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Abstract

This thesis demonstrates the application of the lattice Boltzmann method for topology
optimization problems. Specifically, the focus is on problems in which time-dependent
flow dynamics have significant impact on the performance of the devices to be
optimized. The thesis introduces new topology optimization problems for both
isothermal and thermal flows, and it is demonstrated that topology optimization can
account for unsteady flow effects during the optimization process.

The introduced optimization problems are solved using a gradient based approach,
and the design sensitivities are computed using a discrete adjoint approach. To
handle the complexity of the discrete adjoint approach more easily, a method for
computing it based on automatic differentiation is introduced, which can be adapted
to any lattice Boltzmann type method. For example, while it is derived in the context
of an isothermal lattice Boltzmann model, it is shown that the method can be easily
extended to a thermal model as well.

Finally, the predicted behavior of an optimized design is compared to the equiva-
lent prediction from a commercial finite element solver. It is found that the weakly
compressible nature of the lattice Boltzmann method leads to a discrepancy in the
predicted outcomes. Further research is required to determine which prediction is
more accurate, and what implications the discrepancy has for the optimized designs.
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Resumé

Denne afhandling demonstrerer anvendelsen af lattice Boltzmann metoden til topolo-
gioptimeringsproblemer. Mere specifikt er fokus på problemer for hvilke tidsafhængige
væskestrømninger er betydningsfulde for ydeevnen af de apparater der skal optimeres.
Afhandlingen introducerer nye topologioptimeringsproblemer for både isotermiske
og termiske væskestrømninger, og det demonstreres at topologioptimering kan tage
højde for tidsafhængige strømningseffekter under optimeringsprocessen.

De introducerede optimeringsproblemer løses ved hjælp af en gradient baseret
fremgangsmåde, og design sensitiviteterne beregnes med en diskret adjoint metode.
For nemmere at håndtere kompleksiteten af den diskrete adjoint metode, introduceres
en fremgangmåde til at beregne den baseret på automatisk differentiation, som kan
tilpasses til enhver lattice Boltzmann model. For eksempel vises det at fremgangsmå-
den nemt kan tilpasses til en termisk lattice Boltzmann model, på trods af at den er
udledt for en isotermisk model.

Endelig sammenlignes den forudsete adfærd af et optimeret design med den
ækvivalente forudsigelse fra en kommerciel finite element løser. Det konstateres at
lattice Boltzmann metodens svagt kompressible natur fører til en uoverensstemmelse
mellem de forudsete resultater. Yderligere forskning er påkrævet for at afgøre hvilken
forudsigelse der er mest nøjagtig, samt hvilke konsekvenser uoverensstemmelsen har
for de optimerede design.
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1 Introduction

1.1 Motivation and goal

Fluid devices which manipulate or control the dynamic flow behavior of a variety
of fluids are ubiquitous in the modern world, with many important applications
in e.g. in-door climate control, refrigeration, printing, et cetera. Many of these
applications involve some sort of temperature control, an obvious example being the
heat sink and/or fans present in laptops. Due to the highly non-linear nature of
fluid dynamics, many of these devices use designs which are based on engineering
experience, but are not necessarily optimal.

The topology optimization method is capable of generating optimized designs
without necessarily needing to start from a well defined initial design and optimizing
from there. The method has been applied to fluid dynamics design problems in
numerous works, but the majority of these exclusively focus on optimizing for steady
state fluid flow. Many fluid systems of engineering interest are dynamic in time,
and thus exhibit unsteady flow behavior. This cannot be accounted for when using
steady state optimization. The available literature on unsteady flow optimization is
relatively sparse, however, likely due to the high computational cost of simulating
these systems.

The lattice Boltzmann method is an alternative method of simulating fluid flows,
which is based on kinetic theory. It is an explicit computational scheme which
is well suited for parallel execution, meaning it can potentially simulate unsteady
flow systems more efficiently than traditional fluid flow solvers. The goal of this
thesis is to apply the lattice Boltzmann method to unsteady fluid flow topology
optimization problems, starting with problems without temperature dependence and
later extending to the more complicated case of thermal problems. The parallel
implementation of the method allows solving optimization problems at a larger
scale than has previously been presented in the existing literature on unsteady flow
topology optimization, potentially paving the way for the discovery of designs which
perform better than existing, non-optimized variants.

1.2 Structure

The document is structured as follows: chapter 2–4 are theoretical, covering the
basic physical theory, the lattice Boltzmann method, and topology optimization,
respectively. These chapters are included to make the text self-contained, and can be
skimmed or skipped if the reader is already familiar with their respective topics. The
novel scientific contributions of the present work are presented in chapter 5–7, which
cover topology optimization for unsteady isothermal flow problems, the application of
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2 CHAPTER 1. INTRODUCTION

automatic differentiation for computing the design sensitivities, and unsteady thermal
flow problems, respectively. Chapter 5 and 6 summarize the findings of the two
papers published as part of this work, [P1] and [P2], respectively. In addition, chapter
5 documents some extensions of the work presented in [P1], which are unpublished.
Meanwhile, chapter 7 is composed wholly of unpublished material. Finally, chapter 8
summarizes the findings presented in the thesis and offers some additional discussion,
and suggestions for future work.

1.3 A readers guide

This thesis covers a broad range of scientific topics, each deep enough that entire
books could be (and have been) written about them. It has been the goal of the
author to make the text reasonably self-contained, but since no-one would want to
read a thesis which is 500 pages long, the coverage given here is by necessity not
comprehensive.

Because of this, each chapter begins with a short overview of the material
covered, and—just as importantly—the material which will not be covered; in both
cases references will be provided so that the interested reader might pursue further
details. The text assumes that the reader has some degree of familiarity with partial
differential equations, optimization theory, numerical methods, and linear algebra.
Knowledge of computational fluid dynamics would also be advantageous.



2 Physical theory

The goal of this chapter is to cover the physical concepts needed for further develop-
ment, as well as the partial differential equations (PDEs) which govern the dynamics
of the physical systems of interest. The purpose is not to go into the details of the
derivation of these equations, but merely state them for future reference. The chapter
will cover two major topics: continuum fluid dynamics, covered in section 2.1, and
kinetic theory, covered in section 2.2. The material on continuum fluid dynamics
is based on [1, 2], while the material on kinetic theory is based on [3–5]. These
sources contain much more extensive details on the equations given below, including
derivations, should this be of interest to the reader.

In addition to the core PDEs of continuum fluid dynamics, section 2.1 also
covers non-dimensionalization of said PDEs, as well as the essential non-dimensional
numbers associated with this process. It does not cover any of the conventional
methods for solving the governing equations numerically, such as the finite difference
method [6], the finite element method [7–9] or the finite volume method [10, 11].
Since the lattice Boltzmann method derives from the kinetic theory of gases, this
document would be incomplete if some exposition of this topic was not given. Despite
this, it should be strongly emphasized that the lattice Boltzmann method—for the
purposes of this thesis—is a means to an end, namely the efficient simulation of
continuum dynamics. Therefore, the section on kinetic theory is kept brief, covering
only the key ideas and equations necessary to present the lattice Boltzmann method
in a self-contained manner. Readers interested in an in-depth study of kinetic theory
may consult the references given in the first paragraph above, as well as [12,13].

As stated above, the end goal is to simulate continuum dynamics by means
of a method which derives from kinetic theory. This implies that there is some
connection between the two physical models. A common mathematical technique for
linking them is the so-called Chapmann-Enskog expansion [14–16], which is a type
of asymptotic expansion. In the modern literature, this technique is often applied
directly to the discretized lattice Boltzmann equation, and results derived from this
application will be discussed in chapter 3. That said, the method was originally
developed to analyze the continuous Boltzmann equation directly. For details on
this, the reader is referred to [17].

2.1 Continuum fluid dynamics

The continuum treatment of fluids approximates the fluid medium to be modelled as
an infinitely fine collection of fluid particles. This view fits well with our intuitive,
everyday experience of fluids. Despite the modern understanding that fluids are,
in fact, comprised of a finite number of discrete particles, i.e. atoms and molecules,

3



4 CHAPTER 2. PHYSICAL THEORY

the continuum model is widely applicable across numerous engineering disciplines.
Generally speaking, the continuum model is valid if the smallest fluid volume of
interest—which may be small compared to the overall system size—is still very large
compared to the size of individual fluid particles. To put this in perspective, a 0.05 mL
droplet of water contains of order 1.5 sextillion (= 1.5×1021) water molecules; indeed,
the miniscule size of atomic particles means that the continuum model remains a
very good approximation even for system sizes at the µm level.

2.1.1 Governing equations

The continuum model allows the fluid to be modelled in terms of macroscopic
quantities: the density ρ, the pressure p, the velocity u, and if needed, the temperature
T . The temporal and spatial variation of these quantities are modelled using a set of
PDEs.

The first PDE is the continuity equation, which expresses the conservation of
mass:

∂ρ

∂t
+ ∇ · (ρu) = 0. (2.1)

A large class of fluidic systems can be modelled as incompressible, meaning that the
density ρ is constant for all times and spatial positions. In this case, (2.1) simplifies
to

∇ · u = 0. (2.2)

Compressible fluid dynamics is in itself a huge area of study, and shall not be covered
in detail in this thesis. Nonetheless, it should be noted at this stage that the lattice
Boltzmann method is weakly compressible, which means that in practice one cannot
use it to simulate a fluid with ρ being truly constant. More details on this will be
given in chapter 3.

The second PDE is the celebrated Navier-Stokes equation, which expresses the
conservation of momentum. Here, it is given only in its incompressible form relevant
to this thesis:

ρ

(
∂u

∂t
+ (u ·∇)u

)
= −∇p+ µ∇2u, (2.3)

where µ is the fluid viscosity. Given appropriate initial and boundary conditions, (2.2)
and (2.3) form a solvable system of equations for the dynamics of p and u. However,
if the density ρ is not constant—as in the lattice Boltzmann method—an additional
equation is required. This requirement is fulfilled by the equation of state, which
relates the pressure p to the density ρ and temperature T . The most well-known
equation of state is the ideal gas law, given by

p = ρRT, (2.4)

where R is the ideal gas constant.
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In the case where the fluid system to be modeled is not of uniform temperature
(isothermal), an additional equation is needed to solve for the temperature T . The
simplest such equation is the temperature advection-diffusion equation:

∂T

∂t
+ ∇ · (uT ) = D∇2T, (2.5)

where D is the temperature diffusivity. Like the continuity and Navier-Stokes
equations, (2.5) expresses a conservation law, in this case the conservation of energy.
The validity of (2.5) rests on the assumption that temperature gradients do not
significantly influence the velocity field u. In this type of flow—referred to as a forced
convection flow—there is only a one-way coupling between the velocity field and the
temperature field; that is, the velocity field affects the dynamics of the temperature
field, but the converse is not true.

2.1.2 Dimensionless numbers
This section will briefly introduce the various dimensionless numbers relevant for the
characterization of the fluid flow simulations presented later. An in-depth discussion
of the flow characteristics at various values of these numbers are beyond the scope of
this thesis.

As discussed, the continuum model makes the assumption that the relevant fluid
domain sizes are large compared to the size of the individual fluid particles. Following
the exposition by Krüger et al. [5], this is formalized by considering the following
hierarchy of length scales:

1. The size of the fluid atom or molecule, La.

2. The mean distance traveled by fluid particles between successive particle
collision, also called the mean free path, Lmfp.

3. The typical length scale of gradients for relevant macroscopic properties, L0.

4. The system size, LS.

These length scales have the typical ordering La � Lmfp � L0 ≤ LS. However, for
very small scale system sizes, it is feasible that Lmfp ∼ L0. The ratio between these
two length scale defines the Knudsen number :

Kn = Lmfp

L0
. (2.6)

For the continuum model to be accurate, it is required that Kn� 1; conversely, for
Kn ≥ 1, a more fine grained model of the fluid is appropriate. This model is provided
by kinetic theory, which is the subject of section 2.2.

Another assumption made by equations (2.2)–(2.3) is that the fluid is incom-
pressible. For this to be a good approximation, compression waves in the fluid must
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travel much faster than the bulk advection in the fluid. The Mach number provides
a measure of this. It is given by

Ma = |u0|
cs

, (2.7)

where |u0| is the characteristic velocity magnitude for the flow, and cs is the speed
of sound. In practice, the incompressibility assumption is usually valid if Ma ≤ 0.1.

While the Knudsen and Mach numbers provide some measure of the accuracy of
the simplifying assumptions underlying the Navier-Stokes equations, there are other
factors which influence the actual dynamics described by the Navier-Stokes equations.
One important such factor to consider is the well-known Reynolds number, which is
defined as the ratio of inertial to viscous forces acting in the fluid. It is given by

Re = |u0|L0

ν
, (2.8)

where ν = µ/ρ is the kinematic viscosity. The Reynolds number is important
because the dynamics of moving fluids vary wildly at different Reynolds numbers.
At low Reynolds number, the flow is laminar, which is characterized by smooth,
slowly varying fluid motion. Meanwhile, high Reynolds number flows are turbulent,
characterized by rapidly varying—even chaotic—flow behavior.

In the case of thermal fluid flow, the Prandtl number is also relevant. It is defined
as the ratio of momentum to thermal diffusivity, i.e.

Pr = ν

D
. (2.9)

As a final comment, note that the choice of characteristic length and velocity
scales are somewhat arbitrary. Often, the length scale is chosen as the length of some
geometrical feature in the fluid domain, while the velocity scale is chosen to be equal
to the velocity at a boundary where it is known. The important part is that one
must always document these choices.

2.1.3 Non-dimensionalization of the governing equations

In order to decouple numerical solutions of the Navier-Stokes equations from the
arbitrary choice of units, it is common practice to put them in so-called dimensionless
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form. This is achieved by introducing the following dimensionless quantities:

x̃ = 1
L0
x, (2.10a)

t̃ = 1
t0
t, (2.10b)

ũ = 1
|u0|

u = t0
L0
u, (2.10c)

p̃ = 1
ρ|u0|2

p. (2.10d)

With proper rescaling of the derivative operators, this results in the dimensionless
Navier-Stokes equations, given by

∇x̃ · ũ = 0, (2.11)
∂ũ

∂t̃
+ (ũ ·∇x̃)ũ = −∇x̃p̃+ 1

Re∇
2
x̃ũ. (2.12)

The advantage of this is that it allows decoupling the results of fluid dynamics
simulations from the (arbitrary) choice of units. Indeed, the law of similarity states
that two incompressible flow systems have the same dynamics (in dimensionless
units) if they have the same geometry and Reynolds number [18].

2.2 Kinetic theory

As covered above, in the continuum model of fluid dynamics, the fluid is modeled at
a macroscopic level. This means that the bulk dynamics of the fluid can be described
in terms of the spatial and temporal variations of pressure, velocity, and temperature.
It is not necessary to know or care about the microscopic fluid particles, even though
the macroscopic behavior emerges from their dynamics. This is crucial because the
sheer number of atomic particles means that it is completely impractical to model
fluid systems of realistic size by considering each particle individually.

While the continuum model is widely applicable, there are nonetheless cases
in which the approximation is not sufficiently accurate. Rather than drop down
completely to the scale of individual atoms, kinetic theory considers the statistical
distribution of particles. This is often referred to as the mesoscopic scale in the
literature.

2.2.1 The particle distribution function
In kinetic theory, the fundamental state variable is the particle distribution function,
f(x, ξ, t). It can be interpreted as a generalization of the density ρ(x, t): the
distribution function f(x, ξ, t) represents the density of particles moving with velocity
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ξ at position x and time t. As a consequence, the macroscopic density can be found
as the zeroth order moment

ρ(x, t) =
∫
f(x, ξ, t) dξ. (2.13)

Likewise, the macroscopic momentum density can be found as the first order moment

ρ(x, t)u(x, t) =
∫
ξf(x, ξ, t) dξ, (2.14)

while the macroscopic energy density is given by the second order moment

ρ(x, t)E(x, t) = 1
2

∫
ξ2f(x, ξ, t) dξ, (2.15)

where E(x, t) is the total energy of the fluid, which is comprised of two components:
the kinetic energy, 1

2ρu
2, associated with the bulk motion of the fluid, and the

internal energy due to the thermal motion of the particles. The internal energy
density associated with the latter can be found by

ρ(x, t)e(x, t) =
∫
v2f(x, ξ, t) dξ, (2.16)

where e(x, t) is the internal energy, and v = ξ − u is the relative velocity.

2.2.2 The Boltzmann equation
For a dilute monoatomic gas, the dynamics of the distribution function f(x, ξ, t) can
be described by the Boltzmann equation:

∂f

∂t
+ ξ ·∇f = Ω(f), (2.17)

where Ω(f) is the collision operator. The full collision operator as derived by
Boltzmann is a complicated integral expression which will not be reproduced here
because it does not yield any particular insight relevant to this thesis; in practice, the
collsion operator is always approximated in order to make solving (2.17) tractable.

One important consequence of the Boltzmann equation is that in the absence of
external forces, the distribution function will tend toward an equilibrium distribution,
f eq(x,v, t). This is the famous Maxwell-Boltzmann distribution, given by

f eq(x,v, t) = ρ

(
1

2πRT

)3/2
exp

(
− v2

2RT

)
, (2.18)

where R is the ideal gas constant.
In order for an approximate collision operator Ω to be physically valid, it must

satisfy the following requirements:
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1. The distribution function f must tend towards the equilibrium function (2.18).

2. The collision operator must conserve mass, momentum, and total as well as
internal energy. That is, ∫

Ω(f) dξ = 0, (2.19a)∫
ξΩ(f) dξ = 0, (2.19b)∫
ξ2 Ω(f) dξ = 0, (2.19c)∫
v2 Ω(f) dξ = 0. (2.19d)

A very simple—and very common—example of such a collision operator is the
Bhatnagar-Gross-Krook (BGK) operator [19], given by

Ω(f) = −1
τ

(f − f eq), (2.20)

where the time constant τ is the relaxation time. For the purposes of this thesis, it
should be noted that (2.20) is used extensively in lattice Boltzmann simulations.





3 The lattice Boltzmann method

In this chapter, the key ideas necessary for implementing and applying the lattice
Boltzmann method will be presented. Since the application of the lattice Boltzmann
method for topology optimization constitutes a large part of the novelty of the
research presented in this thesis, the details of the method will be presented in some
detail. As a result, this is the longest theoretical chapter of this thesis. Nevertheless,
the coverage in this chapter is far from comprehensive. Because the focus of this work
is on application, the theoretical results presented will be—as in chapter 2—simply
stated without derivation.

The chapter covers the following topics: section 3.1 gives a brief introduction to
the history of the lattice Boltzmann method; section 3.2 explains the discretization
of particle velocities and describes the most commonly used lattice; section 3.3 states
the lattice Boltzmann equation itself, and shows how to compute the macroscopic
solution variables from the lattice Boltzmann state variables; section 3.4 discusses
the choice of collision operator, and states the two most commonly used operators;
section 3.5 provides some details on how to actually implement the lattice Boltzmann
method, and refers to further resources for the reader interested in highly efficient
implementation strategies; section 3.6 discusses how to enforce boundary conditions
in the lattice Boltzmann method; section 3.7 shows how to non-dimensionalize lattice
Boltzmann simulations; finally, section 3.8 details the formal accuracy of the method,
and provides some discussion of the additional sources of errors inherent in the
method. Much of the exposition is based on the books [3, 5], as well as on numerous
journal papers which will be referred in the relevant sections. In addition, each
section will refer to additional resources in the literature should the reader wish to
delve deeper into a particular topic.

As a final comment, note that this chapter will only cover the “classical” lattice
Boltzmann method, which numerically solves the incompressible Navier-Stokes equa-
tions (2.2) and (2.3). The method can be extended to also cover thermal flows, i.e.
equation (2.5). However, discussion of this topic will be deferred to chapter 7, since
the material presented beforehand does not require it.

3.1 Introduction

The lattice Boltzmann method originated from so-called lattice gas cellular au-
tomata [20], which—as the name implies—is a type of cellular automata, a model
in the vein of Conways famous “game of life”, which was found to be capable of
simulating fluid dynamics. This type of model seems to have been largely displaced
by modern lattice Boltzmann methods, which can in fact be derived independently
from lattice gas cellular automata, though early papers on the method were writ-

11
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ten from the perspective that the lattice Boltzmann method is an evolution of the
cellular automata method [21,22]. The interested reader may refer to the book by
Wolf-Gladrow [23] for a detailed account of the connection between the two methods.

The lattice Boltzmann has been the subject of a fair amount of research interest
since its introduction. This is motivated by its algorithmic simplicity, suitability
for parallel implementation, and potential for faster performance over conventional
methods [24]1. In addition, the lattice Boltzmann method is well suited for complex
geometries, and can be relatively easily extended from incompressible Navier-Stokes
flow to more complicated physical systems, e.g. porous media [25–27], or multiphase
flows [28,29]. Due to the surge of interest in GPU computing, a number of papers
on lattice Boltzmann GPU implementations have also appeared, since the highly
parallel nature of the method lends itself well to this type of hardware [30–32].

3.2 Velocity discretization

If one wishes to solve the Boltzmann equation (2.17) numerically, it is not sufficient to
simply discretize it in time and space, as is the case for the Navier-Stokes equations.
This is because the Boltzmann equation has an additional continuous component:
the particle velocity ξ. The first order of business is therefore to somehow discretize
the particle velocity space; essentially, the velocities which the particles are “allowed”
to move with need to be restricted to a finite set. This discrete set of velocities is
what is denoted as the “lattice” in “lattice Boltzmann”. Deriving the requirements
which ensure that the necessary physics are retained in the lattice is an involved
theoretical exercise, and will be omitted. Instead, the main results are simply stated.

A velocity lattice consists of a finite set of velocities ci, a corresponding set of
numerical weights wi, and a constant cs such that∑

i

wi = 1, (3.1a)∑
i

wiciα = 0, (3.1b)∑
i

wiciαciβ = c2sδαβ , (3.1c)∑
i

wiciαciβciγ = 0, (3.1d)∑
i

ciαciβciγciδ = c4s(δαβδγδ + δαγδβδ + δαδδβγ), (3.1e)∑
i

wiciαciβciγciδciη = 0. (3.1f)

1Note that the cited paper is from 2006, its conclusions are likely outdated. To the authors
knowledge, no newer benchmarks exist.
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Above, Greek letters correspond to Cartesian coordinates of the velocity vector ci
and δαβ is the Kronecker delta. It can be shown that the parameter cs is equal to
the speed of sound in the lattice Boltzmann simulation, hence why the notation has
been reused.

For most practical lattice Boltzmann simulations described in the literature, a
limited set of “standard” lattices which are already known to satisfy the require-
ments (3.1) are almost always used. Interestingly, there exist usable lattices which
do not satisfy all the requirements (3.1) [33], but these require modification of the
collision operator to compensate, and have not been considered for this thesis.

3.2.1 The D2Q9 lattice

For the 2D simulations presented later, the so-called D2Q9 lattice (two dimensional,
nine velocities) will be used. The weights and velocities associated with this lattice
are listed in equation (3.2), and depicted in figure 3.1.

ci = ∆x
∆t


(0, 0), i = 0,
(±1, 0), (0,±1), i = 1, 2, 3, 4,
(±1,±1), i = 5, 6, 7, 8;

(3.2a)

wi =



4
9 , i = 0,
1
9 , i = 1, 2, 3, 4,
1
36 , i = 5, 6, 7, 8;

(3.2b)

cs = ∆x
∆t

1√
3
. (3.2c)

c0 c1

c2

c3

c4

c5c6

c7 c8

Figure 3.1: Visual illustration of the D2Q9 model. This figure originally appeared in
the publications [P1] and [P2].
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On an equidistant Cartesian grid with grid point separation ∆x, the D2Q9 lattice
is simply the collection of velocities that can travel to the nearest neighbors of a given
point in the time ∆t. For the purpose of lattice Boltzmann simulations, a common
choice for ∆x and ∆t are the so-called “lattice units”, in which ∆x = ∆t = 1.

3.3 The lattice Boltzmann equation

At its core, the lattice Boltzmann equation is simply a finite difference discretization
of the Boltzmann equation (2.17). The key result is that if the fluid system of interest
is operating at sufficiently low Mach and Knudsen number, one can evaluate the
integrals (2.13) and (2.14) numerically in order to obtain the values of the macroscopic
quantities ρ and u. As mentioned in section 2.1.1, the lattice Boltzmann method
is weakly compressible, meaning that there will be density fluctuations in the fluid
domain; these fluctuations directly relate to pressure differences through the state
equation

p = c2sρ. (3.3)
The values of p and u thus obtained will approximately satisfy the Navier-Stokes
equations (2.2) and (2.3).

Like in the previous section, the derivation of the lattice Boltzmann equation will
not be covered in this thesis. Instead, the result will simply be stated. The equation
is given by

fi(xj + ci∆t, t+ ∆t) = fi(xj , t) + Ωi(f(xj , t)), (3.4)
where fi is the distribution value corresponding to the particle velocity ci, and Ωi is
a discretized collision operator. Equation (3.4) is an explicit time-stepping scheme
for the distribution function f , given appropriate initial and boundary conditions.

Once the distribution values f(x, t) is known at each grid point, the macroscopic
values can be evaluated by

ρ(xj , t) =
∑
i

fi(xj , t), (3.5)

ρ(xj , t)u(xj , t) =
∑
i

cifi(xj , t). (3.6)

This is the basic framework of the lattice Boltzmann method, though well-defined
collision operators and boundary conditions are still needed to actually use it in
practice.

3.4 Collision operators

The choice of collision operator is an important one for the purpose of performing
lattice Boltzmann simulations. It has implications for the accuracy, stability, and
execution time of the simulation.
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3.4.1 BGK operator

The BGK operator was already introduced in section 2.2.2. For the lattice Boltzmann
method, it retains the same basic form as the continuous version, (2.20), that is

ΩBGK
i = −1

τ
(fi − f eq

i ), (3.7)

where the equilibrium function f eq
i is generally truncated up to second order in u:

f eq
i = wiρ

(
1 + ci · u

c2s
+ (ci · u)2

2c4s
− u · u2c2s

)
. (3.8)

The BGK is the most common collision operator used for lattice Boltzmann simula-
tions due to its simplicity and ease of implementation.

Relating the lattice Boltzmann method to the Navier-Stokes equations is a
theoretical exercise that will not be covered in this thesis; the interested reader may
refer to e.g. [23,34] for these details. The main result needed from this theoretical
ground work is the relation between the relaxation time τ and the kinematic viscosity
ν. It is given by

τ = c2sν
∆t

∆x2 + 1
2 . (3.9)

With this τ , the dynamics simulated by the lattice Boltzmann method will approxi-
mate that of the incompressible Navier-Stokes equations with kinematic viscosity ν
to second order accuracy in time and space. However, the issue of accuracy in the
lattice Boltzmann method is more subtle than the simple statement above would
suggest. This is discussed in further detail in section 3.8.

3.4.2 MRT operator

The idea of the multiple relaxation time (MRT) operator is that the distribution
values fi are mapped to a vector of derived moments; for instance, the density (3.5)
is one such moment. These moments can then be relaxed with individual relaxation
times, unlike the BGK operator, in which all moments are relaxed with the rate 1/τ .
This allows for increased accuracy and stability, at the cost of a higher computational
complexity of the collision operator. The theoretical details of this operator may be
found in [35,36].

The collision operator is given by

ΩMRT[f(x, t)] = M−1SM [f(x, t)− f eq(x, t)], (3.10)

where M and S are matrices. M is the mapping from distribution into moment
space, while S contains the relaxation times for the various moments. For the D2Q9
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lattice, they are given by

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


, (3.11)

S = diag(0, s1, s2, 0, s46, 0, s46, s78, s78), (3.12)

where the s values are the different relaxation rates for the individual moments.
For the purpose of simulations, s78 is the equivalent of τ , so this relaxation rate is
determined by the kinematic viscosity ν via (3.9). The other relaxation rates can be
tuned independently in order to maximize stability and accuracy. The reader may
refer to [36,37] for linear stability analyses.

3.4.3 Other collision operators

The two collision operators described above are the most commonly used in appli-
cations, and have been used almost exclusively for the problems presented in this
thesis. Of course, these two are not the only available options. Notable examples are
the so-called entropic collision operators operators [38,39], lattice Boltzmann with
regularized pre-collision [40], and the cascaded collision operator [41,42]. Of these,
only the cascaded collision operator has been considered in the present work, and
even so it was mostly used as a data point for the discussion of performance in [P2].
Lattice Boltzmann with the cascaded operator does seem to be remarkably stable
though, so further investigation of its potential would definitely be warranted.

3.5 Implementation

In concrete implementations, the lattice Boltzmann method is often split into two
steps: collision and streaming. The collision step is purely local, and transforms the
distributions at each grid point according to the collision operator Ω:

f̃i(xj , t) = f(xj , t) + Ωi(f(xj , t)), (3.13)

where tilde is used to denote the post-collision state. The transformed distributions
are then shifted to neighboring grid nodes in the streaming step:

fi(xj + ci∆t, t+ ∆t) = f̃i(xj , t). (3.14)



3.6. BOUNDARY CONDITIONS 17

t t+ ∆t

Figure 3.2: Illustration of streaming on a D2Q9 lattice. Left: prior to streaming, the
distribution values, represented by red dots, are gathered at the central node. Right:
following the streaming step, the distributions are shifted along the velocity vectors
ci to the nearest neighbor nodes. Note that the resting velocity c0 is not depicted,
since its associated distribution simply remains in-place.

The shift of distributions according to the streaming step is illustrated in figure 3.2.
The simplest way to implement the collision and streaming steps is using two

separate arrays. Collision is then performed on the first array, and the subsequent
streaming step shifts the distributions by copying from the collision array to a second
streaming array. This approach is nice because it is very easy to implement, and it is
still reasonably efficient. On the other hand, using two arrays means that the memory
requirement of the method is doubled, and it is necessary to traverse the grid twice
in order to complete a single time-step. There are more sophisticated algorithms
available [43–45], which allow the collision and streaming steps to be computed using
a single pass over a single array. These algorithms inevitably increases the complexity
of the implementation though. While the author did implement the algorithm by
Latt [43], the code was eventually reverted to using the naive algorithm, since the
performance gain was found to be negligible compared to the increase in complexity.

3.6 Boundary conditions

The topic of boundary conditions in the lattice Boltzmann method is complicated by
the fact that one cannot straightforwardly impose boundary conditions directly on
the distribution functions fi themselves. This is because the end goal is to simulate
Navier-Stokes dynamics, where boundary conditions are generally imposed on the
macroscopic quantities p or u. The distribution values, however, are comprised of a
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greater number of state variables. This implies that while the macroscopic quantities
can be uniquely determined from the distribution values, the reverse is not true.
Therefore, some sort of simplifying assumptions have to be made in order to derive
boundary conditions for the distribution values from boundary conditions for the
macroscopic quantities.

Boundary conditions for the lattice Boltzmann method are typically applied
immediately following the streaming step. Since the streamed distributions arrive
from all immediate neighbor nodes, only those distributions which would have arrived
from “outside” the simulation domain are unknown following the streaming step,
see figure 3.3. Because of this it is generally not necessary to determine all the
distribution values at the boundaries following the streaming step, but only a subset.

Inflow unknowns

Outflow unknowns

f5

f1

f8

f6

f3

f7

Figure 3.3: Illustration of the unknowns at the boundaries of a simple flow geometry,
using the D2Q9 lattice. Note that the unknowns depend on the location of the
boundary. This figure originally appeared in [P1].

Boundary conditions for lattice Boltzmann is a large topic, to the point where
it could be considered its own sub-field. Here only some very simple boundary
conditions which have been used extensively for the work presented in this thesis are
covered.

3.6.1 No-slip boundaries

No-slip boundary conditions can be dealt with very easily using the so-called bounce-
back boundary conditions. Under these conditions, it is assumed that the distributions
which would propagate out of the domain during the streaming step hit the no-
slip wall and are reflected back in the opposite direction. That is, the unknown
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distribution values are determined as

fi(xj , t+ ∆t) = fi′(xj , t), (3.15)

where fi′ is the distribution associated with the opposite velocity of fi (e.g. f1′ = f3).
The bounceback boundary conditions are a very useful tool because they are simple
to implement for all boundary locations, and because they handle corner nodes
(where there are five unknown distributions rather than three) without any additional
modifications.

3.6.2 Velocity and pressure boundaries
Besides no-slip boundary conditions, the most common type of boundary conditions
are so-called Dirichlet conditions on velocity or pressure. That is, some known value
of the velocity or pressure is imposed on the boundary. Indeed, no-slip conditions are
simply a specific case of this, with u = 0. Note that in the lattice Boltzmann method,
fixed pressure boundary conditions are equivalent with fixed density boundary
conditions, due to the relation (3.3),

A simple method for imposing Dirichlet boundary conditions has been introduced
by Zou and He [46]. Here, the idea is demonstrated by showing how to implement a
velocity boundary condition, but the method can also be used for pressure boundaries.

The idea is illustrated by means of a concrete example: consider the “west”
boundary on the left of figure 3.3. Following the streaming step, the unknowns are ρ,
f1, f5, and f8. To compute these, a system of four equations is needed to solve for the
four unknowns. The macroscopic variables equations (3.5)–(3.6) provide three such
equations. The system is closed by what Zou and He refer to as the non-equilibrium
bounceback assumption, which asserts

f1(xj , t)− f eq
1 (xj , t) = f3(xj , t)− f eq

3 (xj , t). (3.16)

Solving this system of equations yields the Zou/He velocity boundary conditions on
the west boundary:

ρ(xj , t) = f0 + f2 + f4 + 2(f3 + f6 + f7)
1− ūx

, (3.17a)

f1(xj , t) = f3 + 2
3ρūx, (3.17b)

f5(xj , t) = f7 + 1
2(f4 − f2) + 1

6ρūx + 1
2ρūy, (3.17c)

f8(xj , t) = f6 + 1
2(f2 − f4) + 1

6ρūx −
1
2ρūy. (3.17d)

Above, ūx and ūy are the x and y components of the fixed boundary velocity. Note
that the spatial and temporal arguments for the variables have been omitted on the
right-hand side for brevity. Similar boundary conditions may be derived for velocity
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boundary conditions of different orientations, as well as for pressure boundaries,
though they will not be listed here.

3.7 Non-dimensionalization of lattice Boltzmann

As mentioned in section 2.1.3, non-dimensionalization of the Navier-Stokes equations
is a useful way to decouple numerical solutions from the choice of units. Of course, the
same applies to the lattice Boltzmann method. However, as mentioned in section 3.2.1,
it is convenient to implement the lattice Boltzmann method in terms of “lattice units”
in which the distance between nodes ∆x and the time-step ∆t are both taken to be
unity. As shown by Latt [47], it is possible to map between these two representations
easily. If a non-dimensional system has been defined in which the reference length L0
and reference time t0 are both unity (which also implies |u0| = 1), then the relevant
parameters in lattice units are computed with the mapping

u0,lb = ∆td
∆xd

,

νlb = ∆td
∆x2

d

1
Re ,

(3.18)

where ∆xd and ∆td are the sizes of the of the lattice units in the original non-
dimensional reference units. For example, if the reference length L0 was discretized
into Nx lattice nodes, then

∆xd = 1/(Nx − 1). (3.19)

This mapping is useful since it makes it relatively easy to make consistent comparisons
between numerical solutions obtained from the Navier-Stokes equations and those
obtained by the lattice Boltzmann method.

3.8 Accuracy of the lattice Boltzmann method

As mentioned in the opening of chapter 2, linking the lattice Boltzmann method to
the incompressible Navier-Stokes equations requires asymptotic expansion techniques,
e.g. the Chapmann-Enskog expansion. Carrying out this asymptotic expansion on
the lattice Boltzmann equation reveals that the lattice Boltzmann method is a second
order accurate approximation of the incompressible Navier-Stokes equations in both
time and space [5, 34].

This simple assessment is nowhere close to the complete story regarding the
accuracy of the lattice Boltzmann method, however. There are additional error
sources which arise because the lattice Boltzmann method is not a direct discretization
of the incompressible Navier-Stokes equations. In addition to the truncation error
related to the time and space discretization, there is also an error term related to
the relaxation time τ (see [5] for a detailed discussion of this for several collision
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operators), as well as the so called compressibility error, which arises because the
lattice Boltzmann method is weakly compressible.

The compressibility error scales as O(Ma2), meaning that ideally the Mach
number should be kept as low as possible. An interesting consequence of this is
that since the Mach number is grid independent, it is not possible to improve the
accuracy of a lattice Boltzmann simulation indefinitely by refining the discretization
arbitrarily in either space or time, since eventually the compressibility error would
dominate. Decreasing the compressibility error at the same rate as the truncation
error requires scaling the time-step according to

∆t ∝ ∆x2, (3.20)

which is often referred to as diffusive scaling in the literature. Interestingly, this
means that the lattice Boltzmann is in practice only first order accurate in time.
Furthermore, to the authors understanding, it is possible to completely eliminate the
compressibility error in the case of steady state simulations [46, 48], but this does
not seem to apply for unsteady simulations [49,50].





4 Topology optimization

The purpose of this chapter is to document the essential ideas of topology optimization
which will be needed in the subsequent chapters. It is meant as a brief overview of the
topic and is by no means comprehensive. The reader is referred to the book [51] for
thorough exposition, as well as the various journal papers referenced in this chapter.

The chapter is structured as follows: section 4.1 gives an informal introduction to
topology optimization with the density method and provides some literature review;
section 4.2 goes more into the mathematical details of the optimization problem, and
provides more formal exposition on density based topology optimization; section 4.3
covers the adjoint method for computing the gradient; section 4.4 introduces the
projection filter, which is used extensively in the optimization problems presented
later, as well as the robust formulation of a topology optimization problem; finally,
section 4.5 briefly discusses the method of moving asymptotes, which is the algorithm
used for solving the optimization problem.

This chapter only discusses the density based method of topology optimization.
For discussion of other approaches, the reader is referred to the review paper [52].
Furthermore, the reader is assumed to have some knowledge of numerical optimization,
which is covered in many textbooks, e.g. [53].

4.1 Introduction

Topology optimization is a sub-discipline of the engineering field of structural opti-
mization. Informally, the goal of structural optimization is to optimize the structure
or shape1 of some engineering feature, in order to maximize its capacity to fulfill its
desired purpose. This capacity is typically constrained by the underlying physics,
which is modeled using PDEs. Thus, structural optimization problems are formu-
lated as PDE constrained optimization problems. Structural optimization can be
split into three sub-disciplines: size optimization, shape optimization, and topology
optimization. The differences between them are illustrated in figure 4.1, using a
circular geometry as a basis.

In size optimization, only the radius of the circle can change, the basic form
of the circle is always preserved. Conversely, shape optimization may change the
external boundary of the circle but may not introduce new internal boundaries
by creating new holes or features separated from the external boundary. Finally,
topology optimization allows full design freedom: the circle can in principle be
changed into any arbitrarily complicated geometry.

In order to set up the problem mathematically, some way of representing the
state of the design is needed. For numerical optimization, the design is represented

1The word “shape” is used here in its informal sense of the external appearance of an object.
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Size

Shape

Topology

Figure 4.1: Conceptual illustration of the different forms of structural optimization
on a circular design.

by a finite vector of design variables, which describes the design in some manner. For
size optimization, the design variables would simply be the size or sizes in question,
e.g. the radius in the example of the circle. For shape optimization, the choice of
design variables is less obvious. One possibility would be to use a finite collection of
points which lie on the boundary of the shape. This representation would of course
only be approximate, since interpolation between the points would be required to
recover the shape. In the case relevant for this thesis—topology optimization—there
is likewise a number of possibilities available that (approximately) represent the
design topology as a collection of design variables. In this thesis only the so-called
density based approach is discussed.

Informally, the idea of this approach is to partition the design area—often called
the design domain—into a discrete mesh of elements, each of which are assigned a
numerical value corresponding to the element being either “solid”, i.e. containing
design material, or “void”, i.e. without design material. These numerical values then
comprise the design variables. For fluid flow problems, the void phase corresponds to
a fluid element, i.e. an element in which fluid can flow freely, whereas solid corresponds
to rigid material where no fluid can flow. In order to solve the problem numerically,
the requirement that each element must be either solid or fluid is relaxed to allow
“in-between” states. This allows solving the optimization problem using gradient
based methods.

Topology optimization as a scientific field originates with the seminal paper
by Bendsøe and Kikuchi [54], and has since been applied to a wide variety of
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physics constrained design problems, including problems in fluid dynamics. The first
application of topology optimization to fluid problems was published by Borrvall and
Petersson in 2003 [55], who investigated Stokes flow problems. Their work has since
been extended to laminar Navier-Stokes flows [56,57]. Using the lattice Boltzmann
method to solve problems in topology optimization was pioneered by Pingen et
al. [58], solving problems similar to those presented by Borrvall and Petersson.
Others have investigated topology optimization with the lattice Boltzmann method
using a level-set approach [59–61].

Several more recent publications have focused on extending the work presented
in the above papers to more complicated fluid dynamics, notably thermal flows.
Andreasen et al. applied topology optimization to a thermofluidic mixer [62], while
Alexandersen et al. have investigated passive heat sinks [63,64]. In addition, there are
publications which have investigated thermal problems using the lattice Boltzmann
method [65].

A commonality of all the papers presented above is that only steady state flow
solutions have been considered. At present, there are only few publications which
have considered topology optimization for unsteady flow problems, likely due to the
high computational cost associated with these problems. The seminal papers in this
area are by Kreissl et al. [66], and Deng et al. [67], published within two months of
each other in 2011. Since then, the works by Deng et al. has been extended to flows
with body forces [68]. To the best of the authors knowledge, no other publications
have subsequently appeared, except for the contributions presented in this thesis.

4.2 Optimization problem

Mathematically, a topology optimization problem may be formulated as follows:

min
s∈Ωd

ϕ(v, s),

s.t.


R(v, s) = 0, PDE constraint,
0 ≤ sj ≤ 1, ∀j ∈ {1, . . . , Nd} design variable constraint,
Ck(v, s) ≤ 0, ∀k ∈ {1, . . . , Nc}, additional constraints,

(4.1)

where ϕ is some function which measures the capacity of the structure to perform its
desired purpose, often referred to as the objective function in the literature; v is a
vector of physical state variables associated with the system, and s is the vector of
design variables, which characterize the topology of the system. These variables are
defined on the discretized physical domain Ω, and design domain Ωd ⊆ Ω, respectively.
As mentioned in section 4.1, the optimization problem is constrained by the physics
of the problem, which are modeled using PDEs. This is formulated as an equality
constraint, R(v, s) = 0, where R is the residual of some numerical discretization
of a PDE (or system of PDEs), properly arranged to have a zero right-hand side.
The design domain is discretized into Nd design variables, each with a value in the
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range sj ∈ [0, 1]. For the purpose of this thesis, sj = 0 shall always denote a solid
domain, while sj = 1 shall always denote a fluid domain. Finally, the optimization
problem may have an arbitrary number Nc of additional constraints, given by the
functions Cj . A constraint commonly seen in the topology optimization literature is
the volume constraint, which states that only a limited fraction of the design domain
can be occupied by the optimized structure.

A solution to equation (4.1) should ideally be a vector of design variables where
all values are either zero or one. However, the design variables are allowed to vary
continuously between these two end-points; this makes the derivative dϕ

dsj
well defined,

enabling the use of gradient-based numerical methods for solving the optimization
problem iteratively. This also implies that the model PDE represented by R(v, s) = 0
must allow each element to continuously transition from the solid state to the fluid
state, with values in sj ∈ ]0, 1[ representing some ficticious state in-between. In some
cases, these transitional states can be ascribed physical meaning [69], but otherwise
various penalization methods are used to ensure that the optimizaton algorithm will
converge to a fully discrete 0, 1-solution, often called “black and white” solutions
in the literature, contrary to solutions which contain “grey” elements. Chapter 5
discusses the details of how this is achieved with the lattice Boltzmann method.

4.3 Sensitivity analysis

In order to run any gradient-based optimization algorithm, the actual gradient vector
dϕ
ds obviously needs to be evaluated. The derivatives collected in the vector are often
termed the sensitivities in the literature. An efficient way of computing the sensi-
tivities is the so-called adjoint method [70]. With this approach, the computational
cost of evaluating the sensitivities is similar to the cost of determining the physical
solution vector v, i.e. solving R(v, s) = 0.

A way to explain the adjoint method is to add a Lagrange multiplier times the
residual to objective function, that is

ϕ̂(v, s) = ϕ(v, s) + λTR(v, s), (4.2)

where λ is a vector of multipliers. Since R = 0, this is does not change the value of
ϕ. Differentiation of (4.2) with respect to an arbitrary design variable sj yields

dϕ̂
dsj

= ∂ϕ

∂sj
+ ∂ϕ

∂v

dv
dsj

+ λT
(
∂R

∂sj
+ ∂R

∂v

dv
dsj

)
. (4.3)

The term dv
dsj

is difficult to evaluate, but rearranging (4.3) to

dϕ̂
dsj

= ∂ϕ

∂sj
+ λT ∂R

∂sj
+
(
∂ϕ

∂v
+ λT ∂R

∂v

)
dv
dsj

, (4.4)
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it becomes apparent that the troublesome terms with dv
dsj

can be eliminated by
solving the following adjoint problem:(

∂R

∂sj

)T
λ = −

(
∂ϕ

∂v

)T
. (4.5)

While the adjoint problem is simple to state, in practice it can be quite challenging
to derive the adjoint problem for a concrete numerical scheme. Specifically, this is
true for the lattice Boltzmann method due to the highly non-linear nature of the
collision step. In chapter 6, a generalized approach for adjoint sensitivity analysis of
the lattice Boltzmann method, utilizing automatic differentiation, will be presented.

4.4 Filtering of the design variables

One problem which can arise in density based topology optimization is that the
optimizing algorithm is free to modify the design on the length scale of a single design
element, which can lead to undesirable features such as checkerboard patterns [71].
A common way of mitigating this issue is to apply a transformation—commonly
called a filter—to the design variables in order to smoothen the final design. The
interested reader is referred to [51] for detailed discussion of this issue.

4.4.1 Projection filter

In this thesis, the focus will be on the so-called projection filter [72]. This filter works
by projecting a smoothened version of the design field according to

sp
j =

tanh(βη) + tanh(β(sw
j − η))

tanh(βη) + tanh(β(1− η)) , (4.6)

as given in [73]. Here, sw
j is the value of the smoothed design field at node j, β

controls the strength of the projection around the threshold, and η determines the
threshold location, see figure 4 in [P1].

The smoothened design field sw is obtained by applying a weighted averaging
around each element [74,75], that is

sw
j =

∑
k∈wNe,j

H(xk)sk∑
k∈Ne,j

H(xk) , (4.7)

where sw
j is the value of the design variable after smoothing, Ne,j is comprised of the

design elements within radius r of sj , H(xk) is the weighting, given by

H(xk) = r − |xk − xj |, (4.8)
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and xj and xk are the center point coordinates of the elements sj and sk. Note
that the smoothening operation defined by (4.7)–(4.8) can be implemented more
efficiently [76], but this was not done for this work since it was never found to be a
significant contributor to the total run-time.

4.4.2 Robust formulation
An extension of the projection filter is the so-called robust formulation of the topology
optimization problem (4.1). In this formulation, the optimization problem is written
as a min-max problem:

min
s∈Ωd

max {ϕ(v, sp
e), ϕ(v, sp

i ), ϕ(v, sp
d)},

s.t.


R(ve, sp

e) = R(vi, sp
i ) = R(vd, sp

d) = 0,
0 ≤ sj ≤ 1, ∀j ∈ {1, . . . , Ndesign},
Ck(v, s) ≤ 0, ∀k ∈ {1, . . . , Nc}.

(4.9)

Here, the subscript e,i, and d correspond to eroded, intermediate, and dilated design
fields, which are obtained with an application of the projection filter with η < 0.5,
η = 0.5, and η > 0.5, respectively. That is, one design vector s is mapped to three
different design realizations. The min-max formulation ensures that it is always
the worst design realization driving the optimization. This means that the end
result of the optimization is a design which performs well for the η values of the
intermediate, eroded and dilated design. If the end result also performs well in the
entire range of η values spanned by the eroded and dilated design, and there are no
topology changes when η varies, then the design performs robustly under uniform
spatial variations, though none of this is guaranteed. For detailed discussion, see
the papers [73, 77]. This method of robust optimization can be further extended to
account for non-uniform variations [78] by using a spatially varying projection value,
η(x), rather than a constant one. An application of this will be demonstrated in
chapter 7.

As a final comment, note that the robust formulation is in no way restricted
to three realizations; this was merely chosen because it is a common choice in the
literature, but any number of realizations can be used, given sufficient computational
power.

4.5 Solving the optimization problem

In this thesis, the optimization algorithm of choice is the method of moving asymp-
totes (MMA), introduced by Svanberg [79]. This algorithm and its extension, the
globally convergent MMA (GCMMA) [80], are extensively used in the topology
optimization field to the point of being almost ubiquitous. The implementation of
MMA documented in [81] has been used for all the problems presented later. The full
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mathematical details of the MMA are beyond the scope of this thesis; the interested
reader may refer to the original papers. Here we simply note a few details of the
MMA for later reference.

The MMA approximates the solution to the general nonlinear programming
problem

min
s∈Rn,y,z

f0(s),

s.t.
{
smin
j ≤ sj ≤ smax

j , ∀j ∈ {1, . . . , n},
Ck(s) ≤ 0, ∀k ∈ {1, . . . Nc},

(4.10)

by finding an approximate solution to the modified problem

min
s∈Rn,y,z

f0(s) + z +
Nc∑
k=1

(
ckyk + dk

2 y
2
k

)
,

s.t.


smin
j ≤ sj ≤ smax

j , ∀j ∈ {1, . . . , n},
Ck(s)− akz − yk ≤ 0, ∀k ∈ {1, . . . Nc},
y ≥ 0, z ≥ 0,

(4.11)

where y and z are “artificial” variables, and a, c, and d are user-defined constants.
Ideally, this modification should not affect the final solution, though it depends
somewhat on the choice of constants. The choice of constants also allows some
flexibility in the kinds of problems which can be solved. Specifically, the robust
problem (4.9) can be solved using MMA. This is done by re-writing (4.9) to

min
s∈Rn,z

z

s.t.


ϕ(v, sr) +K − z ≤ 0, ∀r ∈ {e, i, d},
smin
j ≤ sj ≤ smax

j , ∀j ∈ {1, . . . , n},
Ck(s)− akz − yk ≤ 0, ∀k ∈ {1, . . . Nc},
y ≥ 0, z ≥ 0,

(4.12)

where K ≥ 0 is a constant value which ensures that ϕ(v, sr) +K > 0. This problem
may be solved with MMA by defining f0(s) = 0, as well as proper choice of the
constants a, c, and d.





5
Unsteady flow topology

optimization [P1]

This chapter summarizes the essential results presented in [P1]. In addition, un-
published results which further extend the pump problem introduced in [P1] are
presented.

The chapter is structured as follows: section 5.1 briefly introduces the lattice
Boltzmann model for porous media used to distinguish between fluid and solid nodes
in the optimization; section 5.2 states the form of the objective function used for all
of the subsequently presented problems; section 5.3 summarizes the findings for the
first example problem introduced in [P1], using topology optimization to design an
obstacle which results in a specific downstream flow pattern; section 5.4 discusses
the findings of the second example introduced in [P1], topology optimization for a
simple model of a fluid pump; finally, section 5.5 describes extensions of the pump
problem which have been implemented following the publication of [P1].

The references relevant to this chapter are given in the individual sections. Note
that the adjoint approach to lattice Boltzmann used in [P1] is not covered here,
since it was found to be difficult to extend and maintain the code implementing this
approach. A more robust and general approach was subsequently developed; this
approach is covered in chapter 6.

5.1 Lattice Boltzmann for porous media

As mentioned in section 4.2, it is necessary to distinguish between which design nodes
are fluid, solid, or “grey”. Since the standard lattice Boltzmann method described
in chapter 3 can only represent the fluid state, some modification of the method is
needed in order to achieve a smooth transition between states.

In previous work on fluid topology optimization with Navier-Stokes based finite
element solvers, this problem has been solved by modeling the design domain as
a porous material, with varying degrees of porosity in each fluid element. In this
approach, the Brinkman equation for fluid flow in porous media should be satisfied
in solid regions. It is given by:

1
ρ
∇ρ = − ν

K
u+ ν̃∇2u, (5.1)

where K is the permeability of the medium, and ṽ the effective viscosity. The
permeability controls how easily fluid can flow through the porous medium. When
using this model for topology optimization, the solid regions are assigned a very
low permeability, approximately making the porous medium equivalent to a solid

31
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medium in which no fluid can flow. Note that choosing a too low permeability for
solid regions can lead to numerical problems, however. Modeling the solid regions
in this way works well in many cases, but is not perfect since it does not prevent
diffusion in the solid regions. For further details on how to implement this approach
in a finite element based Navier-Stokes solver, the reader is referred to the literature,
e.g. the original paper by Borrvall and Petersson [55].

Implementing the porous media based approach in the lattice Boltzmann method
does not require any extensive modification of the core method. In fact, one of
the much touted advantages of the method is that it handles complicated porous
media well. In the literature, various porous media modifications of the method are
available [25–27, 82]. In the present work, the so-called partial bounceback model
presented by Zhu and Ma [27] is used, since it has been found to be very robust and
stable. This method is inspired by the bounceback boundary condition described in
section 3.6. It works by modifying the collision step, so that in porous nodes, a fraction
of the post-collision distributions is bounced back in the opposing velocity direction.
In fully solid nodes, the distributions are scattered equally in each direction, which
theoretically leads to a permeability of zero. Specifically, the collision step (3.13) is
modified as follows:

f̃i(xj , t) = f c
i + 1

2g(sj)[f c
i′(xj , t)− f c

i (xj , t)], (5.2)

where

f c
i (xj , t) = fi(xj , t) + Ω(f(xj , t))

is the unmodified post-collision state, i′ is the index corresponding to the velocity
opposite of i, and g(sj) is a continuous function g : [0, 1]→ [0, 1]. This function is
used to control the transition from solid to fluid nodes, ideally in such a manner
that intermediate states (“grey” nodes) will be sub-optimal. In structural mechanics,
the SIMP (Solid Isotropic Material with Penalization) power-law function [83] is
near-ubiquitous for this purpose. Conversely, in fluid mechanics, the following convex
function is similarly common:

g(sj) = 1− sj
1 + γ

sj + γ
, (5.3)

where γ is an adjustable parameter which allows some degree of control over the
penalization of grey nodes. This function was introduced by Borrvall and Petersson
in their seminal 2003 paper. While (5.3) was originally formulated in the context of
minimal pressure drop problems, it is quite versatile, and has been used for all the
problems presented in this thesis.
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5.2 The unsteady optimization problem

For the optimization problems presented in this thesis, the following general form of
the objective function—based on the one given by Kreissl et al. [66]—is used:

ϕ =
Nt∑
t=0

z(t,v, s), (5.4)

where z is some function of the state in each time-step and Nt is the number of
time-steps. This general form is sufficiently flexible to express the objectives of all
the problems presented in this thesis.

5.3 Obstacle flow control

This section summarizes and discusses the results for the first numerical example
presented in [P1].

5.3.1 Problem description
The idea of this problem is to reproduce the downstream vortex flow pattern of
flow past a cylinder with a topology optimized obstacle. The problem is setup by
initially computing the flow past a cylinder and saving the average velocity in a
predefined downstream area in memory. In the subsequent optimization iterations
the realized profile of the current design is compared to this reference flow profile.
The computational domain for the problem is illustrated in figure 5.1.

The full statement of the optimization problem is given by

min
s
Z = log

Nt∑
n=N0

∑
j∈M

‖u(xj , tn)− uref(xj , tn)‖2
NmMA

,

s.t.


G0 = 1

Ns

Ns∑
k=1

sk − 0.9 ≤ 0,

G1 = ∆p− ξ∆pref ≤ 0,
0 ≤ sk ≤ 1, ∀k = 1, . . . , Ns.

(5.5)

Here, M denotes the nodes in the measuring domain, and MA denotes its area. The
deviation from the reference velocity is computed over Nm = Nt −N0 time steps.
The problem is constrained by the volume constraint G0 which constrains the amount
of fluid allowed in the design domain, corresponding to the fluid amount around
the reference obstacle. Additionally, the constraint G1 is a pressure drop constraint,
with ∆p being the time averaged pressure drop in the cavity. The reference pressure
drop ∆pref is the pressure drop in the cavity for the cylinder, and ξ is a constant
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Figure 5.1: Illustration of the computational domain for the obstacle flow control
problem. Originally appeared in [P1].

tolerance parameter (above paragraph quoted from [P1]). In words, the object of
the problem is to minimize the difference between the flow profile computed with
the designed obstacle, and the flow profile precomputed with the cylinder obstacle,
i.e. the vortex shedding profile. The logarithm is used to prevent numerical issues
close to a difference of zero.

The motivation for this problem was to construct a problem which was suitably
challenging, and which had an explicit time-dependent component. The problem has
the advantage that it has a known globally optimal solution, while still exhibiting
interesting non-linear behavior in the form of the downstream vortex shedding. So
while the problem is somewhat academic in nature, the aim was for it to serve as a
non-trivial test problem for the unsteady optimization framework.

5.3.2 Summary of results

Despite the fact that the problem has a known globally optimal solution, the problem
turned out to be more challenging than initially anticipated. Nonetheless, it was
shown to be possible to achieve a fairly good reproduction of the desired flow profile.
Figure 5.2 gives a comparison of the streamlines for the reference and an example
design, while figure 5.3 gives a more quantitative comparison over all the simulation
time steps.

It was not managed to recover the known (but not necessarily unique) global
optimum—namely the original cylinder—even from initial designs which were only
slightly perturbed from the reference.
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(a) Reference profile.

(b) Obtained profile.

Figure 5.2: Qualitative comparison of streamlines from the cylinder reference and an
example design. Originally appeared in [P1].

5.3.3 Discussion

In order to achieve the results depicted in figures 5.2 and 5.3, the design space had to
be severely restricted. Specifically, the pressure drop restriction had to be introduced,
and a very large filter radius compared to the size of the design domain was needed.
Even with these restrictions in place, convergence to a well defined design was slow
and required a very gradual increment of the projection value β (equation (4.6)),
otherwise the design could effectively be unrecoverably ruined on the increment
step. At Reynolds numbers sufficiently high for vortex shedding dynamics, any given
(realistic) downstream flow profile can likely be reproduced to reasonable accuracy
with a very large number of possible designs. Indeed, if we consider figure 5.3, it
seems that the optimization has converged to a local minimum which reproduces
the period of the vortex shedding well, but fails to hit the correct amplitude. These
factors of non-linear behavior and non-uniqueness of solutions combine to make the
problem quite challenging.

5.4 Passive fluid pump

This section summarizes and discusses the results for the second numerical example
presented in [P1].

5.4.1 Problem description

This problem investigates a simplified model of a passive pump in which the goal is
to redirect a cyclical input towards an output channel. The computational domain is
depicted in figure 5.4.
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Figure 5.3: Plot of the average velocity magnitude in the downstream measuring area
as a function of time, for the cylinder reference and an example design. Originally
appeared in [P1].

The problem is formulated as follows:

min
s
Z = − 1

NtLout

Nt∑
n=0

∑
xj∈Γout

ux(xj , tn),

s.t.


G0 = 1

Ns

Ns∑
k=1

sk − V ≤ 0,

0 ≤ sk ≤ 1, ∀k = 1, . . . , Ns.

(5.6)

Here, Γout denotes the set of grid points at the pump outflow boundary, and Lout
denotes the length of the boundary. Once again, a volume constraint on the amount
of allowed fluid in the design domain is applied to the problem (quoted from [P1]).

5.4.2 Summary of results

Compared to the cylinder problem described in section 5.3, achieving good results
for the pump problem was significantly simpler. Figure 5.5 illustrates the working
of an example design via streamlines from both the inflow and outflow cycle of the
pump, while figure 5.6 contrasts the output of the pump with the cyclical inflow.



5.4. PASSIVE FLUID PUMP 37

Design domain

uy

Pum
p
outflow

R
eservoir

Ly

Lx

Lin Lin

Lin

Figure 5.4: Illustration of the computational domain for the pump problem. The
cyclical input at the top needs to be redirected towards the “Pump outflow” boundary.
Originally appeared in [P1].

A set of similar results were found: all included the basic feature of an initial
narrowing of the inflow channel into a central reservoir, with blocking “arms” on
either side to passively control the motion of the fluid.

5.4.3 Discussion

The pump problem is interesting from a topology optimization perspective because
the task in this case is to shape the design domain such that the flow exhibits a certain
behavior. Essentially, the flow in this case is a means to an end, rather than being
the end objective itself, meaning that there is a greater possibility for novel, possibly
counterintuitive designs which might otherwise not be imagined. Interestingly, the
final design does look to take advantage of vortex-like structures to avoid excessive
fluid reentering from the output during the outflow phase.

It is also very interesting from an engineering perspective, since pumps are
ubiquitous in many areas of application. Of course, real pumps are more complicated
than the simplified model used here, but this also means that the problem is well
suited for further extension and refinement. The work which has been done on this
is documented in section 5.5.

The paper and the problem introduced within it has generated some interest from
the research community. The pump problem was adapted to a 3D finite element
implementation by Villanueva and Maute [84]. In addition, going by Google Scholar,
at the time of this writing, the paper has been cited in seven other publications,
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(a) Example streamlines during the inflow cycle.(b) Example streamlines during the outflow cycle.

Figure 5.5: Representative streamlines during the inflow and outflow cycle of an
optimized design. Originally appeared in [P1].
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Figure 5.6: Plot of the average flow output on the outflow boundary compared to
the cyclical input at the inflow boundary. Originally appeared in [P1].
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mostly related to topology optimization for thermofluidic systems. This indicates that
there is significant interest in unsteady flow optimization for thermal applications.

5.5 Extension of the pump problem

Following the publication of [P1], various ways to extend the pump problem have
been investigated. Rather than giving a full account of the details of these extensions,
the aim of this section is to summarize the major findings of this work, discuss which
conclusions can be drawn from these findings, and provide an outline for possible
future research.

The extensions investigated can be summarized as follows:

1. Applying the robust formulation described in section 4.4.2 in order to obtain a
design for the pump which performs robustly under uniform variations.

2. Since real life pumps typically displace fluid against a pressure drop, gravity or
other external forces, the pump problem was modified to account for this by
implementing a way of modeling external forcing in the simulation.

3. Verifying the physical model by comparing it to the solution computed by a
commercial finite element solver.

All these lines of investigation shared a similar simulation setup, which is described
next.

5.5.1 Simulation setup

The simulation setup is similar to the one described in [P1] and shown in figure 5.4,
but in order to facilitate direct comparison with the solution of a commercial finite
element solver, the non-dimensional formulation of the lattice Boltzmann model
introduced in section 3.7 is used.

The length of the inflow channel is set to be the reference of length unity in the
model. Similarly, the time for completing a single cycle of the top inflow is set to
be the reference time, so that one cycle takes one unit of non-dimensionalized time.
With the choices in place, the node separation may be computed using (3.19), while
the time-step is computed using the diffusive scaling (3.20). Then the number of
time-steps for a cycle may be computed as 1/∆t, while the maximal inflow velocity
and viscosity may be computed using (3.18).

Unless otherwise noted, the Reynolds number in the results presented below is
80, and the simulation time is five cycles of the inflow. The characteristic length
and velocity is the inflow length and maximal inflow velocity, respectively. The flow
solutions were computed using the MRT collision operator. In all cases, the strength
of the projection is controlled by using the β-continuation strategy described in [P1].



40 CHAPTER 5. UNSTEADY FLOW TOPOLOGY OPTIMIZATION [P1]

5.5.2 Robust optimization of the pump

The simple robust optimization of the pump is mostly a straightforward extension of
the work already presented. Two examples of robustly optimized designs are shown
in figures 5.7 and 5.8. The resulting designs are generally share many similar traits
with the ones already presented in [P1]. Shown are two different designs at different

(a) Eroded design. (b) Intermediate design. (c) Dilated design.

Figure 5.7: Example result of a robust optimization of the pump problem on a 235
by 235 grid. The eroded, intermediate, and dilated designs use the η values 0.3, 0.5,
and 0.7, respectively.

(a) Eroded design. (b) Intermediate design. (c) Dilated design.

Figure 5.8: Example result of a robust optimization of the pump problem on a 468
by 468 grid. The eroded, intermediate, and dilated designs use the η values 0.3, 0.5,
and 0.7, respectively.

levels of mesh refinement. The computational cost of simulating several realizations
of the design is mitigated by the fact that each realization can be simulated in
an embarrassingly parallel fashion. For example, the optimization result shown in
figure 5.8 was computed using 72 cores, with 24 cores assigned to each realization.
Once the objective and sensitivities have been computed for all realizations, the
MMA algorithm is run on all 72 cores to update the underlying design field.
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Figure 5.9: Computed objective of the pump design in figure 5.8 as a function of the
projection value η. There is a clear degradation in performance outside the range
spanned by the three realizations. Each realization is indicated by the marked data
points.

The result of the optimization procedure is robust across the range η ∈ [0.3, 0.7],
as shown in figure 5.9. Outside of this range, the performance degrades noticeably,
although the pumping action (i.e. a net outflow at the right boundary) is retained.

5.5.3 Pumping against an external force

As described in the opening of this section, pumps typically work against an external
force which counteracts the fluid displacement induced by the pump. Besides
the motivating factor of making the pump model slightly more realistic, it is also
interesting from a topology optimization perspective to see if the introduction of such
an external force changes the topology of the optimized design in a significant way.

Figure 5.10: Example of an undesirable optimized design for the pump problem with
enforced pressure drop.
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(a) ∆ρ = 1 × 10−3.

(b) ∆ρ = 5 × 10−3

(c) ∆ρ = 1 × 10−2

Figure 5.11: Examples of optimized designs on a 468 by 468 grid, for different values
of ∆ρ. Like in previous figures, the η values are 0.3, 0.5, and 0.7, respectively.

One way to introduce the external forcing is to enforce a pressure drop across
the design domain by using density boundary conditions (recall that density and
pressure are proportional in the lattice Boltzmann method) at the two outflows,
with a difference ∆ρ between them. That is, the left outflow will have a constant
density ρ0 = 1, while the right will have the density ρ0 + ∆ρ. One problem with this
approach is that it can lead to undesired local minima in which the left boundary is
“sealed off”, see figure 5.10 for an example.

This pathological behavior becomes much more likely when ∆ρ is increased. A
likely cause of this is that the cyclical pumping action needs of order one cycle to
“get going”, while the initial pressure drop will cause an immediate burst of flow
towards the left outflow, causing the optimizer to close it off to prevent the formation
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of a strong flow in an undesired direction.
This undesired optimization behavior is mitigated by the following strategy: an

initial optimization is performed at a low value of the pressure drop, in this case
∆ρ = 1× 10−3. The resulting design variables are then used as the initial guess in a
subsequent optimization, this time with ∆ρ = 2× 10−3. This procedure is repeated,
with ∆ρ being incremented by 1× 10−3, up to a final value of ∆ρ = 1× 10−2.

With this strategy in place, no undesired “sealed off” local minima were observed.
Some examples of the obtained designs are shown in figure 5.11. Not all the designs
in the sequence described are shown, merely representative examples. To further
classify the performance of the different designs, in figure 5.12, the performance is
plotted as a function of ∆ρ.
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Figure 5.12: Plot of the performance of the designs optimized at different values of
∆ρ, as a function of ∆ρ. The dashed line indicates the threshold for a net outflow
from the pump.

The plot reveals a few things of note. First, the design optimized for ∆ρ = 5×10−3

is globally worse than the one optimized for ∆ρ = 1 × 10−3. This indicates that,
unsurprisingly, the problem of sub-optimal local minima is still present. Secondly,
while the design optimized for ∆ρ = 1 × 10−2 retains the pumping action for
comparatively larger values of ∆ρ it performs worse than the other designs for lower
values of ∆ρ. Note also that the designs optimized for higher ∆ρ do not actually
have a net outflow at the values they are optimized for.
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5.5.4 Comparison to a finite element solution
In the course of implementing the extensions described above, it was discovered
that in some cases the resulting designs exhibited unphysical behavior, in which the
average output of the pump would grow without bound as the number of time-steps
increased. This is in some sense an unavoidable consequence of formulation of the
problem combined with the potential for unstable solutions in computational fluid
dynamics. That is, if during the optimization there is a design which causes numerical
instability, that optimization run will likely result in an unphysical result because
the instability is beneficial to the objective function. Nonetheless, the occurrence of
such designs motivated investigating how well the flow solution as computed by the
lattice Boltzmann method matched that of a more conventional method, in the case
the finite element method.

Figure 5.13: Mesh for the pump design as generated by COMSOL Multiphysics.

The design which will be used for comparison is the one shown in figure 5.7b.
The finite element solution is computed using COMSOL Multiphysics version 5.2.
The COMSOL model is implemented using non-dimensional units, which can be
mapped to the corresponding lattice Boltzmann solution as described in section 3.7.
The design is converted from the VTK to the STL file format (which COMSOL
supports) using Paraview version 4.3.1. The mesh generated by COMSOL is shown
in figure 5.13.

The COMSOL model has been solved using the default solver settings found in
the laminar flow module. In order to compare the two solutions, the average outflow
at the pumping outlet has been plotted as a function of time in figure 5.14.

As is readily apparent from figure 5.14, there is a large discrepancy between
the COMSOL and lattice Boltzmann solutions. The exact cause of this is not
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Figure 5.14: Comparison of the average outflow as a function of time, as computed
by the lattice Boltzmann method and COMSOL.

known as of this writing. However, figure 5.14 does reveal a crucial difference in the
two solutions: the weak compressibility of the lattice Boltzmann method causes a
“build-up time” before the final cyclical behavior emerges, whereas the finite element
solution immediately exhibits the final cyclical solution. Indeed, discounting the
phase shift caused by the initial delay of information transfer from the inflow to the
outflow, the final cyclical behavior of the two solutions seem to match up rather
well, albeit at different amplitudes. This points to the discrepancy between the two
solutions being caused by the weakly compressible nature of the lattice Boltzmann
method. It was already mentioned in section 3.8 that completely eliminating the
compressibility error associated of the lattice Boltzmann method is known to be
impossible, and the result shown here may well be a manifestation of this fact. Which
of the two simulations is more accurate—both from a theoretical as well as practical
perspective—is currently unknown, and would be an interesting and highly relevant
avenue of further research.





6
Topology optimization with

automatic differentiation [P2]

This chapter summarizes the automatic differentiation based adjoint approach to
the lattice Boltzmann method presented in [P2]. As discussed in the opening of
chapter 5, naive application of the adjoint method as presented in section 4.3 results
in adjoint code which is difficult to extend and maintain. The approach presented
here enables the generation of adjoint code for arbitrary lattice Boltzmann models,
though some caveats do apply, especially with regards to the computational efficiency
of said adjoint code.

This chapter cover the following: section 6.1 gives a brief introduction to automatic
differentiation by means of simple examples, based primarily on the textbook by
Griewank and Walther [85]; section 6.2 summarizes the main result from [P2], and
provides some more in-depth details not found in the paper; similarly, section 6.3
provides details on how to implement adjoint boundary conditions, which was also
not covered in great detail in the original paper; finally, section 6.4 offers some closing
comments and discussion.

As a final comment, note that the method presented here (as well as the naive
approach used in [P1]) are example of a discrete adjoint methods; this means that
the adjoint problem (4.5) is derived from the discretized version of the PDE to be
solved. This is also sometimes referred to as a “discretize then optimize” approach
in the literature. Conversely, an “optimize then discretize”, or continuous adjoint
approach involves deriving the adjoint problem directly from the continuous PDE.
This approach is not covered in this thesis, but for the interested reader a few
journal papers describing continuous adjoint methods for lattice Boltzmann are
available [61,65,86].

6.1 Automatic differentiation by example

Consider a function F : Rn → Rm, with a well-defined Jacobian F ′ : Rn → Rm×n.
This function is referred to as the primal function (i.e. the function to be differen-
tiated). We can imagine evaluation of this function taking place on some abstract
computational machine in a finite number of underlying computations; this set of
computations is denoted the evaluation trace. The reader may refer to [85] for a
formal definition of the evaluation trace. Each step in the evaluation trace should be
simple to differentiate on their own. It is then possible to differentiate the (arbitrarily
complicated) function F by computing a series of simple derivatives and propagating
them along the evaluation trace via the chain rule. This powerful idea is demonstrated
by example in the following. These examples originally appeared in [P2].
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6.1.1 Forward mode

In the forward mode, the computation proceeds starting from the input vector x ∈ Rn.
Consider the function

f(x) : R→ R2,

y1 = cos(cos(x)),
y2 = exp(y1).

(6.1)

An evaluation trace for (6.1) may be written like so:

v1 = cos(x),
v2 = y1 = cos(v1),
v3 = y2 = exp(v2).

(6.2)

The entire trace may then be differentiated by differentiating the intermediate variable
vi and applying the chain rule:

v̇1 = − sin(x),
v̇2 = ẏ1 = − sin(v1)v̇1,

v̇3 = ẏ2 = exp(v2)v̇2,

(6.3)

in this way, even though the full expression for f ′(x) is never “written down”, its
exact value is nevertheless obtained at x.

In general, the forward mode evaluates the expression:

ẏ = F ′(x)ẋ, (6.4)

where ẋ ∈ Rn is denoted the seed direction.

6.1.2 Reverse mode

As one might expect, in the reverse mode, the differentiation starts from the output
vector y = f(x) ∈ Rm. Define the adjoint variable, v̄i = ∂y/∂vi, which may be
computed by going through the evaluation trace in reverse order1.

Consider the function

g(x1, x2) : R2 → R,
y = cos(cos(x1x

2
2)),

(6.5)

1Formally, the adjoint variables actually denote the variation, v̄i = ∂y/∂δi. See [85] for full
details.
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with the evaluation trace

v1 = x1,

v2 = x2,

v3 = v2
2 ,

v4 = cos(v1v3),
v5 = cos(v4).

(6.6)

The reverse mode is now computed by evaluating v̄i, starting from the end:

v̄5 = 1,
v̄4 = −v̄5 sin(v4),
v̄3 = −v̄4 sin(v1v3)v1,

v̄2 = ∂g

∂x2
= 2v̄3v2,

v̄1 = ∂g

∂x1
= −v̄4 sin(v1v2)v3.

(6.7)

In general, reverse mode evaluates the expression:

x̄T = ȳTF ′(x), (6.8)

where ȳ ∈ Rm is denoted the weight functional.

6.1.3 Closing remark

The point of these simple examples is not to show some alternative way to derive
derivatives, but that the machinery powering the forward and reverse modes can
be automated and implemented in software. Discussing implementation details of
automatic differentiation packages will be omitted here, but the reader may refer
to [P2] for a slightly more in-depth discussion, and of course the already cited [85]
for thorough coverage. In addition, a list of implementations for many programming
languages may be found at the website [87].

6.2 Adjoint method with automatic differentiation

As mentioned, this section summarizes the main result of [P2]. This summary is
given in subsection 6.2.1. The following subsection provides some additional details
not found in [P2], namely an alternative way of deriving the adjoint streaming step,
while subsection 6.2.3 discusses checkpointing strategies.
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6.2.1 Main result
The main idea of the derivation, following Liu et al. [82], is to split the residual
R(v, s) into a series of computational steps, and then introduce Lagrange multipliers
for each step. That is, for the lattice Boltzmann method, the method is split into the
collision, streaming, and boundary condition step, yielding the following Lagrange
multiplier objective:

ϕ̂ =
Nt∑
t=0

z(t,f , s) + λTt Rstream
t + σTt Rbc

t + τTt Rcollision
t , (6.9)

where the t subscript denotes the value of the vector in time-step t, and λ, σ, and τ
are all distinct Lagrange multipliers. Note that the notation f is here preferred over
v for the state variable, since this is the common notation in the lattice Boltzmann
literature. From here, the derivation proceeds equivalently to the one starting
from (4.2) in section 4.3, and the reader is referred to [P2] for the full details. The
end result is the following adjoint collision step:

σ(xj , t)T = τ (xj , t)T
∂Ω[f(xj , t), sj ]

∂f(xj , t)
+ ∂z(t,ft, s)

∂f(xj , t)
. (6.10)

Following the adjoint collision step, we have the adjoint boundary step

λ(xj , t)T = σ(xj , t)T
∂ψ[f stream(xj , t)
∂f stream(xj , t)

. (6.11)

and finally the adjoint streaming step

τi(xj , t) = λi(xi − ei∆x, t−∆t), (6.12)

that is, the adjoint streaming step is backwards in time and in the opposite direction of
the primal streaming step. Above f denotes the distribution values at the beginning of
a new time step, while f stream denotes the distribution values following the streaming
step, but prior to the application of boundary conditions. The operator ψ denotes a
generic boundary condition operator (see section 6.3 for a specific example of adjoint
boundary conditions).

Finally, the sensitivities may be evaluated by the expression

∂ϕ̂

∂sj
=

Nt∑
t=0

∂z

∂sj
+ τT (xj , t)

∂Ω[f(xj , t), sj ]
∂sj

. (6.13)

The important point is that the expressions (6.10) and (6.13) (which are both highly
non-linear) both contain terms which are exactly of the form (6.8), and can therefore
be evaluated with the reverse mode of automatic differentiation.
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It is important to note that since the collision step is purely local, automatic
differentiation is only applied on local operations as well. In this way a large
limitation of many automatic differentiation packages is bypassed: namely that they
do not directly support external libraries or parallel primitives such as MPI calls.
This is ideal in our case since the parallel implementation is based on the PETSc
framework [81].

6.2.2 A note on adjoint streaming
The adjoint streaming step (6.12) is derived in [82], and the result was stated without
derivation in [P2]. Their derivation—while correct—makes use of a slightly counter-
intuitive assumption about the extent of the computational domain, and also does
not describe how to deal with bounce-back boundaries of the form described in
section 3.6.1, at least to the authors understanding. Here, an outline of a slightly
different derivation is given, which accounts explicitly for the bounce-back boundary
conditions as described in this thesis.

The idea of the derivation is that the streaming and bounce-back steps are simply
a permutation of the vector of post-collision distribution values. Thus, the residual
of the streaming step may the written as a matrix-vector product, like so:

Rstream
t = M streamft − f stream

t = 0, (6.14)

where M stream is the sparse permutation matrix for the streaming and bounce-back
step. When deriving the adjoint method, the relevant term is then the summation

Nt∑
t=0

∂ϕ̂

∂ft

∂ft
∂sj

=
Nt∑
t=0

λTt M
stream − τTt = 0, (6.15)

which, since the summands are mutually independent, implies the adjoint streaming
step

τt = (M stream)Tλt. (6.16)

In other words, the permutation matrix for the adjoint streaming and bounce-back
step is simply the transpose of the primal matrix. This results in exactly the streaming
step (6.12) in the interior, and an adjoint bounce-back which is opposite in direction
to the primal bounce-back step, as one might intuitively expect.

6.2.3 Checkpointing
Though it might not be immediately clear from the above equations, the above
adjoint method (indeed any adjoint method for a time-stepping scheme) must be
evaluated “backwards in time”. That is, the evaluation of the Lagrange multipliers
must start at the final time-step Nt. Since the collision operator Ω is non-linear
in f , the adjoint collision step (6.10) will itself be a function of f . This implies
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that the time history of f must be either stored in memory or made available by
recomputation during the adjoint evaluation. Note that this is not the case for the
adjoint streaming step since it is not a function of f , while for the adjoint boundary
step it depends on whether ψ is non-linear in f , see section 6.3.

Setting aside the question of the adjoint boundary conditions for the moment, the
pre-collision distribution values must in any case be available to compute the adjoint
collision step. Naively storing the whole history in memory does not scale well, but
recomputation increases the computational cost of the adjoint method. Fortunately,
there are algorithms available which minimize the amount of recomputation necessary
to complete the full adjoint evaluation. An early example of such an algorithm is
REVOLVE [88], which computes a provably optimal layout of checkpoints, from
which recomputation takes place. For the work presented in this thesis, the newer
algorithm by Wang et al. [89] has been used. This computes the same optimal
checkpoint layout as REVOLVE, but has the added feature that the total number of
time-steps need not be known in advance. We shall use this to our advantage in the
thermal problem presented in chapter 7.

6.3 Adjoint boundary conditions

Like the adjoint collision step (6.10), the adjoint boundary step (6.11) is of the
form (6.8), which means it can be evaluated by the reverse mode of algorithmic
differentiation. For relatively simple boundary conditions such as the Zou/He
boundary conditions (3.17), which are linear in f , it is generally relatively easy to
derive and implement the adjoint boundary conditions by hand. For the concrete
example at hand—equation (3.17)—one may derive the following adjoint boundary
condition:

C(xj , t) = 1
1− ūx

,

ρ̃(xj , t) =
(
ūx
6 −

ūy
2

)
Cσ1 +

(
ūx
6 + ūy

2

)
Cσ7 + 2ūx

3 Cσ8,

λ0(xj , t) = σ0 + ρ̃,

λ2(xj , t) = σ2 + 1
2 (σ7 − σ1) + ρ̃,

λ3(xj , t) = σ3 + σ7 + 2ρ̃,
λ4(xj , t) = σ4 + σ8 + 2ρ̃,
λ5(xj , t) = σ5 + σ1 + 2ρ̃,

λ6(xj , t) = σ6 + 1
2(σ1 − σ7) + ρ̃,

λ1(xj , t) = λ7(xj , t) = λ8(xj , t) = 0.

(6.17)
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Note that the spatial and temporal argument has been omitted from the right-hand
side, as in (3.17). Since (3.17) is linear in f , the adjoint boundary condition is
independent of f . This is advantageous because it means that only the initial
state of the distributions variables at time-step t needs to be known to evaluate the
adjoint time-step. Thus only this state needs to be considered in the checkpointing
algorithm. While there certainly are non-linear boundary conditions available in
the literature (e.g. Latt et al. [90], Malaspinas et al. [91]), and these do have better
stability properties than the linear Zou/He boundary conditions, using them would
add an additional layer of complexity to the adjoint code, since the post-streaming
distribution values would need to be available when computing the adjoint boundary
step. This in turn means that these values either need to be stored as a checkpoint or
recomputed from other checkpointed values. All of this is certainly possible, but—in
the view of the author—the added complexity is not worth it unless the additional
stability of these boundary conditions was absolutely necessary.

6.4 Discussion

While automatic differentiation has been applied quite extensively for other types of
design optimization than topology optimization [92–94], to the authors knowledge,
only few papers have applied it to topology optimization [95,96]. Its applicability
in any given concrete case of course depends on the difficulty of implementing
hand derived adjoints, but the potential utility of completely automating sensitivity
computations can scarcely be understated. In the present work, utilizing automatic
differentiation did require some up front work, but implementing the approach
described above significantly reduced the work required for implementing adjoint
code going forward, since the approach is generic and can be adapted to any lattice
Boltzmann model which follows the “collide and stream” time-stepping structure.
A specific example will be shown in chapter 7, where the approach is adapted to a
thermal lattice Boltzmann model.





7
Unsteady thermal flow topology

optimization

This chapter documents the work done on topology optimization of heat regenerators
as part of the thesis work. These results are unpublished, and therefore can be
considered wholly new material distinct from what is covered in the publications
submitted with this thesis.

Unlike the results presented in the previous chapters, the problem presented
here requires simulation of a thermofluidic system. Therefore, section 7.1 covers
how to simulate such a system using the lattice Boltzmann method, by means of a
so-called double distribution model. Section 7.2 follows on this by discussing the
consequences the extension of the lattice Boltzmann method to thermal systems
has from a topology optimization perspective. That is, how solid and fluid nodes
are handled in the thermal model, and how to adapt the adjoint method presented
in chapter 6 to the extended model. Subsequent sections then focus on the actual
topology optimization problem: section 7.3 gives a brief introduction to regenerator
devices; section 7.4 describes how a topology optimization problem for the regenerator
was formulated and implemented; based on these initial findings, section 7.5 extends
the problem to robust optimization for non-uniform variations; finally, section 7.6
discusses various ways to further investigate the problem beyond the initial findings
presented here.

The theoretical sections of this chapter are mainly based on various papers on
thermal lattice Boltzmann models [97–99], as well as the book [100]. Like in previous
chapters, the main results are simply stated, without going into the details of the
theoretical derivation. The focus is exclusively on the double distribution approach
to thermal lattice Boltzmann. An alternative method for implementing thermal
lattice Boltzmann models is the so-called multi-speed approach, in which the lattice
is expanded to include velocities that travel farther than to nearest neighbor nodes
in a single time-step [101]. This type of model has not been considered for this work
since it forces a constant Prandtl number and is reported to have poor stability
properties [102].

7.1 Thermal lattice Boltzmann model

The double distribution lattice Boltzmann model, as the name implies, adds another
set of distribution values to the lattice Boltzmann model, which in this case governs
the dynamics of the temperature field in a thermofluidic model. The additional
set of distribution values are advanced in time according to their own collision and
streaming step, coupling to the isothermal model through the macroscopic values.
In this thesis, the temperature dynamics of interest are governed by the advection-
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diffusion equation (2.5), with a one-way coupling achieved by the presence of the
fluid velocity u in (2.5).

To separate the distributions associated with the temperature from the “standard”
distributions associated with density and velocity, the following notation shall be
used:

gi(xj + ci∆t, t+ ∆t) = gi(xj , t) + Π(g(xj , t)), (7.1)
where Π(g(xj , t)) is the thermal collision operator. The temperature T is computed
like the density in standard lattice Boltzmann, that is

T (xj , t) =
∑
i

gi(xj , t). (7.2)

7.1.1 Thermal lattice
Because the advection-diffusion equation is a simpler dynamical equation than the
Navier-Stokes equation (2.3), a correspondingly simpler lattice than the D2Q9 lattice
can be used. For this thesis, the D2Q5 lattice has been used in the thermal simulations.
Its weights and velocities are listed in equation (7.3) and it is illustrated in figure 7.1.

ci = ∆x
∆t

{
(0, 0), i = 0,
(±1, 0), (0,±1), i = 1, 2, 3, 4;

(7.3a)

wi =


1
3 , i = 0,
1
6 , i = 1, 2, 3, 4;

(7.3b)

cs = ∆x
∆t

1√
3
. (7.3c)

c0 c1

c2

c3

c4

Figure 7.1: Visual illustration of the D2Q5 model.

Clearly, the D2Q5 lattice is simply the D2Q9 without diagonal velocities (and
different corresponding weights).
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7.1.2 Thermal collision operators
The simplest thermal collision operator available is similar to the BGK operator (3.7).
It is given by

ΠBGK
i = − 1

τ ′
(gi − geq

i ), (7.4)

with the equilibrium function

geq
i = wiT

(
1 + ci · u

c2s

)
. (7.5)

Likewise, an MRT-like operator is available for the thermal lattice Boltzmann
model [98]. It is given by

ΠMRT(g(xj , t)) = M−1SM(g − geq), (7.6)

with

M =


1 1 1 1 1
0 1 0 −1 0
0 0 1 0 −1
−4 1 1 1 1
0 1 −1 1 −1

 , (7.7)

S = diag(0, s12, s12, s3, s4). (7.8)

Like in the standard lattice Boltzmann method, the relaxation time is related to a
macroscopic material parameter, in this case the diffusivity:

τ ′ = s12 = c2sD
∆t

∆x2 + 1
2 . (7.9)

7.1.3 Thermal boundary conditions
Since the D2Q5 does not contain diagonal velocities, there is only one unknown
distribution value after streaming on non-corner boundaries. This makes it trivial to
implement a Zou/He style boundary conditions for fixed temperature boundaries. In
addition, bounce-back boundary conditions can be used to approximate Neumann
boundary conditions [98]. This approach has been found to be inaccurate, however,
in cases where there is a strong fluid flow (i.e. a high value of |u|) on the boundary.
In that case, it is better to use the method for Neumann boundaries given by
Malaspinas [103].

7.2 Thermal lattice Boltzmann for topology optimization

In the present case of applying the thermal lattice Boltzmann method to topology
optimization problems, there are a few additional considerations to take into account.
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7.2.1 Material interpolation
Like in the case of the isothermal problems, where the partial bounceback model
described in section 5.1 was used to facilitate a smooth transition between the solid
and fluid states, the thermal model needs to somehow distinguish between these
states as well. This is achieved by adapting the method used by Alexandersen et
al. [63] to the lattice Boltzmann model. In this approach, the thermal diffusivity
varies smoothly between the diffusivity of the fluid and that of the material. The
ratio between their diffusivities are denoted

CD = D

Dmat
, (7.10)

where Dmat is the diffusivity of the material. The diffusivity of node j is then given
by

h(sj) = sj(CD(1 + ξ)− 1) + 1
CD(1 + ξsj)

, (7.11)

D(sj) = Dh(sj), (7.12)

where h(sj) is a so-called RAMP interpolation function [104], and ξ is a convexity
factor which can be adjusted to penalize intermediate variables. Unlike the partial
bounceback model, this approach does not directly alter the thermal collision operator
Π directly. Rather, the prior to the collision step, the diffusivity in the node is
computed with (7.12), and this value is then used to compute a node-local relaxation
time using (7.9). The collision step is then computed as normal.

7.2.2 Adjoint thermal lattice Boltzmann
The automatic differentiation approach presented in chapter 6 is perfectly applicable
to the thermal lattice Boltzmann model, since it does not change the fundamental
“collide and stream” execution of the algorithm. In the adjoint streaming step, there
are simply a larger set of distributions which will be streamed backwards in space
and time, and the two collision steps can be concatenated into a single step like so:

Ωtotal([f(xj , t) g(xj , t)]T ) = [Ω(f(xj , t)) Π(g(xj , t))]T . (7.13)

This “total” collision operator is then readily differentiated (as required in the adjoint
collision step (6.10)) by the reverse mode of automatic differentiation.

7.3 Regenerators

In this chapter, the thermal devices for which optimization will be attempted are the
so-called regenerative heat exchangers, commonly known simply as regenerators. As
the name suggests, regenerators are a specific type of heat exchanger. In regenerators,
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heat from a hot fluid is stored in an intermittent storage medium, called the regen-
erator matrix, before it is transferred to a cold fluid. The device functions by fluid
flowing through it in two phases: first, hot fluid flows through the device, transferring
its heat to the storage medium inside; second, cold fluid flows through, absorbing
the heat stored in the medium. Regenerators are used in a variety of important
applications, e.g. dehumidifiers, electronics cooling, and magnetic refrigeration.

Heat regenerators are typically grouped into three classes: monolithic, stacked
parallel plates, and packed spheres. Detailed discussion of the advantages and
disadvantages of each class of design is beyond the scope of this thesis, but the reader
may refer to e.g. Duprat and Lopez for an analysis of the trade-offs associated with
each design [105]. In this thesis, the focus will be on the parallel plate regenerator,
and this will be the starting point from which optimization will be performed.

The performance of regenerators may be classified by means of a so-called single
blow experiment [106]. The idea of this experiment is to pump fluid of a fixed
temperature through the regenerator, then forcing a sudden change in the temperature
of the fluid, and measuring the temperature response at the outlet of the regenerator.
A good regenerator should then equilibrate to the new temperature as fast as possible,
since a short equilibration time indicates that the transfer of heat from the regenerator
matrix happens swiftly. A simple model of the single blow experiment shall be used
as the basis for the optimization process.

7.4 Topology optimization of regenerators

In this section the basic setup of the optimization problem as well as some initial
results are covered.

7.4.1 Simulation setup

We consider a simplified model of a single blow experiment for a parallel plate
regenerator. The simulation domain is depicted in figure 7.2. In this model, the fluid
is flowing from left to right, driven by a fixed density drop ∆ρ (recall that this is
equivalent to a pressure drop) imposed by density boundary conditions on both ends.
The full simulation proceeds according to the following steps:

1. If this is the first iteration, the domain is initialized with zero velocity every-
where, but with a linearly decreasing density from the inflow to the outflow.
Otherwise, the steady state solution from the previous iteration is used to
initialize the flow. The temperature is initialized to a uniform value in the
entire domain.

2. A steady state flow solution is computed at uniform temperature. This is done
by a “pseudo time-stepping” approach, i.e. the flow is evolved forward in time
using the standard lattice Boltzmann time-stepping algorithm until a steady
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Ly

Lx

Design domain Initial plates

Ldesign

Figure 7.2: Illustration of the computational domain for the regenerator problem.
The dashed lines show an example of an initial parallel plate design, but this is
merely used as an initial guess for the optimization.

state is reached. The flow is considered to be in steady state once the criterion
‖ft − ft−1‖∞ < ε is satisfied, where ε is some small tolerance.

3. Once the steady state solution is found, the temperature at the inflow is changed
suddenly, and the flow simulation is allowed to run for an additional fixed
number of time steps, in order to analyze the transient response to the sudden
temperature change.

The dynamics of both the isothermal and thermal distributions are simulated
using their corresponding MRT collision operator. The advantage of the above
approach is that it allows for full reuse of the machinery already developed for the
isothermal problems. As mentioned in section 6.2.3, the checkpointing algorithm [89]
which has been implemented for this work does not need to know a priori the exact
number of time-steps performed in the simulation. If the steady state analysis takes
Nsteady time-steps, and the fixed number of time-steps for the transient analysis
is Ntransient, the adjoint analysis can step backward through the history of the
Nt = Nsteady +Ntransient steps “as if” the number Nt had been known all along.

As a final implementation detail, in order to avoid numerical difficulties, we do not
use a true step change in the temperature at the inflow, but rather the temperature
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change happens according to

T (t) =


T0, t ≤ Nsteady,

T0 + ∆T sin
(
π(t−Nsteady)

2Nramp

)
, Nsteady < t ≤ Nsteady +Nramp,

T0 + ∆T, Nsteady +Nramp < t ≤ Nt ,

(7.14)

where Nramp is some fixed (small) number of time-steps in which the temperature
change happens, and ∆T is the temperature change.

7.4.2 Objective function
In order to actually optimize a design using the simulation method described above,
some figure of merit for the performance of the regenerator is still needed. In other
words, an objective function needs to be formulated. According to Jensen et al. [107],
the most general figure of merit is the so-called regenerator efficiency, defined as the
ratio between the total energy transferred from the regenerator matrix to the fluid
in a single blow to the total energy stored in the matrix, i.e.

χ = Etransfered

Etotal
, (7.15)

such that a theoretical perfect regenerator would hve an efficiency of 1. Jensen et al.
compute the effectiveness as a function of time using the formula

χ(t) =
∫ t

0 q̇t dt
Etotal

, (7.16)

where q̇t is the heat transfer rate across the plate/channel interface. Computing
the efficiency in this manner would be quite difficult in the present context of
density based topology optimization, since some approximate scheme for tracking the
boundary or boundaries between the fluid and the solid matrix would be necessary.
The two papers [105,106] offer some alternative figures of merit for heat regenerators.
Based on these papers, we formulate the following approximation of the regenerator
efficiency:

χ̃(t) =
∑
j∈Ωd

(1− sj)(T (t)− T0)∑
j∈Ωd

(1− sj)∆T
. (7.17)

In this formulation, the efficiency is approximated as the ratio of the weighted sum
of the temperature change in each node, over the weighted sum of the theoretical
maximum in each node. The weight (1− sj) is there since only the temperature of
the solid matrix is of interest. In the topology optimization problems where (7.17)
was applied, the actual objective function is χ̃−1, evaluated in the final time-step. In
addition, in all the results presented below, a volume constraint is in place which
constrains the material fraction allowed in the design domain to be equal to the
fraction of the initial guess.
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7.4.3 Results
The result of a “standard” (i.e. not robust) optimization is shown in figure 7.3. The
relevant numerical parameters are in table 7.1.

(a) Initial guess.

(b) Optimized design.

Figure 7.3: Result of simple topology optimization on the regenerator problem.

Lx 550 Ly 140
Ldesign 350 ∆ρ 0.05
T0 2 ∆T 2

Ntransient 25000 Nramp 200
ξ 1 γ 1
Re 30 Pr 0.71
CD 0.0025 ε 1× 10−7

Table 7.1: Numerical parameters for the regenerator problem. All physical parameters
are in lattice units. For the Reynolds number, the characteristic length is the inflow
length, and the characteristic velocity is the maximum velocity of a Poiseuille flow at
density drop ∆ρ.

The result in figure 7.3 seems to indicate that the initial parallel plate solution is
already very close to a local minimum. The predicted improvement in regenerator
efficiency of the optimized design is less than one percent. This is supported by the
following quote from Jensen et al. [107]:

“Parallel-plate regenerators with small dimensions (. . . ) are receiving
interest for several application because of their theoretically high thermal
performance (. . . ) with low pressure drops. (. . . ) Although the theoretical
performance of parallel plate regenerators is high, the experimentally
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measured performance is typically less than what is expected. It is
generally accepted that flow maldistribution of the heat transfer fluid
caused by non-uniformity in the flow channel widths is one of the causes
of this discrepancy.”

While the above quote indicates that the parallel plate design is already very good
for its purpose, it suggests that the design is not robust to non-uniform variations.
This motivates the work presented in the next section.

7.5 Robust optimization of regenerators

Motivated by the findings of the previous section, this section describes the application
of non-uniform robust topology optimization [78] to the regenerator problem.

7.5.1 Non-uniform variations

The robust optimization for non-uniform variations still makes use of the robust
formulation (4.9), but the projection variable η is now made a function of space,
η 7→ η(x).

The projection field is computed in the following way: for each realization in the
robust optimization, evaluate the function

Y (x, y) =
m∑
i=1

σxi (Ai cos(ωxi x) +Bi sin(ωxi x))

+
n∑
j=1

σyj (Cj cos(ωyj y) +Dj sin(ωyj y)),
(7.18)

where the factors A,B,C,D ∼ N (0, 1) are normally distributed random variables,
and the constraint

m∑
i=1

(σxi )2 +
n∑
j=1

(σyj )2 = 1, (7.19)

is satisfied. The variables ωx and ωy are predefined frequencies at which variations
occur. For each realization, Y (x, y) is computed, and η(x, y) is then determined as

η(x, y) = 1
2(ηmax − ηmin)

(
1 + erf

(
Y (x, y)√

2

))
+ ηmin, (7.20)

where erf is the Gauss error function:

erf(x) = 1√
π

∫ x

−x
exp(−t2) dt, (7.21)
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which is used for computing the cumulative distribution function of the normal
distribution. The parameters ηmin and ηmax are predefined minimum and maximum
values for η.

The method of determining η(x, y) allows modeling of “wave-like” non-uniform
variations. An example application is shown in figure 7.4 for a parallel plate structure.

(a) Reference. (b)

(c) (d)

(e) (f)

Figure 7.4: Example realizations created by applying the non-uniform projection
filter to parallel plates shown in figure 7.3a. The wave-like nature of the non-uniform
variations is clearly seen.

One challenge associated with this kind of robust optimization is that since
random variables have been introduced, it is essentially a kind of Monte Carlo
method. Such methods have the weakness that a large number of samples (of order
hundreds) are generally needed in order for the method to converge. Since the
equivalent of a “sample” in this case is a single design realization, the computational
cost of having a hundred or more realizations would be enormous, even though the
individual realizations can be computed in an embarrassingly parallel fashion, as
described in section 5.5.2. To counteract this somewhat, rather than sampling using a
pseudo-random number generator, the samples are generated from a Sobol sequence,
a so-called quasi-random or low discrepancy sequence [108,109]. Using this type of
sequence speeds up the rate of convergence for Monte Carlo methods by traversing
the sampling space in a more structured manner, ensuring that the space is “covered”
using fewer samples.
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7.5.2 Results
Now that the means to generate design realizations with non-uniform variations are
in place, robust topology optimization can be performed on the regenerator problem.
Two sets of results are presented. Both have the same simulation setup (as described
in section 7.4.1), but differ in the initial guess used for the design. In both cases, the
optimization has been performed on 20 realizations, though only a representative
sample will be shown here. The two sets of results are shown in figures 7.5 and 7.6,
respectively.

(a) Initial guess. (b)

(c) (d)

Figure 7.5: Example results obtained with a thick plate design used as initial guess.

(a) Initial guess. (b)

(c) (d)

Figure 7.6: Example results obtained with a thin plate design used as initial guess.

The results shown should be considered preliminary since they exhibit a number
of problematic features. The individual realizations all have topology differences,
which is especially pronounced in the second set of results. This could potentially be
mitigated by using the double filter introduced by Christiansen et al. [77]. Moreover,
there is no particularly clear physical interpretation which can be made of the designs.
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Nonetheless, from a purely numerical perspective, the lattice Boltzmann simulations
predict an average of 22% improvement in the regenerator efficiency, compared to
the initial guess, for the first set of results, and an average improvement of 30% for
the second set of results. Despite this, more investigation into this problem is clearly
needed.

7.6 Discussion

To conclude this chapter, various ways forward from the current state of the investi-
gation into the regenerator problem are proposed.

We will postpone discussion of the problems already touched on for a moment
and focus first on a purely practical matter: the optimization runs for the regenerator
problem are very computationally costly. This is especially true in the early stages
optimization, where computing the steady state solution can often take of order a
hundred thousand time-steps, which then have to be reversed for the adjoint analysis
(including recomputation done by the checkpointing algorithm). This problem
diminishes as the optimization starts to converge, since the design change between
iterations is quite small, which means that the steady state computations will converge
in a relatively small number of time-steps. Nonetheless, steady state computations
account for a very large portion of the computational time, and speeding up this part
would most likely yield the greatest return on time invested to realize the speed-up.
A multigrid method for computing steady state solutions using the lattice Boltzmann
method has been proposed by Mavriplis [110], which is reported to compute steady
state solutions much faster than the pseudo time-stepping approach. This was
attempted implemented by the author, but unfortunately the implementation is not
functional as of this writing.

Increasing the computational speed of the optimization runs would be a worthwhile
pursuit because it would allow for a faster iteration time in producing new results.
This would allow more rapid prototyping of potential solutions for the modeling
issues discussed below. It would also be absolutely essential if one was to extend the
problem to 3D.

Regarding the modeling of the problem, the thermal model used is quite simple,
since it is based on the advection-diffucions equation (2.5), rather than a fully coupled
model. It could well be that a more advanced model is necessary to fully capture
the physics necessary to model and optimize the regenerator in a satisfying way.
Considering the findings of section 5.5.4, it is likely necessary to conduct a more
in-depth study of this type of thermal modeling with the lattice Boltzmann method,
both from a theoretical and practical perspective. Another potential benefit of such a
study would be additional insight into the best way to formulate the problem: there
might well exist a more natural and/or precise objective function for the problem
than (7.17), for example.
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In conclusion, it seems that there is good potential for the application of topology
optimization to this problem, but there are significant challenges associated with the
modeling as well as the implementation quality which ideally must be overcome in
order to proceed.





8 Closing discussion

In this chapter, the major findings presented in this thesis are summarized, along with
discussion of remaining issues for the application of the lattice Boltzmann method for
topology optimization as the author sees them. Finally, it offers concluding comments
and possible avenues of future research.

8.1 Summary

This thesis presents a framework for topology optimization of unsteady fluid flow
systems using the lattice Boltzmann method. The gradients needed for the optimiza-
tion process are computed using a discrete adjoint approach which utilizes automatic
differentiation to differentiate the non-linear collision steps in the method.

The applicability of the framework has been demonstrated on a number of unsteady
flow problems, including both isothermal and thermal systems. The optimization
process consistently converges to a design which is numerically superior to the initial
design. Despite this, there are lingering issues regarding the efficacy of the physical
simulation. It was shown in chapter 5 that predicted behavior of an optimized
design can differ significantly from a conventional finite element simulation. In the
case of the thermal problems, no direct comparison was made with a finite element
simulation, but the obtained designs are hard to interpret physically.

Despite these as yet unresolved problems, the implemented simulation code is
able to simulate fairly large unsteady flow systems in a reasonable amount of time,
utilizing parallel computation, checkpointing, and in the case of robust optimization,
distribution of each design realization to its own group of computational cores. There
is definite potential for applications in topology optimization at a truly large scale.

8.2 Comments on implementation

A large part of the work for this thesis was spent on implementation work for the
lattice Boltzmann framework as described. The code utilizes the PETSc library,
which provides convenient parallel data structures for numerical codes. However,
the functionality provided by PETSc is primarily centered around linear algebra
solvers, which are not directly applicable for the lattice Boltzmann method. It is
likely that significant flexibility and performance could be gained by implementing,
or—even better—utilizing already implemented data structures specialized for lattice
Boltzmann. Several open source lattice Boltzmann libraries exist, but it is not known
by the author if the code could be easily adapted to topology optimization. In any
case, some implementation effort would be needed to adapt other dependencies,
e.g. MMA, to such a code. Such an effort might well be worth it, since it would allow

69



70 CHAPTER 8. CLOSING DISCUSSION

access to an ecosystem of lattice Boltzmann code, rather than having to implement
everything from scratch.

8.3 Future work

As already discussed in some detail, understanding the discrepancy between solvers
will be a very important issue to resolve going forward. Beyond that, a few possible
extensions of the present work will be listed here.

The most obvious extension would be to implement a 3D version of the opti-
mization framework described here. The tools developed for this thesis, e.g. the
automatic differentiation based adjoint approach and the checkpointing algorithm,
would transfer directly to a 3D implementation. The main issue, then, is the large
increase in computational cost when transitioning to 3D.

While the increase in computational cost is inevitable, there are a few techniques
available to reduce the problem somewhat. In the current code, only rectangular
domains are supported. This leads to a fair amount of wasted computing time in
e.g. the pump problem, which has fixed solid domains to account for the inflow and
outflow channels. It would be more efficient to completely exclude these areas from
the simulation, but this would require support for non-rectangular computational
domains. Note that this would require a major restructuring of the code, since
the current implementation depends on PETSc data structures which only support
rectangular domains, cf. the discussion on implementation details above.

A more exotic extension would be investigating local grid refinement methods for
the lattice Boltzmann method [111]. This would allow overall computational savings
by placing more grid nodes in areas which are expected to exhibit more complicated
dynamics. This is likely to greatly increase the complexity of the implementation,
however.

Finally, regarding the thermal models, it would be interesting (possibly even
necessary) to investigate more advanced thermal models [112,113] than the simple
advection-diffusion model used for this work.

8.4 Conclusion

In conclusion, this thesis shows the applicability of the lattice Boltzmann method as a
tool for topology optimization, but further work is required to realize the full potential
of the method. Since relatively little work on unsteady flow optimization has been
done, it is not clear as of this writing whether the lattice Boltzmann method offers a
significant advantage over conventional Navier-Stokes based methods. Certainly, the
traditional methods are much more well established, which might make them more
practical for the foreseeable future. In the view of the author, an in-depth study of
the trade-offs between the two methods would be well warranted.
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This article demonstrates and discusses topology optimization for unsteady incompressible 
fluid flows. The fluid flows are simulated using the lattice Boltzmann method, and a partial 
bounceback model is implemented to model the transition between fluid and solid phases 
in the optimization problems. The optimization problem is solved with a gradient based 
method, and the design sensitivities are computed by solving the discrete adjoint problem. 
For moderate Reynolds number flows, it is demonstrated that topology optimization 
can successfully account for unsteady effects such as vortex shedding and time-varying 
boundary conditions. Such effects are relevant in several engineering applications, i.e. fluid 
pumps and control valves.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The lattice Boltzmann method (LBM) has gained increasing attention in recent years as a viable alternative to Navier–
Stokes (NS) based methods for computational fluid dynamics. In this paper, we present a method for topology optimization 
of fluid domains subject to unsteady flow conditions using the LBM. The topology of the domain is represented using 
the density approach, in which each point of the discretized domain is assigned a value between 0 and 1, representing a 
fully solid and fluid node, respectively [1]. In contrast to previously published work on fluid domain optimization with the 
LBM, which has focused on steady-state formulations of the optimization problem, this work considers an unsteady flow 
formulation, and presents optimization problems in which unsteady effects have a significant influence on the optimized 
topologies.

The topology optimization methodology was originally developed as a design tool for structural mechanics [1,2], and 
since its inception it has been applied to a variety of physical domains, including the optimal control of fluid flow problems. 
Borrvall and Petersson first applied topology optimization to Stokes flow problems in 2003 [3], and since then, additional 
studies have extended their work to laminar Navier–Stokes flow at moderate Reynolds number [4,5], and to large scale prob-
lems solved using parallel computation [6]. Furthermore, there are numerous published studies applying the methodology 
to more complicated fluidic devices, such as fluid switches [4], and microfluidic mixers [7,8].

In the majority of previous works, the flow solutions are approximated by numerically solving the NS equations. Recently, 
however, the LBM has become a popular alternative to traditional solvers. For a thorough introduction, the reader is referred 
to the books by Sukop and Thorne [9], and Wolf-Gladrow [10]. In contrast to the continuum assumption of the NS based 
approach, the starting point of the LBM is the Boltzmann transport equation of kinetic theory. Discretization of this equation 
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E-mail address: sebnorg@mek.dtu.dk (S. Nørgaard).
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yields an explicit time marching scheme which can compute approximate solutions to the incompressible NS equations 
for low Mach number flows. The method is attractive because it is algorithmically simple, lends itself well to parallel 
implementation, and is relatively easy to extend to more complicated physics, such as porous media [11–13], or multiphase 
flows [14,15]. The use of the LBM for topology optimization was pioneered by Pingen et al. [16], who used the density 
approach to topology optimization. The work is extended to multiphase flow problems by Makhija et al. [8]. In addition, 
a number of studies have investigated a level-set based optimization approach using the LBM [17–19].

For gradient-based optimization, a common technique for computing the necessary gradients is the adjoint method. There 
are two main approaches to this technique, the “discretize then optimize” approach, in which the adjoint problem is derived 
from the discrete lattice Boltzmann equation, and the “optimize then discretize” approach, in which the adjoint problem 
is derived from the continuous Boltzmann equation and then discretized. In this paper, we adopt the first approach. The 
discretize then optimize approach was first used by Tekitek et al. [20] for finding optimal parameters for a lattice Boltzmann 
model, while Krause et al. [21] applied the discretize then optimize approach to flow control problems.

Regardless of the computational method used to obtain flow profiles, the vast majority of studies on fluid topology 
optimization have only considered steady-state flow. On the other hand, many fluidic systems of interest are dominated 
by unsteady flows and do not permit steady-state solutions. Only few studies have been published treating such systems, 
however. An implementation of unsteady flow topology optimization using a discrete formulation of the objective function 
has been presented by Kreissl et al. [22], while Deng et al. presented a continuous formulation [23]. Both of these studies 
computed the flow profiles by a finite element discretization of the NS equations. While Yonekura and Kanno [24] have 
presented a method for computing steady state designs using transient information, to the authors’ knowledge, there are 
no published works which apply the LBM to topology optimization of unsteady flow problems. In addition, the above works 
consider problems in which unsteady effects have little influence on the topology of the computed solutions. In the present 
work, problems with inherent unsteady characteristics will be presented. The problems considered are restricted to two 
spatial dimensions, but the method is readily extensible to three-dimensional problems.

Following the work of Kreissl et al. [22], the unsteady flow topology optimization problems considered in this paper may 
be written in the time-discrete form:

min
s

Z( f 0, . . . , f Nt , s) = χ

(
Nt∑

n=0

zn(tn, f n, sph)

)
,

s.t.

⎧⎨
⎩

s, satisfies design constraints G j ≤ 0,

f n, satisfies the governing equations, Rn = 0, 
for the given s, ∀n ∈ {0, . . . , Nt},

(1)

where s is a vector of design variables, and sph is a vector of physical variables associated with the fluid medium at each 
design element. The physical variables are obtained from s by a continuous mapping X : s → sph. The vector f n is the fluid 
state at time step n ∈ {0, . . . , Nt}, and Rn = 0 is the residual vector of the governing equations at time step n. The objective 
Z is given by a differentiable function χ which depends on a sum of contributions zn in each time step. The functions G j
represent the design constraints.

The rest of the paper is organized as follows: section 2 contains a brief overview of the governing equations of the lattice 
Boltzmann method, including the treatment of boundary conditions and modeling of fluid and solid domains. Section 3
covers the adjoint sensitivity analysis for the case of an unsteady objective function. In section 4 a brief overview of filtering 
techniques by means of a proper choice of the mapping X is given. The introduced concepts are demonstrated in section 5
with two numerical examples. Finally, section 6 offers a summary of the results as well as concluding remarks.

2. Governing equations

Unlike the Navier–Stokes equations, the LBM models the motion of a fluid as an ensemble of microscopic particles. The 
state of the system is given in terms of a distribution function, from which macroscopic quantities such as density and fluid 
velocity can be obtained by computing its moments.

2.1. The lattice Boltzmann method

As shown by He and Luo [25,26], the discrete lattice Boltzmann equation with Bhatnagar–Gross–Krook (BGK) collision 
operator [27] reads:

fα(xi + cα�t, t + �t) = fα(xi, t) − 1

τ
[ fα(xi, t) − f eq

α (xi, t)], (2)

where τ is the relaxation time, cα belongs to some discrete set of lattice velocities, and fα = f (xi, cα, t) and f eq
α =

f eq(xi, cα, t) is respectively the distribution function and local equilibrium associated with the corresponding velocity. For 
this work, the common D2Q9 scheme (Fig. 1), which partitions two-dimensional velocity space into nine discrete velocities, 
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Fig. 1. The D2Q9 model.

has been applied. The discrete velocities are given by:

[c0, c1, c2, c3, c4, c5, c6, c7, c8]
= �x

�t

[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
. (3)

For simplicity, the step sizes �x and �t may be taken to be in “lattice units”, meaning that �x = �t = 1.
Typically, equation (2) is separated into a local collision step

f̃α(xi, t) = fα(xi, t) − 1

τ
[ fα(xi, t) − f eq

α (xi, t)], (4a)

followed by a global propagation step

fα(xi + cα�t, t + �t) = f̃α(xi, t). (4b)

From equation (4) the corresponding residual vectors may be written as

R0 = f 0 − f init,

Rn = f n − S[ f n−1 + 1

τ
( f n−1 − f eq,n−1)], (5)

where S is the streaming operator, which shifts the distribution values as in (4b), and f init is the vector of initial distribution 
values.

In this work we apply the incompressible lattice Boltzmann method introduced by He and Luo [28]. In this model the 
equilibrium distribution f eq is given by the following second order expansion of the Maxwell–Boltzmann distribution:

f eq
α (xi, t) = wα

(
ρ + ρ0

[
3(cα · u) + 9

2
(cα · u)2 − 3

2
u2

])
, (6)

where ρ is the macroscopic density, which fluctuates slightly around the constant value ρ0, u is the macroscopic velocity, 
and wα are weights that depend on the discretization in velocity space. For the D2Q9 lattice, the weights are given by

wα =

⎧⎪⎨
⎪⎩

4/9, for α = 0,

1/9, for α ∈ {1,2,3,4},
1/36, for α ∈ {5,6,7,8}.

(7)

Without loss of generality, the constant term ρ0 may be taken to be unity. The macroscopic parameters, i.e. density, velocity, 
pressure, and viscosity can then be evaluated as:

ρ(xi, t) =
8∑

α=0

fα(xi, t), (8a)

ρ0u(xi, t) =
8∑

α=0

cα fα(xi, t), (8b)

p(xi, t) = c2
s ρ(xi, t), (8c)

ν =
(
τ − 1

2

)
c2

s
(�x)2

�t
, (8d)
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Fig. 2. Illustration of boundary conditions in a rectangular domain. At the boundary nodes, the incoming distributions need to be determined by some 
scheme depending on the type of boundary.

where p is the scalar pressure, ν is the kinematic viscosity, and cs is the lattice speed of sound for the D2Q9 lattice. It can 
be shown that, in lattice units, c2

s = 1/3.
Assuming low Mach number flow, it can be shown—e.g. by the Chapman–Enskog expansion [29,10] or asymptotic anal-

ysis [30]—that the macroscopic values obtained by the above numerical scheme solve the incompressible NS equations for 
an isothermal fluid to first order accuracy in time and second order accuracy in space.

2.2. Boundary conditions

Enforcing boundary conditions in the LBM requires special treatment, since the governing equations describe the dynam-
ics of the distributions functions f i , but hydrodynamic boundary conditions are typically given in terms of the macroscopic 
properties of the fluid. For a general introduction to the implementation of boundary conditions in the LBM, the reader is 
referred to the book by Succi [31]. In this section, only the boundary conditions relevant to the numerical examples shall 
be discussed.

The basic idea of the implementation is that on the boundaries, there are certain velocity distributions that are unknown 
after the streaming step, since they can be thought of as having entered the computational domain from “outside”. Which 
distribution values are unknown depends on the orientation of the boundary, as illustrated in Fig. 2.

For inflow boundaries, a velocity inlet condition is imposed, using the method described by Zou and He [32]. Assuming 
a bounceback condition in the non-equilibrium part of the velocity distributions normal to the boundary (e.g. f1 − f eq

1 =
f3 − f eq

3 for an inflow on the west boundary as in Fig. 2), a closed system of equations is obtained. In the case of an inflow 
on the west boundary, solving this system for the unknowns yields

f1 = f3 + 2

3
ρ0ūx, (9a)

f5 = 1

6
ρ0ūx + 1

2
ρ0ū y + 1

2
( f4 − f2) + f7, (9b)

f8 = 1

6
ρ0ūx − 1

2
ρ0ū y + 1

2
( f2 − f4) + f6, (9c)

where ūx and ū y is the prescribed velocity in the x- and y-direction, respectively. Similarly structured equations may be 
derived for other boundary orientations. These boundary conditions are also applied for no-slip closed boundaries, by simply 
setting ūx = ū y = 0 in (9).

For open boundaries, the zero normal shear stress (ZNS) boundary condition, also known as the no-friction condition, 
is imposed. This is a Neumann type boundary condition, and a method for implementing it in the LBM has been derived 
by Junk and Yang using asymptotic analysis [33]. Their derivation gives a more general scheme for the computation of 
boundary values, but here the equations shall simply be given in the form relevant to this paper, i.e. two dimensional 
flow with BGK collision operator. For an outflow located on the east boundary (Fig. 2), the unknown distributions may be 
computed as:

f3(x, t) = F eq
3 (1, u(x, t − �t)) − (2ντ−1 − 1)

× ( f1(x, t − �t) − f eq
1 (x, t − �t)), (10a)

f6(x, t) = F eq
6 (1, u(x, t − �t)) − 2ντ−1(w6/w3)

× ( f1(x, t − �t) − f eq
1 (x, t − �t)), (10b)
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f7(x, t) = F eq
7 (1, u(x, t − �t)) − 2ντ−1(w7/w3)

× ( f1(x, t − �t) − f eq
1 (x, t − �t)), (10c)

where

F eq
i (ρ, u) = wi

(
ρ + ρ0

[
3(c i · u) + 9

2
(c i · u)2 − 3

2
u2

])
.

Again, equations of similar structure can be applied for different boundary orientations.
As a final remark, we note that in general, corner nodes need to be treated as special cases, since there are effectively 

five unknown distribution values rather than three. In the numerical examples, all corner nodes are no-slip nodes, and the 
on-grid bounceback scheme as described in [31] is applied. In this scheme the unknown distribution values are simply set 
equal to the known values in the reverse directions, i.e.:

f1 ↔ f3, f2 ↔ f4, f5 ↔ f7, f6 ↔ f8. (11)

This simple scheme ensures that the no-slip condition is satisfied provided that the initial distribution values for opposite 
velocities are equal.

2.3. Modeling fluid and solid domains in the LBM

For the purpose of topology optimization, the above LBM needs to be modified to allow for a continuous transition 
between fluid and solid nodes in the optimization procedure. One way to achieve this is to modify the method such that in 
solid regions, the Brinkman equation for flow in porous media is satisfied:

1

ρ
∇p = − ν

K
u + ν̃∇2u, (12)

where K is the permeability of the medium, and ν̃ is the so-called effective viscosity.
One approach which obeys the Brinkman equation in solid nodes is to adopt a partial bounceback formulation of the 

LBM. Partial bounceback models were first suggested by Dardis and McCloskey [34,35]; they are probabilistic meso-scale 
models in which a bounceback like term dependent on the permeability of the lattice node is added to the collision step. 
In this work, the partial bounceback model presented by Zhu and Ma [13] is adopted. The modified collision step has the 
form

f̃α(x, t) = f c
α(xi, t) + g(sph

i )[ f c
α′(xi, t) − f c

α(xi, t)], (13)

where

f c
α = fα(xi, t) − 1

τ
[ fα(xi, t) − f eq

α (xi, t)]

is the original post-collision value, f c
α′ is the post-collision value in the direction opposite fα , as per (11), and g ∈ [0, 0.5]

is the fraction of particles bounced back at the node i. One can then choose g : [0, 1] → [0, 0.5] to be a continuous function 
such that

g(0) = 0.5, g(1) = 0,

with sph
i = 1 corresponding to a fluid node, which recovers the standard collision step, and sph

i = 0 corresponding to a 
solid node, where a bounceback like collision step is obtained. Following Borrvall and Petersson [3], the following convex 
interpolation function is chosen:

g(sph
i ) = 0.5

(
1 − sph

i

1 + γ

sph
i + γ

)
, (14)

where γ is an adjustable parameter which allows controlled penalization of intermediate permeabilities in the optimized 
designs. Increasing the value of γ results in a more linear scaling, which causes a greater penalization of intermediate 
values, see Fig. 3. While the function (14) was formulated by Borrvall and Petersson specifically for minimal dissipation type 
problems, it has also been found to work well for the numerical examples given in the present work.
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Fig. 3. Plot of the interpolation function (14) for different values of γ . Higher values result in more linear scaling and thus penalize “grey” design variables 
more.

3. Adjoint sensitivity analysis

A key component of the topology optimization procedure is the efficient evaluation of the gradients of the objective 
function and constraints with respect to the design variables. A method commonly used in topology optimization for de-
termining the gradients is the adjoint method, which allows for all of the sensitivities to be computed from the transposed 
solution of a single linear system of equations.

Following the derivation by Kreissl et al. [22], the time discrete quantities are collected in column vectors:

ẑ = [z0, . . . , zNt ]T ,

R̂ = [R0, . . . , R Nt ]T ,

f̂ = [ f 0, . . . , f Nt ]T ,

λ̂ = [λ0, . . . ,λNt ]T , (15)

where λn , n ∈ {0, . . . , Nt} is the vector of Lagrange multipliers at time step n. The adjoint equation for objective functionals 
of the form (1) is then given by

(
∂ R̂

∂ f̂

)T

λ̂ = −
(

∂ ẑ

∂ f̂

)T
∂χ

∂ ẑ
. (16)

Since the LBM is an explicit time marching scheme dependent only on the state in the previous time step, the Jacobian 
∂ R̂/∂ f̂ is a band matrix. For the initial step R0 we have

∂ R0

∂ f j
=

{
I , for j = 0,

0, for j 	= 0,
(17)

where I is the identity matrix. For subsequent time steps, n > 0, the following notation is introduced:

∂ Rn

∂ f j
=

⎧⎪⎨
⎪⎩

Cn, for j = n − 1,

Dn, for j = n,

0, for j /∈ {n − 1,n}.
(18)

Equation (16) may then be written in matrix form by performing the substitutions

(
∂ R̂

∂ f̂

)T

=

⎛
⎜⎜⎜⎜⎜⎜⎝

I (C 1)T

(D1)T (C 2)T

(D2)T . . .

. . . (C Nt )T

(D Nt )T

⎞
⎟⎟⎟⎟⎟⎟⎠

, (19)
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(
∂ ẑ

∂ f̂

)T
∂χ

∂ ẑ
=

⎛
⎜⎝

(∂z0/∂ f 0)T (∂χ/∂z0)
...

(∂zNt /∂ f Nt )T (∂χ/∂zNt )

⎞
⎟⎠ . (20)

The band structure of the matrix (19) allows the adjoint problem to be conveniently solved backward in time, starting by 
solving for λNt :

λNt = (DNt )−T
(

∂zNt

∂ f Nt

)T
∂χ

∂zNt
. (21a)

Subsequent λn may then be solved by backward substitution:

λn = (Dn)−T

[(
∂zn

∂ f n

)T
∂χ

∂zn
− (Cn+1)T λn+1

]
. (21b)

Once λ̂ has been fully determined, the gradient with respect to the physical variable sph may be computed by

dZ

dsph
k

= ∂Z
∂sph

k

+
(

∂Z
∂ ẑ

)T
∂ ẑ

∂sph
k

+ (λ̂)T ∂ R

∂sph
k

. (22)

While the matrix form of equation (16) neatly illustrates the overall structure of the adjoint problem, implementing the 
adjoint analysis using matrix routines requires assembling the matrices Dn and Cn in each time step. The computational 
cost of such an implementation quickly becomes intractable as the number of time steps considered increases. Alternatively, 
it is possible to exploit the local nature of the lattice Boltzmann equation to derive explicit expressions for the Lagrange 
multipliers in each time step, thereby bypassing the need for matrix routines entirely; in this way the adjoint problem 
can be solved on the same time scale as the forward problem. A detailed derivation of a discrete adjoint lattice Boltzmann 
method has already been given by Liu et al. [36], who applied it to steady-state fluid topology optimization problems. Below 
we give an outline of the derivation of the explicit adjoint expressions, including the treatment of the boundary conditions 
described in section 2.2, which to our knowledge have not been covered before.

3.1. Derivation of adjoint equations

For the purpose of this derivation, we will consider an arbitrary objective of the form (1). From (21) it is apparent that 
there will be a contribution from the source term (∂zn/∂ f n)(∂χ/∂zn) for each multiplier λα(x, t). We will denote this 
contribution

Gα(x, t) = −
(

∂zt

∂ fα(x, t))

)T
∂χ

∂zt
. (23)

Beyond this ubiquitous contribution, it is necessary to derive different equations for interior nodes and each type of bound-
ary node. The various types will be considered in turn.

3.1.1. Interior nodes
Since the interior nodes only require information about distribution values in the previous time step, the factor (Dn)−T

in (21b) can effectively be considered to be an identity term for the purpose of the interior nodes. What is left to consider is 
then the term (Cn+1)T λn+1 = (∂ Rn+1/∂ f n)T λn+1. The non-zeros terms for a given node will be at the neighboring residuals, 
i.e. the nodes where information has been propagated to. Specifically, the individual Lagrange multipliers may be obtained 
as

λα(x, t) = Gα(x, t) −
8∑

j=0

∂ R j(x + c j�t, t + �t)

∂ fα(x, t)
λ j(x + c j�t, t + �t), (24)

where α ∈ {0, . . . , 8} corresponds to a multiplier for each distribution value at the node. Because of the non-linearity of the 
collision step, the sum of differentials in (24) results in a quite formidable expression. A practical way to implement this is 
to automatically generate the code for evaluating it using a computer algebra system, e.g. Maple.

3.1.2. Inflow boundaries
We will consider an inflow on the western boundary of the domain, such that the unknown distributions are computed 

by (9). The necessary adjoint computations on this boundary differ from those of the interior nodes in one significant way: 
since three distributions are computed using distribution values from the same time step, the matrix factor (Dn)−T can no 
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longer be considered an identity. This can be handled by multiplying the set of nine Lagrange multipliers in each inflow 
point by a 9 × 9 matrix. For a west inflow, the matrix is

A =
(

∂ R j(x, t)

∂ f (x, t)

)−T

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 − 1

2 0 0 1
2

0 1 0 1 0 0 0 0 0
0 0 0 0 1 1

2 0 0 − 1
2

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

that is, the inverse transpose of the residual Jacobian at the point x. The nine multipliers at each inflow node are then 
found by computing (24) and multiplying the result with the matrix (25). For the bounceback condition on the corners, the 
Lagrange multipliers may be computed similarly.

3.1.3. Open boundaries
For the open boundaries, the unknown distributions are computed using only information from the previous time step, 

just like the interior nodes. Thus, a matrix like (25) is not needed. Rather, equation (24) needs a slight adjustment:

λα(x, t) = Gα(x, t)

−
∑
j∈�s

∂ R j(x + c j�t, t + �t)

∂ fα(x, t)
λ j(x + c j�t, t + �t)

−
∑
j∈�u

∂ R j(x, t + �t)

∂ fα(x, t)
λ j(x, t + �t) (26)

here �s refers to the set of velocities that can stream to a neighbor within the domain, and �u is the set of unknown 
distributions. For an open boundary on the east part of the domain, �s = {0, 2, 3, 4, 6, 7}, and �u = {3, 6, 7}.

3.2. Implementation

The resulting algorithm for obtaining the objective and sensitivities is summarized by pseudo-code in Algorithm 1. Note 
that equation (24) results in expressions which depend on f (x, t), meaning that the backward time stepping in the adjoint 
problem requires the value of the state variable f n in every time step n ∈ {Nt, Nt − 1, . . .}. In this work, we have taken the 
naive approach of simply storing the full history in memory. For larger scale problems (i.e. in 3D), storing the entire history 
of the forward analysis would be prohibitively memory intensive. However, the memory requirement can be significantly 
reduced—at the cost of extra computation—by implementing a checkpointing algorithm, cf. [37,38].

Algorithm 1 Compute Z and dZ/ds.
for all n ∈ {1 . . . Nt } do

Advance current time step from n − 1 to n by the lattice Boltzmann equation (2).
Save the vector f n in memory.

end for
Compute the objective Z by equation (1).
for all n ∈ {Nt . . .1} do

if n = Nt then
Compute λNt by (21a).

else
Advance current time step from n to n − 1 by equation (24).

end if
end for
Compute dZ/dsph by equation (22).
Compute dZ/ds from dZ/dsph by the chain rule (see section 4).

4. Filtering

For topology optimization problems in unsteady fluid dynamics, taking the physical and design variables to be equal, 
i.e. s = sph, can lead to numerical problems in the optimization procedure. Since the design and physical variables are 
equivalent, the optimizer can add features to the design on the length scale of a single grid point. This makes it very difficult 
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Fig. 4. Plot of the projection function (27) with a threshold of η = 0.5 for different values of β .

to obtain reasonable solutions, because the large search space combined with the objective functions non-linear response 
to the design variables makes it unlikely that the optimization procedure will converge to a well defined design. Rather, 
designs will typically converge to local minima with poorly resolved topologies. This pathology arises in both the numerical 
examples given below. To alleviate such issues, several regularization techniques have been proposed in the literature [1].

For this work, in order to regularize the optimized design and obtain a discrete 0/1 result, a Heaviside projection filter 
is applied. Several variation of this idea have been described in published works [39–41]. The steps necessary for applying 
the projection filter are briefly described below.

4.1. Threshold projection

In order to obtain a black and white solution, the following smoothed Heaviside function given by Wang et al. [42] is 
applied:

sph
i = tanh(βη) + tanh(β(sw

i − η))

tanh(βη) + tanh(β(1 − η))
. (27)

Here, β is a control parameter for the function which determines the steepness of the region around the threshold, see 
Fig. 4, and η gives the threshold for the projection, so that values above η are projected toward 1 and values below are 
projected toward 0. Note that in the limit β → 0, sw

j = sph
j , so that the unprojected variable is recovered. The variable sw

j
refers to a smoothing of the design variables given by the weighted averaging

sw
j =

∑
k∈Ne, j

H(xk)sk∑
k∈Ne, j

H(xk)
, (28)

where Ne, j is the neighborhood of elements within a filter radius r, and H(xk) is the weighting factor given by

H(xk) = r − |xk − x j|, (29)

where x j and xk are the center point coordinates of the design elements j and k.
Once the design variables have been mapped to the physical variables by applying the projection technique, the sensi-

tivities of the objective function with respect to the original design variables can be computed using the chain rule:

∂ Z

∂sk
=

∑
j∈Ne,k

∂ Z

∂sph
j

∂sph
j

∂sw
j

∂sw
j

∂sk
, (30)

where

∂sw
j

∂sk
= H(xk)∑

k∈Ne, j
H(xk)

. (31)

We emphasize that the projection filter does not necessarily ensure mesh independence in the final design [42]. This can 
be alleviated by employing the robust formulation given by Wang et al. [42], or by geometric constraints as presented by 
Zhou et al. [43], but application of these techniques to fluid topology optimization has yet to be investigated.
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Fig. 5. Illustration of the computational domain for the flow control problem. Note that the downstream section of the computational domain is much 
longer than the figure would indicate, but this is irrelevant for illustrative purposes.

4.2. β-continuation

As shown in Fig. 4, increasing the value of the parameter β has the result that the threshold function (27) will project 
a greater range of values towards a pure solid or fluid node. Therefore, ideally the value of β should be large in order to 
ensure a crisp black and white design. However, using an initially large value of β typically leads to numerical problems 
such as design oscillations, since the sensitivities for design variables near the threshold η will be comparatively large. 
Instead, a common strategy is the β-continuation approach. The optimization is run with an initially small value of β; the 
parameter is then periodically increased to facilitate proper convergence to a black and white design. This strategy has been 
employed for both the numerical examples given below.

5. Numerical examples

The topology optimization framework is now exemplified by two numerical examples. In both cases, a domain is consid-
ered where the fluid is initially at rest, and all distribution functions are at their equilibrium values.

The design is updated in each iteration by the method of moving asymptotes (MMA), due to Svanberg [44]. The domain 
is initialized to some initial design guess (which will be detailed below), and the optimization procedure is considered to 
be converged if

‖sm − sm−1‖∞ < ε, (32)

where m is the current iteration step, and ε is some small tolerance parameter. For the examples below, the value ε = 10−4

has been used.

5.1. Controlling flow past an obstacle

For the first numerical example, we consider a problem that exhibits significant unsteady effects, but in which an exact 
(but not necessarily unique) global optimum is known to exist. It is well known that even at relatively moderate Reynolds 
numbers, in the wake of an obstacle, complicated flow patterns can arise. The goal of this problem is to control the topology 
of an obstacle in order to recover a given spatial and temporal flow profile. The geometry of the problem is shown in Fig. 5. 
To obtain a reference flow profile, an initial simulation is run with a cylindrical obstacle (as shown with a dashed contour 
in Fig. 5). The flow is allowed to develop for a set number of time steps to ensure that vortex shedding has started. For the 
remaining time steps, the temporal profile of the velocities in the measuring area is then saved. During the optimization 
procedure, we seek to minimize the time-averaged difference between the reference velocity profile and the profile of the 
obstacle generated by topology optimization.

Mathematically, the optimization problem is formulated as follows:

min
s

Z = log
Nt∑

n=N0

∑
h∈M

‖u(xh, tn) − uref(xh, tn)‖2

Nm M A
,

s.t.

⎧⎪⎨
⎪⎩

G0 = 1
Ns

∑Ns
k=1 sph

k − 0.9 ≤ 0,

G1 = �p − ξ�pref ≤ 0,

0 ≤ sk ≤ 1, ∀k = 1, . . . , Ns.

(33)
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Table 1
Numerical parameters used for the 
flow control example.

Lx 400
L y 100
Lmeasure Lx/4
d L y/5
N0 10 000
Nt 15 000
γ 1.0
ξ 1.5
r 0.1
βmax (1.4)15

Here, M denotes the nodes in the measuring domain, and M A denotes its area. The deviation from the reference velocity 
is computed over Nm = Nt − N0 time steps. The problem is constrained by the volume constraint G0 which constrains the 
amount of fluid allowed in the design domain, corresponding to the fluid amount around the reference obstacle. Additionally, 
the constraint G1 is a pressure drop constraint, with �p being the time averaged pressure drop in the cavity. The reference 
pressure drop �pref is the pressure drop in the cavity for the cylinder, and ξ is a constant tolerance parameter.

Because the spatial and temporal flow profile is dependent on the obstacle in a highly non-linear way, design features 
on length scales down to one node can have significant effects on the flow in the wake of the obstacle. Therefore, in order 
to regularize the problem, filtering is applied.

To ensure convergence to a black and white design, the β-continuation approach described in section 4.2 is employed. 
The initial value of β = 1 is used, which is increased by the constant factor 1.4 every 50 iterations until a maximal value 
βmax = (1.4)15 is reached. For the projection, the value η = 0.5 has been used. Note that in order to ensure the existence 
of a globally optimal solution, the reference velocity is obtained by performing projection on the initial cylinder, with the 
value of β set to its maximum value, and then measuring the resulting flow profile.

As the initial design, the design domain is initialized to be equal to the volume fraction everywhere. For the purpose 
of the filter, the vertical length L y will be considered scaled to unity, so that a filter radius 0 < r < 1 may be chosen 
independently of the mesh refinement. The remaining numerical values used for the problem are listed in Table 1, and 
example obstacle designs are shown in Fig. 6. For these examples, the Reynolds number with respect to the initial cylinder 
diameter is 60.

From the examples in Fig. 6(b)–6(c), it is clear that the projection filter as well as the β-continuation strategy is essential 
to ensure convergence to a well defined black and white solution. In all cases, the known global optimum is not found, but 
with projection a reasonable obstacle is obtained for different sizes of the measuring area.

The convergence history for two of the examples is given in Fig. 7. The spikes in the plot are due to the β-continuation, 
but it is apparent that these oscillations become smaller and smaller as the optimization progresses. For a larger measuring 
area we observe that the final objective has a higher value, since increasing the amount of points in which the velocities 
should match makes the optimization problem harder. That is, increasing the measurement area results in a mathemati-
cally stronger objective which is more difficult to minimize. It is not immediately clear which one of the two examples 
provides the “best” reproduction of cylindrical vortex shedding, however. We discuss this further below. In both cases, the 
pressure drop constraint is initially violated, but this is handled within 10 iterations of the MMA algorithm, after which 
both constraints are fulfilled for the remainder of the optimization procedure.

Note that for both examples in Fig. 6(d)–6(e), the obstacle is shifted to the left compared to the reference obstacle. As can 
be seen in Fig. 8, the phases of the vortex shedding match up quite well in spite of this, even though the magnitudes differ. 
As is apparent from Fig. 9, the more elongated shape of the computed obstacle results in a longer “tail” in the immediate 
wake of the obstacle, so that the vortices still match up fairly well in spite of the computed obstacle being shifted to the 
left.

To conclude this section, some additional comments should be made about the formulation (33). If we consider the 
two examples in Fig. 6(d) and 6(e), it is clear that the relative difference between their shape is quite small, and yet the 
difference in terms of the objective function is substantial. Indeed, it turns out that if the objective of the design optimized 
for a 5 × 5 measuring area is computed using a 9 × 9 measuring area, this design actually performs better than the design 
specifically optimized for the 9 × 9 area. Given the relatively small difference in the two designs, this demonstrates the 
non-linear nature of the problem and the likelyhood that the optimization algorithm will end up in a local minimum. 
However, as Figs. 8 and 9 demonstrate, the performance of such minima can still be quite good.

5.2. A fluid pump

For the second example, we consider the problem of optimizing a simplified fluid pump. The basic idea is to have 
a vertical inflow on which a periodic inflow is imposed, and then optimize the interior domain to ensure that fluid is 
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Fig. 6. Example designs for the flow control problem. Only the design domain is shown.

Fig. 7. Convergence plot of the objective for the examples in Fig. 6(d) and 6(e).

96



S. Nørgaard et al. / Journal of Computational Physics 307 (2016) 291–307 303

Fig. 8. Comparison of the reference and attained profile for the obstacle shown in Fig. 6(e).

Fig. 9. Qualitative comparison of the velocity magnitude contours of the reference design (Fig. 6(a)) and a computed obstacle (Fig. 6(e)) in a single time 
step. The blue contour line indicates the obstacle. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

transported horizontally from the left inlet of the domain to the right outlet. More precisely, a sinusoidally varying parabolic 
inflow with maximal velocity umax given by

u y(t
n) = umax sin(πtn/υ), (34)

is imposed, where υ is some frequency. The computational domain is illustrated in Fig. 10.
The goal is to maximize the horizontal velocity at the open boundary marked “pump outflow”. The second open bound-

ary will effectively act as a reservoir from which additional fluid can enter the domain. The optimization problem is 
formulated as follows:

min
s

Z = − 1

Nt Lout

Nt∑
n=0

∑
xi∈�out

ux(xi, tn)

s.t.

{
G0 = 1

Ns

∑Ns
k=1 sph

k − V ≤ 0,

0 ≤ sk ≤ 1, ∀k = 1, . . . , Ns.
(35)

Here, �out denoted the set of grid points at the pump outflow boundary, and Lout denoted the length of the boundary. Once 
again, a volume constraint on the amount of allowed fluid in the design domain is applied to the problem.

As with the obstacle design problem, projection is applied in order to regularize the design and ensure a black and white 
solution. Once again, the value η = 0.5 is used for the projection function, and the value of β is iteratively increased during 
the course of the optimization procedure. The design variables are initialized to be equal to the volume fraction everywhere. 
The remaining numerical values for this problem are listed in Table 2. The Reynolds number with respect to the top inflow 
length is 80.

97



304 S. Nørgaard et al. / Journal of Computational Physics 307 (2016) 291–307

Fig. 10. Illustration of the computational domain for the fluid pump problem.

Table 2
Numerical parameters used for the 
pump example.

Lx 204
L y 204
Lin 25
Nt 8000
γ 0.5
r 0.03
υ 400
umax 0.05
βmax (1.4)15

Fig. 11. Example pump designs for different values of the volume fraction.

Example designs for this problem for different values of the volume constraint V are shown in Fig. 11. The imposed 
flow from the top is cyclical, consisting of an inflow phase in which fluid is flowing into the domain from the top, and an 
outflow phase in which fluid is sucked out from the top; an optimized design needs to account for both these phases. Each 
design in Fig. 11 exhibits the same basic feature of a narrowing of the inflow channel, and a reservoir in the middle which 
is “shielded” by a protrusion on the left. The performance of the design example in Fig. 11(a) is illustrated by the Figs. 12
and 13. Fig. 12 shows the pump output as a function of the imposed pumping velocity. Note that after the first few cycles, 
the output is never negative, meaning that fluid never flows back into the domain at the output, even during the outflow 
cycle. The mechanism by which this is achieved is shown by streamlines in Fig. 13. During the inflow cycle, fluid from the 
top flows towards the pumping outlet, while additional fluid is pulled from the left reservoir (left open boundary) towards 
the central reservoir. During the outflow phase, fluid from the central reservoir flows toward the pumping outlet, while fluid 
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Fig. 12. Performance of the pump design in Fig. 11(a) as a function of time.

Fig. 13. Streamlines of the flow in the design in Fig. 11(a) during selected timesteps in the inflow and outflow phase. Note that the velocity magnitude has 
been scaled so that ‖umax‖ = 1.

from the left reservoir flows in a vortex like path around the top inlet; this fluid is then transported towards the pumping 
outlet during the next inflow phase.

6. Conclusion

Fluid topology optimization using the lattice Boltzmann method has been successfully applied to problems which exhibit 
significant unsteady effects. The topologies of the computed solutions were described by the density approach, while the 
fluid-solid boundary conditions were imposed by a partial bounceback model. By solving the lattice Boltzmann equation, 
and the corresponding discrete adjoint equation, the objective function as well as the design sensitivities were determined 
in a computationally efficient manner, which allowed solving problems where many time steps were needed to resolve the 
dynamical effects. In addition, the necessity of a transformation of the design variables in order to ensure convergence to 
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well defined designs has been demonstrated. It is emphasized that the applied map from design to physical variables does 
not guarantee mesh independence of solutions, but is nonetheless necessary for obtaining well defined designs. While the 
proposed formulation can be extended to 3D problems, the increase in both computational cost and memory footprint is 
likely to pose a significant challenge.
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Abstract The goal of this article is to demonstrate the
applicability and to discuss the advantages and disadvan-
tages of automatic differentiation in topology optimization.
The technique makes it possible to wholly or partially auto-
mate the evaluation of derivatives for optimization problems
and is demonstrated on two separate, previously published
types of problems in topology optimization. Two sepa-
rate software packages for automatic differentiation, CoDi-
Pack and Tapenade are considered, and their performance
and usability trade-offs are discussed and compared to a
hand coded adjoint gradient evaluation process. Finally,
the resulting optimization framework is verified by apply-
ing it to a non-trivial unsteady flow topology optimization
problem.

Keywords Topology optimization · Automatic
differentiation · Lattice Boltzmann

1 Introduction

Automatic differentiation, also at times called algorithmic
differentiation, is a technique that, according to Griewank
and Walther (2008) “has been rediscovered and imple-
mented many times, yet its application still has not reached
its full potential”. Automatic differentiation (AD) allows
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for the exact evaluation of the Jacobian of an arbitrar-
ily complicated differentiable function, by partitioning the
function into a sequence of simple operations, which are by
themselves trivially differentiable. This process can be auto-
mated by software, allowing developers to focus on the solu-
tion of the problems requiring differentiation, rather than
the derivation and implementation of code for evaluating
derivatives. This potential for easily evaluated derivatives
makes AD very useful for design optimization, especially
for highly non-linear problems (Albring et al. 2016; Nemili
et al. 2014; Zhou et al. ; Özkaya et al. 2016). Despite this,
to the authors knowledge, there have been only few appli-
cations of AD for density based topology optimization—the
only example the authors are aware of is the paper by
Łaniewski Wołłstrok and Rokicki (2016). Thus, the aim of
the presentation is to discuss the application details and to
demonstrate AD for two topology optimization problems in
computational mechanics.

An extensive review of topology optimization itself is
beyond the scope of this paper, but the interested reader is
referred to the monograph by Bendsøe and Sigmund (2004),
as well as the more recent review paper by Sigmund and
Maute (2013).

1.1 Automatic differentiation

The goal of this section is to give a brief introduction
to AD. For an extensive and more general treatment, the
reader is referred to the introductory text by Griewank and
Walther (2008). To simplify the discussion, assume a con-
tinuous function F : Rn → R

m, with the Jacobian matrix
F ′ : R

n → R
m×n. Further assume that a routine (i.e. a

particular computer implementation) exists to evaluate F .
In the AD literature, F is often called the primal func-
tion. Even though F may be arbitrarily complicated, its
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concrete implementation may be decomposed into a series
of simple operations (e.g. additions, multiplication, elemen-
tary functions such as the trigonometric functions) which
are individually easy to differentiate exactly. The differen-
tiated value of each operation can then be propagated to
the next by the chain rule. This idea of propagation can be
applied in two ways, either starting from the input vector
x ∈ R

n, which results in the forward mode, or from the out-
put vector y ∈ R

m, which results in the reverse mode. Since
the full mathematical details of AD are beyond the scope of
the paper, each mode will be demonstrated by means of a
very simple example.

For the forward mode, consider the function

f (x) : R → R
2,

y1 = cos(cos(x)),

y2 = exp(y1). (1)

An implementation of (1) might evaluate the function like
so:

v1 = cos(x),

v2 = y1 = cos(v1), (2)

v3 = y2 = exp(v2),

where the variables vi can be considered intermediate val-
ues or “computational steps” taken to evaluate the function.
Using these steps, the derivative of f with respect to x can
be obtained as:

v̇1 = − sin(x),

v̇2 = ẏ1 = − sin(v1)v̇1, (3)

v̇3 = ẏ2 = exp(v2)v̇2,

where the dot denotes differentiation with respect to x.
In general, the forward mode allows the evaluation of the
expression:

ẏ = F ′(x)ẋ, (4)

where ẋ ∈ R
n×1 is called the seed direction.

For the reverse mode, consider the function:

g(x1, x2) : R2 → R,

y = cos(cos(x1x
2
2)), (5)

a possible evaluation procedure for this function is:

v1 = x1,

v2 = x2,

v3 = v2
2, (6)

v4 = cos(v1v3),

v5 = y = cos(v4).

The adjoint variables, v̄i = ∂y/∂vi , may now be evaluated
by stepping through the evaluation (6) in reverse order:

v̄5 = 1,

v̄4 = −v̄5 sin(v4),

v̄3 = −v̄4 sin(v1v3)v1, (7)

v̄2 = ∂g/∂x2 = 2v̄3v2,

v̄1 = ∂g/∂x1 = −v̄4 sin(v1v3)v3.

In general, the reverse mode evaluates the expression:

x̄T = ȳT F ′(x), (8)

where ȳ ∈ R
m×1 is termed the weight functional.

Note that the two examples given above are intentionally
simplistic, as they serve only to demonstrate the principle of
AD at the most basic level. Evaluating more sophisticated
functions, one has to consider issues such as branching,
potential instabilities caused by differentiation close to sin-
gularities or discontinuities, and the influence of round-off
errors on the final result. Dealing with these things is an
active area of research which is beyond the scope of this
paper. The authors simply note that none of the examples
shown in the following sections exhibit pathological behav-
ior, and that the gradients obtained with AD in all cases have
been verified by a finite difference check.

The expressions (4) and (8) above are general, but by
choosing a standard basis seed direction or weight func-

tional (e.g. ẋ = [
1 0 0 . . .

]T
), (4) and (8) allow the

evaluation of a column or row of the Jacobian matrix,
respectively. While both modes have similar mathemati-
cal properties, evaluating the reverse mode requires more
memory since intermediate values and operations must be
stored in order to step through them in reverse order. AD
packages supSigmund2013porting the reverse mode gener-
ally provide a storage object—often called a tape—which is
responsible for storing the information necessary to reverse
the function F .

For topology optimization, the function of interest is typ-
ically the objective function, Fobjective : RNd → R, where
Nd is the number of design variables. This makes the reverse
mode the obvious choice, since the sensitivities

F ′
objective =

[
dF ′

objective
ds1

dF ′
objective
ds2

. . .

]
,

can be computed with a single evaluation of the reverse
mode (8), in the same manner that hand derived adjoints
allow. It should be stressed that for topology optimization,
Nd is typically much larger than in other structural opti-
mization problems, since in size and shape optimization the
geometry of the design is represented by a much smaller
number of parameters. In addition, note that the reverse
mode is not fundamentally different from a hand derived
discrete adjoint approach; its purpose is to reduce the burden
of implementing the adjoint.
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Generally, there are two approaches to implementing an
AD package: source transformation and object overload-
ing. Source transformation, as the name implies, provides
a program which takes as input the source code to be
differentiated, and outputs new source code which eval-
uates the derivative of the original source. An example
of this type of implementation is Tapenade (Hascoët and
Pascual 2013; Tapenade website 2016), which provides a
convenient online server on which users can upload their
source code, which will then get differentiated and served
back. The advantage of this approach is that the differ-
entiated code can be inspected directly, and if necessary,
the user can manually optimize it to improve the execu-
tion speed of the application. Of course, if one chooses to
do this, some convenience is sacrificed since the differenti-
ation procedure is no longer fully automatic. Additionally,
should the source code for the primal function change, the
source transformation procedure—possibly including hand
optimization—must be repeated.

The second approach, operator overloading, takes advan-
tage of a feature of certain programming languages (notably
C++ and Fortran 90) which allows the user to define basic
operations such as addition and multiplication on user-
defined types. This is exploited in AD libraries to provide
types which perform both primal and differentiated compu-
tations. The function to be differentiated is then overloaded
to accept these library types as input—rather than intrinsic
floating point types such as double in C++. The result-
ing values can then be queried for their gradient as well
as primal values. While this approach is typically slower
than source transformation, it was shown by Hogan (2014)
that in C++, expression templates could be used to achieve
execution speeds which are competitive with source trans-
formed code. The great advantage of this approach is the
convenience. The code for evaluating the primal function
can be reused without further implementation effort to eval-
uate the gradients. Furthermore, any modifications made to
the primal code will be immediately reflected in the dif-
ferentiated output, without requiring further involvement
from the user. An example of this type of implementa-
tion is CoDiPack (CoDiPack website 2016). The CoDiPack
library is header only, meaning that the code can simply be
included in the application code to be differentiated, with-
out any pre-compilation step. For further information, the
interested reader is referred to the CoDiPack website cited
above as well as Albring et al. (2015a, b). The two pack-
ages presented above will be used to solve the optimization
problems presented in this paper. For a much more complete
list of AD packages, the interested reader is referred to the
online list available at the AutoDiff website (2016).

The remainder of this paper is organized as follows:
first AD is demonstrated for a relatively simple 1D wave
propagation problem in Section 2. The example allows for

easy comparison between hand written adjoint differentia-
tion and fully automatic differentiation. The readers familiar
with traditional adjoint analysis applied to transient topol-
ogy optimization problems will identify immediately the
similarities between the tape (the storage object in AD) and
the storage of the forward solution in transient optimization
problems. In the following Section 3 the applicability of AD
is demonstrated for more complex optimization of transient
fluid mechanics problems (Nørgaard et al. 2016), where the
explicit form of the Jacobian of the state equations includ-
ing the boundary conditions is practically impossible to be
derived by hand. The advantages and the disadvantages of
AD are discussed and demonstrated in details, and finally
the article is completed with a topology optimized example
of a fluid device for oscillatory fluid input.

2 Application to transient wave propagation
problems

The goal in this section is to demonstrate AD for well
known one dimensional wave propagation problem (Dahl
et al. 2008; Lazarov et al. 2011). The aim of the exam-
ple is to compare and discuss the applicability of AD for
complex topology optimization problems where significant
amount of time is spend on derivation and implementation
of sensitivities. The optimization problem is given as

min
s

: J (s, u) =
∫ T

0
z (s, u) dt,

s.t. : r (t, s, u, u̇, ü) = 0, t ∈ [0, T ] ,

gi (s, u, u̇, ü) ≤ 0, i ∈ {1, . . . , Ng}, (9)

s ∈ Dad,

where, r (t, s, u, u̇, ü) = 0 is the discrete form of the con-
sidered linear elastic state problem written in residual form,
u is a vector with nodal displacements, u̇ is a vector with
nodal velocities, ü is a vector with nodal accelerations, s is
the design vector with relative element densities, J (s, u) is
the objective function and gi (·) , i ∈ {1, . . . , Ng} is a set of
additional constraints. The residual form is given as

r (t, s, u, u̇, ü) = f(t) − [M (s) ü + C (s) u̇ + K (s) u] ,

(10)

where the mass, damping and stiffness matrices M (s),
C (s), and K (s) are obtained by standard finite element
assembly procedures. For every element the local matrices
are obtained using linear interpolation between the matrices
for two different materials, i.e,

M (s)e = (1 − se)M0 + seM1, (11)

C (s)e = (1 − se)C0 + seC1, (12)

K (s)e = (1 − se)K0 + seK1. (13)
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Fig. 1 Optimization setup.
Absorbing boundary conditions
are applied at both ends of the
wave guide

An external excitation is applied as a time dependent nodal
force in the middle of the computational domain

f (t) =
{

cos(2πfc(t − t0))e
−δ( t

t0
−1)2

, t ≥ 0,

0, t < 0,
(14)

where t0 is the center of the wave packet in the time domain,
fc is the central frequency, and δ defines the bandwidth
(Dahl et al. 2008). The excitation generates two Gaussian
wave packets propagating towards the two ends of the wave
guide. The set up is shown in Fig. 1. The selected objective
is to minimize an integral of the squared displacements in
a region of the design domain for a selected time interval.
The optimization results in periodic band-gap structures as
demonstrated in Dahl et al. (2008) and shown in Fig. 1, with
a period depending on the wavelength of the waves prop-
agating through the wave guide. As these results are well
known and investigated in details in the literature, study and
discussion of the optimized design will be omitted here and
the focus will be shifted on the sensitivity analysis.

The gradients of the objective in (9) can be obtained
using adjoint analysis as shown in Dahl et al. (2008), and
are given as

∫ T

0

∂z (s, u)

∂se

dt =
∫ T

0
λT

[
∂M (s)

∂se

ü + ∂C (s)

∂se

u̇ + ∂K (s)

∂se

u
]

dt, (15)

where the Lagrange multipliers vector λ (t) = λ (T − τ) is
obtained as the solution of the following equation

Mλ̈ + Cλ̇ + Kλ = ∂z (τ,u)

∂u
, τ ∈ [0, T ] , (16)

with initial conditions λ = 0 and λ̇ = 0 and τ = T − t .

2.1 Time integration

As no analytic solution to (10) exists in the general case, the
vectors of displacements, velocities and accelerations are
obtained numerically at discrete time steps. Here the time
derivatives are computed based on finite difference scheme
and at the nth time step they are given as

u̇n = un+1−un−1
2�t

, (17)

ün = un+1−2un+un−1
�t2 . (18)

Inserting (11) and (14) in (10) and rearranging the terms
results in

(
1

�t2
M + 1

2�t
C

)
un+1

= fn −
(

2

�t2
M + K

)
un −

(
1

�t2
M − 1

2�t
C

)
un−1.

(19)

The above equation provides the solution at time tn+1 using
the system response at time steps n and n − 1. The integra-
tion starts with u0 = 0 and u−1 = 0. The time step is chosen
based on the Courant-Friedrichs-Lewy (CFL) condition

Δt ≤ Δtc = Δx

c
, (20)

where �x is the distance between the finite element nodes
and c is the wave speed. The same scheme is applied
for solving the adjoint (16). The second derivative for the
sensitivity analysis at t = 0 is computed as ü = M−1f (0).

The Lagrange multipliers sequence can be obtained
from (16) by stepping backward in time. First, the
forward solution is computed for each discrete point
u0, u1, . . . , uNs−1, uNs , and as second step the adjoint equa-
tion is computed with right hand sides depending on the
forward solution. As final step the sensitivities are evalu-
ated based on (15). For more details the interested readers
are referred to Dahl et al. (2008); Elesin et al (2012, 2014);
Lazarov et al. (2011).

The great advantage of the adjoint approach, compared
to for example finite difference derivatives, is that all sen-
sitivities can be evaluated by solving the adjoint problem
once. As noted above, however, the same is true of the
reverse mode of automatic differentiation, since the objec-
tive function is of type J : R

Nd → R. For the numerical
implementation, the discrete form of the objective J is

J =
∫ T

0
z(s, u) ≈

∑

i

z(s, u(ti))�t. (21)

The discretization (19) is sufficiently simple that it can eval-
uated as a simple stencil type computation, as is illustrated
in Algorithm 1.
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The key feature of Algorithm 1 is that it is relatively sim-
ple to implement without the need of any external linear
algebra libraries. This makes it very simple to automatically
differentiate the evaluation of the objective function. Using
the operator overloading approach, the problem can be sim-
ply differentiated in a black box manner without the need of
deriving and implementing the adjoint method. As an aside,
note that even if a linear algebra library was required, C++
libraries such as Eigen (Guennebaud et al. 2010) support
linear algebra on arbitrary numeric types, and thus would
allow automatic differentiation as well.

In order to allow the application of operator overload-
ing AD, our implementation of Algorithm 1 was converted
into a C++ template, thus allowing the implementation
to use the numeric types provided by CoDiPack. After
this, the code must perform some calls to the tape type
provided by CoDiPack, before and after the call to the
function evaluating Algorithm 1. These additional calls
add very little code and are described in the CoDiPack
tutorial (CoDiPack website 2016). The differentiation pro-
cedure using CoDiPack yields identical sensitivities to those
yielded by evaluating the adjoint expression (15). Com-
parative performance measures are shown in Table 1. The
code was compiled with GCC 5.4.0 with -O2, and the
performance was measured on an Intel Core i7-3720QM
processor.

As expected the memory and the computational time
grow proportional to the number of the time steps for the
AD and the hand coded example. Comparing the perfor-
mance of AD with CoDiPack to the hand coded adjoint,
CoDiPack is roughly 1.5 to 1.8 times slower. Considering
that the development time needed to obtain the derivative
code is essentially zero, this seems like a modest price to
pay, though this would of course depend on the specifics of
the problem and the performance requirements. The mem-
ory requirements of the AD solution, however, is more
than an order of magnitude greater than the hand coded
equivalent. This is because the tape structure implemented
by CoDiPack must store, in addition to all solution states
u0, u1, . . . , uNs , all operations needed by the computation
in order to reverse them. Whether this memory requirement
is an intractable issue depends on the nature and size of the
problem one wishes to solve. For a research problem such
as this, the memory requirement of AD is available on many

modern personal computers, and the advantage of being able
to differentiate a code without spending any significant time
deriving, implementing, and debugging an adjoint solver
can hardly be emphasized enough. Even in cases where AD
does not scale to the desired problem size, it would still be
a useful tool for prototyping the optimization problem and
verifying the derivation and implementation of an adjoint
code. As a final point, note that the large memory foot-
print of CoDiPack is due to the fact that we are solving a
transient problem. This means that the tape structure redun-
dantly stores the time stepping operations once for each time
step taken. Thus, steady state type problems would require
significantly less memory. In addition, CoDiPack is actively
developed and future optimizations might address this issue.

In the above discussion we considered a problem which
readily lent itself to black box automatic differentiation.
In the next section, we will consider a more complicated
example, in which automatic differentiation is applied to an
already existing parallel code.

Table 1 Performance measurements comparing AD to the hand coded
adjoint for the wave propagation problem

Automatic differentiation Hand coded adjoint

2500 timesteps

Memory 1.0 Gb –

Wall time 6 s 4.2 s

Relative time 1.43 1

5000 timesteps

Memory 2.1 Gb 0.07 Gb

Wall time 13 s 8.5 s

Relative time 1.52 1

10000 timesteps

Memory 4.2 Gb 0.15 Gb

Wall time 26 s 16 s

Relative time 1.625 1

20000 timesteps

Memory 8.5 Gb 0.27 Gb

Wall time 50.53 s 32.46 s

Relative time 1.55 1

30000 timesteps

Memory 12.8 Gb 0.43 Gb

Wall time 88 s 48 s

Relative time 1.83 1

The number of elements is Ne = 900. The memory utilized for AD
can be significantly reduced to the level of the hand coded adjoint by
introducing checkpointing as discussed in Section 3.2
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3 Application to lattice Boltzmann

In this section, we will focus on a more involved example
of automatic differentiation applied to the lattice Boltzmann
method (LBM). While there has been work to apply AD to an
already existing parallel LBM code (Krause and Heuveline
2013), the LBM implementation presented here uses a few
components from the open source topology optimization
code presented by Aage et al. (2015), and thus uses the
PETSc library (Balay et al. 2016a, b) for execution in par-
allel. In this case, neither source transformation (i.e. with
Tapenade) nor operator overloading (i.e. with CoDiPack)
are naively applicable, since they do not interface directly
with PETSc. A different strategy than simple black box dif-
ferentiation is required (Sagebaum et al. 2013). For lattice
Boltzmann, it is possible to derive an adjoint method in
which the local operations can be differentiated with AD. In
this way, the AD code is only invoked within the main loop,
which decouples the code from external library calls.

3.1 The lattice Boltzmann equation

The lattice Boltzmann method is a method for computing
fluid flows based on kinetic theory, rather than continuum
dynamics. A thorough introduction is beyond the scope of
this paper, but the interested reader is referred to e.g. the
book by Succi (2001). LBM is an explicit time-stepping
method, based on the equation

fα(xi + eα�x, t + �t) = 	[f (xi , t)],
α ∈ {0, . . . , Nv − 1}, (22)

where f ∈ R
Nv is a set of distribution values associ-

ated with a discrete set of particle velocities eα . The right
hand side models particle collisions and is known as the
collision operator. There are numerous different collision
operators available in the literature (Bhatnagar et al. 1954;
D’Humieres 1994; Geier et al. 2006; Latt and Chopard
2006), and a large class of lattice Boltzmann models differ
only in the collision operator, while the left-hand side—
known as the streaming step—remains unchanged. The
collision operator is in general highly non-linear in f ;
indeed, this is part of the reason automatic differentiation is
attractive for the lattice Boltzmann method. For the purpose
of density based topology optimization, (22) is modified as
follows:

fα(xi + eα�x, t + �t) = 	̃[f (xi , t), s(xi )],
α ∈ {0, . . . , Nv − 1}, (23)

where s(xi ) ≡ si determines whether the grid point xi is a
fluid or solid node. This modification of the collision step
is to enforce an immersed no-slip boundary in the solid part
of the domain. Again, numerous models to achieve this are

available in the literature (Ladd and Verberg 2001; Spaid
and Phelan 1997; Zhu and Ma 2013), and the modification is
typically orthogonal to the choice of “base” operator, leav-
ing a high number of possibly combinations that are all valid
collision operators.

The macroscopic variables of the flow governed by (23)
can be computed by

ρ(xi , t) =
∑

α

fα(xi , t), (24)

ρ(xi , t)u(xi , t) =
∑

α

eαfα(xi , t), (25)

p(xi , t) = c2
s ρ(xi , t), (26)

where ρ, p,u are the macroscopic density, pressure, and
velocity, respectively. The lattice Boltzmann method is a
weakly compressible method, and the macroscopic pressure
is proportional to the macroscopic density, with a propor-
tionality constant equal to c2

s , the speed of sound squared.
The numerical value of this constant depends on the choice
of velocity discretization.

One attractive feature of the lattice Boltzmann method
is that the algorithm has high spatial locality: the collision
step requires only local information while the streaming step
requires only nearest neighbor information. This makes it
ideally suited for execution in parallel.

Time stepping in the LBM can be executed in either a
collide and stream fashion, in which the collision step is
executed followed by the streaming step, or conversely in
a stream and collide fashion. For the purpose of topology
optimization, we choose the stream and collide approach.
The reason for this is that the objective is a function of the
macroscopic values, which are evaluated during the colli-
sion step. Hence, by performing stream and collide from
timestep n to n + 1, the macroscopic variables are also in
the correct state at step n+1. A function of the macroscopic
variables can then be conveniently evaluated following the
stream and collide procedure.

Fig. 2 The D2Q9 model
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In residual form the LB scheme can be written:

Rstream
α (xi , t) = f collision

α (xi + eα, t + �t)−
f stream

α (xi , t) = 0,
(27a)

Rbc(xi , t) = ψ[f stream(xi , t)]−
f (xi , t) = 0,

(27b)

Rcollision(xi , si , t) = 	̃[f (xi , t), si]−
f collision(xi , t) = 0.

(27c)

Above, f denotes the initial state of distributions at
timestep t , f collision denotes the post-collision state, and
f stream denotes the post-streaming state. On interior nodes
f = f stream; on boundary nodes, however, there are
unknown distribution values, which are computed in the
boundary value step (27a). Here ψ simply denotes a generic
boundary condition operator. For the LBM, there are many
different operators available for different kinds of bound-
aries (Inamuro et al. 1995; Junk and Yang 2008; Latt et al.
2008; Zou and He 1997).

3.2 Automatic differentiation of lattice Boltzmann

As mentioned above, because the LB code relies on an exter-
nal library, it is not feasible to differentiate the code in a
black box manner. Instead, the discrete adjoint method is
applied to obtain an adjoint lattice Boltzmann method in
which the local collision step can be evaluated with auto-
matic differentiation. A similar derivation was given by
Łaniewski Wołłstrok and Rokicki (2016).

Following Kreissl et al. (2011), we consider an objective
function for unsteady flow of the following form

J =
Nt∑

t=0

z(t, f t , s), (28)

where Nt is the number of time steps,
f t = [f (x0, t), f (x1, t), . . .] is the vector of state vari-
ables (i.e. the LBM distributions) at timestep t , and s =

[s0, s1, . . .] is the vector of design variables. To derive the
adjoint LBM, Lagrange multipliers are added to (28):

Ĵ =
Nt∑

t=0
z(t, f t , s) + λT

t Rstream
t

+σ T
t Rbc

t + τT
t Rcollision

t .

(29)

Taking the derivative with respect to the design variable si
yields:

dĴ
dsi

= ∂Ĵ
∂si

+ ∑Nt

t=0
∂Ĵ
∂f t

∂f t

∂si

+ ∂Ĵ

∂f collision
t

∂f collision
t

∂si

+ ∂Ĵ

∂f stream
t

∂f stream
t

∂si
.

(30)

For an optimal design, we must have dĴ /dsi = 0, ∀i. Since
each term in (30) is mutually independent, this implies that
each summand must be zero.

From the residuals (27), we then have:

Nt∑

t=0

∂Ĵ

∂f t

∂f t

∂si
=

Nt∑

t=0

(

τT
t

∂�̃

∂f t

− σ T
t I + ∂z

∂f t

)
∂f t

∂si
= 0,

(31)

where I is the identity matrix. Since the collision � is purely
local, this implies

σ (xi , t)
T = τ (xi , t)

T ∂	̃[f (xi , t), si]
∂f (xi , t)

+ ∂z(t, f t , s)

∂f (xi , t)
. (32)

This is the adjoint collision step. Notice that the first sum-
mand on the right-hand side of (32) is of the form (8), mean-
ing that it can be evaluated exactly with one computation of
the AD reverse mode.

Fig. 3 Computational domain
for the pressure diode problem
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Continuing, we further have:

Nt∑

t=0

∂Ĵ

∂f stream
t

∂f stream
t

∂si

=
Nt∑

t=0

(
σ T

t

∂ψ

∂f stream
t

− λT
t

)
∂f stream

t

∂si
, (33)

λ(xi , t)
T = σ (xi , t)

T ∂ψ[f stream(xi , t)]
∂f stream(xi , t)

, (34)

which is the adjoint boundary step, assuming the boundary
function ψ is purely local. This could again be evaluated by
AD, which would be advantageous for complicated bound-
ary conditions such as the regularized boundary conditions
(Latt et al. 2008). For simpler boundary conditions such as
those presented by Zou and He (1997), or the frequently
applied “bounce back” no-slip condition, it is quite simple
to derive this step by hand.

Differentiation of the final step leads to the adjoint
streaming step, which was shown by Liu et al. (2014) to be
given by

τα(xi , t) = λα(xi − eα, t − �t), (35)

that is, the adjoint streaming is backwards in time and in
the opposite direction of the primal streaming. Finally, the
sensitivities can be evaluated by

∂Ĵ

∂si
=

Nt∑

t=0

∂z

∂si
+ τT

t

∂�̃

∂si
(36)

=
Nt∑

t=0

∂z

∂si
+ τ(xi , t)

T ∂	̃[f (xi , t), si]
∂si

, (37)

with the final equality again being due to the local nature of
the collision operator 	. This completes the adjoint lattice
Boltzmann method, its implementation is summarized by
pseudo code in Algorithm 2.

The adjoint lattice Boltzmann algorithm step backwards
through time to evaluate the Lagrange multipliers and thus
the sensitivities. Note that at each timestep, the primal vec-
tor f t must be known in order to evaluate the adjoint lattice
Boltzmann step. As a consequence, the full time history
of the primal solver must be available. Naively, this means
that the full history must be stored in memory. While such
a strategy is feasible for small problems, it does not scale
well. As an alternative, parts of the history can be recom-
puted during the adjoint evaluation. With this strategy, only
selected time steps are stored in memory. These time steps
are typically referred to as checkpoints. The rest of the time
steps are then recomputed starting from the nearest check-
point as they are needed. The papers by Griewank and
Walther (2000) and Wang et al. (2009) both describe prov-
ably optimal algorithms for checkpoint placement. With

Table 2 Numerical parameters for the example problem

Nx 350 Ny 125

Nin 75 Nt 20000

ρ0 1 �ρ 0.01

ω 1000 Vfluid 0.6

γ 1 Filter radius 6

these algorithms, the cost of re-computation grows only log-
arithmically with the memory saved. For example, allocat-
ing 20 checkpoints for an objective requiring 200 time steps
to evaluate reduces the memory requirement by an order
of magnitude compared to the naive approach, but only
increases the computational cost of the adjoint evaluation by
a factor of log 10.

Note that Algorithm 2 is executed in collide and stream
order. This is a consequence of our choice of the stream
and collide order for the primal solver. Had we chosen
collide and stream for the primal solver, the adjoint algo-
rithm would have to be executed in stream and collide
order.

It should be emphasized that Algorithm 2 can be used to
differentiate a large class of LB models, as long as the model
follows the basic structure of a local collision step and a
shifting streaming step. More complicated models which
follow this basic structure include thermal lattice Boltz-
mann (Bartoloni et al. 1993; Guo et al. 2002; Mezrhab et al.
2010), as well as lattice Boltzmann for multi-component
flow (Asinari 2006; Parker 2008).

3.3 An example problem

The main challenge in implementing the adjoint LBM
introduced above is the evaluation of the adjoint colli-
sion step (32). Of course, the collision operator could
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Fig. 4 Example results at
different Reynolds numbers

(a) (b)

be differentiated by hand, but as noted above, the equa-
tion can be evaluated by applying the reverse mode of
automatic differentiation. In this section, we will test
our implementation against an example problem, followed
by an evaluation of the performance of different AD
implementations.

For the sample problem, the collision operator 	 applied
is the multiple relaxation time (MRT) operator (D’Humieres
1994), operating on the common D2Q9 lattice (nine discrete
velocities in two dimensions). For this lattice, the velocities
are given by

[e0, e1, e2, e3, e4, e5, e6, e7, e8]
= �x

�t

[
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
, (38)

the set of velocities defined by the D2Q9 lattice is illustrated
in Fig. 2.

In order to enforce the no-slip condition on the solid part
of the domain, we use the partial bounce back collision oper-
ator introduced by Zhu and Ma (2013). In this model, the
base collision operator 	 is modified to

	̃[f (xi , t), si]α = 	[f (xi , t)] + 1
2g(si)×

(	[f (xi , t)]−α − 	[f (xi , t)]α),

(39)

where the index −α indicates the discrete velocity opposite
to the index α, i.e. e−1 = e3; the function g(si) is contin-
uous and satisfies g(0) = 1 and g(1) = 0, so that si = 0
corresponds to a solid node, while si = 1 corresponds to
a fluid node. Here, we use the following convex function
introduced by Borrvall and Petersson (2003):

g(si) = 1 − si
1 + γ

si + γ
, (40)

where γ is an adjustable parameter which allows penaliza-
tion of intermediate values of si . Increasing γ increases the
penalization of intermediate values.

The example problem considered is an unsteady flow
problem with an objective function of the form (28). The
computational domain for the problem is shown in Fig. 3.
The problem is inspired by the work on fluid diodes by Lin
et al. (2015).

The computational domain consists of two narrow chan-
nels, the left side with prescribed density (and therefore
pressure, since ρ ∝ p in LBM), and the right side with a

Neumann boundary on the velocity. The enforced density
on the left is oscillating, with oscillations given by

ρoscillating(t) = ρ0 + ρr(t) = ρ0 + �ρ sin

(
2πt

ω

)
, (41)

here, �ρ is the amplitude of the oscillation, and ω is the
period. We now seek to maximize the average outflow at
the right end, subject to a volume constraint on the amount
of fluid in the design domain. That is, the optimization
problem is formulated as:

min�s J = − 1
Nt

∑Nt

t=0 ūx,

s.t.

{ 1
N�s

∑
i si − Vfluid ≤ 0,

�ft satisfies (27),

(42)

where Vfluid is the allowed fraction of fluid in the design
domain, and ūx is the spatially averaged x-component of
the velocity at the right outlet. In order to regularize the
design, and obtain a fully black and white solution, the pro-
jection filter (Guest et al. 2004) is applied. To compute
the Reynolds number, the characteristic length is defined
as L = Nin, and the characteristic velocity is taken to be

(a)

(b)

Fig. 5 Sample streamlines during the inflow and outflow phase for
the result at Re = 250
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Fig. 6 Average outflow
velocity of the optimized design
at Re = 250 as a function of
time. Also shown are the
average inflow velocity, and the
density variation �ρ

ucharacteristic = 0.01. The choice of characteristic veloc-
ity is somewhat arbitrary, since no set velocity is directly
imposed anywhere in the domain, but agrees well with
the observed order of magnitude of velocities in the final
designs. The remaining numerical parameters used are listed
in Table 2.

Two example designs at different Reynolds numbers
are shown in Fig. 4. Both have the same basic structure,
but higher Reynolds number results in slightly more intri-
cate side channels in the final design. In order to better
understand the working principle of the designs, sample
streamlines are shown in Fig. 5, both for the case of the
oscillatory term in (41) being negative (ρr > 0), and pos-
itive (ρr < 0). From the figure, it is observed that even
though the oscillating pressure on the left side results in
fluid periodically flowing both in and out at the boundary,
the right boundary only ever acts as an outflow. It appears
that the side “arms” of the design act as a deposit for fluid
during the outflow phase of the left boundary; this deposited
fluid then flows towards the desired outlet when the pres-
sure oscillations reverse. In Fig. 6, the average outflow is
plotted as a function of time. It is observed that the cyclic
behaviour observed in Fig. 5 does indeed repeat throughout
the whole time history.

3.4 Performance of AD implementation

To close this section, the performance of different AD
implementations will be reported. The performance is mea-
sured according to the following methodology: since reverse

AD is applied only in the adjoint collision step (32), we
will only measure the computational time of this step. The
adjoint collision step is implemented in a simple C++ for
loop, no attempts have been made at optimization for mem-
ory accesses. The performance metric will be the average
collisions per second (CPS) in a single iteration of the exam-
ple problem presented above. Since the adjoint collision
step is purely local, we will consider only the single core
performance and thus ignore any parallel message passing
overhead. The performance is measured on an Intel Xeon
X5660 processor.

In addition to the MRT collision operator used above, we
will consider the commonly used Bhatnagar-Gross-Krook
(BGK) collision operator Bhatnagar et al. (1954), as well
as the more recent cascaded collision operator by Geier
et al. (2006). Both operator overloading and source trans-
formation implementations of the adjoint collision (32) will
be considered. For operator overloading, CoDiPack will be
used. For source transformation, the online tool Tapenade
will be used. For Tapenade, two versions will be considered:
the “raw” source transformation output, and a version of the
source transformed output which has been hand optimized.
All kernels have been compiled with GCC 4.8.5 with -O3.
The results of the performance measurements are listed in
Table 3.

As is apparent from Table 3, unsurprisingly, the best
performance also comes from the implementation which
requires the most effort. While the CoDiPack implemen-
tation cannot compete with Tapenade in terms of speed, it
should once again be reiterated that using Tapenade involves

Table 3 Results of performance measurements for adjoint LBM with AD. Higher CPS (collisions per second) is better

Problem size: 350 × 125, 20000 timesteps BGK MRT Cascaded

CoDiPack 1.12 × 106 CPS 0.631 × 106 CPS 0.481 × 106 CPS

Tapenade 4.18 × 106 CPS 4.32 × 106 CPS 1.17 × 106 CPS

Tapenade (optimized) 12.27 × 106 CPS 7.56 × 106 CPS 4.23 × 106 CPS
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a trade-off between implementation time and running time.
Even if a good optimized collision routine is implemented
with the help of Tapenade, any changes in the source code
for the primal collision step will not be reflected in the
adjoint code. Conversely, with CoDiPack, any optimizations
made to the primal collision source code will immedi-
ately result in better adjoint performance with no additional
implementation effort.

4 Discussion and conclusion

In this paper, we have demonstrated the application of auto-
matic differentiation to two different classes of problems for
topology optimization. While the AD promise of completely
black box differentiation of numerical codes is certainly
tantalizing, achieving this does require that the code has
been written with the application of AD in mind. For codes
where this is not the case, some additional implementation
work will be necessary. At best, it is simply a matter of
parametrizing core routines to accept generic numeric types
(e.g. turning core routines into templates). For more compli-
cated codes, which might have external dependencies which
are unrealistic or even impossible to modify, a significantly
greater implementation effort could be required. Whether
this time investment is worth it will of course be project
dependent.

While the above considerations does limit the appli-
cability of AD to some extent, many research codes are
developed from scratch in order to solve a single well-
defined problem. In these cases, getting the derivatives of a
function for “free” can greatly decrease the time required to
solve a particular problem; even in cases where black box
differentiation is not possible, AD might be still be applica-
ble with a bit more up front work. This was demonstrated
in the lattice Boltzmann example above. Here, some work
was required to derive and implement the AD supported
adjoint method, but once this was done, it became possi-
ble to differentiate any lattice Boltzmann type method with
little additional work.

The final point to consider is the issue of performance.
In both problems presented, there is a trade-off between
performance and development time; in both cases it is possi-
ble to improve performance by implementing a hand tuned
adjoint code (either by derivation or by optimization of the
output from Tapenade). However, even if these performance
improvements were strictly necessary in order to solve the
problem within a realistic time, the less performant version
would still be useful for prototyping and validation. Dur-
ing development of the optimized Tapenade routines for
lattice Boltzmann, the CoDiPack adjoint collision imple-
mentation was used as a reference known to give the correct
answer. This greatly eased development, since any mistakes

introduced during the tuning of the code were immediately
caught.

As with all things in software development, automatic
differentiation is a technique which comes with advantages
and disadvantages. In the view of the authors, it is a pow-
erful tool that can be used to great advantage in many
types of problems in topology optimization, and should be
considered as a useful supplement to hand derived adjoints.
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