كاركاه علم داده: مدل سازى داده (「)

 Topology and Geometry of Stochastic field

 Topology and Geometry of Stochastic field}

سـيلمـحمدصـــالـق مـوحل
دانشكده فيزيك - دانشكاه شهيد بهشتى

كروه كيهان شناسیى محاسباتى (GCC-SBU)
آزمايشكاه ميان رشته الى ابن سينا
http://facultymembers.sbu.ac.ir/movahed/
9^/s/V
تبريز

بخش اول

 بخش دوم
٪) خواص هندسىى و تويولمزيك داده هـا
(Y) تابعى هاى مينكوفسكى براى توصيف ريخت شناسـى داده هـا هـا بخش سوم (مثال) ها) آمـار برخوردهـا جمع بندى

- Algebraic Topology of Random Fields and Complexes, Research thesis, Omer Bobrowski, 2012
- Random Fields and Geometry, Adler, R. J.,Taylor, Jonathan E., Springer 2007.
- The Geometry of Random fields,Adler, I98I.
- GEOMETRY,TOPOLOGY and Physics, M. Nakahara, 2003
- Topological Complexity of Smooth Random Functions, Robert J.Adler, Jonathan E.Taylor, Springer 2009.
- Matsubara, Takahiko. "Statistics of smoothed cosmic fields in perturbation theory. I. Formulation and useful formulae in second-order perturbation theory." The Astrophysical Journal 584.I (2003): I.
- Ghasemi Nezhadhaghighi, M., et al. "Characterization of the anisotropy of rough surfaces: Crossing statistics." Journal of Applied Physics I22.8 (20I7): 085302.
- Pirlar, M.Arshadi, et al. "Crossing statistics of laser light scattered through a nanofluid." JOSA A 34.9 (2017): 1620-I63I.
- http://facultymembers.sbu.ac.ir/movahed/
بـشش اول: داده هـايىى با ماهیت

Part 1 Stochastic fields Stochastic processes Random fields

$$
\begin{gathered}
\{\mathcal{F}, T\} \in \mathcal{M} \\
\mathcal{F}^{d}: \Omega \rightarrow \mathbb{R}^{T} \\
T \subset \mathbb{R}^{N}
\end{gathered}
$$

\mathcal{F} is a (N, d)-stochastic(random) field

Why stochastic field?

(1)

$$
\begin{aligned}
& \text { Mass-Conservation or } \mathcal{L} f=C[f] \\
& \frac{D \rho}{D t}=-\rho \vec{\nabla} \cdot \vec{v}
\end{aligned}
$$

(2) Momentum Conservation

$$
\vec{v}+(\vec{v} \cdot \vec{\nabla}) \vec{v}=-\vec{\nabla} \phi-\frac{\vec{\nabla} \rho}{\rho}
$$

(3) Gravitational instability: Poisson Eq.

$$
\nabla^{2} \neq=4 \pi G \rho
$$

(4) Entropy conservation

$$
\frac{D S}{D t}=\frac{\partial S}{\partial t}+(\bar{v} \cdot \bar{\nabla}) S=0
$$

(5) Equation of state $\mathrm{P} \rightarrow \rho$

Evolution equation of a stochastic field

Suppose that \mathcal{F} is a (N, d) stochastic field. The independent parameter is N-dimensional parameter called T.

$$
\begin{gathered}
\frac{\partial P(\{\mathcal{F}\} ;\{T\})}{\partial T_{j}}=\mathcal{L}_{j} P(\{\mathcal{F}\} ;\{T\}) \\
\mathcal{L}_{j} \equiv \sum_{\nu=1}^{\infty} \frac{(-\partial)^{\nu}}{\partial \mathcal{F}_{i_{1}} \partial \mathcal{F}_{i_{2}} \ldots \partial \mathcal{F}_{i_{\nu}}} D_{i_{1}, i_{2} \ldots i_{\nu}}^{(\nu)}\left(\{\mathcal{F}\} ; T_{j}\right)
\end{gathered}
$$

If $D^{(\nu)}=0$ for $\nu \geq 3$ therefore

$$
\frac{\partial \mathcal{F}_{i}}{\partial T_{j}}=D_{i}^{(1)}\left(\{\mathcal{F}\} ; T_{j}\right)+\sqrt{D_{i k}^{(2)}\left(\{\mathcal{F}\} ; T_{j}\right)} \eta_{k}\left(\{\mathcal{F}\} ; T_{j}\right)
$$

where

$$
\left\langle\eta_{i}(\{\mathcal{F}\} ;\{T\}) \eta_{j}(\{\mathcal{F}\} ;\{T\})\right\rangle=\delta_{i j} \delta_{D}\left(\mathcal{F}_{i}, \mathcal{F}_{j}\right)
$$

Ornstein-Uhlenbeck Equation

$$
\begin{aligned}
& \dot{x}_{i}(t)+\sum_{j=1}^{M} \xi_{i j} \dot{x}_{j}=\eta_{i}(t) \quad\left\langle\eta_{i}(t) \eta_{j}\left(t^{\prime}\right)\right\rangle=\delta_{i j} \delta_{D}\left(t-t^{\prime}\right) \\
& \dot{v}(t)=-\xi v(t)+\eta(t) \rightarrow \text { Stationary regime } \rightarrow M B . \text { Distribution } \\
& \dot{x}(t)=\int G\left(t, t^{\prime}\right) \xi\left(t^{\prime}, x\right) d t^{\prime}+K(x, t) \eta(t) \\
& \left\langle\eta(t) \eta\left(t^{\prime}\right)\right\rangle=\delta_{D}\left(t-t^{\prime}\right)
\end{aligned}
$$

Observables

1) Quantitative measures
 2) Geometrical and Topological measures
 3) Dual Space measures

$$
\begin{array}{ll}
\delta(t ; \bar{X}) \equiv \frac{\rho(t ; \bar{X})-\langle\rho(t ; \bar{X})\rangle}{\langle\rho(t ; \bar{X})\rangle} & \delta \Phi(t ; \bar{X}) \equiv \frac{\Phi(t ; \bar{X})-\langle\Phi(t ; \bar{X})\rangle}{\langle\Phi(t ; \bar{X})\rangle} \\
\delta \vec{V}(t ; \bar{X}) \equiv \frac{\vec{V}(t ; \bar{X})-\langle\vec{V}(t ; \bar{X})\rangle}{\langle\vec{V}(t ; \bar{X})\rangle} & \delta T(t ; \bar{X}) \equiv \frac{T(t ; \bar{X})-\langle T(t ; \bar{X})\rangle}{\langle T(t ; \bar{X})\rangle}
\end{array}
$$

$$
\begin{aligned}
A_{\mu v \eta \ldots}= & \left(\alpha\left(r_{\mu}\right), \alpha\left(r_{\mu}\right)_{; 1}, \alpha\left(r_{\mu}\right)_{; 2}, \alpha\left(r_{\mu}\right)_{; 3}, \alpha\left(r_{\mu}\right)_{; 11}, \alpha\left(r_{\mu}\right)_{; 22}, \alpha\left(r_{\mu}\right)_{; 33}, \alpha\left(r_{\mu}\right)_{; 12}, \alpha\left(r_{\mu}\right)_{; 13}, \alpha\left(r_{\mu}\right)_{; 23}\right. \\
& \left(\alpha\left(r_{v}\right), \alpha\left(r_{v}\right)_{; 1}, \alpha\left(r_{v}\right)_{; 2}, \alpha\left(r_{v}\right)_{; 3}, \alpha\left(r_{v}\right)_{; 11}, \alpha\left(r_{v}\right)_{; 22}, \alpha\left(r_{v}\right)_{; 33}, \alpha\left(r_{v}\right)_{; 12}, \alpha\left(r_{v}\right)_{; 13}, \alpha\left(r_{v}\right)_{; 23}, \ldots\right)
\end{aligned}
$$

$$
\langle\mathcal{F}(A)\rangle=\int d^{N} A \mathcal{F}(A) P(A)
$$

Probability density function of features in an arbitrary smoothed stochastic field Data is considered as regular sampled

Perturbative expansion of Statistics 1

$$
\begin{aligned}
& f \rightarrow f^{\prime} \equiv f-\langle f\rangle \rightarrow\left\langle f^{\prime}\right\rangle=0 \quad \sigma_{0}^{2}=\left\langle f^{2}\right\rangle=\frac{1}{(2 \pi)^{d / 2}} \int d^{d} k P(k) \quad \alpha \equiv \frac{f}{\sigma_{0}} \\
& A_{\mu \eta_{1}}=\left(\alpha\left(r_{\mu}\right), \alpha\left(r_{\mu}\right)_{1 ;}, \alpha\left(r_{\mu}\right)_{2}, \alpha\left(r_{\mu}\right)_{3 ;}, \alpha\left(r_{\mu}\right)_{11}, \alpha\left(r_{\mu}\right)_{; 22}, \alpha\left(r_{\mu}\right)_{33}, \alpha\left(r_{\mu}\right)_{12}, \alpha\left(r_{\mu}\right)_{13}, \alpha\left(r_{\mu}\right)_{23},\right. \\
& \left(\alpha\left(r_{v}\right), \alpha\left(r_{v}\right)_{1}, \alpha\left(r_{v}\right)_{22}, \alpha\left(r_{v}\right)_{3,3}, \alpha\left(r_{v}\right)_{11}, \alpha\left(r_{v}\right)_{22}, \alpha\left(r_{v}\right)_{33}, \alpha\left(r_{v}\right)_{i 2}, \alpha\left(r_{v}\right)_{)_{13}}, \alpha\left(r_{v}\right)_{23}, \ldots\right) \\
& Z_{A}(\lambda) \equiv\langle\exp (i \lambda \cdot A)\rangle_{A}=\int_{-\infty}^{+\infty} d^{N} A P(A) \exp (i \lambda \cdot A) \\
& =1+\sum_{n=1} \frac{i^{n}}{n!}\left(\sum_{\mu_{1}=1}^{N} \sum_{\mu_{2}=1}^{N} \cdots \sum_{\mu_{a}=1}^{N} \sum_{v_{1}=1}^{N} \sum_{v_{2}=1}^{N} \cdots \sum_{v_{v}=1}^{N} M_{\left.\mu_{1}, \nu_{2}=\mu_{a}\right) \gamma_{1}, v_{2}, v_{s}}^{\left(a+v_{\mu_{1}}\right.} \lambda_{\mu_{1}} \lambda_{\mu_{2}} \ldots \lambda_{\mu_{s}} \lambda_{v_{1}} \lambda_{v_{2}} \ldots \lambda_{v_{b}}\right) \\
& \left.\ln \left(Z_{A}(\lambda)\right)=\sum_{n=1} \frac{i^{n}}{n!}!\sum_{\mu_{1}=1}^{N} \sum_{\mu_{2}=1}^{N} \cdots \sum_{\mu_{a}=1}^{N} \sum_{v_{1}=1}^{N} \sum_{v_{2}=1}^{N} \cdots \sum_{v_{b}=1}^{N} K_{\mu_{1}}^{\left(\alpha+b_{2}=\mu_{2}\right) \mu_{2}, v_{1}, v_{2}, v_{b}} \lambda_{\mu_{1}} \lambda_{\mu_{2}} \ldots \lambda_{\mu_{a}} \lambda_{v_{1}} \lambda_{v_{2}} \ldots \lambda_{v_{b}}\right) \\
& \text { Free energy }
\end{aligned}
$$

Perturbative expansion of Statistics 2

$$
\begin{aligned}
& \langle F\rangle_{A}=\int_{-\infty}^{+\infty} d^{N} A P(A) F
\end{aligned}
$$

$$
\begin{aligned}
& \langle F\rangle_{A}=\langle F\rangle_{G}+\frac{1}{3!} \sum_{\mu_{1}=1}^{N} \sum_{\mu_{2}=1}^{N} \sum_{\mu_{3}=1}^{N} K_{\mu, \mu_{2} \mu_{s}}^{(3)}\left\langle F_{: \mu \mu_{2} \mu_{3}}\right\rangle_{G}+\ldots . \\
& F \equiv \delta(\alpha-\beta) \quad \alpha \equiv \frac{f}{\sigma_{0}} \\
& P(\alpha)=\int d A_{\mu_{2}} d A_{\mu_{3}} \ldots d A_{\mu_{N}} \delta(\alpha-\beta) P(\vec{A}) \\
& P(f)=\frac{1}{\sqrt{2 \pi \sigma_{0}^{2}}} \exp \left(-\frac{\alpha^{2}}{2}\right)+\frac{1}{3!}{ }_{111}^{(3)}\left|\frac{\partial^{3} \delta(\alpha-\beta)}{\partial \beta^{3}}\right\rangle_{G}+\ldots \\
& P(f)=\frac{1}{\sqrt{2 \pi \sigma_{0}^{2}}} \exp \left(-\frac{\alpha^{2}}{2}\right)\left[1+\frac{1}{6} K_{111}^{(3)} H_{3}(\underset{\sim}{\alpha})+\mathrm{O}\left(\sigma_{0}^{3}\right)\right]
\end{aligned}
$$

Perturbative expansion of Statistics III

$$
P_{G}(\vec{A})=\frac{\exp \left(-\frac{1}{2} \vec{A}^{T} \cdot\left(K^{(2)}\right)^{-1} \cdot \vec{A}\right)}{(2 \pi)^{N / 2} \sqrt{\operatorname{Det}\left|K^{(2)}\right|}}
$$

Covariance matrix or The inverse of Fisher information matrix

$$
\begin{aligned}
& Z_{A}(\lambda) \equiv\langle\exp (i \lambda \cdot A)\rangle_{A}=\int_{-\infty}^{+\infty} d^{N} A P(A) \exp (i \lambda \cdot A) \\
& P(\vec{A})=\frac{1}{(2 \pi)^{N}} t_{-\infty}^{+\infty} d^{N} \lambda Z_{A}(\lambda) \exp (-i \lambda \cdot A)
\end{aligned}
$$

$$
\begin{aligned}
& \times P_{G}(\vec{A})
\end{aligned}
$$

بخش لوم: خواص هندسى و تصيلِلوزيك

General features and some proposed methods

A brief about Topology

Topology is (roughly) the study of properties invariant under "continuous transformation

- Two shapes are topologically equivalent if and only if one shape can continuously deform to the other shape. e.g. Sphere, cube, pyramid are all topologically equivalent. On the other hands, Sphere and torus are different from topological point of view.

Why is topology so important?

To answer to this question let me explain PDF and correlation function

- PDF shows the abundance of features while
-correlation corresponds to probability of finding features with a condition

To distinguish between various stochastic fields mentioned tools are not enough

Why topological and geometrical measures?

Both of these fields have same power spectrum But their textures are completely different

GS

Gaussian-GS

بَشُ سومْ: مثًال Crossing statistics

Theoretical approach

One-point statistics

$$
\begin{aligned}
\langle f\rangle & =\langle\text { Conditions correspond to feature }\rangle \\
& =\langle f\rangle_{\text {Gaussian }}+\text { Perturbative Parts }\left.\right|_{N G+\text { Anisotropy }}
\end{aligned}
$$

Two-point statistics

$$
\begin{aligned}
\left\langle f\left(r_{1}\right) g\left(r_{2}\right)\right\rangle & =\int d A_{1} d A_{2} P\left(A_{1}, A_{2}\right) f\left(r_{1}\right) g\left(r_{2}\right) \\
P\left(\vec{A}_{1}, \vec{A}_{2}\right) & =\left[\frac{1}{2 \pi^{N} \operatorname{Det}(K)}\right]^{1 / 2} \exp \left(-\frac{A_{1}^{+} \cdot K^{-1} \cdot A_{2}}{2}\right)
\end{aligned}
$$

Minkowski Functionals

ID field

$$
\begin{aligned}
& V_{0}(\nu)=\int_{Q} d l=\langle\theta(\alpha-\nu)\rangle \\
& V_{1}(\nu)=\int_{\partial Q} d l=\frac{1}{2}\left\langle\delta_{D}(\alpha-\nu) \mid \eta_{1},\right\rangle \sim N_{1}(\nu)
\end{aligned}
$$

2D field

$$
\begin{aligned}
V_{0}(\nu) & =\int_{Q} d A=\langle\theta(\alpha-\nu)\rangle \\
V_{1}(\nu) & \left.=\frac{1}{4} \int_{\partial Q} d l=\frac{\pi}{8}\left\langle\delta_{D}(\alpha-\nu) \mid \eta_{1}\right\rangle\right\rangle \sim N_{1}(\nu) \\
V_{2}(\nu) & =\frac{1}{2 \pi} \int_{\partial \alpha} k d l=-1_{2}\left\langle\delta _ { D } (\alpha , \nu) \delta _ { D } \left(\eta,\left|\eta \eta_{2} \xi_{\mu}\right\rangle\right.\right.
\end{aligned}
$$

(1) $\delta\left(x_{1}\right)<\nu \sigma_{0}$

$$
\begin{aligned}
\Delta x N_{t}(\nu) & =\lim _{\Delta x \rightarrow 0} \int d \eta_{x} \int_{\nu \sigma_{0}-\eta \eta_{x} \mid}^{\nu \sigma_{0}} d \delta P\left(\eta_{x}, \delta\right) \quad \mid D=\text { no. of crossing } \\
& =\int d \eta_{x} \Delta x\left|\eta_{x}\right| P\left(\eta_{x}, \delta=\nu \sigma_{0}\right)=\left\langle\delta_{D}(\alpha-\nu)\right| \eta_{1}\left|\theta\left(\eta_{1}\right)\right\rangle
\end{aligned}
$$

$2 \mathrm{D}=$ mean length of iso-density contour

$$
\left.N_{2}(\nu)=\int d \eta_{x} d \eta_{y}\left(\eta_{x_{1}}^{2}+\eta_{y}^{2}\right)^{1 / 2} p(\vec{\eta}, \nu \sigma)=\left\langle\delta_{D}(\alpha-\nu)\right| \eta_{x}^{2}+\left.\eta_{y}^{2}\right|^{1 / 2}\right\rangle
$$

3D= mean surface of iso-density region

$$
\left.N_{3}(\nu)=\int d_{\eta_{x}} d \eta_{y} d_{\eta_{z}}|\vec{\eta}| P\left(\vec{\eta}, \nu \sigma_{0}\right)=\left\langle\delta_{D}(\alpha-\nu)\right| \eta_{x}^{2}+\eta_{y}^{2}+\left.\eta_{z}^{2}\right|^{1 / 2}\right\rangle
$$

Theoretical approach for Number density of Up-crossing

$$
\begin{aligned}
& \left\langle n_{P}(\vec{r})\right\rangle=\sum_{\overrightarrow{r_{P}}} \delta_{D}\left(\vec{r}-\vec{r}_{p}\right)=\int d A^{\mu} P\left(A^{\mu}\right) \delta_{P}\left(\vec{r}-\vec{r}_{p}\right) \\
& \left.\left.A^{\mu}: \mid \alpha(\vec{r}), \vec{\eta}^{(\vec{r}}\right), \xi_{i j}\right) \\
& \langle n(\vec{r})\rangle=\int d A^{\mu}[\text { Transferfunction }] P\left(A^{\mu}\right)
\end{aligned}
$$

Ex: Up-Crossing for $\alpha(\vec{r})=\nu \sigma_{0}$

$$
\left\langle n_{u}(\vec{r})\right\rangle=\left\langle\delta_{D}\left(\alpha-\nu \sigma_{0}\right)\right| \vec{\eta}|\theta(\vec{\eta})\rangle
$$

Perturbative parts in D-dimension for Isotropic field

$$
\begin{aligned}
N_{1}(\nu)= & \left\langle\delta_{D}(\alpha-\nu)\right| \eta_{1}\left|\theta\left(\eta_{1}\right)\right\rangle \sim[\text { Independent parameter }]^{-1} \\
= & N_{1}^{G}(\nu)+\text { Perturbative Ports } \\
= & \frac{1}{\pi} \frac{\sigma_{1}}{\sqrt{D} \sigma_{0}} e^{-\nu^{2} / 2}+N_{1}^{N G}(\nu) \\
= & N_{1}^{G}(\nu)\left[1+A \sigma_{0}+B \sigma_{0}^{2}+\theta\left(\sigma_{0}^{3}\right)\right] \quad A=\frac{S}{6} H_{3}(\nu)+\frac{s^{(1)}}{3} H_{1}(\nu) \\
B= & \frac{1}{24}\left(K-S s^{(1)}\right) H_{4}(\nu)-H_{2}(\nu)\left(\frac{1}{12} K^{(1)}+\frac{1}{96} s^{(1) 2}\right)+\frac{1}{72} s^{2} H_{6}(\nu)+\frac{1}{8}\left(-K^{(3)}\right) \\
& S=\frac{\left\langle\alpha^{3}\right\rangle}{\sigma_{0}^{\prime}}, \quad S^{(1)}=-\frac{3}{4} \frac{\left\langle^{2} \nabla^{2} \nabla^{2}\right\rangle}{\sigma^{2} \sigma_{1}^{2}}, K^{(3)}=\frac{\left\langle\nabla f^{4}\right\rangle}{2 \sigma_{0}^{2} \sigma_{1}^{4}}
\end{aligned}
$$

Application for an anisotropic 2+1 D

Clustering of Up-Crossing

crossing in y above a threshold

crossing in x above a threshold

Import Dato $\left\{x_{i} t . i=1, \ldots N\right.$

$$
\Delta x=\frac{M_{\operatorname{ax}}(x)-M_{\operatorname{in}(x)}}{M_{\text {Pet) } \uparrow}}
$$

Minkowsko

Loo on Data $i=1, N$

$$
\left[\begin{array}{c}
\text { loop } \left.l=K_{\min }\right) K, \Delta K \\
N o(l)=N \sigma(l)+1
\end{array}\right.
$$

"َ

End loop

$$
N 0=\frac{N 0}{N} \quad, \frac{8}{8, i d}
$$

MinKowskil

loop on Dato $i=1, N-1$

$$
\begin{aligned}
& K_{1}=\frac{x(i)}{\Delta x} \\
& K_{2}=\frac{x(i+1)}{\Delta x}
\end{aligned}
$$

$$
\left[\begin{array}{c}
\text { If } x(i+1) \geqslant x(i) \\
{\left[\begin{array}{c}
\text { loop } \ell=K_{1}, K_{2}, \Delta K \\
N(l)=N \mid(l)+1
\end{array}\right.}
\end{array}\right\}
$$

فتط بְ\&

$$
N I=N 1 / N
$$

$N_{1}=2 N_{1} \longleftarrow$ only for Stationary and Regular Data
End program

Some advantages of Crossing statistics

A) Simple for implementation.
B) Directional nature
C) Determining the kinds of anisotropies
D) More sensitive to find exotic feature

