \to \infty} \int \frac{1}{N} \operatorname{Tr}(P(X_1^N, \dots, X_d^N)) d\mathbb{P}_V^N(X_1^N, \dots, X_d^N)$$

with

$$V = \frac{1}{2} \sum X_i^2 + W$$
 with W self-adjoint

Theorem (G-Shlyakhtenko 12', Dabrowski -G-S 16', Jekel 19') Assume W small or V strictly convex. There exists F^W , T^W smooth transport maps between $\tau_W, \sigma^d = \tau_0$ so that for all polynomial P

 $\tau_W = T^W \sharp \tau_0 \quad \tau_0 = F^W \sharp \tau_W$

In particular the related C^{*} algebras and von Neumann algebras are isomorphic.

Rmk : applies to q-Gaussian algebras. Extends to loop models.

What about general potentials? $\mathbb{P}_{N}^{V}(dX_{1}^{N},...,dX_{d}^{N}) = \frac{1}{Z_{N}^{V}} \exp\{-N \operatorname{Tr}(V(X_{1}^{N},...,X_{d}^{N}))\} dX^{N}$

Theorem (WIP G-Maurel Segala) Let $\mathcal{D}_i V$ be the cyclic derivative $\mathcal{D}_i(X_{i_1}\cdots X_{i_k}) = \sum_{i_j=i} X_{i_{j+1}}\cdots X_{i_k} X_{i_1}\cdots X_{i_{j-1}}$ and assume that Vis (η, A) trapping in the sense that $\forall k \in \mathbb{N}$

$$\operatorname{Tr}(\sum X_i^{2k}X_i.\mathcal{D}_iV) \geq \operatorname{Tr}(\eta \sum X_i^{2k+2} - A \sum X_i^{2k})$$

for some $\eta > 0$. Then there exists $L(\eta, A) < \infty$ such that

$$\limsup_{N\to\infty} \|X_i^N\|_{\infty} \leq L(\eta, A)$$

Moreover, any limit point of $\hat{\mu}^N(P) = \frac{1}{N} \operatorname{Tr} P(X^N)$ satisfy Dyson-Schwinger equations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

What about general potentials? $\mathbb{P}_{N}^{V}(dX_{1}^{N},\ldots,dX_{d}^{N})=\frac{1}{Z_{M}^{V}}\exp\{-N\mathrm{Tr}(V(X_{1}^{N},\ldots,X_{d}^{N}))\}dX^{N}$

Theorem (WIP G–Maurel Segala) Let $\mathcal{D}_i V$ be the cyclic derivative $\mathcal{D}_i(X_{i_1}\cdots X_{i_k}) = \sum_{i_i=i} X_{i_{i+1}}\cdots X_{i_k}X_{i_1}\cdots X_{i_{i-1}}$ and assume that V is (η, A) trapping in the sense that $\forall k \in \mathbb{N}$

$$\operatorname{Tr}(\sum X_i^{2k}X_i.\mathcal{D}_iV) \geq \operatorname{Tr}(\eta \sum X_i^{2k+2} - A \sum X_i^{2k})$$

for some $\eta > 0$. Then there exists $L(\eta, A) < \infty$ such that

$$\limsup_{N\to\infty} \|X_i^N\|_{\infty} \leq L(\eta, A)$$

Moreover, any limit point of $\hat{\mu}^N(P) = \frac{1}{N} \operatorname{Tr} P(X^N)$ satisfy Dyson-Schwinger equations. What kind of limit/transition can we expect ?

Low temperature expansion (WIP G–Maurel Segala) $\mathbb{P}_{N}^{V}(dX_{1}^{N},...,dX_{d}^{N}) = \frac{1}{Z_{N}^{V}}\exp\{-N\operatorname{Tr}(V(X_{1}^{N},...,X_{d}^{N}))\}dX^{N}$

• If $V(X) = \beta \sum V_i(X_i) + W$ with $V''_i \ge c$ minimum at x_i . Then for $\beta > \beta(c) \ \hat{\mu}_N$ converges to the distribution of $X_i = x_i I + \frac{1}{\sqrt{V''(x_i)\beta}} S_i + \frac{1}{\sqrt{\beta}} F_i^{\beta}(S)$

Low temperature expansion (WIP G–Maurel Segala) $\mathbb{P}_{N}^{V}(dX_{1}^{N},...,dX_{d}^{N}) = \frac{1}{Z_{N}^{V}}\exp\{-N\operatorname{Tr}(V(X_{1}^{N},...,X_{d}^{N}))\}dX^{N}$

- If $V(X) = \beta \sum V_i(X_i) + W$ with $V''_i \ge c$ minimum at x_i . Then for $\beta > \beta(c) \ \hat{\mu}_N$ converges to the distribution of $X_i = x_i I + \frac{1}{\sqrt{V''(x_i)\beta}} S_i + \frac{1}{\sqrt{\beta}} F_i^{\beta}(S)$
- $V(X) = \beta \sum V_i(X_i) + W$ with V_i minimum at $(x_j^i)_{1 \le j \le m_i}$ where $V''_i(x_j^i) = c_j^i > 0$, $W = \sum V_i(X_i)Z_i(X)$. If β large enough, $\hat{\mu}_N$ converges towards the distribution of

$$X_{i} = U \begin{pmatrix} x_{1}^{i} + \frac{S_{1}^{i}}{\sqrt{\beta}} & 0 & \cdots & 0 \\ 0 & x_{2}^{i} + \frac{S_{2}^{i}}{\sqrt{\beta}} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & x_{i}^{m_{i}} + \frac{S_{m_{i}}^{i}}{\sqrt{\beta}} \end{pmatrix} U^{*} + \frac{1}{\beta} F_{i}^{\beta}(S, (P_{j}^{i}))$$

$$P_{j}^{i} \text{ are projections st } \sum P_{j}^{i} = 1, \ \tau_{V}(P_{j}^{i}) = 1/m_{i} + o(\beta).$$

ubfactors theory

Transport

Thanks for listening

