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✓i ! ✓i + c is “spontaneously broken”. There is (o↵-diagonal)
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Figure 1: Schematic picture of ferro- and antiferromagnets. The chequerboard pat-

tern in the antiferromagnet is called a Néel state.

the role of symmetry in physics. Using new experimental techniques, hidden
patterns of symmetry were discovered. For example, there are magnetic mate-
rials where the moments form a chequerboard pattern where the neighbouring
moments are anti-parallel, see Fig. 1. In spite of not having any net magneti-
zation, such antiferromagnets are nevertheless ordered states, and the pattern
of microscopic spins can be revealed by neutron scattering. The antiferro-
magnetic order can again be understood in terms of the associated symmetry
breaking.

In a mathematical description of ferromagnetism, the important variable is
the magnetization, ~mi = µ ~Si, where µ is the magnetic moment and ~Si the spin
on site i. In an ordered phase, the average value of all the spins is different from
zero, h~mii 6= 0. The magnetization is an example of an order parameter, which
is a quantity that has a non-zero average in the ordered phase. In a crystal it
is natural to think of the sites as just the atomic positions, but more generally
one can define “block spins” which are averages of spins on many neighbouring
atoms. The “renormalization group” techniques used to understand the theory
of such aggregate spins are crucial for understanding phase transitions, and
resulted in a Nobel Prize for Ken Wilson in 1982.

It is instructive to consider a simple model, introduced by Heisenberg, that
describes both ferro- and antiferromagnets. The Hamiltonian is

HF = �J
X
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In spatial dimension d = 2, the symmetry ✓i ! ✓i + c is

preserved at all non-zero T . There is no LRO, and

h ii = 0 for all T > 0.

Nevertheless, there is a phase transition at T = TKT ,

where the nature of the correlations changes
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The low T phase also has topological order associated

with the suppression of vortices.
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Figure 3: To the left a single vortex configuration, and to the right a vortex-

antivortex pair. The angle ✓ is shown as the direction of the arrows, and the cores of

the vortex and antivortex are shaded in red and blue respectively. Note how the arrows

rotate as you follow a contour around a vortex. (Figure by Thomas Kvorning.)

by the Hamiltonian,

HXY = �J
X

hiji

cos(✓i � ✓j) (3)

where hiji again denotes nearest neighbours and the angular variables, 0 
✓i < 2⇡ can denote either the direction of an XY-spin or the phase of a
superfluid. We shall discuss this model in some detail below.

Although the GL and BCS theories were very successful in describing many
aspects of superconductors, as were the theories developed by Lev Landau
(Nobel Prize 1962), Nikolay Bogoliubov, Richard Feynman, Lars Onsager and
others for the Bose superfluids, not everything fit neatly into the Landau
paradigm of order parameters and spontaneous symmetry breaking. Problems
occur in low-dimensional systems, such as thin films or thin wires. Here, the
thermal fluctuations become much more important and often prevent ordering
even at zero temperature [39]. The exact result of interest here is due to
Wegner, who showed that there cannot be any spontaneous symmetry breaking
in the XY-model at finite temperature [53].

So far we have discussed phenomena that can be understood using classical
concepts, at least as long as one accepts that superfluids are characterised
by a complex phase. There are however important macroscopic phenomena
that cannot be explained without using quantum mechanics. To find the
ground state of a quantum many-body problem is usually very difficult, but
there are some important examples where solutions to simplified problems give
deep physical insights. Electromagnetic response in crystalline materials is an
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Add terms which suppress single but 
not double vortices…..
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• At small K, we can explicitly sum over �ij , order-
by-order in K, and the theory reduces to an ordinary
XY model with multi-site interactions. The resulting
e↵ective action of the XY model is periodic in ✓i !
✓i + 2⇡ (for any site i), and preserves the symmetry
✓i ! ✓i + c (for all sites i).
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• The XY order parameter  i = ei✓i is gauge invari-

ant, as are all physical observables. So this is an

XY model with a modified Hamiltonian, and no ad-

ditional degrees of freedom have been introduced.
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• A single (odd) 2⇡ vortex in ✓i hasQ
(ij)2⇤ cos [(✓i � ✓j)/2] < 0.

• So for J > 0, such a vortex will prefer
Q

(ij)2⇤ �ij = �1,
i.e. a 2⇡ vortex has Z2 flux = �1 in its core.

• So a large K > 0 will suppress (odd) 2⇡ vortices.

• There is no analogous suppression of (even) 4⇡ vortices.
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the role of symmetry in physics. Using new experimental techniques, hidden
patterns of symmetry were discovered. For example, there are magnetic mate-
rials where the moments form a chequerboard pattern where the neighbouring
moments are anti-parallel, see Fig. 1. In spite of not having any net magneti-
zation, such antiferromagnets are nevertheless ordered states, and the pattern
of microscopic spins can be revealed by neutron scattering. The antiferro-
magnetic order can again be understood in terms of the associated symmetry
breaking.

In a mathematical description of ferromagnetism, the important variable is
the magnetization, ~mi = µ ~Si, where µ is the magnetic moment and ~Si the spin
on site i. In an ordered phase, the average value of all the spins is different from
zero, h~mii 6= 0. The magnetization is an example of an order parameter, which
is a quantity that has a non-zero average in the ordered phase. In a crystal it
is natural to think of the sites as just the atomic positions, but more generally
one can define “block spins” which are averages of spins on many neighbouring
atoms. The “renormalization group” techniques used to understand the theory
of such aggregate spins are crucial for understanding phase transitions, and
resulted in a Nobel Prize for Ken Wilson in 1982.
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• In the topological phase,
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Figure 1: Schematic picture of ferro- and antiferromagnets. The chequerboard pat-

tern in the antiferromagnet is called a Néel state.

the role of symmetry in physics. Using new experimental techniques, hidden
patterns of symmetry were discovered. For example, there are magnetic mate-
rials where the moments form a chequerboard pattern where the neighbouring
moments are anti-parallel, see Fig. 1. In spite of not having any net magneti-
zation, such antiferromagnets are nevertheless ordered states, and the pattern
of microscopic spins can be revealed by neutron scattering. The antiferro-
magnetic order can again be understood in terms of the associated symmetry
breaking.

In a mathematical description of ferromagnetism, the important variable is
the magnetization, ~mi = µ ~Si, where µ is the magnetic moment and ~Si the spin
on site i. In an ordered phase, the average value of all the spins is different from
zero, h~mii 6= 0. The magnetization is an example of an order parameter, which
is a quantity that has a non-zero average in the ordered phase. In a crystal it
is natural to think of the sites as just the atomic positions, but more generally
one can define “block spins” which are averages of spins on many neighbouring
atoms. The “renormalization group” techniques used to understand the theory
of such aggregate spins are crucial for understanding phase transitions, and
resulted in a Nobel Prize for Ken Wilson in 1982.

It is instructive to consider a simple model, introduced by Heisenberg, that
describes both ferro- and antiferromagnets. The Hamiltonian is

HF = �J
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1.  Classical XY model in 2 and 3 dimensions
  

2.  Topological order in the classical XY 
model in 3 dimensions

     
3.  Topological order in the quantum XY 
model in 2+1 dimensions

4. Topological order in the Hubbard model
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We can (exactly) transform the Hubbard model to the “spin-fermion”

model: electrons ci↵ on the square lattice with dispersion
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where ⌘i = ±1 on the two sublattices. (For suitable V�, integrating

out the � yields back the Hubbard model).

When �
`
(i) = (non-zero constant) independent of i, we have long-

range AF order, which transforms the Fermi surfaces from large to

small.

Increasing SDW order
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For fluctuating antiferromagnetism, we transform to a

rotating reference frame using the SU(2) rotation Ri
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The Higgs field is the AFM order in the rotating reference frame.
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S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, PRB 80, 155129 (2009)
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The simplest e↵ective Hamiltonian for the fermionic chargons is

the same as that for the electrons, with the AFM order replaced

by the Higgs field.
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IF we can transform to a rotating reference frame in whichH
a
(i) =

a constant independent of i and time, THEN the  fermions in the

presence of fluctuating AFM will inherit the small Fermi surfaces

of the electrons in the presence of static AFM.

Fluctuating antiferromagnetism

S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, PRB 80, 155129 (2009)
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Fluctuating antiferromagnetism
We cannot always find a single-valued SU(2) rotation Ri to make

the Higgs field H
a
(i) a constant !

n-fold 
vortex in 

AFM order

(assume 
easy-plane 
AFM for 

simplicity)

A.V. Chubukov, T. Senthil and S. Sachdev, 
PRL 72, 2089 (1994);

S. Sachdev, E. Berg, S. Chatterjee, 
and Y. Schattner, PRB 94, 115147 (2016)



Fluctuating antiferromagnetism
We cannot always find a single-valued SU(2) rotation Ri to make

the Higgs field H
a
(i) a constant !

n-fold 
vortex in 

AFM order

R

(�1)nR

(assume 
easy-plane 
AFM for 

simplicity)

A.V. Chubukov, T. Senthil and S. Sachdev, 
PRL 72, 2089 (1994);

S. Sachdev, E. Berg, S. Chatterjee, 
and Y. Schattner, PRB 94, 115147 (2016)



We cannot always find a single-valued SU(2) rotation Ri to make

the Higgs field H
a
(i) a constant !

n-fold 
vortex in 

AFM order

R

(�1)nR

Topological order

Vortices with n odd must be suppressed: such a metal with

“fluctuating antiferromagnetism” has BULK Z2

TOPOLOGICAL ORDER and fermions which inherit the

small Fermi surfaces of the antiferromagnetic metal.

(assume 
easy-plane 
AFM for 

simplicity)



Metal with “large” 
Fermi surface

U/t

Fermi surface+antiferromagnetism+topological order

h~�i 6= 0 h~�i = 0

AF Metal with “small” Fermi surface

Increasing SDW order

h~�i = 0

Increasing SDW order
Metal with “small” Fermi surface 

and 
topological order?



Metal with “large” 
Fermi surface

U/t

Fermi surface+antiferromagnetism+topological order

h~�i 6= 0 h~�i = 0

AF Metal with “small” Fermi surface

Increasing SDW order

h~�i = 0

Increasing SDW order
Metal with “small” Fermi surface; 

Higgs phase of a SU(2) gauge theory
with Z2 or U(1) topological order 
(with suppressed Z2 vortices and 

hedgehogs respectively)

S. Sachdev and D. Chowdhury, 
Prog. Theor. Exp. Phys. 12C102 (2016)



Topological order in the pseudogap metal
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We compute the electronic Green’s function of the topologically ordered Higgs phase of a SU(2)
gauge theory of fluctuating antiferromagnetism on the square lattice. The results are compared
with cluster extensions of dynamical mean field theory, and quantum Monte Carlo calculations, on
the pseudogap phase of the strongly interacting hole-doped Hubbard model. Good agreement is
found in the momentum, frequency, hopping, and doping dependencies of the spectral function and
electronic self-energy. We show that (approximate) lines of zeros of the zero-frequency electronic
Green’s function are signs of the underlying topological order of the gauge theory, and describe
how these lines of zeros appear in our theory of the Hubbard model. We also derive a modified,
non-perturbative version of the Luttinger theorem that holds in the Higgs phase.

The pseudogap metal is a novel state of electronic mat-
ter found in the hole-doped, cuprate high temperature
superconductors [1]. It exhibits clear evidence of electri-
cal transport with the temperature and frequency depen-
dence of a conventional metal obeying Fermi liquid the-
ory [2, 3]. However, a long-standing mystery in the study
of the cuprates is that photoemission experiments do not
show the ‘large’ Fermi surface that is expected from the
Luttinger theorem of Fermi liquid theory [4]. (Broken
square lattice translational symmetry can allow ‘small’
Fermi surfaces, but there is no sign of it over a wide
range of temperature and doping over which the pseudo-
gap state is present [1, 5], and we will not discuss states
with broken symmetry here.) There are non-perturbative
arguments [6–9] that deviations from the Luttinger vol-
ume are only possible in quantum states with topological
order. But independent evidence for the presence of topo-
logical order in the pseudogap has so far been lacking.

In this paper we employ a SU(2) gauge theory of fluc-
tuating antiferromagnetism (AF) in metals [10, 11] to
describe the pseudogap metal. Such a gauge theory de-
scribes fluctuations in the orientation of the AF order,
while preserving a local, non-zero magnitude. An alter-
native, semiclassical treatment of fluctuations of the AF
order parameter has been used to describe the electron-
doped cuprates [12], but this remains valid at low tem-
peratures (T ) only if the AF correlation length ⇠AF di-
verges as T ! 0. We are interested in the case where ⇠AF

remains finite at T = 0, and then a gauge theory formu-
lation is required to keep proper track of the fermionic
degrees of freedom in the background of the fluctuating
AF order. Such a gauge theory can formally be derived
from a lattice Hubbard model, as we will outline in the
next section. The SU(2) gauge theory yields a pseudogap
metal with only ‘small’ Fermi surfaces when the gauge

group is ‘Higgsed’ down to a smaller group. We will de-
scribe examples of Higgsing down to U(1) and Z2, and
these will yield metallic states with U(1) and Z2 topolog-
ical order. See Appendix A for a definition of topological
order in gapless systems; for the U(1) case we primarily
consider, the topological order is associated [13, 14] with
the suppression of ‘hedgehog’ defects in the spacetime
configuration of the fluctuating AF order.

We will present a mean-field computation of the elec-
tronic Green’s function across the entire Brillouin zone
in the U(1) Higgs phase of the SU(2) gauge theory. Such
results allow for a direct comparison with numerical com-
putations on the Hubbard model. One of our main results
will be that for a reasonable range of parameters in the
SU(2) gauge theory, both the real and imaginary parts of
the electron Green’s function of the gauge theory with
topological order closely resemble those obtained from
dynamical cluster approximation (DCA), a cluster ex-
tension of dynamical mean field theory (DMFT). While
DCA allows us to study the regime of strong correlations
down to low temperature, it has limited momentum-
space resolution. For this reason, we have also performed
determinant quantumMonte Carlo (DQMC) calculations
and find self-energies that, in the numerically accessible
temperature range, agree well with the gauge theory com-
putations. Additional results on the comparison between
the SU(2) gauge theory and the DCA and DQMC com-
putations, as a function of doping and second-neighbor
hopping, appear in a companion paper [15].

In several discussions in the literature [16–22], viola-
tions of the Luttinger theorem have been linked to the
presence of lines of zeros (in two spatial dimensions) in
the electron Green’s function on a “Luttinger surface”.
The conventional perturbative proof of the Luttinger the-
orem yields an additional contribution to the volume en-
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We compute the electronic Green’s function of the topologically or-
dered Higgs phase of a SU(2) gauge theory of fluctuating antiferro-
magnetism on the square lattice. The results are compared with clus-
ter extensions of dynamical mean field theory, and quantum Monte
Carlo calculations, on the pseudogap phase of the strongly interact-
ing hole-doped Hubbard model. Good agreement is found in the mo-
mentum, frequency, hopping, and doping dependencies of the spec-
tral function and electronic self-energy. We show that lines of (ap-
proximate) zeros of the zero-frequency electronic Green’s function
are signs of the underlying topological order of the gauge theory,
and describe how these lines of zeros appear in our theory of the
Hubbard model. We also derive a modified, non-perturbative version
of the Luttinger theorem that holds in the Higgs phase.
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The pseudogap metal is a novel state of electronic mat-
ter found in the hole-doped, cuprate high temperature

superconductors [1]. It exhibits clear evidence of electrical
transport with the temperature and frequency dependence of
a conventional metal obeying Fermi liquid theory [2, 3]. How-
ever, a long-standing mystery in the study of the cuprates is
that photoemission experiments do not show the ‘large’ Fermi
surface that is expected from the Luttinger theorem of Fermi
liquid theory [4]. (Broken square lattice translational symme-
try can allow ‘small’ Fermi surfaces, but there is no sign of it
over a wide range of temperature and doping over which the
pseudogap state is present [1, 5], and we will not discuss states
with broken symmetry here.) There are non-perturbative ar-
guments [6–9] that deviations from the Luttinger volume are
only possible in quantum states with topological order. But
independent evidence for the presence of topological order in
the pseudogap has so far been lacking.

In this paper we employ a SU(2) gauge theory of fluctuating
antiferromagnetism (AF) in metals [10, 11] to describe the
pseudogap metal. Such a gauge theory describes fluctuations
in the orientation of the AF order, while preserving a local,
non-zero magnitude. An alternative, semiclassical treatment
of fluctuations of the AF order parameter has been used to
describe the electron-doped cuprates [12], but this remains
valid at low temperatures (T ) only if the AF correlation length
›AF diverges as T æ 0. We are interested in the case where
›AF remains finite at T = 0, and then a gauge theory formula-
tion is required to keep proper track of the fermionic degrees
of freedom in the background of the fluctuating AF order.
Such a gauge theory can formally be derived from a lattice
Hubbard model, as we will outline in the next section. The
SU(2) gauge theory yields a pseudogap metal with only ‘small’
Fermi surfaces when the gauge group is ‘Higgsed’ down to a
smaller group. We will describe examples of Higgsing down
to U(1) and Z2, and these will yield metallic states with U(1)

and Z2 topological order. See SI Appendix A for a definition
of topological order in gapless systems; for the U(1) case we
primarily consider, the topological order is associated [13, 14]
with the suppression of ‘hedgehog’ defects in the spacetime
configuration of the fluctuating AF order.

We will present a mean-field computation of the electronic
Green’s function across the entire Brillouin zone in the U(1)
Higgs phase of the SU(2) gauge theory. Such results allow
for a direct comparison with numerical computations on the
Hubbard model. One of our main results will be that for a
reasonable range of parameters in the SU(2) gauge theory, both
the real and imaginary parts of the electron Green’s function of
the gauge theory with topological order closely resemble those
obtained from dynamical cluster approximation (DCA), a clus-
ter extension of dynamical mean field theory (DMFT). While
DCA allows us to study the regime of strong correlations down
to low temperature, it has limited momentum-space resolution.
For this reason, we have also performed determinant quan-
tum Monte Carlo (DQMC) calculations and find self-energies
that, in the numerically accessible temperature range, agree
well with the gauge theory computations. Additional results
on the comparison between the SU(2) gauge theory and the
DCA and DQMC computations, as a function of doping and
second-neighbor hopping, appear in a companion paper [15].

In several discussions in the literature [16–22], violations
of the Luttinger theorem have been linked to the presence
of lines of zeros (in two spatial dimensions) in the electron
Green’s function on a “Luttinger surface”. The conventional
perturbative proof of the Luttinger theorem yields an addi-
tional contribution to the volume enclosed by the Fermi surface
when the electron Green’s function has lines of zeros: it was
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Anti-nodal spectra compared to cluster DMFT
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A conventional 
metal:
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with Fermi 
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S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, and A. Damascelli, Phys. Rev. Lett. 95, 077001 (2005)
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Pseudogap 
metal 

at low p
Many indications that 
this metal behaves like 
a Fermi liquid, but with 

Fermi surface size p 
and not 1+p.

If present at T=0, a 
metal with a size p 
Fermi surface (and 

translational symmetry 
preserved) must have 

topological order

T. Senthil, M. Vojta and S. Sachdev, PRB 69, 035111 (2004)



Metal with “large” 
Fermi surface

U/t

Fermi surface+antiferromagnetism+topological order

h~�i 6= 0 h~�i = 0

AF Metal with “small” Fermi surface

Increasing SDW order

h~�i = 0

Increasing SDW order
Metal with “small” Fermi surface; 

Higgs phase of a SU(2) gauge theory
with Z2 or U(1) topological order 
(with suppressed Z2 vortices and 

hedgehogs respectively)

S. Sachdev and D. Chowdhury, 
Prog. Theor. Exp. Phys. 12C102 (2016)
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 New classes of quantum states with topological 
order

 Can be understood as:                                          
(a) defect suppression in states with fluctuating 
order associated with broken symmetries                                    
(b) Higgs phases of emergent gauge fields

 A metal with bulk topological order (i.e. long-range 
quantum entanglement) can explain existing 
experiments in cuprates, and agrees well with 
cluster-DMFT
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