
entropy

Article

Toward a Comparison of Classical and New Privacy Mechanism

Daniel Heredia-Ductram, Miguel Nunez-del-Prado * and Hugo Alatrista-Salas

����������
�������

Citation: Heredia, D.;

Nunez-del-Prado, M.; Alatrista-Salas,

H. Toward a Comparison of Classical

and New Privacy Mechanism.

Entropy 2021, 23, 467.

https://doi.org/10.3390/e23040467

Academic Editor: Sotiris Kotsiantis

Received: 31 January 2021

Accepted: 12 April 2021

Published: 15 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Engineering Department, Universidad del Pacífico, Lima 15076, Peru;
d.herediaductram@alum.up.edu.pe (D.H.-D.); h.alatristas@up.edu.pe (H.A.-S.)
* Correspondence: m.nunezdelpradoc@up.edu.pe

Abstract: In the last decades, the development of interconnectivity, pervasive systems, citizen sensors,
and Big Data technologies allowed us to gather many data from different sources worldwide. This
phenomenon has raised privacy concerns around the globe, compelling states to enforce data protec-
tion laws. In parallel, privacy-enhancing techniques have emerged to meet regulation requirements
allowing companies and researchers to exploit individual data in a privacy-aware way. Thus, data
curators need to find the most suitable algorithms to meet a required trade-off between utility and
privacy. This crucial task could take a lot of time since there is a lack of benchmarks on privacy
techniques. To fill this gap, we compare classical approaches of privacy techniques like Statistical
Disclosure Control and Differential Privacy techniques to more recent techniques such as Generative
Adversarial Networks and Machine Learning Copies using an entire commercial database in the
current effort. The obtained results allow us to show the evolution of privacy techniques and depict
new uses of the privacy-aware Machine Learning techniques.

Keywords: privacy; statistical disclosure control; generative adversary networks; differential privacy;
knowledge distillation

1. Introduction

Nowadays, we live in an interconnected world where much data is generated from
sensors, social networks, internet activity, etc., which can be found in various data reposito-
ries. This data may contain sensitive information that can be revealed when it is they are
analyzed. To address this problem, many data sanitization mechanisms were proposed to
provide some privacy guarantees. Conversely, from an organizational perspective, data
also hide patterns that help in the decision-making process. In this context, sanitizing
algorithm’s challenge is twofold: how data could be shared containing useful information
but respectful of privacy.

Various algorithms are racing against each other to provide the highest privacy with-
out penalizing data utility for mining tasks. Therefore, data curators need to test several
algorithms to find a suitable solution to satisfy the trade-off between privacy and utility.
In the literature, there are few benchmarks comparing privacy algorithm performance.
To the best of our knowledge, there is a lack of benchmarks, including recent privacy
algorithms based on Deep Learning and Knowledge Distillation. Accordingly, to fill this
gap, in the present study, we performed a benchmark between classical mechanisms, such
as those based on Statistical Disclosure Control, including filters such as Noise Addition,
Microaggregation, and Rank swapping filters. Besides, within this comparison, we added
the Differential Privacy through Laplacian and Exponential mechanisms. Finally, two
privacy mechanisms based on Deep Learning were also compared: the mechanism based
on Generative Adversary Networks and the Machine Learning Copies.

To compare the algorithms cited above, two measures widely used in the literature [1–6]
were used, namely, Disclosure Risk and Information Loss. The former quantifies the danger
of finding the same distribution for the output variable after a prediction task when the
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input dataset is sanitized. The latter measures the amount of helpful information loss after
applying a sanitization algorithm.

Concerning our results, each sanitization mechanism was tuned to find the best
hyperparameters to meet a trade-off between the Information Loss and the Disclosure Risk.
Our findings showed the best values of Disclosure Risk measure for Noise Addition, Rank
Swapping, and Machine Learning copies. Conversely, Machine Learning copies, Noise
addition, and Rank swapping mechanisms have the smallest Information Loss values.

The following list summarizes the major contributions of our paper:

1. Seven sanitization filters were formally defined and compared on a real datasets.
2. Hyperparameters fine-tuning were performed for each mechanism.
3. Two well-known measures were used to select the best mechanism.

The remaining of this paper is organized as follows. Section 2 presents the state-
of-the-art, while Section 3 introduces some basic concepts and methods respectively.
Sections 4 and 5 describe the results and the discussion of our proposal. Finally, Section 6
concludes the paper and presents new research avenues.

2. Literature Review

This section discusses the most relevant documents in the literature concerning privacy
algorithms from two points of view.

2.1. Privacy Algorithms Definitions

This subsection describes several privacy algorithm. Accordingly, the first privacy
method to be describe is the Statistical Disclosure Control (SDC). For instance, Pietrzak [6]
apply SDC filters on data from labor force surveys, which is applied in subsequent fore-
casting tasks-such as regressions-to estimate the unemployment rate. The main conclu-
sion is the influence of the SDC filter hyperparameters selection on the impact of data
utility and confidentiality. Another work proposed by Andrés et al. [7] propose a geo-
Indistinguishability mechanism for Location-Based Services (LBS) combining Laplacian
Differential Privacy and k-anonymity.

In the same spirit, Parra-Arnau et al. [8] introduce a new Microaggregation-based
filter called Moment-Microaggregation. This new technique aims to substitute the original
dataset X to a new dataset X′, trying to keep utility for prediction tasks. The principle is
to group data points and replace them with some statistical values like the mean. Later,
from the X′ dataset, the authors apply a Differential Privacy mechanism [9] to obtain
a new dataset X′′. Finally, the latter dataset provides the best privacy guarantees and
utility of the sanitized information. Anther work presented by Nin et al. [10] suggest
the Rank swapping algorithm to reduce Disclosure Risk, a well-known metric used to
evaluate privacy algorithms’ performance. The main idea is to change each variable’s
values with other records within a restricted range (a window). This new value is used as a
hyperparameter of the algorithm. As a result, the authors obtain a significant reduction
in Disclosure Risk compared to other methods. Regarding the data privacy techniques
application on industrial sectors, Altman et al. [11] use different privacy techniques within
traditional business processes, incorporating several layers of protection: explicit consent,
systematic review, Statistical Disclosure Control (SDC), procedural controls, among others.
In the same spirit, [12] compares some of the most used privacy methods in companies,
namely k-anonymity, l-diversity, and randomization. Results show that, although the
methods provide a certain privacy guarantee while preserving usefulness for prediction
models. The authors also state that new methods must be proposed to deal with certain
disadvantages of the privacy methods used, such as time complexity. Finally, the Internet
Industry CONSORTIUM [13] concludes that the privacy measures and filters evaluated in
the research work, taken in different sectors in recent years (until before 2019), are found
based on still traditional and ineffective techniques, as the basic anonymization filter.

Concerning Deep Learning techniques, the training dataset could be reconstructed
from the synthetic data [14]. Thus, Xie et al. [15] propose to apply ε-Differential Privacy to
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the training dataset before passing it as the input of the Wasserstein Generative Adversary
Networks (WGAN) algorithm. The authors test the influence of the ε parameter in the
data generation for a classification task. They used the MINIST and Electronic Health
Records for the experiments showing that the higher the ε the lower the privacy warranty
and the higher the classification accuracy. Xu et al. [16] propose the GANObfuscator
framework, which uses Differential Privacy Generative Adversary Networks algorithm
to built synthetic data from real medical reports. The basic idea is to add noise into the
learning process of the WGAN by injecting ε bounded random noise, sampled from a
normal distribution, in the discriminator updating. The scientists use MINIST, LSUN,
and CelebA datasets to generate synthetic data and a classification task to measure data
utility. The authors state that the new data show a moderate Disclosure Risk, maintaining
the data high utility for subsequent classification tasks. In the same spirit, Triastcyn and
Faltings [17] propose a differential private DCGAN by adding Gaussian distribution noise
in the discriminator weights to meet Differential Privacy guarantees in the synthetic data
by the generator output. As previously mentioned, the author relies on the MINIST and
SVHN datasets to generate synthetic datasets for a classification task.

More recently, Machine Learning copies [18] has been used to remove sensitive data.
For instance, the work of Unceta, Nin, and Pujol [19] propose a Machine Learning copy us-
ing Artificial Neural Networks and Decision Trees to generate synthetic datasets. The idea
behind this technique is to train a classifier with an original dataset. Once the classifier is
trained, they put aside the original dataset and generate a new input dataset sampling from
a Normal or Uniform distributions, respectively. Thus, this new synthetic dataset could be
used to train another classifier. Finally, Gao and Zhou [20] propose a framework combining
GAN and Knowledge Distillation. The authors use three networks, namely a teacher,
a student, and a discriminator. Thus, the teacher is trained with a sensible dataset, and the
outputted data from the teacher is used for the student learning. Then, the student acts as
a generator, and a Rényi Differential Privacy mechanism is implemented in the output of
the discriminator to modify the feedback to the generator (student). Authors measure their
proposal’s performance based on a classification task using the MNIST, SVHN, and CIFAR
datasets. The results show an accuracy between 78% and 98% for the classification task.

2.2. Privacy Algorithms Benchmark

This subsection describes some benchmarks found in the literature. Concerning
de-identification techniques comparison, Tomashchuk et al. [21] propose a benchmark
of de-identification algorithms, such as aggregation, top/bottom coding, suppression,
and shuffling for achieving different k-anonimity like privacy guarantees. They measure the
algorithm performance using the Discernibility Metric, which reflects the equivalence class
size, and the Normalized Average Equivalence Class Size Metric that measures the data utility
change due to aggregation and rounding. Similarly, Prasse, Kohlmaye, and Kuhn [22] com-
pare anonymity algorithms, namely k-anonymity, l-diversity, t-closeness and δ-presence.
They use generic search methods such as Incognito Algorithm, Optimal Lattice Anonymiza-
tion, Flash Algorithm, Depth-First, and Breadth-First to assess anonymity. The authors
evaluate the before mentioned algorithms in terms of the number of transformations that
were checked for anonymity, that measures for the pruning power of the approaches giving
an indication of the algorithm performance; the number of roll-ups performed. Roll-up is
an optimization metric to capture the equivalence classes of a more generalized represen-
tation built by merging the equivalence classes; and the execution time of the algorithm.
The authors conclude that there is no single solution fitting all needs.

Concerning performance benchmarks, Bertino, Lin, and Jiang [23] propose a bench-
mark of Additive-Noise-based perturbation, Multiplicative-Noise-based perturbation,
k-Anonymization, SDC-based, and Cryptography-based privacy-preserving data mining
(PPDM) algorithms. To compare the privacy algorithms, they rely on the privacy level,
which measures how closely the hidden sensitive information can still be estimated; the
hiding failure, that is the sensitive information fraction not hidden by the privacy technique;
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the data quality after the application of the privacy technique; and the algorithm complexity.
The authors conclude that none of the evaluated algorithms outperform concerning all the
criteria. More recently, Martinez et al. [24] proposes a benchmark of SDC techniques in a
streaming context. The authors claim that these techniques are suitable for both business
and research sectors. Besides, they found that the Microaggregation filter provides the
best results.

In the same spirit, Nunez-del-Prado and Nin [25] study data privacy in streaming
context. To achieve this, the authors compare three SDC methods for stream data, namely,
Noise addition, Microaggregation, and Differential Privacy. These algorithms were used
over a CDR dataset composed of around 56 million events from 266,956 users. The dataset
contains four attributes, namely, ID, time-stamp, latitude, and longitude. Concerning the
evaluation metrics, the authors use the Sum of Square Errors and the Kullback–Leibler (KL)
divergence to measure the Information Loss. Concerning the Disclosure Risk, the authors
focus on two possible attacks. On the one hand, the authors use the Dynamic Time
Warping adversary model, in which the intruder has access to a part of the original calls,
and he wants to link them with their corresponding anonymous data. On the other hand,
the authors use the home/work inference, whose goal is to recover a given user’s home or
work location from its anonymized records.

Although the bibliographic review shows different privacy methods applied to differ-
ent domains, one question could be about the most suitable technique to protect a given
dataset. Also, there exists a lack of benchmarks comparing classic and more state-of-the-art
privacy algorithms. Besides, the metrics they use to compare the algorithms are quite
difficult to understand. Thus, a benchmark of privacy methods is required. In this context,
several sanitization techniques are compared in this work in terms of Information Loss and
Disclosure Risk, keeping in mind that the best methods guarantee data privacy without
losing the information utility for subsequent Machine Learning tasks.

3. Materials and Methods

In the present section, we introduce the concepts of the Statistical Disclosure Control
filters, Differential Privacy, Generative Adversarial Networks, Knowledge Distillation,
as well as the Information Loss and Disclosure Risk functions.

3.1. Statistical Disclosure Control

The Statistical Disclosure Control (SDC) aims to protect the users’ sensitive infor-
mation by applying methods called filters while maintaining the data’s statistical signifi-
cance. It is important to indicate that only disturbing filters have been selected because
re-identification is more complex than undisturbed values. Furthermore, the Noise Addi-
tion, Microaggregation, and Rank swapping filters have been chosen for their use in the
literature [1,24,26].

First, the Noise Addition filter [27] adds uncorrelated noise from a Gaussian distri-
bution to a given variable. This filter takes a noise parameter a in the range [0,1]. The i-th
value of the x attribute is denoted as xi, while x

′
i indicates its sanitized counterpart. Thus,

the obfuscated values are calculated as shown below.

x
′
i = xi + a× σ× c (1)

where σ is the standard deviation of the attribute to be obfuscated, and c is a Gaussian
random variable such that c ∼ N(0, 1).

Second, the Microaggregation filter [28] groups registers into small sets that must have
a minimum number of k elements. Furthermore, this filter complies with the property of
k-anonymity. It means that each released register cannot be distinguished from at least k− 1
registers belonging to the same dataset. The Microaggregation filter is divided into two
steps: partition and aggregation. In the former, registers are placed in various sets based on
their similarity containing at least k records. These similar sets of registers can be obtained
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from a clustering algorithm. The latter, the aggregation stage, computes the centroid for
each group to replace each group’s elements with their respective centroid value.

Third, the Rank swapping filter [10] transforms a dataset by exchanging the values
of confidential variables. First, the values of the target variable are ordered in ascending
order. Then, for each ordered value, another ordered value is selected within a range p,
which is the parameter that indicates the maximum exchange range. A particular value
will then be exchanged within the p windows.

3.2. Differential Privacy

Intuitively Differential Privacy [29] tries to reduce the privacy risk when someone has
their data in a dataset to the same risk of not giving data at all. Thus, an algorithm is said
to be differential private when the result of a query is hardly affected by the presence or
absence of a set of records. Formally, an algorithm A is said to be ε-differential private if
for two datasets D1 and D2 that differ by at least one record and for all S ⊆ Range(A):

Pr[A(D1) ∈ S] ≤ eε.Pr[A(D2) ∈ S] (2)

The larger the value of the ε parameter, the weaker the algorithm’s privacy guarantee.
Therefore, ε usually takes a small value since it represents the probability to have the same
output from two datasets, one sanitized and another original [30]. Hence, a small value
of ε means a little probability of obtaining the same value of the original dataset while
using the sanitized dataset (i.e., Disclosure Risk). Later work has added the δ parameter,
which is a non-zero additive parameter. This parameter allows ignoring events with a low
probability of occurrence. Therefore, an algorithm A is (ε, δ)-differentially private if for
two datasets D1 and D2 that differ by at least one record and for all S ⊆ Range(A):

Pr[A(D1) ∈ S] ≤ eε.Pr[A(D2) ∈ S] + δ (3)

This technique provides privacy to numeric data using the Laplacian Differential Pri-
vacy mechanism [31,32]. Thus, given a D dataset, a M mechanism (filter) reports the result
of a f function reaching ε-Differential Privacy if M(D) = f (D) + L. Where L is a vector
of random variables from a Laplace distribution, and f (D) is the Microaggregation filter
function. Accordingly, to implement Differential Privacy, the Laplacian or the Exponential
mechanism can be used.

On the one hand, the Laplacian mechanism [29] adds random noise to a query’s
answers calculated on the available data. Noise is calibrated through a function called
sensitivity S( f ) = max{|| f (D1) − f (D2)||1}, which measures the maximum possible
change resulting from a query due to the sum or subtraction of a data record. Also,
we define Lap(b), which represents a Laplace distribution with scale parameter b and
location parameter 0. If the value of b is increased, the Laplace function curve tends to
be a platicurtic shape, allowing higher noise values and, consequently, better privacy
guarantees. Therefore, a value is sanitized by the Laplacian mechanism and satisfies the
epsilon-Differential Privacy if San f (D) = f (D) + Lap(S( f )/ε). Where f (D) is a query on
the dataset D and Lap(S( f )/ε) represents the noise extracted from a Laplace distribution
with a scale of S( f )/ε and location 0.

On the other hand, the Exponential mechanism [33] provides privacy guarantees to
queries with non-numerical responses, for which it is not possible to add random noise
from any distribution. The intuition is to randomly select an answer to a query from
among all the others. Each answer has an assigned probability, which is higher for those
answers more similar to the correct answer. Given R the range of all possible responses to a
query function f , and given u f (D, r) a utility function that measures how good response is
r ∈ R for the query f on the dataset D, where higher values of u f show more trustworthy
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answers. In this way, the sensitivity S(u f ) is defined as the maximum possible change in
the utility function u f given the addition or subtraction of a data record.

S(u f ) = max
Datasets D1,D2, and r∈R

{||u f (D1, r)− u f (D2, r)||1} (4)

Given a dataset D, a mechanism satisfies ε-Differential Privacy if it chooses an answer
r with probability proportional to exp( ε

S(u f )
u f (D, r)). In the present effort, we used the

Microaggregation filter in addition to Laplacian and Exponential distribution, respectively,
to implement ε-differential privacy methods.

3.3. Generative Adversary Networks

The Generative Adversary Networks (GAN) [34] comprises both a generative G and
a discriminatory D models. The former captures the distribution of the input dataset.
The latter estimates the probability that a sample comes from the real dataset rather than
a sample generated by G, which is synthetic data. The training procedure for G is to
maximize the probability that D will not be able to discriminate whether the sample comes
from the real dataset. Multilayer Neural Perceptron (MLP) can define both models so
that the entire system can be trained with the backpropagation algorithm. The following
equation defines the cost function:

min
G

max
D

V(D, G) = Ex∼pdata(x)[logD(x)] + Ex∼pz(z)[log(1− D(G(z)))] (5)

The D discriminator seeks to maximize the probability that each piece of data entered
into the (D(x)) model will be classified correctly. If the data comes from the real distribution
or the G generator, it will return one or zero, respectively. The generator G minimizes the
function log(1− D(G(z))). Thus, the idea is to train the generator until the discriminator
D is unable to differentiate if an example comes from real or synthetic dataset distributions.
Hence, the idea is to generate a synthetic dataset X′ to mimic the original dataset X. In this
context, the generator’s error to built a replica of the original dataset provides the privacy
guarantee. Thus, the input of the mining task would be the synthetic dataset X′.

3.4. Knowledge Distillation

Knowledge Distillation [18] allows building Machine Learning Copies that replicate
the behavior of the learned decisions (e.g., Decision Trees rules) in the absence of sensible
attributes. The idea behind the Knowledge Distillation is the compression of an already
trained model. The technique generates a function updating parameters of a specific
population to a smaller model without observing the training dataset’s sensitive variables.
The methodology trains a binary classification model. Subsequently, the synthetic dataset
is generated using different sampling strategies for the numerical and categorical attributes,
maintaining the relationship between the independent variables and the dependent vari-
able. Thus, new values are obtained for the variables in a balanced data group. Finally,
the lower-dimensional synthetic dataset is used to train a new classification task with
the same architecture and training protocol as the original model. The idea behind this
algorithm is to create synthetic data for forming a new private aware dataset. Hence,
we build a new dataset from a sampling process using uniform or normal distributions.
The samples are validated by a classifier trained with the original dataset X. This technique
allows building a dataset representation in another space, which becomes our sanitized
dataset X′.

3.5. Evaluation Metrics for Privacy Filters

To assess the quality of the sanitation algorithms in terms of information utility and
privacy risk, we use two standard metrics in the literature, namely Information Loss
and Disclosure Risk [1–6]. In the following paragraphs, we define how both functions
are implemented.
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Information Loss (IL)

Information Loss is a metric that quantifies the impact of a sanitization method on
the dataset utility. It quantifies the amount of useful information lost after applying
a sanitization algorithm, and there are several methods to compute it. In the present
paper, we rely on the Cosine similarity measure between the original value of the salinity,
chlorophyll, temperature, and degrees under the sea X and the vector X′, which is the
sanitized counterpart of X as defined in Equation (6).

cosd(X, X′) = 1− X·X′
||X||2 ∗ ||X′||2

(6)

Thus, to compute the IL, we sum the distances between the original X and sanitized
X′ vector of points using Equation (7).

IL =
n

∑
i=1

(cosd(X, X′)) (7)

Disclosure Risk (DR)

Disclosure risk quantifies the danger of finding the same distribution for the output
variable after a prediction task when the input dataset is sanitized. For the sake of example,
let X be the original dataset, containing salinity, chlorophyll, temperature, and degrees
under the sea, and X′ the sanitized version of X. Both datasets are the input of a Logistic
Regression to predict the volume of fish stocks. Thus, the model outputs the prediction Y
using the original dataset and Y′ for the sanitized input.

Therefore, we use the Jensen-Shannon distance metric to measure the closeness be-
tween two vectors Y and Y′. Where m is the average point of Y and Y′ vectors, and D is
the Kullback-Leibler divergence.

DR = 1−
√

D(Y||m) + D(Y′||m)

2
(8)

In the experiments Y and Y′ are the predicted vectors of a given model on the real and
sanitized data, respectively.

Based on the aforementioned concepts, we performed some experiments whose results
are reported in the next section.

4. Results

Inspired on a benchmark previously described in [35], we compare four groups of san-
itization techniques: Statistical Disclosure Control filters, Differential Privacy filters, Gener-
ative Adversarial Networks, and Knowledge Distillation technique (The implementation of
the privacy algorithms is available at: https://github.com/bitmapup/privacyAlgorithms
accessed on 4 April 2021). These methods are applied to the dataset described below.

4.1. Dataset Description

We live in an interconnected world where much data is generated from sensors, social
networks, internet activity, etc. Therefore many companies have important datasets, which
are both economic and scientific valuables. Thus, it is necessary to analyze and understand
sanitation techniques for curating commercial datasets to be shared publicly with the
scientific community owing to their informative value. In this sense, we take the case of
the fishing industry in Peru, which is one of the most important economic activities [36] for
the Gross Domestic Product (GDP). In this economic activity, the cartographic charts are a
high economic investment to understand where the fish stocks are located in the sea for
maximizing the daily ship’s fishing. Simultaneously, this information is helpful to predict
el Niño phenomenon and study the fish ecosystem.

https://github.com/bitmapup/privacyAlgorithms
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The oceanographic charts provide geo-referenced water characteristics data on the
Peruvian coast as depicted in Figure 1. The overall dataset contains 9529 temporal-stamped
records and 29 features, which are detailed in Table 1.

Figure 1. Spatial representation of dataset.

Table 1. List of variables of the raw dataset.

Num. Variable Description

1 Model Results of the company in-house model
2 Model with Calas Results of the company in-house model
3 ATSM A subtype of Temperature (TSM)
4 DTS Variable for the in-house model
5 DTD Variable for the in-house model
6 Hour Hour when the data was obtained
7 Captured Number of tons fished
8 Month The month when the data was obtained
9 INERTIA Variable for the in-house model
10 CO_RCPE Variable for the in-house model
11 TE_RCPE Variable for the in-house model
12 QT_PES_RCPE Variable for the in-house model
13 QT_CBOD Variable for the in-house model
14 TSM (ºC) Temperature in °C
15 Salinity Salinity
16 Chlorophyll (mg/m3) The chlorophyll of the water in milligrams by cubic meter
17 Chlorop.Day(mg/m3) The chlorophyll of the water with adjustments
18 TC Degrees centigrade underwater
19 SubT 12 (ºC) Degrees centigrade 12 m underwater
20 SubT 25 (ºC) Degrees centigrade 25 m underwater
21 SubT 50 (ºC) Degrees centigrade 50 m underwater
22 SubT 75 (ºC) Degrees centigrade 75 m underwater
23 Dist.Coast (mn) Distance from the beach
24 Bathymetry (m) Bathymetry expressed in meters
25 North-South North or south where data was obtained
26 Season Semester of the year where data was obtained
27 Fishing Do we found fish? (Yes = 1, No = 0)
28 LATIT Latitude where data was collected
29 LONGIT Longitude where data was obtained

From the variables before presented, the variables ranging from 19 to 22, in Table 1
were discarded due to the high correlation to degrees under the sea TC as depicted in
Figure 2. Then, variables 1, 2, and 9 to 13 are not take into account because they belong to
a in-house model. Another variable highly correlationated with Chlorophyll is Chlorophyll
per Day (Clorof.Day) as shown in Figure 2. Finally, Dist.Coast, Bathymetry, North-South and
Season have a poor predictive power for the mining task.
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Figure 2. Feature correlation heatmap for the raw dataset.

Therefore, four main characteristics are used for finding fish stock’s location. These
features are salinity, chlorophyll, temperature (TSM), and degrees under the sea (TC), which are
described in Table 2 (Dataset available at: https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/IFZRTK accessed on 4 April 2021). Thus, in the present
work, we limit the study to these four features used to find the fish stocks.

Table 2. Characteristics of the dataset.

Features Minimum Range Maximum Range

Salinity 32.99 35.61
Chlorophyll 0.01 64.565

Temperature (TSM) 15 26
Degrees under the sea (TC) 26 150

4.2. Data Sanitization through Statistical Disclosure Control Filters

This subsection shows the sanitization process using the Statistical Disclosure Control
(SDC) filters. The SDC filters are applied using different settings to find the most suitable
configuration (c.f., Table 3) for a good trade-off between Information Loss and Disclosure
Risk metrics. Thus, we use different parameter settings to minimize privacy risks and
maximize data utility.

Table 3. Values of hyperparameters.

Filter Hyperparameter Values

Noise addition c 0.1, 0.25, 0.5, 0.75, 1.0
Microagregation km 1, 2, 3, 4

m 50, 100, 150, 200, 250, 300
Rank swapping p 10, 25, 50, 75, 80

Noise Addition

This filter needs the parameter a = 1, σ is the standard deviation of the variable, and c,
which is a scaling factor for adding noise to each row in a dataset. In this experiments, c

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IFZRTK
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/IFZRTK
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take values of 0.1, 0.25, 0.5, 0.75, and 1. Therefore, Figure 3a illustrates the Information
Loss increment while c grows. Analogously, Figure 3b indicates that the Disclosure Risk
follows a different behavior since it decreases while c increases. This monotonic decrease
makes it more difficult to obtain the original data from the sanitized dataset.
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Figure 3. Evolution of the (a) Information Loss and the (b) Disclosure Risk with Noise addition filter.

In conclusion, high values of c represent strong privacy guarantees and data utility
loss. Besides, this filter requires low computational time to process the data.

Microaggregation

This filter uses the spatial density-based DBSCAN [37] clustering algorithm. After the
clustering step, each point in the dataset belonging to a cluster is replaced by the cluster’s
mean value to sanitize it. Accordingly, DBSCAN uses the number of kilometers km each
cluster will encompass and the minimum number of geospatial points m belonging to a
cluster. In this effort, the km value was empirically set to 1, 2, 3, and 4; while m was set to
50, 100, 150, 200, 250, and 300. Both parameters were tested in all possible combinations to
obtain the best results, as depicted in Table 4. It is worth noting that the number of formed
clusters directly depends on both hyperparameters.

Concerning the results, when variables km and m increase, values of Information
Loss and Disclosure Risk have opposite behaviors, i.e., the Information Loss increases
(see Figure 4a) and the Disclosure Risk decreases (see Figure 4b). In detail, we notice in
Figure 4a, the higher values of km and m, the higher the loss of data utility since there are
few clusters. Then, the more the clusters, the less Information Loss value. Furthermore,
in the case of Disclosure Risk (Figure 4b), by increasing the value of km, the Disclosure Risk
decreases since there are few clusters. Consequently, if km remains fixed and m increases,
the Disclosure Risk decreases.

Table 4. Microaggregation results in Figure 4.

Km m IL DR Km m IL DR

50 18,174.30 0.984379 50 18,165.75 0.984489
100 18,173.20 0.984040 100 18,163.71 0.984457

1 150 18,172.10 0.984300 3 150 18,159.74 0.984101
200 18,169.94 0.983962 200 18,153.91 0.984105
250 18,165.78 0.983957 250 18,141.69 0.984098
300 18,152.95 0.983950 300 180,955,821 0.984042

50 18,169.94 0.984066 50 18,161.69 0.984681
100 18,167.86 0.984101 100 18,158.77 0.984136

2 150 18,165.75 0.984094 4 150 18,153.91 0.984466
200 18,161.71 0.984042 200 18,145.97 0.984101
250 18,153.91 0.984019 250 181,287,912 0.984101
300 18,126.88 0.984009 300 18,063.54 0.984108



Entropy 2021, 23, 467 11 of 21

50 10
0

15
0

20
0

25
0

30
0

Parameters

0.0

0.5

1.0

1.5

In
fo

rm
at

io
n

L
os

s

×108

(a)1 Km

2 Km

3 Km

4 Km

50 10
0

15
0

20
0

25
0

30
0

Parameters

0.9840

0.9842

0.9844

0.9846

D
is

cl
os

u
re

R
is

k

(b) 1 Km

2 Km

3 Km

4 Km

Figure 4. Evolution of the (a) Information Loss and the (b) Disclosure Risk with the Microagregga-
tion filter.

In general terms, as the value of km increases, the IL increases, and DR decreases.
Also, while m increases, there is a greater guarantee of information privacy, and the loss
of utility also decreases. This filter has a disadvantage due to the high computational
time required.

Rank Swapping

This filter takes as input the maximum exchange range p. The experiments have been
performed for p values varying from 10 to 80 (c.f. Table 3).

Concerning the results, Figure 5 shows that IL remains stable for p values from 25
to 80. On the opposite, concerning the DR the highest and lowest results are obtained for
p = 10 and p = 80, respectively. It means that when p increases, there is less Disclosure
Risk, making it more challenging to obtain the original data from the sanitized version.

20 40 60 80
Parameters

750

800

850

900

In
fo

rm
at

io
n

L
os

s

(a)

20 40 60 80
Parameters

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

D
is

cl
os

u
re

R
is

k

(b)

Figure 5. Evolution of the (a) Information Loss and the (b) Disclosure Risk with the Rank Swapping filter.

To summarize, Figure 5a,b display that the Disclosure Risk has its lowest point when
p = 80. It means that we protect the data better despite taking away its usefulness. On
the other hand, if you want to have the least amount of loss of the information usefulness,
the hyperparameter p = 10 is the best option. However, this filter is the one that requires the
most computational time to sanitize the data and offers a better Disclosure Risk compared
to the other SDC filters.

4.3. Data Sanitization through Differential Privacy Filters

In this section, two techniques based on Differential Privacy mechanisms were applied
to data at our disposal. Experiments were performed in three parts. First, the Microaggre-
gation filter was applied for different values of km and m. Once the clusters were obtained,
the data was replaced by the mean value. Finally, Exponential and Laplacian Differential
Privacy mechanisms were applied, each one with hyperparameters described in Table 5.
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Table 5. Values of hyperparameters.

Privacy Filter Parameter Value

Microagreggation-Laplacian
Mechanism km 1, 2, 3, 4

m 50, 100, 150, 200, 250, 300
ε 0.01, 0.1, 1, 10, 100

Microagreggation-Exponential
Mechanism km 1, 2, 3, 4

m 50, 100, 150, 200, 250, 300
ε 0.01, 0.1, 1, 10, 100

Laplacian Mechanism

Additionally to km and m variables, the Laplacian mechanism uses ε that was set to
0.01, 0.1, 1, 10, and 100. The result for this filter can be summarized as follows. On the one
hand, Figure 6a evinces that the hyperparameters km and m seem not to impact the Infor-
mation Loss value. However, this metric decreases drastically when the hyperparameter
ε = 1. We also see that the Information Loss progressively grows, reaching a maximum
peak when ε = 0.01. This trend being fulfilled for all combinations of km and m.
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Figure 6. Evolution of the (a) Information Loss and the (b) Disclosure Risk with the Laplacian mechanism.

On the other hand, Figure 6b indicates that the Disclosure Risk decreases when m
increases. Analogously, as the km value increases, the Disclosure Risk also increases.
Concerning the ε hyperparameter, there is a similar trend to the Information Loss metric,
i.e., where the Disclosure Risk metric reaches its minimum point when ε = 1, for constant
values of km and m.

To summarize, concerning the Information Loss (see Figure 7a), a quadratic trend is
observed. The highest and lowest Information Loss peaks were obtained for km = 4 and
m = 50, respectively. In the case of Disclosure Risk (see Figure 7b), a quadratic trend is also
observed where the minimum point of Disclosure risk is given for ε = 10. The maximum
value of Disclosure Risk is obtained when km = 1, m = 100 and ε = 0.01, and the minimum
value when km = 1, m = 300 and ε = 10. In conclusion, for constant values of km
and m, only the value of ε allows us to guarantee high privacy when the value of this
hyperparameter is equal to 0.01, or low when it is equal to 10. Please note that all values
for IL and DR are summarized in Table 6.



Entropy 2021, 23, 467 13 of 21

Table 6. IL and DR values for different Laplacian Differential Privacy settings used in Figure 6.

Km m ε IL exp DR exp Km m ε IL exp DR exp

0.01 26,756.39 0.9805 0.01 27,652.85 0.980369
0.1 16,865.94 0.98287 0.1 17,303.98 0.982801

1 50 1 16,149.69 0.983187 3 50 1 15,960.96 0.983196
10 17,786.03 0.983802 10 17,673.83 0.983982

100 18,112.68 0.984001 100 18,048.13 0.984428

0.01 26,013.5 0.98065 0.01 26,990.42 0.980451
0.1 16,547.53 0.982883 0.1 16,961.78 0.982813

1 100 1 16,164.33 0.983177 3 100 1 16,114.65 0.983194
10 17,810.92 0.98382 10 17,762.22 0.983883

100 18,127.01 0.983965 100 18,099.91 0.984125

0.01 25,402.85 0.98068 0.01 26,775.29 0.980495
0.1 16,197.18 0.982872 0.1 16,861.32 0.982845

1 150 1 16,155.76 0.983161 3 150 1 16,157.64 0.98321
10 17,817.23 0.983815 10 17,787.94 0.983862

100 18,131.56 0.983958 100 18,113.86 0.984086

0.01 25,394.53 0.980687 0.01 26,462.76 0.980591
0.1 16,186.31 0.982899 0.1 16,701.03 0.982874

1 200 1 16,177.68 0.983185 3 200 1 16,166.38 0.983171
10 17,820.39 0.983815 10 17,796.87 0.983838

100 18,133.91 0.983956 100 18,120.25 0.984028

0.01 25,376.96 0.980685 0.01 25,475.35 0.980605
0.1 16,153.66 0.982899 0.1 16,223.53 0.982872

1 250 1 16,177.4 0.983183 3 250 1 16,136.36 0.98318
10 17,822.5 0.983809 10 17,804.01 0.983837

100 18,135.17 0.983953 100 18,124.43 0.984006

0.01 25,354.64 0.980468 0.01 25,452.33 0.980274
0.1 16,172.67 0.982834 0.1 16,235.95 0.982729

1 300 1 16,173.75 0.983205 3 300 1 16,142.72 0.983137
10 17,825.67 0.983904 10 17,808.02 0.983982

100 18,136.47 0.98415 100 18,126.79 0.984383

0.01 27,183.42 0.980452 0.01 28,277.14 0.980372
0.1 17,055.7 0.982844 0.1 17,643.9 0.982784

2 50 1 16,061.64 0.983183 4 50 1 15,906.35 0.983196
10 17,732.91 0.983891 10 17,613.26 0.983939

100 18,083.27 0.984126 100 18,013.36 0.984153

0.01 26,747.83 0.980516 0.01 27,172.31 0.980408
0.1 16,822.59 0.982869 0.1 17,063.76 0.982813

2 100 1 16,160.54 0.983171 4 100 1 16,068.98 0.983221
10 17,789.16 0.983822 10 17,733.87 0.983949

100 18,113.77 0.98406 100 18,084.69 0.98439

0.01 26,020.64 0.980629 0.01 26,878.98 0.980443
0.1 16,519.16 0.982864 0.1 16,929.86 0.982817

2 150 1 16,160.54 0.983175 4 150 1 16,125.12 0.98317
10 17,801.84 0.983839 10 17,770.89 0.98389

100 18,122.52 0.984007 100 18,104.74 0.984123

0.01 25,465.32 0.980507 0.01 26,764.21 0.980493
0.1 16,225.49 0.982884 0.1 16,874.04 0.982854

2 200 1 16,140.29 0.983209 4 200 1 16,149.25 0.98318
10 17,807.84 0.983787 10 17,787.25 0.983869

100 18,126.74 0.983978 100 18,113.82 0.984098

0.01 25,864 0.980666 0.01 26,425.79 0.980616
0.1 16,480.83 0.982871 0.1 16,697.03 0.982888

2 250 1 16,177.41 0.983176 4 250 1 16,163.15 0.983194
10 17,814.85 0.983822 10 17,797.02 0.983849

100 18,129.3 0.983972 100 18,119.35 0.984065

0.01 25,384.07 0.980334 0.01 25,512.36 0.980179
0.1 16,199.82 0.982801 0.1 16,219.92 0.982717

2 300 1 16,164.44 0.983173 4 300 1 16,126.39 0.983086
10 17,815.22 0.983932 10 17,800.4 0.984091

100 18,131.55 0.984151 100 18,122.4 0.984654



Entropy 2021, 23, 467 14 of 21

20
,0

00

25
,0

00 (a)1 Km 2 Km

10−1 101

20
,0

00

25
,0

00

3 Km

10−1 101

4 Km

Parameters (log)

In
fo

rm
at

io
n

L
os

s

50 m

100 m

150 m

200 m

250 m

300 m 0.982

0.984
(b)1 Km 2 Km

10−1 101

0.982

0.984 3 Km

10−1 101

4 Km

Parameters (log)

D
is

cl
os

u
re

R
is

k

50 m

100 m

150 m

200 m

250 m

300 m

Figure 7. Evolution of the (a) Information Loss and the (b) Disclosure Risk with the Exponential mechanism.

Exponential Mechanism

As the Laplacian mechanism, the Exponential mechanism takes three hyperparame-
ters: km, m, and ε. Regarding the Information Loss (c.f., Figure 7a), km and m seem to have
no impact significant on this metric. Conversely, the Information Loss reaches a maximum
peak for ε = 0.01 and a minimum value when ε = 1. Regarding the Disclosure Risk,
Figure 7b shows that for km and m, there is a similar behavior described in the previous
section. We can also notice that Disclosure Risk has the highest peak when the ε = 0.01.

Regarding the Information Loss (c.f., Figure 7a), a quadratic trend is also observed.
From ε > 1 the IL starts to grow, reaching a maximum point when the hyperparameter
ε = 0.01. Similarly, the highest and lowest IL peaks are obtained when km = 4 and
m = 50, respectively. It is important to notice that the IL value only depends on ε to obtain
maximum or minimum values.

The Disclosure Risk (c.f., Figure 7b) also reveals a quadratic trend, where the min-
imum DR is at ε = 10. Furthermore, the same trend can be observed in the km and m
hyperparameters as in previous mechanism. The maximum value of all combinations is
given when km = 1, m = 100 and ε = 0.01, and the minimum DR when km = 1, m = 300
and ε = 10. Please note that all values for IL (c.f., Il exp) and DR are summarized in Table 7.

4.4. Data Sanitization through Generative Adversarial Networks

In this section, a Generative Adversary Networks GAN is applied to data at our
disposal, and the algorithm returns a dataset artificially generated through an Artificial
Neural Networks (ANN) mechanism. Obtained results were evaluated by measuring the
Disclosure Risk and the Information Loss.

During the training phase, the synthetic data generator G and the discriminator D
models need parametrization. Different hyperparameters values generate completely dif-
ferent models with different results. Thus, we took the settings recommended in [38,39],
which are summarized in Table 8. Concerning the number of hidden layers in the ar-
chitecture of the ANN [38,39] recommends three hidden layers for each neural network
(discriminator and generator). Also, the authors propose using the RELU activation func-
tion and Adam’s Optimizer fixed to 0.0001. Concerning the epochs, we were inspired
by [38], which obtain good results using 300 and 500 epochs. Both epochs were empirically
tested, obtained better results for 500 epochs.

In the same spirit, authors in [40] recommend training a GAN using the Batch tech-
nique, where the dataset is divided into n blocks of data and trained separately. This
technique reduces training time. In addition, the recommended parameter n in the litera-
ture is 64. Finally, in [39,41], the authors use 100 neurons, and 100 input dimensions.
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Table 7. IL and DR values for different Exponential Differential Privacy settings used in Figure 7.

Km m ε IL exp DR exp Km m ε IL exp DR exp

0.01 26,805.88 0.980468 0.01 27,655.44 0.980274
0.1 16,874.44 0.982834 0.1 17,297.23 0.982729

1 50 1 16,147.63 0.983205 3 50 1 15,968.72 0.983137
10 17,786.58 0.983904 10 17,671.17 0.983982

100 18,112.87 0.98415 100 18,047.94 0.984383

0.01 25,963.42 0.9805 0.01 27,002.51 0.980369
0.1 16,526.59 0.98287 0.1 16,956.95 0.982801

1 100 1 16,179 0.983187 3 100 1 16,116.49 0.983196
10 17,810.1 0.983802 10 17,762.91 0.983982

100 18,126.96 0.984001 100 18,099.91 0.984428

0.01 25,414.27 0.98065 0.01 26,773.04 0.980451
0.1 16,203.65 0.982883 0.1 16,864.37 0.982813

1 150 1 16,164.88 0.983177 3 150 1 16,155.21 0.983194
10 17,815.58 0.98382 10 17,787.78 0.983883

100 18,131.49 0.983965 100 18,113.81 0.984125

0.01 25,364.12 0.98068 0.01 26,416.96 0.980495
0.1 16,170.88 0.982872 0.1 16,674.77 0.982845

1 200 1 16,166.61 0.983161 3 200 1 16,166.32 0.98321
10 17,820.4 0.983815 10 17,799.32 0.983862

100 18,133.81 0.983958 100 18,120.24 0.984086

0.01 25,372.59 0.980687 0.01 25,480.51 0.980591
0.1 16,176.96 0.982899 0.1 16,228.98 0.982874

1 250 1 16,168.93 0.983185 3 250 1 16,132.41 0.983171
10 17,822.96 0.983815 10 17,803.37 0.983838

100 18,135.04 0.983956 100 18,124.54 0.984028

0.01 25,363.77 0.980685 0.01 25,416.3 0.980605
0.1 16,171.44 0.982899 0.1 16,210.68 0.982872

1 300 1 16,173.73 0.983183 3 300 1 16,145.41 0.98318
10 17,822.86 0.983809 10 17,807.97 0.983837

100 18,136.35 0.983953 100 18,126.75 0.984006

0.01 27,155.12 0.980334 0.01 28,302.08 0.980179
0.1 17,068.17 0.982801 0.1 17,644.73 0.982717

2 50 1 16,055.25 0.983173 4 50 1 15,897.25 0.983086
10 17,732.17 0.983932 10 17,617.03 0.984091

100 18,083.42 0.984151 100 18,013.25 0.984654

0.01 26,821.81 0.980452 0.01 27,147.58 0.980372
0.1 16,841.09 0.982844 0.1 17,043.56 0.982784

2 100 1 16,160.23 0.983183 4 100 1 16,061.7 0.983196
10 17,787.89 0.983891 10 17,734.34 0.983939

100 18,113.78 0.984126 100 18,084.73 0.984153

0.01 25,989 0.980516 0.01 26,906.04 0.980408
0.1 16,539.61 0.982869 0.1 16,907.99 0.982813

2 150 1 16,152.18 0.983171 4 150 1 16,127.52 0.983221
10 17,804.2 0.983822 10 17,771.35 0.983949

100 18,122.63 0.98406 100 18,104.71 0.98439

0.01 25,444.78 0.980629 0.01 26,768.91 0.980443
0.1 16,207.17 0.982864 0.1 16,825.51 0.982817

2 200 1 16,133.43 0.983175 4 200 1 16,165.04 0.98317
10 17,807.95 0.983839 10 17,786.04 0.98389

100 18,126.7 0.984007 100 18,113.89 0.984123

0.01 25,865.46 0.980507 0.01 26,464 0.980493
0.1 16,473.8 0.982884 0.1 16,702.41 0.982854

2 250 1 16,180.91 0.983209 4 250 1 16,152.97 0.98318
10 17,814.25 0.983787 10 17,797.78 0.983869

100 18,129.6 0.983978 100 18,119.23 0.984098

0.01 25,403.73 0.980666 0.01 25,510.33 0.980616
0.1 16,221.69 0.982871 0.1 16,238.83 0.982888

2 300 1 16,147.73 0.983176 4 300 1 16,121.84 0.983194
10 17,817.59 0.983822 10 17,799.11 0.983849

100 18,131.55 0.983972 100 18,122.33 0.984065

Table 8. Values for different architectures.

Privacy Filter Parameters Selected Values

Architecture-1 [42] G: 32-64-128 D: 128-64-32
Architecture-2 [39] G: 50-50-50 D: 50-50-50
Architecture-3 [38] G: 1024-512-256 D: 256-512-1024

GAN Architecture-4 [39] G: 256-512-1024 D: 512-512-512
Architecture-5 [43] G: 512-512-512 D: 512-512-512
Architecture-6 [44] G: 128-128-64 D: 64-128-256
Architecture-7 [34] G: 256-512-1024 D: 1024-512-256
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Concerning the result, in the case of the Information Loss (see Figure 8a), the highest
peaks of the utility are found using Architecture 3 and Architecture 4. In contrast, Architec-
ture 7 has the lowest Information Loss. Also, architectures 3 and 7 have the same number
of hidden layers with 256, 512, and 2024 neurons. Nevertheless, both architectures have a
significant difference concerning these values are positioned in the GAN. This difference
generates a significant impact on IL.
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Figure 8. Evolution of (a) Information Loss and (b) Disclosure Risk measures for GAN architectures.

4.5. Data Sanitization through Knowledge Distillation

To generate a synthetic dataset using Knowledge Distillation, we rely on Machine
Learning copies. To meet this aim, the CART Decision Tree algorithm [45] was trained with
the original normalized data using Entropy and Gini to measure the split’s quality. For the
maximum depth of the tree, we tested values ranging from 2 to 50. Then, for the minimum
number of samples required to split an internal node, we try the following values 0.01, 0.05,
0.1, 0.15, 0.16, 0.18, and 0.2. Table 9 summarizes the best values found for both Entropy
and Gini based Decision Trees.

Table 9. Decision tree parameters.

Criterion Gini Entropy

max depth 20 10
min sample split 0.05 0.01

Once the model is trained to outcome the pretense or absence of fish stocks given
certain salinity values, chlorophyll, temperature, and degrees under the sea, a synthetic
dataset was generates using random values sampled from normal and uniform distribu-
tions with parameters specified in Table 10. The obtained synthetic datasets were evaluated
using the IL and the DR metrics. Figure 9 depicts the datasets issued from the normal
distribution have less Information Loss and a similar Disclosure Risk between 0.5 and 0.8.

Table 10. Parameters for the Normal and Uniform distributions for data sampling.

Distribution Variable Majority Class
Mean

Majority Class
Std dev.

Minority Class
Lower Bound

Minority Class
Upper Bound

Normal Salinity −0.040169 1.095034 0.105732 0.678991
Normal Temperature −0.096785 1.052992 0.251601 0.804940
Normal Chlorophyll −0.014185 0.980216 0.028919 1.028593
Normal Degrees under the sea −0.043937 1.081239 0.117393 0.728411

Uniform Salinity −5.220127 0.238858 −5.220127 0.240401
Uniform Temperature −3.677595 1.079318 −3.677595 1.079318
Uniform Chlorophyll 0.618748 10.093664 −0.618748 10.470102
Uniform Degrees under the sea −4.851172 1.643433 −4.851172 1.616258
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In this section, we have presented the results of the different techniques to benchmark
the results in terms of Information Loss and Disclosure Risk. In the next section, we discuss
about our findings.
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Figure 9. Evolution of Information Loss and Disclosure Risk measures for Knowledge Distillation.

5. Discussion

A vast amount of data are generated and collected daily. These datasets contain
sensitive information about individuals, which needs to be protected for public sharing or
mining tasks to avoid privacy breaches. As a consecuence, data curators have to choose
a suitable technique to guarantee a certain privacy level while keeping a good utility for
the mining task after the sanitization. There are several privacy-enhancing mechanisms
based on SDC, Differential privacy, GANs, or Knowledge Distillation to protect the data.
Thus, there is a need to compare such methods for data sanitizations. Therefore, a question
about the best algorithm to protect privacy raise. To try to answer this question, we
extend the benchmarks [24,35] from a comparison of classical Statistical Disclosure Control,
and Differential Privacy approaches with recent techniques as Generative Adversarial
Networks and Knowledge Distillation using a commercial database.

About the SDC filters, the highest possible Information Loss was obtained with the
Microaggregation filter and the lowest possible Information Loss with the Rank swapping
filter. Besides, the highest Disclosure Risk value was obtained using Rank swapping
and Noise Addition, while the lowest Disclosure Risk value was achieved through the
Microaggregation filter.

Regarding Differential Privacy, the Laplacian and Exponential mechanisms differ
slightly for both Disclosure Risk and Information Loss. Thus, when ε = 0.01, and ε = 0.1,
we obtain the lowest DL and the highest IL respectively. Depending on the data saniti-
zation’s primary purpose, it is recommended to alternate these ε values with constant
values of km and m. Since both Exponential and Laplacian mechanisms present almost the
same values, it is recommended to use the Laplacian mechanism since it takes the least
computational time to execute. Concerning the ε choice, we suggest small values close to
zero to avoid privacy breach, since ε could be seen as the probability of receiving the same
outcome on two different datasets [30], which in our case are the original dataset X and its
private counterpart X′.

The GAN technique shows that Architecture 3 should be used when a high privacy
guarantee is required with a shallow Disclosure Risk measure. However, to have the least
utility loss, it is recommended to opt for Architecture 7 or Architecture 5, since they have
the lowest Information Loss. To decrease Disclosure Risk, it is possible to couple the GAN
with a Differential Privacy mechanism, as mentioned in [15–17].

Concerning the Knowledge Distillation technique, despite the fact that the distillation
process could change the class balance depending on the sampling strategy. It seems to
shows interesting results in terms of Information Loss and Disclosure Risk. It is worth
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noting that the sampling process could be challenging depending on how the process
sampling is done [46].

To summarize, Table 11 indicates the best trade-offs between Information Loss and
Disclosure Risk measures for the compared methods. We observe that Machine Learning
copies present the best trade-off between Information Loss and Disclosure Risk. Then,
GAN provides the second-best privacy guarantee. The strategy of this method is different
from classical SDC filters and differential privacy. The former algorithms build a dataset
to mimic original counterparts, while the latter algorithms add controlled noise to the
original data. Hence, We notice that Noise Addition and Rank Swapping have the smallest
Information Loss values. Finally, we remark that Microagreggation and Differential Privacy
have similar behaviors. Based on the results mentioned above, a data curator should first
try a Machine Learning Copy to reduce privacy risk while keeping a small Information
Loss when performing a mining task. The second option would be to try Differential
Privacy after the Machine Learning Copy since it is the second-best trade-off.

Table 11. Best trade-offs between IL and DR.

Filter Value of IL Value of DR

Noise addition 2134 0.994
Microagreggaction 18,152.95 0.983950

Rank swapping 917.83 0.9925
Differential privacy Laplacian 17,822.50 0.983809

Differential privacy Exponential 17,822.96 0.983815
GAN 20,298.3 0.980435

Machine Learning copies 9424.05 0.809793

Apropos computational time, the fastest sanitization algorithm, using our dataset, is
Noise Addition, it takes on average 30 min to execute. Then, Rank Swapping, Microaggre-
gation, Differential Privacy, and GANs take about 2 h to execute, and Machine Learning
Copies could take more than two hours depending on the sampling strategy and previous
knowledge on the probability distributions of the variables corresponding to the dataset to
be sanitized.

It is worth noting that latitude and longitude variables were not considered in the
sanitization process since SDC methods change in an arbitrary way when treated as
variables. This could degrade the dataset significantly while working with geo-referenced
data. Thus, an adversary could note that the dataset has been previously processed. The risk
of dealing with geolocation data are detailed in [47]. Also, to the best of our knowledge,
there are no studies about the privacy preservation of geolocated records using GANs
or Machine Learning copies. Concerning IL and DR, there is not a consensus about the
definition of such a function. Thus, there is an opportunity to implement different functions
to capture the impact of the privacy mechanism. Besides, it is possible to extend this study
by testing the used sanitization techniques with other datasets, such as medical datasets
like the one presented in [48]. The limitation is that authors do not share the analyzed
dataset and, in general, the unavailability of public available medical datasets. Another
angle of analysis is the subsequent mining task after the sanitization. Consequently, one
can test different data mining tasks, namely, classification, clustering, or sequential pattern
mining, to evaluate the sanitization method’s impact on the result of the mining task and
the information loss.

Concerning the context of our work, we have seen in the literature benchmarks of
de-identification techniques [21,22] limited to record anonymity techniques, which are the
first step of the sanitization process, on the one hand. On the other hand, other benchmarks
compare SDC and Differential Privacy techniques [23–25,35] excluding deep learning-based
approaches. To the best of our knowledge, this benchmark is the first one to compare
classical SDC and Differential Privacy methods to Generative Adversarial Networks and
Knowledge Distillation based privacy techniques. Therefore, this benchmark could be the
first reference to guide data curators to choose a suitable algorithm for their sanitization task.
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Regarding the limitations of our work, even though the limited number of datasets used
for the experiments, the results are quite convincing about the privacy gain by reducing
the disclosure risk with a controlled information loss depending on the hyperparameters.
Besides, our results are similar to those presented in [24,25,35], which took into account
different datasets for their experiments. In conclusion, we have developed an extensive
comparison of different privacy techniques regarding Information Loss and Disclosure
Risk to guide in choosing a suitable strategy for data sanitation. There are several privacy
techniques to sanitize datasets for public sharing. Thus, our contribution aims to fill the
absence of privacy algorithms benchmark for proving the first approach to find a suitable
sanitization technique. Therefore, our study could help to reduce the amount of time for
selecting a privacy algorithm for data sanitization.

Because of this paper’s results, we are now able to evaluate GANS and Machine Learn-
ing copies for handling geolocated data and assess the impact of the privacy techniques
when dealing with location data and other variables.

6. Conclusions

In the present effort, we have evaluated SDC (Statistical Disclosure Control) filters,
namely Noise Addition, Microaggregation, Rank swapping, Laplacian and Exponential
Differential Privacy, Generative Adversarial Networks (GAN), and Knowledge Distillation
sanitization techniques on data using oceanographic charts. Therefore, the idea was to
use the sanitized dataset for a fish stock prediction task. To calibrate the sanitization
algorithms, different settings were tested for each technique. Thus, we evaluate the
sanitization techniques in terms of Information Loss and Disclosure Risk. In this way,
the best hyperparameter configurations were found, which achieve a trade-off between the
Information Loss and the Disclosure Risk for each filter studied in this paper. However,
there is room for improvements in testing the different techniques on other datasets and
monitoring the computational time and memory usage using different hyperparameter
values. This benchmark could be a good start for a data curator to target the most suitable
privacy algorithm better to sanitize their datasets. Finally, the new research avenues will
be to perform the benchmark by using publicly available datasets, monitor computational
performance indicators like computational time and memory usage for all the filters with
different configurations to analyze the hyperparameters’ impact on performance. Other
experiments would be adding records’ geolocation and coupling Differential Privacy to
the GANs and the Machine Learning Copies. However, there is room for improvements in
testing the different techniques on other datasets and monitoring the computational time
and memory usage using different hyperparameter values.
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