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What is a map ?

A map is a connected graph which is properly embedded into a
surface, that is embedded in such a way that its edges do not cross
and the faces (obtained by cutting the surface along the edges of
the graph) are homeomorphic to disks. The genus of a map is the
genus of such a surface.

By Euler formula,

2− 2g = #{vertices}

+#{faces} −#{edges} .

= 2 + 3− 3
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Enumeration of maps
Being given vertices with given valence, how many maps with
genus g can we build ?

Recipe :
• Draw labeled vertices with labeled half-edges on a surface of
genus g ,
• Match the end points of these half-edges,
• Check the resulting map is properly embedded and could not be
properly embedded on a surface with genus smaller than g,
• Count such matchings (which are the same only if matched
labelled half-edges are the same).
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The law of the GUE and the enumeration of maps
Let XN be a matrix following the Gaussian Unitary Ensemble, that
is a N × N Hermitian matrix with i.i.d centered complex Gaussian
entries with covariance N−1, that is

dP(XN) =
1

ZN
exp{−N

2
Tr((XN)2)}dXN

Theorem (Harer-Zagier 86)

For all p ∈ N∫
1

N
Tr((XN)2p)dP(XN) =

∑
g≥0

N−2gM(2p; g) .

equals
∑N

n=1

(
N
n

)
(2p − 1)!!2n−1

(
p

n − 1

)
. M(2p; g) denotes

the number of maps with genus g build over a vertex of valence 2p.
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Proof “ Feynman diagrams”

E[
1

N
Tr((XN)p)] =

1

N

N∑
i(1),...,i(p)=1

E[XN
i(1)i(2)X

N
i(2)i(3) · · ·X

N
i(p)i(1)]

Wick formula : If (G1, · · · ,G2n) is a centered Gaussian vector,

E[G1G2 · · ·G2n] =
∑

1≤s1<s2..<sn≤2n
ri>si

n∏
j=1

E[GsjGrj ].

Example : If Gi = G follows the standard Gaussian distribution

E [Gp] = #{ pair partitions of p points}



Maps Random Matrices and the enumeration of maps SD equations Loop models Subfactors theory Transport

Proof “ Feynman diagrams”

E[Tr(XN)p] =
N∑

i(1),...,i(p)=1

E[XN
i(1)i(2)X

N
i(2)i(3) · · ·X

N
i(p)i(1)]

E[XN
i(1)i(2) · · ·X

N
i(p)i(1)] =

i(1)

i(1)         i(2)

i(2)

i(3)

i(3)

i(4)

i(4)i(5)

i(5)

i(6)

i(6)

As E[XN
ij X

N
k`] = N−11ij=`k , only matchings so that indices are

constant along the boundary of the faces contribute.

E[Tr((XN)p)] =
∑

graph 1 vertex
degree p

N#faces−p/2

=
∑

N−2g+1M((xp, 1); g) by Euler formula
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Random matrices and the enumeration of maps
’t Hooft 74’ and Brézin-Itzykson-Parisi-Zuber 78’

Let t = (ti )1≤i≤n ∈ Rn and set Vt =
∑n

i=1 tix
i . Formally,

1

N2
log

∫
eNtr(Vt(XN))dP(XN)

=
∑

k1,..,kn∈N

∑
g≥0

N−2g
n∏

j=1

(tj)
kj

kj !
M((ki )1≤i≤n; g)

with

M((ki )1≤i≤n; g) = ]{maps of genus g with ki vertices of degree i}
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Enumeration of colored maps

Consider vertices with colored half-edges and enumerate maps
build by matching half-edges of the same color.

Such vertices are in bijection with monomials :
to q(X1, . . . ,Xd) = Xi1Xi2 · · ·Xip associate a “star of type q” given
by the vertex with p drawn on the plan so that the first half-edge
has color i1, the second color i2 etc until the last which has color ip.
M((qi , ki )1≤i≤m, g) denotes the number of maps with genus g
build on ki stars of type qi , 1 ≤ i ≤ m.
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Random matrices and the enumeration of maps
’t Hooft (1974) and Brézin-Itzykson-Parisi-Zuber (1978)

Let (q1, . . . , qn) be monomials. Let t = (ti )1≤i≤n ∈ Rn and set
Vt(X1, . . . ,Xm) =

∑n
i=1 tiqi (X1, . . . ,Xm). Formally,

FN
Vt

=
1

N2
log

∫
eNtr(Vt(A1, · · · ,Am))dPN(A1) · · · dPN(Am)

=
∑

k1,..,kn∈N

∑
g≥0

N−2g
n∏

j=1

(tj)
kj

kj !
M((qi , ki )1≤i≤n, g)

with

M((qi , ki )1≤i≤n, g) = ]{maps of genus g with ki vertices of type qi}

where maps are constructing by matching half-edges of the same
color.
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Example : The Ising model on random graphs
Take q1(X1,X2) = X1X2, q2(X1,X2) = X 4

1 , q3(X1,X2) = X 4
2

represented by

Then,

1

N2
log

∫
eNTr(

∑3
i=1 tiqi (X

N
1 ,X

N
2 ))dP(XN

1 )dP(XN
2 )

is a generating function for the enumeration of the

the Ising model on random
graphs. Solved by Mehta
(1986).
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Random matrices, maps and tracial states
’t Hooft 74’ and Brézin-Itzykson-Parisi-Zuber 78’

Let (q1, · · · , qn) be monomials, Vt =
∑n

i=1 tiqi and put

dPVt(X
N
1 , · · · ,XN

m ) = e−N
2FN

Vt
+NTr(Vt(XN

1 ,··· ,XN
m ))dP(XN

1 ) · · · dP(XN
m )

Formally, for any monomial P

τNt (P) :=

∫
1

N
Tr
(
P(XN

1 , . . . ,X
N
m )
)
dPVt(X

N
1 , . . . ,X

N
m )

= ∂sF
N
Vt+sP/N2 |s=0

=
∑
g≥0

N−2g
∑

k1,..,kn∈N

n∏
j=1

(tj)
kj

kj !
M((P, 1), (qi , ki )1≤i≤n; g)

τNt is a tracial state :

τNt (PP∗) ≥ 0, τNt (1) = 1, τNt (PQ) = τNt (QP) .
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What is a non-commutative law ?

What is a classical law on Rd ?
It is a non-negative linear map

Q : f ∈ Cb(Rd ,R)→ Q(f ) =

∫
f (x)dQ(x) ∈ R, Q(1) = 1

A non-commutative law τ of n self-adjoint variables is a linear map

τ : P ∈ C〈X1, · · · ,Xd〉 → τ(P) ∈ C

It should satisfy

• τ(PP∗) ≥ 0 for all P, (zXi1 · · ·Xik )∗ = z̄Xik · · ·Xi1 .

• τ(1) = 1

• τ(PQ) = τ(QP) for all P,Q ∈ C〈X1, · · · ,Xd〉.
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The law of free semicircle variables
Take XN

1 , · · · ,XN
d be independent GUE matrices, that is

P
(
dXN

1 , · · · , dXN
d

)
=

1

(ZN)d
exp{−N

2
Tr(

d∑
i=1

(XN
i )2)}

∏
dXN

i .

Theorem (Voiculescu(91))

For any polynomial P ∈ C〈X1, · · · ,Xd〉

lim
N→∞

E[
1

N
Tr(P(XN

1 , · · · ,XN
d ))] = σ(P)

σ is the law of d free semicircle variables.

If P = Xi1Xi2 · · ·Xik , σ(P)
is the number of planar maps
build over a star of type P.
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From formal to asymptotic topological expansions
For m ∈ N and (q1, · · · , qn) monomials, Vt =

∑n
i=1 tiqi , M > 2

dPM
Vt

(XN
1 , · · · ,XN

m ) =
1‖XN

i ‖≤M

ZN,M
V

eNTr(Vt(XN
1 ,...,X

N
m ))dP(XN

1 ) · · · dP(XN
m )

For M > 2, all K ∈ N, ti small enough so that Vt = V ∗t , for any
monomial P

τNt (P) =

∫
1

N
Tr
(
P(XN

1 , . . . ,X
N
m )
)
dPM

Vt
(XN

1 , · · · ,XN
m )

=
K∑

g=0

N−2g
∑

k1,..,kn∈N

n∏
j=1

(tj)
kj

kj !
M((P, 1), (qi , ki )1≤i≤n; g) + o(N−2K )

-m = 1 : Ambjórn et al. 95’, Albeverio, Pastur, Scherbina 01’,
Ercolani-McLaughlin 03’
-m ≥ 2 : G-Maurel-Segala 06’, G-Shlyakhtenko 09’, Dabrowski 18’
Jekel 19’
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Schwinger-Dyson equations

Both matrix integrals and map enumerations are related with a
third mathematical objects : The Schwinger-Dyson equations.

• They describe relations between moments, obtained thanks to
integration by parts, for matrix integrals,

• They describe the induction relations for the enumeration of
maps.
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First loop equation

Let V be a polynomial and set

dPV (XN
1 , . . . ,X

N
m ) = (ZN

V )−1eNTr(V (XN
1 ,...,X

N
m ))dP(XN

1 ) · · · dP(XN
m )

Then, for any polynomial P, any i ∈ {1, . . . ,m}∫
1

N
Tr⊗ 1

N
Tr(∂iP(XN

1 , . . . ,X
N
m ))dPV (XN

1 , . . . ,X
N
m )

=

∫
1

N
Tr((Xi − DiV )P(XN

1 , . . . ,X
N
m ))dPV (XN

1 , . . . ,X
N
m )

where for any monomial q

∂iq =
∑

q=q1Xiq2

q1 ⊗ q2 Diq =
∑

q=q1Xiq2

q2q1

Proof : Based on
∫
f ′(x)e−V (x)dx =

∫
f (x)V ′(x)e−V (x)dx .
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First order asymptotics
Let V be a polynomial and set

dPV (XN
1 , . . . ,X

N
m ) = (ZN

V )−1eNTr(V (XN
1 ,...,X

N
m ))dP(XN

1 ) · · · dP(XN
m )

Assume V small (and add a cutoff if needed). The limit points τV
of

τXN (P) :=
1

N
Tr(P(XN

1 , . . . ,X
N
d ))

satisfy

(A) τV (XiP) = τV ⊗ τV (∂iP) + τV (DiVP)

with ∂iq =
∑

q=q1Xiq2
q1 ⊗ q2, Diq =

∑
q=q1Xiq2

q2q1,

(B) |τV (Xi1 · · ·Xik )| ≤ 4k .

Proof : as PV is log-concave, τXN self-averages and satisfies (B)
for k ≤

√
N. Hence (A) comes from the loop equation∫
τXN ⊗ τXN (∂iP)dPV =

∫
τXN ((Xi − DiV )P)dPV
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First order asymptotics

If V is small enough, there exists a unique solution to

(A) τV (XiP) = τV ⊗ τV (∂iP) + τV (DiVP)

⇔ τV (Xiq) =
∑

q=q1Xiq2

τV (q1)τV (q2) +
∑
j

tj
∑

qj=qj1Xiq
j
2

τV (qj2q
j
1q)

(B) |τV (Xi1 · · ·Xik )| ≤ 4k ,

Hence τXN converges to this solution.

It is the generating function of planar maps

τV (P) =
∑∏ tkii

ki !
M((P, 1), (qi , ki ); 0) .
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Induction relations and non-commutative derivatives

Tutte’s surgery =Induction relations on maps.
Let M(p, n) be the number of planar maps with p
vertices of degree 3 and one of degree n.

M(p, n)

= 3pM(p − 1, n + 1) +
n−2∑
k=0

p∑
`=0

C `pM(`, k)M(p − `, n − k − 2)

Mt(x
n) =

∑
p≥0

tp

p!M(p, n) satisfies the loop equation with V = x3

(A) Mt(x
n) = tMt(x

n−13x2) + Mt ⊗Mt(∂x
p−1)

(B) |Mt(x
n)| ≤ 4n .
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vertices of degree 3 and one of degree n.

M(p, n)

= 3pM(p − 1, n + 1) +
n−2∑
k=0

p∑
`=0

C `pM(`, k)M(p − `, n − k − 2)

Mt(x
n) =

∑
p≥0

tp

p!M(p, n) satisfies the loop equation with V = x3

(A) Mt(x
n) = tMt(x

n−13x2) + Mt ⊗Mt(∂x
p−1)

(B) |Mt(x
n)| ≤ 4n .
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Loop models

The Temperley-Lieb elements (TLE) are
boxes with boundary points connected by
non-intersecting strings, a shading and a
marked boundary point.

*

Let S1, . . . ,Sn be (TLE) and β1, · · · , βn be small real numbers.
The loop model is given, for any Temperley-Lieb element S ,by

Trβ,δ(S) =
∑
ni≥0

∑ ∏
1≤i≤n

βnii
ni !

δ]loops

where we sum over all
planar maps with ni ele-
ments Si and one ele-
ment S .
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Main results
Theorem (G-Jones-Shlyakhtenko-Zinn Justin 10’ )

Let S1, . . . ,Sn be Temperley-Lieb elements, β1, . . . , βn ∈ Rn and
consider the loop model

Trβ,δ(S) =
∑
ni≥0

∑ ∏
1≤i≤n

βnii
ni !

δ]loops

Then, for δ ∈ I := {2 cos(πn )}n≥3 ∪ [2,∞[ and βi small enough
Trβ,δ is a limit of matrix models.

For the Potts model, i.e S1 = ,S2 =

Theorem (G-Jones-Shlyakhtenko-Zinn Justin 10’ )

For δ ∈ I and a Temperley-Lieb element S of the form

there exists an explicit formula for Trβ,δ(S).

Cf Bousquet-Melou–Bernardi, Borot, Duplantier, Eynard, Kostov,
Staudacher ...
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Random matrices and loop enumeration ; β = 0
Let δ = m ∈ N. For a (TLE) B, we denote p

B∼ ` if a string joins
the pth boundary point with the `th boundary point in B, then we
associate to B with k strings the polynomial

qB(X ) =
∑

ij=ip if j
B∼p

1≤i`≤m

Xi1 · · ·Xi2k .

qB(X ) =
n∑

i ,j ,k=1

XiXjXjXiXkXk ⇔

Theorem
If νN denotes the law of m independent GUE matrices,

lim
N→∞

∫
1

N
tr (qB(X )) νN(dX ) =

∑
m]loops = Tr0(B)

where we sum over all planar maps that can be built on B.
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Proof

By Voiculescu’s theorem, if B = ,

lim
N→∞

∫
1

N
tr (qB(X )) νN(dX )

=
n∑

i ,j ,k=1

lim
N→∞

∫
1

N
tr (XiXjXjXiXkXk) νN(dX )

=
∑
i ,j ,k

∑ ki j j k

=
∑

n]loops

because the indices have to be constant along loops.
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Non integer fugacities, β = 0

Based on the construction of the planar algebra of a bipartite

graph, Jones 99’. Recall p
B∼ j if a string joins the pth dot with the

jth do in the TL element B

j

*

p

.

qB(X ) =
∑

ij=ip if j
B∼p

Xi1 · · ·Xi2k ⇒ qvB(X ) =
∑

ej=eop if j
B∼p

σB(w)Xe1 · · ·Xe2k

• ei edges of a bipartite graph Γ = (V = V+ ∪ V−,E ) so that the
adjacency matrix of Γ has eigenvalue δ with eigenvector (µv )v∈V
with µv ≥ 0 (∃ for any δ ∈ {2 cos(πn )}n≥3 ∪ [2,∞[)
• The sum runs over loops w = e1 · · · e2k in Γ which starts at v .
v ∈ V+ iff ∗ is in a white region.
• σB(w) is a well chosen weight.
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Non integer fugacities,the matrix model, β = 0

For e ∈ E , e = (s(e), t(e)), XM
e are independent (except

Xeo = X ∗e ) [Mµs(e)]× [Mµt(e)] matrices with i.i.d centered
Gaussian entries with variance 1/(M

√
µs(e)µt(e)).

Recall qvB(XM) =
∑

w=e1···e2k∈LB
s(e1)=v

σB(w)XM
e1 · · ·X

M
e2k

Theorem (G-Jones-Shlyakhtenko 07’)

Let Γ be a bipartite graph as before. Let B be Temperley-Lieb
element. For all v ∈ V

lim
M→∞

E [
1

Mµv
tr(qvB(XM))] = Tr0,δ(B) =

∑
δ]loops

where the sum runs above all planar maps built on B.

Based on
∑

e∈E :s(e)=v µt(e) = δµv .
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Non integer fugacities, β 6= 0
Let Bi be Temperley Lieb elements with ∗ with color σi ∈ {+,−},
1 ≤ i ≤ p. Let Γ be a bipartite graph whose adjacency matrix has
eigenvalue δ as before. Let νM be the law of the previous
independent rectangular Gaussian matrices and set

dνM(Bi )i
(Xe) =

1‖Xe‖∞≤L

ZN
B

e
Mtr(

∑p
i=1 βi

∑
v∈Vσi

µvqvBi
(X ))

dνM(Xe).

Theorem (G-Jones-Shlyakhtenko-Zinn Justin 10’)

For any L > 2, for βi small enough real numbers, for any
Temperley-Lieb element B with color σ, any v ∈ Vσ,

lim
M→∞

∫
1

Mµv
tr(qvB(X ))dνN(Bi )i

(X ) =
∑
ni≥0

∑
δ]loops

p∏
i=1

βnii
ni !

where we sum over the planar maps build on ni TL elements Bi

and one B. This is Trβ,δ(B).
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Application to subfactors theory

Temperley-Lieb elements are boxes containing non-intersecting
strings. We can endow this set with the multiplication :

and the trace given by

τ(S) =
∑
R∈TL

δ]loops in S.R
      T

T.S=

     S

Theorem (G-Jones-Shlyakhtenko 07 ’ ,Popa 89’ and 93’ )

Take δ ∈ I := {2 cos(πn )}n≥4∪]2,∞[
-τ is a tracial state, as a limit of matrix (or free var.) models.

-The corresponding von Neumann algebra is a factor.
-A tower of factors with index δ2 can be built .
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Convergence of the empirical distribution of matrices
Let XN = (XN

1 , . . . ,X
N
d ) be a sequence of N × N (random)

Hermitian matrices and let µ̂N be its empirical distribution

µ̂N(P) =
1

N
Tr(P(XN))

Assume that for any polynomial P

lim
N→∞

µ̂N(P) = lim
N→∞

1

N
Tr(P(XN)) = τ(P) .(∗)

Then τ is a tracial state :

τ(PP∗) ≥ 0, τ(PQ) = τ(QP), τ(I ) = 1 .

Connes Question : For any tracial state τ can you find a
sequence of matrices XN such that (*) holds ?
Z. Ji, A. Natarajan,T. Vidick, J. Wright and H. Yuen (2020) :
Answer is no (MIP*=RE). But a mystake in the proof was found
and a patch posted.
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The classification problem

Let τ, µ be two non-commutative laws of d (resp. m) variables.
Can we find “transport maps ” T = (T1, . . . ,Tm) and
T ′ = (T1, . . . ,T

′
d) of d (resp. m) variables so that for all

polynomials P,Q

τ(P(X1, . . . ,Xd)) = µ(P(T1(Y1, . . . ,Ym), . . . ,Td(Y1, . . . ,Ym)))

µ(Q(Y1, . . . ,Ym)) = τ(Q(T ′1(X1, . . . ,Xd), . . . ,T ′m(X1, . . . ,Xd)))

The free group isomorphism problem : Does there exists transport
maps from σd to σm, the law of d (resp. m) free variables with
d 6= m ?
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Classical transport

Let P,Q be two probability measures on Rd and Rm respectively.
A transport map from P to Q is a measurable function
T : Rd → Rm so that for all bounded continuous function f

∫
f (T (x))dP(x) =

∫
f (x)dQ(x) .

We denote T#P = Q.
Q

T

P

Fact (von Neumann [1932]) : If P,Q � dx , T exists.
According to Ozawa [2004], transport map can not “always” exists
as in the classical case, i.e there is no “universal” von Neumann
algebras such as dx in the non-commutative case.
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Free transport
Recall that

τW (P) = lim
N→∞

∫
1

N
Tr(P(XN

1 , . . . ,X
N
d ))dPN

V (XN
1 , . . . ,X

N
d )

with

V =
1

2

∑
X 2
i + W with W self-adjoint

Theorem (G-Shlyakhtenko 12’, Dabrowski -G-S 16’, Jekel 19’)

Assume W small or V strictly convex.
There exists FW ,TW smooth transport maps between
τW , σ

d = τ0 so that for all polynomial P

τW = TW ]τ0 τ0 = FW ]τW

In particular the related C ∗ algebras and von Neumann algebras
are isomorphic.

Rmk : applies to q-Gaussian algebras. Extends to loop models.
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What about general potentials ?

PV
N (dXN

1 , . . . , dX
N
d ) =

1

ZV
N

exp{−NTr(V (XN
1 , . . . ,X

N
d ))}dXN

Theorem ( WIP G–Maurel Segala)

Let DiV be the cyclic derivative
Di (Xi1 · · ·Xik ) =

∑
ij=i Xij+1

· · ·XikXi1 · · ·Xij−1
and assume that V

is (η,A) trapping in the sense that ∀k ∈ N

Tr(
∑

X 2k
i Xi .DiV ) ≥ Tr(η

∑
X 2k+2
i − A

∑
X 2k
i )

for some η > 0. Then there exists L(η,A) <∞ such that

lim sup
N→∞

‖XN
i ‖∞ ≤ L(η,A)

Moreover, any limit point of µ̂N(P) = 1
NTrP(XN) satisfy

Dyson-Schwinger equations.

What kind of limit/transition can we expect ?
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Low temperature expansion (WIP G–Maurel Segala)
PV
N (dXN

1 , . . . , dX
N
d ) =

1

ZV
N

exp{−NTr(V (XN
1 , . . . ,X

N
d ))}dXN

• If V (X ) = β
∑

Vi (Xi ) + W with V ′′i ≥ c minimum at xi .
Then for β > β(c) µ̂N converges to the distribution of

Xi = xi I +
1√

V ′′(xi )β
Si +

1√
β
F βi (S)

• V (X ) = β
∑

Vi (Xi ) + W with Vi minimum at (x ij )1≤j≤mi

where V ′′i (x ij ) = c ij > 0, W =
∑

Vi (Xi )Zi (X ). If β large
enough, µ̂N converges towards the distribution of

Xi = U


x i1 +

S i
1√
β

0 · · · 0

0 x i2 +
S i
2√
β
· · · 0

...
...

...
...

0 0 0 xmi
i +

S i
mi√
β

U∗+
1

β
F βi (S , (P i

j )),

P i
j are projections st

∑
P i
j = 1, τV (P i

j ) = 1/mi + o(β).
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Thanks for listening
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