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In recent years, extensive research has been conducted on the use of nano-
materials in various technologies. One of nanomaterial applications is in
nanofluids[1]. Due to the complexity of the movements of nanoparticles in
nanofluids, calculating the velocity of each of the particles in the fluid is not
possible, but using statistical methods, the average speed of particles can be
found[2,3]. In this paper, nanofluid were exposed to Gaussian laser beam, the
laser light is scattered due to the presence of nanoparticles. The scattered
waves in Fresnel di↵raction zone interfere with each other and create the
bright and dark areas on screen namely Speckle. By measuring the intensity
of the speckles and drawing the intensity variations versus time curve, we are
about to examine the following items: This paper is organized as follows: In
Section 2, we will explain theoretical background of crossing statistics and
its generalizations. Data description and experimental setup to collect data
sets will be demonstrated in section 3. Section 4 is devoted to applications
of crossing statistics on intensity fluctuation of scattered laser light through
a nano-fluid. Summary and concluding remarks will be given in section 5.
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Now F is a (N, d)-stochastic(random) field
In recent years, extensive research has been conducted on the use of nano-

materials in various technologies. One of nanomaterial applications is in
nanofluids[1]. Due to the complexity of the movements of nanoparticles in
nanofluids, calculating the velocity of each of the particles in the fluid is not
possible, but using statistical methods, the average speed of particles can be
found[2,3]. In this paper, nanofluid were exposed to Gaussian laser beam, the
laser light is scattered due to the presence of nanoparticles. The scattered
waves in Fresnel di↵raction zone interfere with each other and create the
bright and dark areas on screen namely Speckle. By measuring the intensity
of the speckles and drawing the intensity variations versus time curve, we are
about to examine the following items: This paper is organized as follows: In
Section 2, we will explain theoretical background of crossing statistics and
its generalizations. Data description and experimental setup to collect data
sets will be demonstrated in section 3. Section 4 is devoted to applications
of crossing statistics on intensity fluctuation of scattered laser light through
a nano-fluid. Summary and concluding remarks will be given in section 5.
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Part 1 
Stochastic fields 

Stochastic processes  
Random fields 
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Peak-Peak correlation function of CMB map in the presence of cosmic strings 3

Figure 1. A sketch for calculating two-point correlation of a
typical feature on a 2-Dimensional stochastic field. The filled cir-
cular symbols show the position of local maxima above a given
threshold value, ϑ. Two concentric circles have just been drawn
to show that in practice how the clustering of peaks is computed
(see text).

The number density of local extrema will be discussed
in section 2. In section 3 the simulation of a CMB map
using the most recent observation based on WMAP 7-year
mission+ Supernova type Ia + Large scale structures +
Baryonic acoustic oscillation will be explained. CMB map
making containing straight cosmic strings by means of
Kaiser-Stebbins phenomenon will be introduced in this
section. Section 4 will be devoted to our analysis and
discussion. Summary, conclusion and strategy of detecting
cosmic strings based on future surveys will be given in
section 5.

2 PEAK-PEAK CORRELATION FUNCTION

Generally, many systems on the nature behave in a stochas-
tic way. Therefore, to explore their relevant properties, we
have to rely on robust methods in statistical approaches. To
this end, there are many criteria proposed to discriminate
various stochastic fields from statistical point of view as well
as to quantify their nature.

The so-called two-point correlation function (TPCF) is
one of the powerful methods in statistical analysis of a de-
sired stochastic field. This method actually provides reliable
inference about clustering and excess probability of finding
typical features in the underlying stochastic field. Conse-
quently it became one of the most advantageous statistical
tools in cosmology and astronomy.

This quantity has been introduced in various references
from different approaches, so several estimators have been
provided (Peacock and Heavens 1985; Bardeen et al. 1986;
Peebles 1980; Bond and Efstathiou 1987; Lumsden et al.
1989; Davis and Peebles 1983; Hamilton 1993; Szapudi and

Szalay 1998; Hewett 1982; Landy and Szalay 1993; Fatemi-
Ghomi et al. 1999). This tool is also able to examine the
Non-Gaussianity of CMB (Tojeiro et al. 2006; Larson and
Wandelt 2005). Generally, estimators of TPCF is divided
in two main categories (Kerscher et al. 2000): I) estimators
based on counting pairs and II) geometric edge correction
approach. The central definition corresponding to the first
category which is used to define TPCF is as follows:

PDR(r) ≡
∑

ri∈D

∑

rj∈R

Φr(ri, rj) (1)

where ”D” means points coming from original data set. ”R”
stands for field in which the underlying features have been
distributed in completely random way with the same physi-
cal properties with respect to original one. Φr(ri, rj) ≡ [r !√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 < r+∆r]. In the case
of statistical isotropy and homogeneity violation, one should
write PDR(ri, rj). So the probability not only depends on
length scale of separation, r, but also on ri and rj as well. It
has been shown that all TPCF estimators give almost sim-
ilar results in small length scales and are encountered with
boundary effects at large scales (Kerscher et al. 2000). Here
to make it more obvious and for the sake of clarity, we are
going to present the mathematical frame work of TPCF and
then apply it to local maxima (peaks) of cosmic microwave
background fluctuations as a 2-Dimensional stochastic field.
According to probability of finding pair of desired features,
dP (r) in the underlaying field and that of in uniform or so-
called an un-clustered field distribution, dPR, one can define
TPCF as (Peacock and Heavens 1985):

dP (r) = [1 + ξ(r)]dPR (2)

In order to examine a 2-Dimensional feature space, consider
∆A to be an infinitesimal area element, consequently the
probability of finding a feature in this area is supposed to
be O(∆A). So we assume that the probability of finding a
feature (e.g. peak) in ∆A is ∆P = n∆A where n is the
surface number density of features. In addition ∆P12 is the
probability of finding a feature in ∆A1 and another in ∆A2

at a certain separation r and is written by:

∆P12(r) = n2∆A1∆A2[1 + ξ12(r)] (3)

If they are not spatially correlated, therefore ξ12(r) becomes
zero for all locations and separations. Therefore the mathe-
matical form of TPCF can be written as:

ξ(r) =
1

NpairsPR(r)

ND∑

i=1

ND∑

j>i

δDirac (r − |ri − rj |)− 1 (4)

where ND is the total number of features in underlying
stochastic field, Npairs is the total number of pairs. We note
that ri, i ∈ [1, ND] is the position of features and the double
summation over the Dirac delta here gives the number of
pairs Npairs(r) with separation r. Eq. (4) becomes:

ξ(r) =
Npairs(r)
nCrdr

− 1 (5)

where Cr is the circumference of the boundary of Ar and
dr is the bin size (see Fig. 1 to make more sense). Above
estimator is encountered with boundary effect in finite size
sample. One way to resolve the boundary effect problem is as
follows: one should use an extended window (see Fig. 2). To
this end, for each given map size, Θ1, an extended map with

Why stochastic field?

Theta

Theta

T

Initial conditions and evolution

r
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Evolution equation of  a stochastic field
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Now F is a (N, d)-stochastic(random) field
Suppose that F is a (N, d) stochastic field. The independent parameter

is N -dimensional parameter called T .

@P ({F}; {T})
@Tj

= LjP ({F}; {T})
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In recent years, extensive research has been conducted on the use of nano-
materials in various technologies. One of nanomaterial applications is in
nanofluids[1]. Due to the complexity of the movements of nanoparticles in
nanofluids, calculating the velocity of each of the particles in the fluid is not

2
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 Ornstein-Uhlenbeck Equation



 Observables
1) Quantitative measures 
2) Geometrical and Topological measures 
3) Dual Space measures  

9
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In recent years, extensive research has been conducted on the use of nano-
materials in various technologies. One of nanomaterial applications is in
nanofluids[1]. Due to the complexity of the movements of nanoparticles in
nanofluids, calculating the velocity of each of the particles in the fluid is not
possible, but using statistical methods, the average speed of particles can be
found[2,3]. In this paper, nanofluid were exposed to Gaussian laser beam, the
laser light is scattered due to the presence of nanoparticles. The scattered
waves in Fresnel di↵raction zone interfere with each other and create the
bright and dark areas on screen namely Speckle. By measuring the intensity
of the speckles and drawing the intensity variations versus time curve, we are
about to examine the following items: This paper is organized as follows: In
Section 2, we will explain theoretical background of crossing statistics and
its generalizations. Data description and experimental setup to collect data
sets will be demonstrated in section 3. Section 4 is devoted to applications
of crossing statistics on intensity fluctuation of scattered laser light through
a nano-fluid. Summary and concluding remarks will be given in section 5.

2. Theoretical Model: Up and down crossing statistics

level crossing or generally crossing statistics has been introduced by S.
O. Rice (20). After that in various disciplines raging from complex systems
and material sciences to cosmology and early universe, mentioned method
has been used and improved(9; 21; 22; 23; 24; 25; 26). Crossing statistics
represents geometrical properties of a typical stochastic process, therefore, it
has proper capability in order to quantify fluctuations in a robust manner.

2
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Probability density function of  features in 
an arbitrary smoothed stochastic field  
Data is considered as regular sampled
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بخش دوم: خواص هندسی و توپولوژیک



General features and some proposed methods
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Figure 2. Skeleton and its local approximation for the Gaussian field of Fig. 1. Upper-left panel: the skeleton is drawn as well as the critical points. Local

minima are in yellow, saddle points in orange and local maxima in red. As discussed in the text, the skeleton passes through all the maxima and the saddle

points. The local maxima are the nodes where several lines converge, while the saddles points have only one line passing through. Note as well that local

maxima are always connected to saddles and reciprocally, except in, for example, the lower left of the panel, where we can see three saddles connected to each

other. This configuration is theoretically forbidden (see discussion in Appendix A) unless there is some degeneracy in the field, which we suspect is because

of our numerical implementation (see Appendix C). Upper-right panel: the skeleton is superposed to the smoothed field. Middle-left panel: same as for the

upper-left panel, but for the local approximation of the skeleton. The dark plus light blue lines assume S = 0 (equation 8), while the light blue lines verify

the more constraining conditions given by equations (2) and (3). Middle-right panel: same as upper-right panel but for the local approximation of the skeleton.

Lower-left and lower-right panels: the local approximation and the real skeleton are again superposed to the smooth field, but restricted to overdense regions

ρ ! ⟨ρ⟩.

From the last argument, the skeleton can be seen as the ensem-

ble of pairs of stable fields lines departing from saddle points and

connecting them to local maxima.8 The skeleton field lines can thus

be drawn by going along the trajectory with the following motion

8 See, however, footnote 7.

equation

dr

dt
≡ v = ∇ρ, (1)

starting from the saddle points, and with initial velocity parallel to

the major axis of the local curvature (i.e. parallel to the eigenvector

of the Hessian corresponding to λ1). The trajectory is followed until
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ABSTRACT

We discuss the skeleton as a probe of the filamentary structures of a two-dimensional random

field. It can be defined for a smooth field as the ensemble of pairs of field lines departing from

saddle points, initially aligned with the major axis of local curvature and connecting them to

local maxima. This definition is thus non-local and makes analytical predictions difficult, so

we propose a local approximation: the local skeleton is given by the set of points where the

gradient is aligned with the local curvature major axis and where the second component of the

local curvature is negative.

We perform a statistical analysis of the length of the total local skeleton, chosen for simplicity

as the set of all points of space where the gradient is either parallel or orthogonal to the main

curvature axis. In all our numerical experiments, which include Gaussian and various non-

Gaussian realizations such as χ 2 fields and Zel’dovich maps, the differential length f of the

skeleton is found within a normalization factor to be very close to the probability distribution

function (pdf) of the smoothed field, as expected and explicitly demonstrated in the Gaussian

case where semi-analytical results are derived.

As a result of the special nature of the skeleton, the differences between f and the pdf

are small but noticeable. We find in the Gaussian case that they increase with the coherence

parameter 0 ! γ ! 1 of the field:

f (x, γ ) ≡
1

Ltot

∂L

∂x
≃

1
√

2π
e−x2/2[1 + 0.15γ 2(x2 − 1) − 0.015γ 4(x4 − 6x2 + 3)].

Here, Ltot is the total length of the skeleton and L(x) is the length of the skeleton in the

excursion ρ > σ x where σ is the variance of the density field. This result makes the skeleton

an interesting alternative probe of non-Gaussianity. Our analyses furthermore assume that the

total length of the skeleton is a free, adjustable parameter. This total length could in fact be

used to constrain cosmological models, in cosmic microwave background maps but also in

three-dimensional galaxy catalogues, where it estimates the total length of filaments in the

Universe.

Making the link with other works, we also show how the skeleton can be used to study the

dynamics of large-scale structure.

Key words: cosmology: theory – large-scale structure of Universe.

1 INTRODUCTION

The observed large-scale distribution of galaxies presents remark-

able structures, such as clusters of galaxies, filaments, sheets and

large voids. It is widely admitted that these structures grew from

⋆E-mail: d.novikov@imperial.ac.uk (DN); colombi@iap.fr (SC); olivier@

astro.princeton.edu (OD)

small initial fluctuations through gravitational instability. At very

large scale, the filamentary pattern seen in the cosmic web is

expected to be similar to that of the initial field (e.g. Bond,

Kofman & Pogosyan 1996). Because these primordial inhomo-

geneities also imprinted the temperature fluctuations seen now in

the cosmic microwave background (CMB), the characterization of

the observed large-scale structures both in galaxy catalogues and in

CMB maps can help to probe the nature of these primordial fluctua-

tions, in particular whether they have a Gaussian distribution or not.

C⃝ 2006 The Authors. Journal compilation C⃝ 2006 RAS

S.M.S.M., B. Javanmardi, R. K. Sheth, MNRAS, (2013)



Topology is (roughly) the study of properties invariant 
under "continuous transformation

- Two shapes are topologically equivalent if and only if one 
shape can continuously deform to the other shape.
e.g. Sphere, cube, pyramid are all topologically equivalent. 
On the other hands, Sphere and torus are different from 
topological point of view. 
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Introduction to topology
Topology is (roughly) the study of properties invariant under "continuous transformation".

More formally:
Let S, T be sets with a structure for which the idea of continuity makes sense. e.g. Subsets of Rn, metric
spaces, ...
Then a bijection f from S to T is called a homeomorphism or topological isomorphism if both f and f-1

are continuous. We then write S  T.
In Klein's formulation, the set of all such maps from a space to itself is a group and topology is the
associated geometry.

Examples

1. A line and a curve are homeomorphic: 

2. A circle S1 and a knot K (subsets of R3) are homeomorphic -- even though one cannot be deformed

into the other (in R3). 

Strangely, R3 - S1 and R3 - K are not homeomorphic.

3. A closed (including its boundary) disc and closed unit square are homeomorphic. 

4. A sphere (the surface) and the surface of a cube are homeomorphic.

"Proof"

A brief about Topology



Why is topology so important?

To answer to this question let me explain PDF and 
correlation function 
- PDF shows the abundance of features 
while 
-correlation corresponds to probability of finding 
features with a condition 

To distinguish between various stochastic fields 
mentioned tools are not enough 



Why topological and geometrical measures?

Both of these fields have same power spectrum
But their textures are completely different 
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Figure 7. Density of peaks as a function of threshold level for
simulated pure Gaussian CMB map and accumulated by cosmic
string component have been illustrated in this plot. Upper left:
Gµ = 2× 10−8. Upper right: Gµ = 1× 10−7. Middle left: Gµ =
8×10−7. In the middle right panel the Gaussian+String simulated
map has been replaced by a simulated Gaussian map that posses
the power spectrum like a Gaussian+String simulated map with
Gµ = 8 × 10−7. The lower panels indicate the residue between
theoretical prediction of number density and that of directly given
by simulation.

of extrema alone is not sufficient, nevertheless it is able to
pick up the footprints of CS for almost Gµ ! 5× 10−7.

This inference could be justified regarding Fig. 8. The
morphology of Gaussian+String map is completely different
from a Gaussian map that contains the same power spec-
trum as Gaussian+String map, in addition the role of su-
perimposed CS in the second map is similar to noise. Sub-
sequently one can expect that the clustering method to be
much more powerful than n(ϑ) and also can be used as a
benchmark for tracking non-Gaussianity. It is interesting to
point out that, recently, Pogosyan et.al. determined theoret-
ical formula for computing the number density of extrema on
weakly non-Gaussian 2-Dimensional field. They showed that
various non-Gaussianity could be distinguished by means of
n(ϑ) (Pogosyan et al. 2011). While here our results demon-
strated that, at least non-Gaussianity due to straight CS is
not detected by direct calculating n(ϑ). Indeed the effect
of CS components on the CMB map according to extrema
counts view is the same as noise irrespective to nature of its
probability density function.

For different values of Gµ with various values of map
size and finite Beam size we have generated ensembles of
100 maps or even more. To check the effect of finite size

Figure 8. Left panel corresponds to a Gaussian+String with
Gµ = 8 × 10−7. Right panel illustrates a Gaussian map with
size 5◦ × 5◦ and resolution equates to R = 1′. Blue dots show the
position of peaks above ϑ = 0.5σ0. One should emphasize that
these two map have same power spectrum. It is clear that the
morphology of these two map are completely different.

Figure 9. Two-Point Correlation Function of peaks for simulated
CMB map. Top panel shows the results for pure Gaussian map as
well as Gaussian+Beam for FWHM equates to 4′ and 10′ at ϑ =
1σ0. Lower panel corresponds to peak-peak correlation function
for Gaussian+Beam with FWHM of beam is 4′ for various values
of ϑ. The map size is 10◦ with resolution R = 1′.

of simulated map and evaluation the reliability of numeri-
cal results, we increased the number of ensemble members
and the size of maps. We use Eq. (7) to compute TPCF for
various maps with size 10 degree and resolution 1 arcmin
(600 × 600 pixels). Fig. 9 indicates the results for Gaus-
sian CMB map. Upper panel of this figures corresponds to
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بخش سوم: مثال 
 Crossing statistics
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T. Matsubara, APJ 2003; S. Codis et. al., 1305.7402, Christophe Gay et. al., PRD 2012

Theoretical approach

One-point statistics

Two-point statistics



Minkowski Functionals

1D field

2D field



1D= no. of crossing 

2D= mean length of iso-density contour

3D= mean surface of iso-density region 

Crossing from Mathematics



23

Theoretical approach for 
Number density of  Up-crossing  

5

FIG. 4: Positive slope crossing at the level H = ↵.

FIG. 5: Sketch of joint probability density function of a typi-
cal fluctuation and its derivative with respect to correspond-
ing dynamical parameter (position) in the level crossing the-
ory. The shaded area indicates the total probability of finding
crossing with positive slope at level H⇧ = ↵.

an extra condition for having up-crossing point in 2-D or
3-D, namely we have to check the situation of stochastic
field in perpendicular direction of up-crossing point. Be-
side mentioned definition one can use another approach
to compute the statistics of up-crossing points. Namely,
we ignore the behavior of underlying field in perpendicu-
lar direction at up-crossing points, consequently to distin-
guish this kind of up-crossing with previous one, we label
them conditional-up-crossing and up-crossing for the for-
mer and the latter approaches, respectively. In this paper
we use the up-crossing statistics through a line taken in
arbitrary direction as a criterion to pick up anisotropy
imposed on a stochastic field in 2-D.

Step2: Preparing data sets: We cut two categories
of slices for height fluctuation in two separate and orthog-
onal directions which are u and w. It must be pointed
out that these two direction are produced by rotation
counterclockwise with respect to the origin of coordinate
through the angle �. For � = 0 the common axes to be
retrieved. We called the (1 + 1)-D fluctuations through
these direction as H

w

(�;n,m) and H
u

(�;n,m). Here
n refers to the nth slice through the w or u directions.
The size of these (1 + 1)-D signals depend on the res-
olution and the direction of slicing of underlying rough
surface. The upper panel of Fig. 4 shows a schematic of
(1 + 1)-D slice of underlying rough surface. If H(r) to
be invariant under Eulerian rotation, consequently the
statistical isotropy will be valid, and in this case each of
mentioned cuts belong to the so-called isotropic Gibbs
ensemble. For the isotropic and homogenous process, in
long run, the conservation law for up-crossing and down-
crossing will be satisfied [50]. Here in this study, we only
take up-crossing events in order to find a benchmark for
anisotropy.

Step3: Theoretical approach: Let the probability
distribution function (PDF) of the height of rough sur-
face be represented by P(H) and the corresponding con-
ditional PDF be defined by P

⌘

(~⌘|H), here ~⌘ ⌘ ~rH. The
gradient of the height can be written as: ~⌘ = ⌘

u

û+ ⌘
w

ŵ.
For both direction u and w, we construct one dimen-
sional fluctuations as H⇧(�;n,m), in which ⇧ symbol can
be replaced by u and w and m runs from 1 to N , here
N is sample size as: L = � ⇥ N . Let n+

⇧ (�;↵) denote
the number of up-crossing (crossing with positive slope)
the height fluctuations at an arbitrary level ↵. Where
the additional parameter � corresponds to the angle be-
tween the direction of a fixed frame and positive axis of
e.g. u (see Fig. 2 for more details). For convenient, we
set ↵ ⌘ H⇧(�;n,m) � hHi. The ensemble averaging for
level crossing with positive slope is also given by:

N+
⇧ (�;↵, L) = hn+

⇧ (�;↵, L)i. (3)

To evaluate the conditions of up-crossing, we consider
a 1-D interval with length � started from position k1�
with its axis parallel to x̂⇧. The sample fluctuations,
H⇧(�;n,m) will intersect the level ↵ in direction x̂⇧ if and
only if two following necessary and su�cient conditions
are satisfied (see the lower panel of Fig. 4):

H⇧(�;n,m1)� hHi < ↵ (4)

and the slope of signal should be larger or at least equal
to the slope of line which is plotted by using the point at
the beginning of interval and point located at the level
↵, namely:

↵� [H⇧(�;n,m1)� hHi]
�

 ⌘⇧(�;n,m1). (5)

For each slicing we set the mean value to zero. Accord-
ing to joint PDF of height fluctuations and its derivative
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 Application for an anisotropic 2+1 D

3

z

θ

y

x
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FIG. 1: Sketch showing the Monte Carlo modeling set-up
for an ion-beam sputtering. As described in the text, an ion
beam trajectory makes an angle ✓ with the axes z, and the
projection of the ion-beam direction on the x�y plane, makes
an angle of �

exp

relative to the x axis. Anisotropic direction
is perpendicular to the x� y projection of the ion-beam.

length anisotropic model, following power spectrum is
used:

S(2�D)(k) =
4⇡��2

0k
2�
c

⇠
u

⇠
w

[k2
c

+ ⇠2
u

k2
u

+ ⇠2
w

k2
w

]�+1 (1)

here ⇠
u

and ⇠
w

are the correlation lengths in u and w
directions, respectively. k

c

is the cuto↵ wave vector and
� is scaling exponent of underlying rough surface height.
�0 is variance of surface. For scaling anisotropic model
we have following power spectrum:

S(2�D)(k) =
4⇡�2
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(2)

here �
u

and �
w

are the scaling exponents in direction
u and w, respectively. Both of above power spectrums
represent the so-called fractional Brownian motion ap-
proach. Two points on stochastic surface separated with
distance r < 1/k

c

are correlated and correlation is dimin-
ished for r > 1/k

c

[73–76].

B. Anisotropic Pattern in Surface Erosion

Surface sputtering by energetic ions (Ne+, Ar+, Xe+,
etc) as an e�cient method to manufacture nano-scale
structures on surface of solids (glass, metals, semicon-
ductors, etc) is widely applied and examined in the last
five decades [77–79].

The base of an Ion-beam sputtering (IBS) experiment
is shooting energetic ions in the range of k-eV toward the
prepared surface of the solid. Etching the surface due to
atomic collision cascades initiated by the energetic ions,
along with enhanced surface di↵usion of lateral ad-atoms

y

x

w

u

φ
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FIG. 2: Upper: Isotropic simulated rough surface for ✓ = 0�

and �

exp

= 0�. Model: An preferred direction for ✓ = 25�

and �

exp

= 23� exists for simulated surface. Lower panel
corresponds to simulated anisotropic rough surface for ✓ =
50� and �

exp

= 0�
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برخورد خط آمار در موازی و عمود حالت دو مقایسه :١٧.٨ ل ش

M. Ghasemi Nezhadhaghighi, S. M. S. M. T. Yasseri, S. M. Vaez Allaei,, Journal of Applied Physics, 2017



Clustering of Up-Crossing
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نتایج برای داده های مشخص شده تمرین



A) Simple for implementation. 
B) Directional nature  
C) Determining the kinds of anisotropies  
D) More sensitive to find exotic feature 

Some advantages of Crossing statistics 
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