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Torsion ∗

1 Variational formulation
Consider a shaft with a cross-section of arbitrary shape as shown in Fig. 1. The rate of twist
along the length is given by � =

d�
dz

, where � is the angular displacement of a material point
on a cross-section. Then, taking the shaft to be �xed to a wall at z = 0, we have � = 0 at z = 0
so that � = �z.

Figure 1: Cross-section with arbitrary shape

For a cross-section with arbitrary shape, the assumption that plane sections remain plane is
no longer true (unlike a circular cross-section). We use the following kinematical hypothesis:

u = −(r�) sin � = −y� = −�yz, (1a)
v = (r�) cos � = x� = �xz, (1b)
w = �(x, y), (1c)

where �(x, y) denotes that the plane sections do not remain plane under torsion. For a circular
cross-section, � = 0.

∗Notes prepared by Jeevanjyoti Chakraborty. Contact: jeevan@mech.iitkgp.ac.in
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Then the strains are given by:

"xx =
)u
)x

= 0, (2a)

"yy =
)v
)y

= 0, (2b)

"zz =
)w
)z

= 0, (2c)

"xy =
1
2 (

)u
)y

+
)v
)x)

=
1
2
(−�z + �z) = 0, (2d)

"yz =
1
2 (

)v
)z

+
)w
)y ) =

1
2 (�x +

)�
)y)

(2e)

"zx =
1
2 (

)u
)x

+
)w
)x ) =

1
2 (−�y +

)�
)x)

(2f)

Now, consider the virtual work equation: ∫
V
�ij�"ij dV = ∫

A
ti�ui dA.

Proceeding �rst with the lhs of the virtual work equation:

LHS = ∫
V
(2�xz�"xz + 2�yz�"yz) dV

= ∫
V
4G ("xz�"xz + "yz�"yz) dV

= ∫
V
4G [

1
2 (−�y +

)�
)x)

1
2 (−y�� +

)��
)x ) +

1
2 (�x +

)�
)y)

1
2 (x�� +

)��
)y )] dV

= GL ∫
A

{

(−�y +
)�
)x)

(−y) +(�x +
)�
)y

x)

}
�� dA + GL ∫

A

{

(−�y +
)�
)x)

)��
)x

+(�x +
)�
)y)

)��
)y

}
dA

= GL ∫
A

{

(−�y +
)�
)x)

(−y) +(�x +
)�
)y

x)

}
�� dA

+ GL ∫
A [

)
)x

{

(−�y +
)�
)x)

��
}
−
)
)x (−�y +

)�
)x)

��

+
)
)y

{

(�x +
)�
)y)

�
}
−
)
)y (�x +

)�
)y)

��] dA

Next, proceeding with the rhs of the virtual work equation, we note that in ti�ui dA the shear-
ing force due to traction on the surface of the beam can be written in terms of the externally
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applied torque as T
R

while the displacement can be written as R� so that the rhs becomes:

RHS = T�� |L − T�� |0,
= [T��]L0

= ∫
L

0
T�

d�
dz

dz

= ∫
L

0
T��dz

= TL��

Setting LHS = RHS, we have

GL ∫
A

{

(−�y +
)�
)x)

(−y) +(�x +
)�
)y)

x
}
�� dA

− GL ∫
A [

)
)x (−�y +

)�
)x)

�� +
)
)y (�x +

)�
)y)

��] dA

+ GL∮ [(−�y +
)�
)x)

�� nx +(�x +
)�
)y)

�� ny] ds = TL��

Therefore, we must have the following:

TL = GL ∫
A

{

(−�y +
)�
)x)

(−y) +(�x +
)�
)y)

x
}
�� dA, (3)

⟹ T = G ∫

{
−y

)�
)x

+ x
)�
)y

+ � (x2 + y2)

}
dA (4)

GL
)
)x (−�y +

)�
)x)

+
)
)y (�x +

)�
)y)

= 0 ⟹
)2�
)x2

+
)2�
)y2 = 0, (5)

and

(−�y +
)�
)x)

nx +(�x +
)�
)y)

ny = 0 on the boundary. (6)

Since for � = 0, we have w = 0 (basically no twisting case), it may be supposed that w is
proportional to � as long as � is small. Thus, we let � = �' so that w = �'. Here, ' is referred
to as the warping function.

Therefore, from (4), we have
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T = G ∫

{
−y�

)'
)x

+ x�
)'
)y

+ � (x2 + y2)

}
dA

= G� ∫

{
x
)'
)y

− y
)'
)x

+ (x2 + y2)

}
dA

= G�J ,

where

J =
{
x
)'
)y

− y
)'
)x

+ (x2 + y2)

}
dA.

The term GJ is referred to as the torsional rigidity.

From (5), we have

)2'
)x2

+
)2'
)y2 = 0. (7)

And, from (6), we have

(−y +
)'
)x)

nx +(x +
)'
)y)

ny = 0 on the boundary. (8)

Let us consider the simplest solution to the Laplace equation (7) as ' = c, a constant. Then
from (8), we have

(−y)
dy
ds

− (x)
dx
ds

= 0,

or, 1
2
d
ds (

x2 + y2) = 0,

or, x2 + y2 = constant

So the boundary is a circle. Then we have

J = ∫ [x
)'
)y

− y
)'
)x

+ (x2 + y2)] dA

= ∫ (x2 + y2) dA

which is the familiar polar moment of inertia encountered in �rst year mechanics.

Thus, we have

T = G�J ⟹ � =
T
GJ
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Note that with � a constant, and considering no twisting at one end for a shaft of length L,
we have � = �L from � = d�

dz at the other end. Then, from the expression of � , we have

� =
TL
GJ

,

which again is the familiar formula from �rst year mechanics for the twisting angle obtained
for a shaft of circular cross-section.

2 Alternative formulation using Prandtl stress function
It is de�nitely good that this sophisticated theory is able to recover the formulae for the sim-
plest case. However, there is a shortcoming. Note that warping function, ' had to be guessed
to �nd something appropriate for a particular geometry. Basically, we considered it be a con-
stant, and it turned out to be the solution corresponding to a circle. As further examples, we
have ' = Axy for a shaft of elliptical cross-section and ' = A(y3 − 3x2y) for a shaft having a
cross-section in the form of an equilateral triangle.

It would, however, be much better if we could proceed to deduce the solution in response to
a given geometry. That necessitates reformulating the theory in terms of what is known as
the Prandtl stress function.

Must like the Airy stress function formulation used in plane stress and plane strain problems,
in the Prandtl stress function formulation for torsion problems, we start by assuming the
following forms

�xz = 2G�
) 
)y

and �yz = −2G�
) 
)x

. (9)

The motivation of assuming these forms is to identically satisfy

)�xz
)x

+
)�yz
)y

= 0. (Note that �zz is zero.)

Now, compare the expressions of �xz and �yz from (9) with those obtained earlier using
Hooke’s law to obtain

−2
) 
)x

= x +
)'
)y

, (10a)

2
) 
)y

= −y +
)'
)x

. (10b)

Eliminate ' by taking the derivative of (10a) with respect to x , taking the derivative of (10b)
with respect to y , and then subtracting, to obtain:

∇2 = −1.

5



Advanced Mechanics of Solids
Torsion

Mechanical Engineering
IIT Kharagpur

We now use the no traction boundary condition on the outer surface to obtain

�xznx + �yzny = 0

or, 2G�
) 
)y

dy
ds

− 2G�
) 
)x (−

dx
ds)

= 0

or, ) 
)y

dy +
) 
)x

dx = 0

or, d = 0
or,  = constant on the periphery

Since only derivatives of  appear in the de�nitions of �xz and �yz , any constant may be added
to  .

Now, the torsional rigidity is

GJ = G ∫
A

{
x
)'
)y

− y
)'
)x

+ (x2 + y2)

}
dA

= G ∫
A

{
x (−2

) 
)x

− x) − y (2
) 
)y

+ y) + (x2 + y2)

}
dA

= −2G ∫
A(

x
) 
)x

+ y
) 
)y ) dA

= −2G ∫
A

{
)
)x

(x ) +
)
)y

(y ) − 2 
}

dA

= −2G ∮ (x nx + y ny) ds + 4G ∫
A
 dA

= −2G ∮ (xnx + yny) ds + 4G ∫
A
 dA (11)

2.1 Simply-connected domain
For a cross-section that is simply-connected, there is only one contour (i.e. the periphery of
the cross-section) and over it we take  = 0. This condition  = 0 becomes the boundary
condition for ∇2 = −1.

With  = 0 along the contour, the torsional rigidity for a simply connected-region becomes
(see (11))

GJ = 4G ∫
A
 dA. (12)

For a circle, if  has to be zero on the periphery, it can be taken as  = K
{
R2 − (x2 + y2)

}
,

where K is as yet-unknown. We note that the torsional rigidity becomes
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GJ = 4G ∫
A
 dA

= 4GK ∫
A

{
R2 − (x2 + y2)

}
dxdy

≡ 4GK ∫
R

0
(R2 − r2)2�r dr

= 2KG�R4.

So we end up with J = 2K�R4. But we know that J =
1
2
�R4 for a circular cross-section.

Therefore, K =
1
4

, so that  =
1
4
{
R2 − (x2 + y2)

}
.

With  =
1
4
{
R2 − (x2 + y2)

}
, check for '. We have:

)'
)y

= −x − 2
) 
)x

= 0,

)'
)x

= y + 2
) 
)y

= 0.

Therefore,

d' =
)'
)x

dx +
)'
)y

dy = 0,

or ' = constant,

which is exactly what we had obtained earlier for a circle.

2.2 Multiply-connected domain
We had shown earlier (see (11)) that the torsional rigidity is

GJ = −2G ∮ (xnx + yny) ds + 4G ∫
A
 dA.

For a simply-connected domain,  was taken as zero on the periphery. So the torsional rigid-
ity, GJ was 4G ∫A  dA.

However, for a multiply-connected domain,  is a di�erent constant on di�erent contours. So
we can take  as zero on only one of them.

We use

x = −2
) 
)x

−
)'
)y

⟹ xnx = −2
) 
)x

nx −
)'
)y

nx ,

y = −2
) 
)y

+
)'
)x

⟹ yny = −2
) 
)y

ny +
)'
)x

ny .
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Therefore,

− 2G ∮ (xnx + yny) ds

= −2G ∮ (−2
) 
)x

nx −
)'
)y

nx − 2
) 
)y

ny +
)'
)x

ny) ds

= 4G ∮ (
) 
)x

nx +
) 
)y

ny) ds + 2G ∮ (
)'
)y

nx −
)'
)x

ny) ds

= 4G ∮
) 
)n

 ds + 2G ∮ d' ds

= 4G∑
Ci

 ∮
Ci

) 
)n

ds + 2G∑
Ci

 ∮
Ci
d' ds ( is a constant over any contour)

Since the warping function, ' is single-valued, we must have that

∮ d' = 0

or, ∮ (
)'
)x

dx +
)'
)y

dy) = 0

or, ∮

{

(2
) 
)y

+ y) dx −(2
) 
)x

+ x) dy
}
= 0

or, − 2∮ (
) 
)x

dy −
) 
)y

dx) − ∮ (xdy − ydx) = 0

or, − 2∮
) 
)n

ds − ∮ r ⋅ n ds = 0

or, − 2∮
) 
)n

ds − ∫ ∇ ⋅ r dA = 0

or, 2∮
) 
)n

ds = − ∫ ∇ ⋅ r dA

or, 2∮
) 
)n

ds = −2A

or, ∮
) 
)n

ds = −A

Therefore, the torsional rigidity is

GJ = −2G ∮ (xnx + yny) ds + 4G ∫
A
 dA

= 4G ∮
) 
)n

ds + 4G ∫
A
 dA.
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