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Abstract
We compute the ground-state degeneracy of theories with Chern-Simons terms on a torus. Then we

consider Chern-Simons theories on space with a boundary, and describe the edge excitations. We also

briefly describe quantum spin Hall insulators.
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The previous lectures have described two gapped “topological” states: the Z2 spin liquid, and the

fractional quantum Hall states. These states have quasiparticle excitations which are ‘anyons’ i.e.

they pick up non-trivial phase factors upon encircling each other, even while they are separated by

large distances. This long-distance physics of these phase was described by abelian Chern-Simons

theory with imaginary time action

SCS =

Z
d3x

"
i

4⇡
✏
µ⌫�

aI
µ

K
IJ

@
⌫

aJ
�

#
, (1)

where I, J are indices extending over N values 1 . . . N , and aI
µ

are N U(1) gauge fields. For the

Z2 spin liquid, we had N = 2 and the symmetric K matrix

K =

 
0 2

2 0

!
, (2)

while the quantum Hall states had N = 1 and

K = m (3)

with m an odd (even) integer for fermions (bosons). In addition to the structure described by SCS,

specification of a particular state of condensed matter requires the quasiparticle quantum numbers,

and the transformations of the gauge fields and the quasiparticles under various global symmetries

of the Hamiltonian. The latter information is part of the description of the ‘symmetry enriched’

topological (SET) phase, and we will defer discussion of SET issues to later in this chapter.

Almost all of the results of this chapter are contained in a remarkable paper by Witten [1];

unfortunately, this paper is written in a mathematical language that makes it di�cult to extract

the information relevant for condensed matter.

I. CHERN-SIMONS THEORY ON A TORUS

We now discuss the quantization of (1) on a spatial torus of size L
x

⇥ L
y

. One important

property of (1) is that it is exactly invariant under the gauge transformations aI
µ

! aI
µ

� @
µ

⇣I :

there is no surface term upon integration by parts on a torus, and the variation in the action

vanishes exactly.

For simplicity, we consider the case N = 1, with K = m; the methods below can be generalized

to other values of N and K.

We work in the gauge a
⌧

= 0. However, we cannot just set a
⌧

= 0 in (1). We have to examine

the equation of motion obtained by varying a
⌧

, which for the pure Chern-Simons theory is simply

the zero flux condition

✏
ij

@
i

a
j

= 0. (4)
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But this does not imply the theory is pure gauge, and so trivial. We still have to consider fluxes

around the cycles of the torus. So, up to a gauge transformation, we can choose the solutions of

(4) as constants we parameterize as

a
x

=
✓
x

L
x

, a
y

=
✓
y

L
y

(5)

in terms of new variables ✓
x

and ✓
y

. Now consider the influence of a‘large’ gauge transformations

on (5), generated by

⇣ =
2⇡`x

L
x

, (6)

where ` is an integer. Such a gauge transformation is permitted because ei⇣ is single-valued on

the torus, and it is always ei⇣ that appears as a gauge transformation factor on any underlying

particles. Under the action of (6) we have

✓
x

! ✓
x

� 2⇡`. (7)

So only the value of ✓
x

modulo 2⇡ can be treated as a gauge-invariant quantity, and ✓
x

is an

‘angular’ variable. A similar argument applies to ✓
y

. We therefore introduce the Wilson-loop

operators

W
x

⌘ ei✓x , W
y

⌘ ei✓y . (8)

These are the gauge-invariant observables which characterize Chern-Simons theory on a torus.

Inserting (5) into (1), we find that the dynamics of ✓
x,y

is described by the simple action

S
✓

=
im

2⇡

Z
d⌧ ✓

y

d✓
x

d⌧
(9)

This is a purely kinematical action, and it shows that (m/(2⇡))✓
y

is the canonically conjugate

momentum to ✓
x

. There is no Hamiltonian, and so the energy of all states is zero. Upon promoting

✓
x,y

to operators, this action implies the commutation relation

[✓̂
x

, ✓̂
y

] =
2⇡i

m
. (10)

In terms of the gauge-invariant Wilson loop operators, this commutation relation is equivalent to

Ŵ
x

Ŵ
y

= e�2⇡i/m Ŵ
y

Ŵ
x

. (11)

This is the fundamental operator relation which controls the quantum Chern-Simons theory on a

torus.

For the simplest non-trivial case of m = 2, we see that Ŵ
x

and Ŵ
y

anti-commute. So they

must act on a Hilbert space which is at-least 2-fold degenerate, because the smallest matrices

which anti-commute are the Pauli matrices: we can choose Ŵ
x

= �x and Ŵ
y

= �z. So the U(1)

Chern-Simons theory on the torus at level m = 2 has a 2-dimensional Hilbert space at zero energy.
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It is not di�cult to generalize the above argument to general integer m. As (Ŵ
y

)m commutes

with all other Wilson loop operators, we can demand that it equal the unit matrix. Then, the

eigenvalues of Ŵ
y

can only be e2⇡i`/m with ` = 0, 1, . . .m � 1. So we introduce the m states |`i
obeying

Ŵ
y

|`i = e2⇡i`/m |`i . (12)

The relationship (11) can be satisfied by demanding that Ŵ
x

is a cyclic ‘raising’ operator on these

states

Ŵ
x

|`i = |(`+ 1)(mod m)i . (13)

So the U(1) Chern-Simons theory on the torus at level m has a m-fold ground state degeneracy.

A. Path integral quantization

It is instructive to also obtain the above results by regularizing the action (9) by adding higher

derivative terms, so that the Hamiltonian does not vanish, and all states are not exactly at zero

energy. By adding a bare Maxwell term to the Chern-Simons theory, we can extend (9) to

S
✓

=

Z
d⌧

"
M
2

✓
d✓

x

d⌧

◆2

+
M
2

✓
d✓

y

d⌧

◆2

+ iA
x

d✓
x

d⌧
+ iA

y

d✓
y

d⌧

#
, (14)

with

(A
x

,A
y

) = (m✓
y

/(2⇡), 0). (15)

But this is precisely the (imaginary time) Lagrangian of a fictitious particle with co-ordinates

(✓
x

, ✓
y

) and mass M moving in the presence of ‘magnetic field’ specified by a vector potential

(A
x

,A
y

). We are interested in the spectrum in the limit M ! 0, when (14) reduces to (9).

The strength of the magnetic field is B = @
✓

x

A
y

� @
✓

y

A
x

= �m/(2⇡). We can now introduce a

wavefunction  (✓
x

, ✓
y

) obeying the Schrödinger equation

H (✓
x

, ✓
y

) = E  (✓
x

, ✓
y

) (16)

where the Hamiltonian is

H =
1

2M
✓
1

i

@

@✓
x

� A
x

◆2

+
1

2M
✓
1

i

@

@✓
y

� A
y

◆2

(17)

A subtle feature in the solution of this familiar Hamiltonian is the nature of the periodic

boundary conditions on ✓
x

and ✓
y

. This fictitious particle moves on a torus of size (2⇡)⇥(2⇡), not to

be confused by the torus of size L
x

⇥L
y

for the original Chern-Simons theory. The total ‘magnetic’

flux is therefore 4⇡2B, and the total number of ‘magnetic’ flux quanta is 4⇡2|B|/(2⇡) = m. So we

expect that the eigenstates of H are m-fold degenerate, just as we concluded from the arguments
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above using the Wilson loop operators. In computing the eigenstates of H, we run into the di�culty

that the vector potential in (15) is not explicitly a periodic function of ✓
y

, and instead obeys

A
x

(✓
x

, ✓
y

+ 2⇡) = A
x

(✓
x

, ✓
y

) +m

A
y

(✓
x

, ✓
y

+ 2⇡) = A
y

(✓
x

, ✓
y

). (18)

But we can make the vector potential periodic by using the gauge transformation

A
i

! A
i

� @
i

⇣ (19)

with ⇣ = m✓
x

. So we need to solve (16) and (17) subject to the boundary conditions

 (✓
x

+ 2⇡, ✓
y

) =  (✓
x

, ✓
y

) (20)

 (✓
x

, ✓
y

+ 2⇡) = eim✓

x (✓
x

, ✓
y

). (21)

The Landau level eigenstates of (17) in an infinite plane are, of course, very familiar. We focus

only on the lowest Landau level states, as these are the only ones that will survive the M ! 0

limit. Imposing only the boundary condition (20) we obtain the unnormalized eigenstates

�
`

(✓
x

, ✓
y

) = exp

 
i`✓

x

� m

4⇡

✓
✓
y

� 2⇡`

m

◆2
!
, (22)

where ` is any integer. Notice that these states obey

�
`

(✓
x

, ✓
y

+ 2⇡) = eim✓

x�
`�m

(✓
x

, ✓
y

). (23)

Now it is evident that we can also satisfy the second boundary condition (21) with m di↵erent

orthogonal wavefunctions  
`

(✓
x

, ✓
y

), with ` = 0, 1, . . .m � 1, which are given by

 
`

(✓
x

, ✓
y

) =
1X

p=�1
�
`+mp

(✓
x

, ✓
y

). (24)

These are related to Jacobi Theta functions. We have again reached the conclusion that the U(1)

Chern-Simons theory at level m has a m-fold degenerate ground state on the torus.

To conclude this section, we note the straightforward extension of this computation to the case

of the Z2 spin liquid described by the K matrix in (2). This model factorizes into two copies of

the problem solved above, both with m = 2. The first copy involves the Wilson loops of a1
x

and

a2
y

, while the second copy involves the Wilson loops of a1
y

and a2
x

. Each factor yields a degeneracy

of 2, for a total degeneracy of 4.
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Quantum Hall state

Vacuum

x

y

y = 0

FIG. 1. Edge of a semi-infinite quantum Hall state at y = 0.

II. EDGE STATES IN THE INTEGER QUANTUM HALL EFFECT

As a preparation for studying the edge of Chern-Simons gauge theory, we examine the simplest

case of the integer quantum Hall e↵ect at m = 1 [2]. This can be described using free fermions

which exactly fill the lowest Landau level.

Let us look at the situation in which the sample is only present for y < 0, and so has a edge at

y = 0 (see Fig. 1). We consider the single particle Hamiltonian

H0 = � 1

2M
(~r � i ~A)2 + V (y). (25)

As there is no translational symmetry along the y direction, it is convenient to work in a gauge

for the vector potential which preserves the translational symmetry along the x direction

~A = (�By, 0). (26)

Then the eigenstates of H0 are of the form

 
n

(x, y) = eikxx�
n

(y) (27)

where n = 0, 1, 2, . . . labels the energy eigenvalues, and �
n

(y) obeys

� 1

2M

d2�
n

dy2
+


1

2M
(k

x

+By)2 + V (y)

�
�
n

(y) = E
n

(k
x

)�
n

(y), (28)

with E
n

(k
x

) the energy eigenvalue which disperses as a function of k
x

. With V (y) = 0, we reproduce

the Landau levels at E
n

(k
x

) = (n + 1/2)!
c

, with !
c

= B/M ; notice that these Landau levels are

independent of k
x

and so are dispersionless.
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FIG. 2. Energy levels, E
n

(k
x

) of electrons in a potential V (y) and a magnetic field. The chemical

potential, µ, is chosen so that only the n = 0 level is occupied. The left-moving chiral fermions,  
R

,

describe the excitations on the y = 0 edge.

More generally, we can take V (y) = 0 in the bulk of the sample, far from the edge, without

generality. Here, the eigenstates in (28) are harmonic oscillator states centered at y = �k
x

/B. So

we expect the eigenstates at large positive k
x

to be within the sample, and insensitive to the edge.

But near the edge of the sample at y = 0, we expect V (y) to increase rapidly to confine the electrons

within the sample. So as k
x

decreases through 0, we expect the eigenstates to approach the edge of

the sample, and for E
n

(k
x

) to increase. We can estimate the change in E
n

by perturbation theory

E
n

(k
x

) = (n+ 1/2)
B

m
� k

x

B

Z
dy|�0

n

(y)|2dV
dy

+ . . . , (29)

where �0
n

(y) are the eigenstates for V = 0. See the sketch of energy levels in Fig. 2.

Now, we consider the situation for the m = 1 case, where only the lowest, m = 0, Landau level

is fully occupied in the bulk. We see from Fig. 2, that in such a situation E0(kx) will necessarily

cross the chemical potential once as a function of decreasing k
x

. This implies the existence of

gapless, one-dimensional, fermionic excitations on the edge of the sample. The fermions all move

with velocity v = dE0(kx)/dkx, and so are left-moving chiral fermions, (29). Notice that there is

no right-moving counterpart, at least on the edge near y = 0. If the sample had another edge far

away at some y < 0, that edge would support a right-moving chiral fermion.

It is interesting to note that a single left-moving chiral fermion cannot appear by itself in any

strictly one-dimensional system. In the presence of a lattice, the fermion dispersion, E(k
x

), of such

a system must be a periodic function of k
x

, and no periodic function can cross the Fermi level only

once. But on the edge of a two-dimensional system, it is possible for E(k
x

) to cross the Fermi level

just once, as we have shown above.
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It is simple to write down a low energy e↵ective theory for the left-moving chiral fermion at the

edge of the simple. Using the notation and methods of the chapter on Luttinger liquids, we have

the imaginary action

S
L

=

Z
dxd⌧  †

L

✓
@

@⌧
+ iv

@

@x

◆
 

L

. (30)

This is the universal low-energy theory of the edge of a quantum Hall sample at m = 1. Note

that, unlike non-chiral-Luttinger liquids, there are no marginal interaction corrections to the free

theory. All such interaction corrections involve right-moving fermions too, which are absent in the

present system.

III. EDGE EXCITATIONS OF CHIRAL CHERN-SIMONS THEORY

We return to the Chern-Simons theory in (1), and describe its quantization in the geometry of

Fig. 1. For simplicity, we will just consider the U(1) theory with N = 1, and with K = m. For

m = 1 we will find that we reproduce the results of Section II, and obtain the edge theory (30).

For the fractional quantum Hall states with m > 1, we obtain a di↵erent edge theory which cannot

be expressed in terms of free fermions.

The first important property of S
CS

is that it is not invariant under a gauge transformation

a
µ

! a
µ

� @
µ

⇣ in the presence of an edge. Instead we obtain a surface term

SCS ! SCS � im

4⇡

Z
dxd⌧ ⇣ (@

⌧

a
x

� @
x

a
⌧

)
���
y=0

. (31)

We need additional degrees of freedom on the edge to cancel this surface term, and obtain a

properly gauge invariant theory.

Let us try to deduce the needed degrees of freedom by working directly with the Chern-Simons

action in the geometry of Fig. 1. The variation of the action is [3]

�SCS =
im

2⇡

Z
d3x
h
�a

µ

(✏
µ⌫�

@
⌫

a
�

)
i
+

im

4⇡

Z
dxd⌧ (a

x

�a
⌧

� a
⌧

�a
x

)
���
y=0

. (32)

To make the variation vanish, we require the usual zero flux condition, ✏
µ⌫�

@
⌫

a
�

= 0, in the bulk.

But on the boundary, we must also impose a secondary condition to define the theory: a convenient

choice is to set a
⌧

= 0 (and hence also �a
⌧

= 0) at y = 0. We will find that the fluctuations of the

gauge field near the boundary are no longer pure gauge, in contrast to the situation in the bulk.

Let us quantize the system by choosing the gauge a
⌧

= 0 in the bulk. Then (4) continues to

hold for the spatial components of the gauge field, and so we can solve this constraint by the choice

a
i

= @
i

' (33)

in terms of a scalar field '. As in (7), we can use large gauge transformations to argue that '

should be physically equivalent to ' + 2⇡, and so ' takes values on a unit circle. Inserting (33)
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into Scs, and integrating over y, we obtain the edge action

S
e

= � im

4⇡

Z
dxd⌧ @

⌧

'@
x

', (34)

where the fields are now implicitly evaluated at y = 0. Now we notice that at m = 1 this is

precisely the kinematic term in the bosonic representation of a free chiral fermion. For general m,

following the arguments in the chapter on Luttinger liquids, we can write (34) as a commutation

relation

['(x1),'(x2)] = �i
⇡

m
sgn(x1 � x2). (35)

In addition to the kinematic term in (34), non-zero energetic terms are also permitted at the

boundary, provided they are consistent with the residual shift symmetry ' ! '+constant. In an

operator language, including the lowest order spatial gradient, we obtain the Hamiltonian

H
'

=
mv

4⇡

Z
dx (@

x

')2, (36)

where v is a coupling constant with units of velocity. The interpretation of v becomes clearer in

the action for the path integral, which is the final form of the edge theory [4]

S
e

=
m

4⇡

Z
dxd⌧

h
�i@

⌧

'@
x

'+ v(@
x

')2
i
. (37)

This is a theory of left-moving chiral bosons at velocity v, and is also known as the U(1) Kac-

Moody theory at level m. At m = 1, we can conclude from our previous analysis of Luttinger

liquids that (37) is precisely the bosonized version of the chiral fermion theory in (30).

At other values of m, S
e

remains a Gaussian theory, and so it is possible to compute all

correlators on the edge using the methods developed in the chapter on Luttinger liquid theory. In

particular, a useful result that can be obtained by such methods is

h'(x, ⌧)'(0, 0)i = � 1

m
ln(x � iv⌧) + . . . . (38)

Quantum Hall systems also have a conserved U(1) charge in the bulk, and as we will discuss

below, this is important for the stability of the chiral boson theory in (37) towards external

perturbations on the edge. As we saw in the previous chapter, the external electromagnetic

potential A
µ

couples via the term

S
Aa

=

Z
d3x

"
i

2⇡
a
µ

✏
µ⌫�

@
⌫

A
�

#
. (39)

Using a non-zero electrostatic potential A
⌧

which is independent of y, and integrating over y the

term above reduces to (i/(2⇡))
R
dxd⌧A

⌧

@
x

', and so we may identify the charge density as

⇢(x) =
1

2⇡
@
x

', (40)
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which is precisely the relation obtained in the Luttinger liquid chapter.

We can also identify the fate of the quasiparticle operators on the boundary by considering

the adiabatic transport of the quasiparticles via the bulk between two points, x1 and x2, on the

boundary. Such a process would be accompanied by the Berry phase

exp

 
i

Z (x2,0)

(x1,0)

d~x · ~a
!

= ei('(x2)�'(x1)) (41)

where the integral on the left-hand-side is a along path in the bulk of the sample, and the right-

hand-side follows from (33). So we can identify the operator ei' as the quasiparticle operator on

the edge. Using (35) and (40), we can verify the commutation relation

[⇢(x1), e
i'(x2)] =

1

m
�(x1 � x2)e

i'(x2), (42)

which confirms that the quasiparticle carries charge 1/m. Similarly, the operator of the underlying

particles of the quantum Hall state (electrons (fermions) or bosons) becomes eim' on the edge of

the sample. The correlators of these operators can be easily computed by (38), along with the

knowledge that ' is a harmonic free field.

At this point, it is important to note an important subtlety associated with the e↵ective edge

Hamiltonian in (36). In principle, we should be able to add any local operator which is consistent

with the global symmetry. Among the particle creation operators considered above, any operator

which creates a boson, and which also has trivial mutual statistics with all other particles is a

legitimate local operator which can be added to H
'

. One such operator is eim' for m even, and

e2im' for m odd, and so we can consider extending H
'

! H
'

+ �
R
dx cos(m') for m even, and

correspondingly for m odd. However, these operators carry non-zero U(1) charge, as follows from

the extension of (42), and so charge conservation prohibits their appearance in H
'

.

IV. EDGE EXCITATIONS OF Z2 SPIN LIQUIDS

The Chern-Simons theory of Z2 spin liquids has N = 2 U(1) gauge fields and K matrix

K =

 
0 2

2 0

!
. (43)

Proceeding just as in Section III, we now introduce 2 scalars ✓ and � (both defined modulo 2⇡) so

that

a1
i

= @
i

✓ , a2
i

= @
i

� (44)

Then the boundary kinematic action is

S
e

= � i

⇡

Z
dxd⌧ @

x

✓@
⌧

�, (45)
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which implies the commutation relation

[�(x1), ✓(x2)] = i
⇡

2
sgn(x1 � x2). (46)

Remarkably, this is precisely the kinematics of the Luttinger liquid of spinless fermions we analyzed

in Lecture 3! This theory in non-chiral, and has equal numbers of left- and right-moving excitations.

The simplest terms in the Hamiltonian for these edge excitations are

H
e

=

Z
dx

"
K1

2
(@

x

�)2 +
K2

2
(@

x

✓)2
#
, (47)

and this also coincides with the Hamiltonian for the Luttinger liquid in Lecture 3.

However, unlike the case in Section III, the gapless non-chiral edge states described by H
e

are

generally not stable. For the Z2 spin liquid, both e2i� and e2i✓ are trivial bosonic excitations: this

corresponds to the fact that in the bulk, two visons or two spinons can fuse into trivial excitations.

Consequently, the general edge Hamiltonian is [5]

H
e

=

Z
dx

"
K1

2
(@

x

�)2 +
K2

2
(@

x

✓)2 � �1 cos(2�) � �2 cos(2✓)

#
. (48)

As we showed earlier in our study of Luttinger liquids, we have (dim[e2i�])(dim[e2i✓]) = 1, and

therefore at least one of the two cosine terms is always relevant. Consequently the edge spectrum

is always gapped.

In the presence of additional global symmetries in the underlying lattice model, it is possible

that the cosine terms conspire to leave at least one mode gapless. The symmetry constraints for

the existence of Z2 spin liquids with gapless edge states have been explored in recent work [6–8].

None of the specific Z2 spin liquids we have covered in these lectures so far satisfy these constraints,

and they all have gapped edges.

V. EDGE EXCITATIONS OF QUANTUM SPIN HALL INSULATORS

A great deal of recent work has focused on a particular electron ‘symmetry protected topological’

(SPT) state: the quantum spin Hall insulator [9, 10]. This can also be described in the framework

of Chern-Simons theory [11] with N = 2 U(1) gauge fields and K matrix

K =

 
1 0

0 �1

!
. (49)

Such a K matrix only allows fermionic excitations in the bulk, or their composites: therefore, the

bulk is trivial. A direct extension of the analysis of Section III shows that the edge state of such a

system has 2 copies of the integer quantum Hall edge, one left-moving and the other right-moving.
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So we can write the edge theory in terms of a left-moving fermion  
L

and a right-moving fermion

 
R

S
e

=

Z
dxd⌧

"
 †

L

✓
@

@⌧
+ iv

@

@x

◆
 

L

+ †
R

✓
@

@⌧
� iv

@

@x

◆
 

R

#
. (50)

In the proposed experimental realization, such edge states can appear in the free-electron dispersion

of two-dimensional lattices in the presence of spin-order coupling, with  
L

a spin up fermion (say),

and  
R

a spin down fermion.

Now the key question is whether there are allowed edge operators which can gap out this pair

of edge states. In the absence of any symmetries, we could imagine a back-scattering term like

H0
e

=

Z
dx ⇠(x) †

L

(x) 
R

(x) + c.c., (51)

where we have even allowed for the breaking of translational symmetry on the edge by a disordered

coupling ⇠(x). Such a term, if present, would certainly gap out the edge states of (50). However,

the key observation is that a term like (51) is forbidden in systems with time-reversal symmetry.

Under time-reversal, the electron operator transforms as c" ! ic#, c# ! �ic", and with the

spin assignments noted above, (51) is time-reversal odd. A single-fermion backscattering terms is

therefore forbidden, and the edge states remain gapless.

The situation is more complex when we allow for processes in which 2 fermions are backscattered

[11, 12]. Such terms are allowed by time-reversal, and can be relevant for su�ciently strong

interactions.
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where aI , I = 1, 2 are U(1) gauge connections, and
the K matrix is

K =
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