
Research Article
Toward an Effective Bug Triage System Using Transformers to
Add New Developers

Syed Farhan Alam Zaidi ,1,2 Honguk Woo ,3 and Chan-Gun Lee 2

1CAU Institute of Innovative Talent of Big Data, Department of Computer Science and Engineering, Chung-Ang University,
Seoul 06974, Republic of Korea
2Department of Computer Science and Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
3Department of Software, Sungkyunkwan University, Suwon 16419, Republic of Korea

Correspondence should be addressed to Chan-Gun Lee; cglee@cau.ac.kr

Received 21 December 2021; Accepted 2 March 2022; Published 8 April 2022

Academic Editor: Sangsoon Lim

Copyright © 2022 Syed Farhan Alam Zaidi et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

As defects become more widespread in software development and advancement, bug triaging has become imperative for software
testing and maintenance. The bug triage process assigns an appropriate developer to a bug report. Many automated and
semiautomated systems have been proposed in the last decade, and some recent techniques have provided direction for
developing an effective triage system. However, these techniques still require improvement. Another open challenge related to
this problem is adding new developers to the existing triage system, which is challenging because the developers have no listed
triage history. This paper proposes a transformer-based bug triage system that uses bidirectional encoder representation from
transformers (BERT) for word representation. The proposed model can add a new developer to the existing system without
building a training model from scratch. To add new developers, we assumed that new developers had a triage history created
by a manual triager or human triage manager after learning their skills from the existing developer history. Then, the existing
model was fine-tuned to add new developers using the manual triage history. Experiments were conducted using datasets from
well-known large-scale open-source projects, such as Eclipse and Mozilla, and top-k accuracy was used as a criterion for
assessment. The experimental outcome suggests that the proposed triage system is better than other word-embedding-based
triage methods for the bug triage problem. Additionally, the proposed method performs the best for adding new developers to
an existing bug triage system without requiring retraining using a whole dataset.

1. Introduction

Bug triage is a challenging problem in software engineering, as
it aims to assign an appropriate developer to a specific bug
report. Bugs include defects, errors, or loopholes that should
be fixed quickly to improve the software quality. Testing or
quality assurance engineers identify bugs in the testing and
maintenance phase, reporting bugs in the form of a document
known as a bug report. Then, they report bugs in open bug
repositories, such as Bugzilla or JIRA. Afterward, the devel-
opers and engineers use open bug repositories to explore ways
to repair the bugs. Well-known large-scale open-source pro-
jects, such as Mozilla, Eclipse, and NetBeans, use open bug
repositories for bug report management [1].

A bug report has considerable information about the
bug, including a short description (summary), long descrip-
tion, creation date and time, components, product, creator,
assignee, comments, status, resolution, priority, severity,
and other information. A manual triager or triage manager
assigns developers to specific bug reports, which is very
time-consuming. It is challenging for the triage manager to
remember the developers’ skills and assign a bug to a suit-
able developer.

Many automatic bug triage techniques have been pro-
posed to solve this problem in the last decade. Nevertheless,
these techniques are still far from satisfactory and require
improvement. Several researchers have solved bug triage
problems using mining repositories, social network analysis,

Hindawi
Journal of Sensors
Volume 2022, Article ID 4347004, 19 pages
https://doi.org/10.1155/2022/4347004

https://orcid.org/0000-0003-2257-290X
https://orcid.org/0000-0001-6948-3440
https://orcid.org/0000-0001-9734-4456
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4347004


topic modeling, dependency-based methods, traditional
machine learning methods, and deep learning methods,
demonstrating promising results for small datasets. The
detailed literature is provided in Section 2.

Since the evolution of machine learning, deep learning-
based methods have presented promising results in many
fields, for example, the recent results for large-scale datasets.
Deep learning methods use natural language processing
(NLP) to convert text into vectors, and word-embedding
techniques are crucial tools for NLP methods. Vectors are
input into deep learning models for training. S. Lee et al.
[2] were the first to use a convolutional neural network
(CNN) method for bug triage. They used word2vec embed-
ding for vectorization, a CNN with three different kernels to
extract features, and a dense network with a SoftMax classi-
fier for the classification task.

Mani et al. [3] proposed an attention-based bidirectional
recurrent neural network (RNN) that also used word2vec
embedding. S. Guo et al. [4] and Zaidi et al. [5] used a
CNN model. The first model was based on developer activi-
ties. Moreover, S. Guo et al. applied their methods on large
datasets with numerous developers. The latter model
adopted different word-embedding techniques, including
word2vec, global vector (GloVe), and the Embeddings from
Language Model (ELMo), to improve the triage accuracy.
The models exhibited promising results compared to the
state-of-the-art methods. Thus, deep learning models per-
form better for large datasets and numerous developers.
Nevertheless, top-1 accuracy is still far from perfect. Fur-

thermore, top-10 accuracy requires improvement to create
a reliable recommendation system.

Some typical bug fixer recommendation systems can add
newly hired developers for triage bugs. These recommenda-
tion systems add new developers’ expertise to the recom-
mendation system. Then, the recommendation systems can
assign new developers to bug reports. However, for neural
network-based and deep learning-based bug triage methods,
adding newly hired developers to an existing trained model
is challenging because new developers do not have a triage
history. Moreover, the existing deep learning-based triage
techniques require retraining the model from scratch on
the entire dataset (new and old class data). Figure 1 is the
pictorial representation of the existing machine learning-
based bug triage solutions. The model is built after training
on k developers’ data. When a new bug report arrives, the
model recommends a ranked list of k developers. If a com-
pany hires new developers, the model cannot assign bug
reports to new developers until the model is retrained on
both old and new developer datasets. After retraining from
scratch, the model can assign reports to new developers.
Retraining a model from scratch is a very time-consuming
approach. In addition, whenever new developers are avail-
able, retraining from scratch is not a good choice. The blue
color in the figure demonstrates the process of the existing
deep learning-based approaches when the new developer
data are available.

In the literature, we did not find an appropriate bug tri-
age solution based on deep learning techniques that can add

New bug
document

New bug
document

Old

Bug reports k
developers data

Inference

Model

List of developersList of developers

Dev k
Dev k

Dev 1 Dev 1

Dev k+1

Dev n

Training

New

K+1... n
developers data

Retaining
from

scratch

Inference
after retaining

Recommended list of
potential developer for

the reported bug

Recommended list of
potential developer for

the reported bug

. .
.
.

.

.

.

.

.

Combined

New + old
developers data

Figure 1: The process of existing deep learning-based bug triage methods.

2 Journal of Sensors



newly hired developers to the existing model without
retraining from scratch. Zaidi et al. [6] aimed to solve this
problem using a one-class classification technique, which is
a machine learning technique. They used a one-class support
vector machine (SVM) classifier for one-class classification
and trained a separate classifier for each developer. The
selected developer for the classifier was labeled as a positive
example, and all others were labeled as negative examples.
The classifier learned only the positive examples and classi-
fied the negative examples as outliers. Their method was
overfitted to the training data and classified some parts of
the testing data of a positive class as outliers. Furthermore,
the method could not rank developers for a bug report
because the classifier output was binary, and the classifier
only classified samples as +1 or −1. This technique failed
to offer an appropriate solution for the stated problem.

The aim of this research is twofold. First, we focus on
increasing the accuracy of the bug triage system. Second,
the proposed triage system can add newly hired developers
to the existing trained model. Therefore, a transformer-
based bug triage method that can add new developers to
an existing triage model is proposed to overcome the men-
tioned challenges. The proposed method has two parts: the
base model and fine-tuned model. The base model trains
on base data and recommends a ranked list of developers.
The fine-tuned model is used to add new developers to the
existing system and uses the concept of continuous fine-tun-
ing, which was used by Käding et al. [7] for image data. The
fine-tuned model learns new developers when their data are
available. Various context-insensitive and context-aware
word representation techniques have been used for bug tri-
age in the literature. However, the bidirectional encoder rep-
resentations from transformer (BERT) embedding is
effective compared to other embedding techniques for classi-
fication tasks. Therefore, we chose the BERT embedding
model for effective word representation. To validate the pro-
posed fine-tuned method, we constructed datasets from
publicly available data. As discussed above, new developers
do not have any triage history. For a realistic scenario, we
separated the developers who have three bug reports at most
from the data. We assumed that these developers are new
and that a manual triager assigns bug reports according to
the developers’ skills to create the triage history. Further-
more, this history is used to add new developers to the exist-
ing model.

The key advantage of the proposed method is to accom-
modate new developers to the existing model without
retraining from scratch. Our triage system uses the continu-
ous fine-tuning technique, which extends the base model
with extended developer classes. The fine-tuning technique
requires less iterations for training than a method that builds
the model from scratch for new and old developers’ classes.
It can be applied to any software project managing bug
reports with summaries and descriptions.

The main contributions of this research are shown in the
following:

(i) We propose a transformer-based triage method that
recommends a ranked list of 10 developers with

notable top-k accuracy. To the best of our knowl-
edge, no method in the literature used transformers
for the bug triage problem

(ii) Adding new developers to the existing deep
learning-based model is a challenge in bug triage
because existing studies require retraining the
model on old and new developer datasets. To the
best of our knowledge, no published approach
addresses the problem of adding new developers to
the existing model based on the deep neural net-
work in the context of bug triage. The proposed
study suggests one possible solution to adding new
developers in the existing trained deep learning
model using the continuous fine-tuning concept

(iii) We evaluate the performance of the proposed bug
triage technique using state-of-the-art triage tech-
niques with publicly available data

2. Related Work

Many studies in the last decade have assessed bug triage
problems. In this section, we present some recent studies
on bug triage classified into four main categories: informa-
tion retrieval-based bug triage systems, social network
analysis-based bug triage systems, dependency-based bug
triage systems, and machine learning-based bug triage sys-
tems. The machine learning-based bug triage methods are
further categorized as conventional machine learning
methods and deep learning methods.

Table 1 lists selected recent triage methods proposed in
the last five years. Only a few selected recent papers used
accuracy or top-k accuracy metrics to evaluate bug assign-
ment to developers or fixer recommendations for bug
reports. The extensive literature proposed in the last decade
related to the bug triage problem is described in this section.

2.1. Information Retrieval-Based Bug Triage Systems. Infor-
mation retrieval-based approaches consider developers with
similar sufficient expertise for a specific type of bug report to
solve new bug reports of a similar type. Different informa-
tion retrieval-based bug triage techniques, including mining
software repositories and topic modeling, have been pro-
posed to solve the bug triage problem. This section presents
relevant literature on information retrieval techniques for
bug triage.

Software repositories contain historical information on
system development and maintenance. Researchers have
mined this historical information, such as the source code
and version control repository, to assign an appropriate
developer to a bug report. Kagdi et al. created a corpus for
every source code file using descriptions, commits, source
code, and class or method identifiers from bug reports as
data sources. They used latent semantic indexing as an infor-
mation retrieval technique to index the corpus. An indexed
corpus was used to compute the similarity in the bug report
descriptions to predict the related source files. Their
approach recommends developers based on their activities
with predicted source files in the version repository [8].

3Journal of Sensors



Table 1: Literature review related to bug triage in the last five years.

Author Year

Selected
information
from bug
reports

Word representation
or vectorizer

Method Dataset
Top-1
Acc. %

Top-5
Acc. %

Top-10
Acc. %

Dedik and
Rossi [41]

2016
Summary and
description

TF-IDF
Feature extracted by TF-IDF and
classification task done by SVM

Firefox OSS 59 — 97

Industrial
data

54 — 90

Jonsson
et al. [35]

2016
Summary and
description

TF-IDF

Feature extracted by TF-IDF and
assign developer by stacked
generalization of a classifier

ensemble

Industrial 89 — —

Xuan
et al. [42]

2017
Summary and
description

TF-IDF
Tokenized as list of words and used

Naïve Bayes classifier and
expectation-maximization

Eclipse 21.04 48.07 —

Peng et al.
[43]

2017
Summary and
description

—

Used inverted indexing to sort list of
terms from bug reports and relevant

search technique for developer
recommendation

Mozilla
Eclipse

22.3
30.7

51.8
61.3

—
—

S. Lee
et al. [2]

2017
Summary and
description

Word2Vec
Used Word2Vec for word

representation and CNN-based
classifier for assigning developers

Eclipse
(JDT)
Eclipse

(platform)

46.6
36.1

74.3
56.7

—
—

Firefox 27.1 50.5 —

Yin et al.
[1]

2018

Summary,
description

and
comments of
developer

TF-IDF

Used TF-IDF weighting for
constructing feature space and
genetic algorithm based optimal
extreme learning machine (ELM)

for classification tasks with
diversified features

Bugzilla
Eclipse

NetBeans

62.4
65.8
71.2

—
—
—

—
—
—

GCC 63.3 — —

Mani
et al. [3]

2019
Summary and
description

Word2Vec
Proposed bidirectional RNN with

attention mechanism and
Word2Vec for conversion in vector

Mozilla
Firefox
Mozilla
Core

—
—

—
—

46:6 ± 6:4
38:8 ± 3:2

Google
Chrome

— — 42:7 ± 3:5

Yadav
et al. [18]

2019

Meta data
including
priority,

product, and
time-stamp

—

Computed developer expertise
scores (DES) from meta data and
assign developers to new bug

reports based on similarity measure

Mozilla
Eclipse

NetBeans

90.38
89.97
88.53

—
—
—

—
—
—

S. Guo
et al. [4]

2020
Summary and
description

Word2Vec Developer activity-based CNN
Eclipse
Mozilla
NetBeans

25.20
12.44
35.54

46.03
26.93
62.66

53.37
34.46
74.89

Zaidi et al.
[5]

2020
Summary and
description

Word2vec, GloVe,
and ELMo

Proposed triage methods based on
three different word representation

techniques with CNN model:
Word2vec-CNN, GloVe-CNN, and

ELMo-CNN

JDT
Platform
Firefox
Mozilla
NetBeans

49.750
43.622
30.418
16.73
40.17

78.261
63.822
55.738
36.47
66.07

87.234
74.264
64.696
45.40
74.23

Zaidi and
Lee [44]

2021
Summary and
description

TF-IDF for word-
document edge and
cosine similarity for
word-word edge

weighing

Built a heterogeneous graph and
used GCN for fixer assignment

JDT
Platform
Firefox

47.01
39.54
29.37

76.86
62.01
57.03

84.00
72.11
66.50

4 Journal of Sensors



Shokripour et al. proposed an automatic bug assignment
approach using extracted information from software reposi-
tories. Their method used a version control repository to
extract the bug-required information and best bug fixer.
The authors employed the phrase composition technique
from commits and descriptions. The system recommends
developers based on the activity histories in the files with
the most similar phrase composition [9]. In another study
[10], the authors used a noun extraction method on several
information sources, such as commit messages, comments,
and source code, that determined the bug location. The
term-weighting scheme to predict the files belongs in the
new bug report. Finally, their proposed triage system recom-
mends a developer based on the developer’s expertise with
the predicted files.

Linares-Vásquez et al. used identifiers, comments, and
author information on source code files to create a corpus.
Latent semantic indexing indexes the corpus and computes
the similarity between the files and bug description, recom-
mending the author of the top-N similar files [11].

Some techniques model developer expertise using their
comments, reports, and bug-fixing activities. Naguib et al.
proposed a technique that leverages topic modeling and
the developer’s activities, such as fixing, reviewing, and
assigning bug reports. Their technique recommends devel-
opers based on their association scores on the topic deter-
mined using the developers’ activities [12].

Yang et al. introduced topic modeling and multiple
feature-based approaches that extract a set of candidate
developers who have participated in bug reports with the
same topics and features. Then, the developers are ranked
by a score determined using their activities [13]. S. Wang
et al. proposed an unsupervised method that caches the
developers based on their component-level activities. The
approach calculates the score of activeness for specific
periods in the cache. The approach recommends the appro-
priate developer for a bug report using an activeness
score [14].

In addition, Zhang et al. [15] combined the topic model
and the relationship between a bug fixer and the report. The
authors calculated the correlation score of the developer
with the report and topic models. Their approach recom-
mends developers based on the correlation score.

Furthermore, Xia et al. focused on activity model tech-
niques and extended the latent Dirichlet allocation (LDA)
topic modeling algorithm. They proposed a multifeature
LDA algorithm, which includes components and products.
Developers are recommended based on their affinity
score [16].

Zhang et al. proposed an entropy-based optimized LDA
approach to build a topic model for automatic bug report
assignments. They used the Stanford topic modeling toolbox
to train the topic model with the optimized LDA. The devel-
oper’s comments facilitated modeling the developer’s exper-
tise and interest in a topic. The entropy-optimized LDA
recommends a ranked list of developers [17].

Yadav et al. proposed an approach that ranks developers
based on their expertise in triaging bugs. They reduced the
bug tossing length with their approach and built developer

profiles based on their contribution performance. This
approach generates developer expertise scores using the
average fixing time, priority-weighted fixed issues, and index
metrics. Additionally, this approach determines feature-
based, cosine, and Jaccard similarities to compute the exper-
tise scores. A ranked list of developers for new incoming bug
reports is recommended [18].

Further, Lee and Seo [19] proposed a method to improve
triage performance by improving LDA. To improve the
existing LDA topic sets, they built two adjunct topic sets
using multiple LDA-based topic sets. Their method achieved
good accuracy compared to the existing LDA-based
methods.

2.2. Social Network Analysis-Based Bug Triage Systems. Some
researchers have used the social network analysis approach
to solve the bug triage problem. In the software industry,
developers collaborate on the bug resolution process. Social
network analysis techniques consider the relationships
between developers and bug reports to determine an appro-
priate developer. Researchers have used developers as nodes
and collaboration as edges to model this problem. For exam-
ple, Banitaan and Alenezi proposed the Developers Commu-
nities in Bug Assignment (DECOBA), building a developer
social network based on comments on bugs and detecting
developer communities. Their system recommends devel-
oper communities for new bug reports by ranking devel-
opers [20].

In addition, Zhang et al. combined social network anal-
ysis with machine learning to triage bugs. The numbers of
bug fixes, comments, and reports to compute the developer’s
contribution score are added to the classifier score to assign
the appropriate developer [21]. In another study, Zhang and
Lee used an information retrieval technique to determine
similar bugs. The system recommends a fixer based on the
fixing probability and fixing experience. The fixing probabil-
ity is determined using a social network technique, and the
fixing experience is calculated based on the number of fixed
and assigned bugs [22].

Moreover, Hu et al. proposed a bug-fixing technique that
computes the similarities to other bug reports. The tech-
nique recommends developers based on associations
between developers, components, and bugs [23].

2.3. Dependency-Based Bug Triage Systems. Kumari et al.
solved the bug triage problem using a bug dependency-
based mathematical model because bug dependencies exist
due to coding errors, architecture faults, and misunderstand-
ings between users and developers. Furthermore, this model
uses the summary, description, and comments from the bug
report to measure entropy. This model assigns developers
based on entropy [24].

Etemadi et al. proposed a scheduling-driven approach
that efficiently assigned bug-fixing tasks to developers. They
used a task dependency graph; each task is associated with a
node in a task dependency graph. A starting time and an
ending time are assigned to each task. The method used an
embedded greedy search that operates over the schedules
to explore more parts of search space. Their approach

5Journal of Sensors



showed good accuracy as well as reduced the bug-fixing
time [25].

Recently, Almhana and Kessentini [26] proposed an
automated bug triage method that considers dependencies
between bug reports. Then, they localized the files to be
inspected for each open bug report. The multiobjective
search is used to rank bug reports for programmers based
on dependencies for other reports and priorities. Their
approach demonstrated a significant time reduction of over
30% in localizing bugs simultaneously compared to tradi-
tional bug prioritizing techniques.

Jahanshahi et al. proposed a dependency-aware bug tri-
age method unlike the previous dependency-based methods.
They considered NLP and integer programming to assign
bugs appropriately. The method used textual information,
dependency between bugs, and the cost associated with each
bug. Their technique reduced the overdue bugs and
improved the bug-fixing time. However, they limited their
work by assuming that each developer can work on only a
single report at a time, which is not a realistic scenario in
practice [27].

2.4. Machine Learning-Based Bug Triage Systems. Many
methods based on machine learning and deep learning have
been proposed throughout the last decade. These techniques
consider a bug report to be a learning problem and solve the
bug triage problem as a classification problem. We divided
the machine learning methods into conventional machine
learning-based bug triage systems and deep learning-based
bug triage systems.

2.4.1. Conventional Machine Learning-Based Bug Triage
Systems. These methods use different feature extraction tech-
niques, such as term frequency-inverse document frequency
(TF-IDF), discriminating terms using the chi-square, term
selection, and mutual information. These techniques use dif-
ferent well-known machine learning algorithms to assign a
suitable fixer to the reported bug. For example, Bhattacharya
and Neamtiu proposed a bug triage solution using titles,
summaries, descriptions, and additional attributes. They
extracted features from these selected fields using TF-IDF
and the bag-of-words (BOW) model. The Naïve Bayes clas-
sifier with a tossing graph assigns the developer [28].

In addition, Tamrawi et al. used titles and descriptions
from bug reports and extracted critical terms to use as fea-
tures. The bug is triaged using fuzzy set features for each
word [29]. Further, Anvik and Murphy extracted features
using the normalized TF-IDF from the titles and descrip-
tions. They used different machine learning algorithms, such
as the Naïve Bayes, expectation-maximization, SVM, deci-
sion tree (C4.5), k-nearest neighbor (KNN), and conjunctive
rules. Moreover, they generalized the recommendation of
components and other appropriate developers rather than
a single bug fixer [30].

Xuan et al. used developer prioritization with TF-IDF for
feature extraction from titles and descriptions. They triaged
the bug using Naïve Bayes and SVMs [31]. Moreover, Bani-
taan and Alenezi proposed a bug triage approach that uses
bug report metadata. They aimed to improve the prediction

accuracy of triaging using discriminatory terms from bug
reports. They used the TF-IDF and chi-squared methods
for feature extraction. The Naïve Bayes classifier performs
the assignment task [32].

Similarly, Alenezi et al. proposed an automatic approach
to assign developers with relevant experience to new bug
reports. The authors used a five-term selection method to
choose discriminating terms, including the chi-square, log
odds ratio, term frequency relevance frequency, mutual
information, and distinguishing feature selector. The predic-
tive model built using the Naïve Bayes classifier selects bug
fixers for new bug reports. The chi-squared term selection
method outperformed other selection methods [33].

Additionally, Xuan et al. used a data reduction technique
to select instances and features, which helps achieve high
accuracy. They used the Naïve Bayes classifier to select fea-
tures and assign bugs to developers [34]. Jonsson et al. [35]
used TF-IDF to extract features from titles and descriptions.
They created a stacked generalizer classifier by creating an
ensemble of the Bayes net, Naïve Bayes, SVM, KNN, and
decision tree classifiers. The ensemble technique improved
their results.

Furthermore, Florea et al. [36] proposed the SVM
method with TF-IDF and chi-squared for the bug recom-
mender system. They tested their model on three different
datasets. They preserved nouns from the text attributes
(summaries and descriptions) and used TF-IDF for vectori-
zation. Alenezi et al. [37] used categorical features and meta-
data instead of only textual data in mining the bug tracking
system. They used the gain ratio to determine the essential
features, providing a normalized measure of each feature’s
contribution to the classification. They selected operating
systems and determined the priority from the metadata
because of the high gain ratio. Their results revealed poor
performance when only categorical features were used. In
contrast, the results of combining textual data and categori-
cal features were promising.

In addition, Sarkar et al. proposed a bug triage system
with high-confidence prediction at Ericsson. They replicated
the existing models and used a high-confidence prediction
level. The authors also used alarms and crash dumps with
textual and categorical attributes. The normalized TF-IDF
and line-IDF extracted features from the textual data and
alarm and crash dumps, respectively. They used the logistic
regression, SVM, KNN, and Naïve Bayes classifier. Logistic
regression demonstrated good results compared to the
others with a 90% confidence interval [38].

Zhao et al. [39] combined the vector space model and
topic model to vectorize the textual data. The authors com-
puted TF-IDF for the vector space model and used LDA for
topic modeling. Furthermore, the SVM and neural network
were used for the classification task. Their results revealed
that SVM performed better than the neural network.

Software defect prediction is a similar problem to bug
triage. Khurma et al. [40] proposed an island binary moth
flame optimization (IsBMFO) base model that divides the
solution in the population into subpopulations called
islands. Then, each island is treated independently. For clas-
sification, they used IsBMFO for feature selection and three

6 Journal of Sensors



different classifiers, SVM, KNN, and Naïve Bayes. The SVM
with IsBMFO performed best among KNN and Naïve Bayes.

2.4.2. Deep Learning-Based Bug Triage Systems. Recently,
bug triage has been addressed using NLP and deep learning
methods. Many deep learning methods employing NLP
techniques for word-embedding or word representation
have been proposed for bug triage problems in the last few
years. For example, S. Lee et al. [2] proposed a CNN-based
model that uses the word2vec model for word representa-
tion. This model uses summaries and descriptions from
bug reports. In addition, they validated this technique on
two open-source projects and an industrial project. It was
the first study that used CNN for bug triage. Before this,
the CNN technique was used for different software engineer-
ing problems, such as bug detection, severity classification,
and code smells.

In addition, Choquette-Choo et al. proposed a multilabel
and dual-output deep neural network for a bug triage sys-
tem. The authors used latent semantic analysis for latent
space representation, proposing a two-output deep neural
network architecture. This architecture first predicts team
classes and then predicts the developer from the predicted
team. Their technique uses a heuristic approach that learns
from the bug fixer and contribution level for each devel-
oper [45].

Mani et al. [3] proposed a deep bidirectional RNN with
an attention mechanism (DBRNN-A) that learns semantic
and synthetic features from summaries and descriptions.
The authors used a representation based on the DBRNN-A
for classifier training. They used word2vec to vectorize tex-
tual data and validated their technique on a significantly
large dataset. Additionally, the authors publicized the data
to make benchmark datasets for further research.

Furthermore, S. Guo et al. proposed an activity-based
bug triage technique that uses the CNN model. According
to the bug report creation time, the data were sorted, and
the last 10% of the data were used for testing. Their tech-
nique exhibited promising results on large datasets [4].

Moreover, Zaidi et al. [5] proposed a CNN-based bug
fixer recommendation system. The authors used both small
and large datasets to validate their technique, using word2-
vec, GloVe, and ELMo. The CNN employed multiple convo-
lutional kernels to extract diversified features, and their
technique demonstrated state-of-the-art performance.
Recently, a heterogeneous graph-based bug triage method
[44] that uses a graph CNN was designed to create heteroge-
neous graphs from triage history. This method is quicker
than the CNN and RNN methods and revealed results com-
parable to the existing methods.

Aung et al. [46] proposed a multitriage model that
assigns developer and issue types simultaneously. They used
two different deep learning models for feature extraction.
The text encoder module was based on the CNN model,
and an abstract syntax tree encoder module was based on
biLSTM. Then, they concatenated features of both encoders
and trained the two different classifiers for developer assign-
ment task and bug issue type task. Their model showed good
accuracy and performed both tasks simultaneously. How-

ever, the model required more training time than other
methods due to training two different encoders and models.

Recently, Zaidi et al. proposed a bug triage system using
graph neural network (GCN) and heterogeneous graph.
They created a heterogeneous graph that has word-word
and word-bug document edges. TF-IDF was used for
weighting the word-bug document edges. Different similar-
ity metrics were used for weighting word-word edges. Then,
a simple two-layer GCN was used to train the model and
model recommended list of 10 developers for the unseen
reported bug [47].

3. Motivation

Bug triage is a crucial problem in software engineering. A
significant number of bugs are reported daily, which is very
difficult to triage by a manual triage manager. Many triage
systems, which are discussed in Section 2, have been pro-
posed in the last decades to overcome these issues. Some
researchers used source code files and fixer information with
fixer activities to detect and triage bugs. Some of them used
the social network analysis technique, employing bug report
descriptions and developer comments to build the social
relations for triaging bugs. Although these methods were
good choices at the time, advancement is still necessary for
effective bug triage.

Because mining software repositories is an arduous task,
more than one developer is involved in a source code file,
and a repository contains many source code files. Therefore,
identifying an appropriate developer for a bug is very diffi-
cult. Moreover, mining repository techniques are not scal-
able because every software project has its own file
management structure and requires modification for other
projects. The social network analysis-based methods require
additional costs to maintain the developer network. In addi-
tion, these methods are computationally intensive.

This field has evolved since the use of topic modeling
techniques to extract topics from the summary and descrip-
tion of the bug reports for bug triage. Bug reports were
assigned to developers according to their expertise identified
using their comments and relation to the bug reports. When
a new bug was reported, they assigned developers with high
correlation scores. However, these methods considered small
datasets for testing and missed some crucial features.

Machine learning is a powerful tool widely used in vari-
ous fields, such as networks, image and signal processing,
text classification, language translation, and sentiment anal-
ysis. Moreover, machine learning techniques have been
applied to various software engineering problems, such as
defect prediction, bug localization, code smell detection,
bug prioritization, bug duplicate detection, and bug triage.

Since the use of machine learning, the bug triage prob-
lem has been solved using text classification techniques.
Most researchers have used the summary and description
to extract information using various tools (e.g., TF-IDF,
BOW, one-hot encoding, and vectorizers). The fixer infor-
mation was used as the class attribute. Many approaches
have been proposed using ensemble techniques and classi-
fiers, such as decision trees, SVM, Naïve Bayes, and random

7Journal of Sensors



forest. These triage methods perform well for small datasets,
with a limited number of developer classes. In reality, open-
source projects have many developers. However, the perfor-
mance of these methods decreases with the increase in the
size of the dataset and developer classes.

Furthermore, deep learning techniques have advanced
the research using CNN and RNN methods. These methods
use relatively massive datasets and report the top-k accuracy.
Deep learning methods use word representation and embed-
ding techniques to convert text attributes into vectors. As
mentioned in Section 2, S. Lee et al. [2] first applied CNN
with word2vec for bug triage. Then, Mani et al. [3] proposed
an RNN-based representation for bug reports. Later, S. Guo
et al. [4] also used the CNN with word2vec and focused on
developers’ engagement with triage bugs. Zaidi et al. [5] pro-
posed a CNN-based model with three embedding tech-
niques, word2vec, GloVe, and ELMo. These techniques
used massive datasets and displayed notable top-k accuracy
compared to conventional machine learning methods. How-
ever, top-1 accuracy is still very far from satisfactory.

Large-scale open projects allow new developers to join
the system/company at any time. In addition, companies
can hire new developers at any time and appoint them to
existing ongoing projects. Therefore, adding new developers
to an existing trained model is challenging, and no solution
has been proposed yet. The existing deep learning-based tri-
age methods have performed well for bug triage. However,
these methods fail when a new developer or list of devel-
opers must be added to the existing system.

We are very impressed by the continuous learning in the
literature. For example, Käding et al. [7] applied the concept
of fine-tuning to data streams or when the new classes are
added continuously. They validated their method on Stan-

ford40Actions and the MS-COCO datasets. They achieved
continuous learning through continuous fine-tuning, and
the results indicate that continuous fine-tuning is superior
to one-step fine-tuning.

Inspired by their idea, we propose a continuous
learning-based bug triage method that learns new developers
as continuous data. The triage system is trained on the avail-
able data first. Then, we add new developers to the pre-
trained model when the new developer data are available.

4. Methodology

Bug data have a considerable number of bug reports. Each
bug report is treated as a bug document. A bug document
has information about the bug, including textual and cate-
gorical attributes. The proposed bug triage method uses
summaries and descriptions from the bug document as
input data and uses owner or assignee information as the
developer, fixer, or class attribute. The proposed method
has two main modules: the base and fine-tuned models.
The base model trains on the training data and can provide
a ranked list of 10 developers for a new bug report. The fine-
tuned model was aimed at learning features for new devel-
opers who are not part of the base model. The fine-tuned
model trains on the training set of new developer data and
can predict the ranked list of appropriate developers for
new bug reports for developers using the base and fine-
tuned models.

4.1. Base Model. The base model has four main modules:
preprocessing, the tokenizer, the BERT embedding model,
and the fully connected layer and classifier. Figure 2 illus-
trates the base model of the proposed bug triage method.

Bug data

Preprocess /
cleaning data

Split
Data

Train
Data

Tokenize
data and

zero padding

Fully connected layer 

Softmax classifier

Dev 1

Dev 2

Dev 3

Dev n

Test
data

Tokenize
data and

zero padding

Model

Testing input

Prediction

Embedding layer

w1

w1

o1 o2 o3 o4 o5

w2

w2

w3

w3

w4

w4

w5

w5

Trm Trm Trm Trm Trm

Trm Trm Trm Trm Trm

Figure 2: Proposed base model.

8 Journal of Sensors



4.1.1. Preprocessing. The textual data are preprocessed after
extracting summaries and descriptions from the bug docu-
ments. Descriptions contain extra information, including
white space, stack trace, URLs, special characters, hexadecimal
codes, punctuation marks, code snippets, and directory paths.
The extra information and stop words are filtered from the
summaries and descriptions in the preprocessing phase.

4.1.2. Tokenizer. The tokenizer prepares the inputs for the
model. The “BERTbase-uncased” tokenizer from trans-
formers is used to tokenize the textual data. The BERT toke-
nizer splits the text strings into subwords and token strings,
converts the token strings into IDs, and encodes or decodes
the strings into integers. The tokenizer can truncate and
zero-pad the textual data. Furthermore, this method man-
ages special tokens, such as the start, end, [SEP], and
[CLS] tokens required for the BERT model.

4.1.3. BERT Model. The BERT model is a new language rep-
resentation model introduced by the Google AI language.
Devlin et al. [48] designed the BERT model to pretrain deep
bidirectional representations from unlabeled data by jointly
conditioning the right and left contexts in all layers. The
BERT model can be pretrained and fine-tuned, and the
model is trained on unlabeled textual data during the pre-
training step. While the BERT model is initialized with pre-
trained parameters during fine-tuning, the parameters are
fine-tuned using the labeled data from the downstream task,
such as question answering, text classification, and next sen-
tence prediction.

Since the advancement of NLP and deep learning
methods, bug triage problems have been solved using text clas-
sificationmethods. The pretrained BERTmodel was chosen to
learn effective word representation. The BERT base model has
positional embedding, 12 transformer layers, 768 hidden
states, and 12 attention heads. The pretrained BERT model
was trained using 800 million words from BookCorpus and
2500 million words from the English Wikipedia.

For the bug triage tasks, we applied the sequence classi-
fication technique. The parameters of the BERT base model
were fine-tuned end to end using the tokenized input bug
data.

4.1.4. Fully Connected Layer and Classifier Layer. The fully
connected layer is fully connected to the output of the BERT
base model and has 768 neurons, which are further con-
nected to the classification layer. The classification layer out-
put is equivalent to the total number of developers
(fdev1, dev2,⋯, devng). The cross-entropy loss function
was chosen as the cost function because it is beneficial for
unbalanced training data and higher dimension inputs.
Cross-entropy loss combines LogSoftmax and the negative
loglikelihood loss into a single class. The formulation can
be simplified as follows:

loss X, classð Þ = − log
exp x k½ �ð Þ
∑jexp x j½ �ð Þ

 !
, ð1Þ

where k is the selected class and j is the jth class.

The Xavier initializer was used to initialize the weights of
the fully connected and classification layers. In addition, the
Xavier initializer maintains activation variance and backpro-
pagated gradients at a controlled level using a uniform distri-
bution for all network layers.

Overfitting, which customizes the neural network
weights for training data and exposes worsened accuracy
on testing data, is a significant challenge in neural networks.
Dropout counters the overfitting issue by randomly remov-
ing neurons during the training process with some probabil-
ity to limit coadaptation.

4.2. Fine-Tuned Model. Transfer learning is a machine learn-
ing approach in which a trained model is reused as the start-
ing point. As mentioned, adding a new developer is an open
challenge in the bug triage problem, and it is difficult to add
a new developer to an existing model. However, one possible
method to solve this problem is fine-tuning, which is a
method of transfer learning [49]. The currently trained
model on existing developers can be fine-tuned using the
data on new developers. Before the tokenization phase, we
used the exemplar and replaced the classifier layer with
incremental classes to implement this model. The methodol-
ogy is presented in Figure 3.

4.2.1. Exemplar. The exemplar module forms the training set
for the fine-tuned model with data on new and existing
developers. This technique has been used for image data.
Exemplar management is based on two main objectives:
the initial exemplar set should closely resemble the class
mean vector, and exemplars should be removable without
breaching this property during the algorithm execution
[50]. It is challenging to determine the mean vector to
choose the exemplar set for textual data because each devel-
oper has different skills and has triaged different types of
bugs in the past. Previous data are also needed to fine-tune
the model because the extended classifier layer replaces the
final layer in the base model. Fine-tuning is a quick process
that takes fewer iterations to train the model, saving time.

Using all training data on existing developers with new
developers for each iteration to fine-tune a model is a bad
practice. Moreover, using all data from the previous datasets
prevents learning new developers due to highly imbalanced
data between the existing and new developer classes. This
research was aim at including newly added developers in the
existing trained model within less time and fewer iterations.

Therefore, we chose a random selection strategy that
enhances data on new developers with randomly selected
data from existing or previous developers to make the exem-
plar set. In each training iteration, the exemplar module
selects 40% of the data on existing developers and all data
on new developers. The model observes almost all data in
chunks in different iterations, allowing the model to obtain
good results.

4.2.2. Extended Classification Layer. Like the base model, the
exemplar set is tokenized and zero-padded. The trained base
model is loaded with trained weights and parameters. Neu-
rons equivalent to the sum of the base and new developer

9Journal of Sensors



classes (fdev1, dev2,⋯, devn, devn+1,⋯, devmg) replace the
last fully connected classification layer. The Xavier initializer
was used to assign the initial weights, the same as the base
model, and dropout was used to overcome overfitting.

4.3. Training. The AdamW optimizer was used to train the
models, computing the updated step of the Adam optimizer
and decay variables. Regularization in AdamW is different
from L2 regularization, as AdamW regularizes variables with
large gradients that have better training loss. The BERT
model uses a scheduler for learning rate management. A lin-
ear scheduler with warmup steps creates a schedule with a
learning rate to optimize the learning process. In the
warmup steps, the learning rate increases linearly from zero
to the initial learning rate. Afterward, the learning rate
decreases linearly from the initial learning rate, set at
1.0005, to zero. The dropout and weight decay values are
set to 0.5 and 0.001, respectively. The model learns with a
batch size of 32 and 10 epochs.

5. Evaluation and Results

This section evaluates the proposed bug triage system and
addresses the following research questions:

(i) Is the BERT-based bug triage method superior to
other context-insensitive and context-sensitive
ELMo-based bug triage methods?

(ii) Does the BERT-based base model have better top-k
accuracy on bug data?

(iii) Is fine-tuning a pretrained model better than train-
ing the model from scratch?

(iv) Can the continuous fine-tuning approach solve the
newly added developer problem?

(v) What problem is continuous fine-tuning facing, and
what is its effect on the accuracy results?

(vi) Is the proposed model efficient?

5.1. Data Collection. Large-scale open-source project data
were used to evaluate the performance of the proposed bug
triage system. S. Lee et al. [2] and Zaidi et al. [5] used two
datasets, the Eclipse Platform and Mozilla Firefox, to evalu-
ate the performance of their triage systems. Mani et al. [3]
and Zaidi et al. [5] used another Mozilla Firefox dataset,
including variants with a minimum of 0, 5, 10, and 20 bug
reports per developer. We used the same datasets to evaluate
and validate the proposed bug triage system. Two more
datasets (Mozilla and NetBeans), which were also used by
S. Guo et al. [4] and Zaidi et al. [5], were used to validate this
work. Datasets have many bug reports and a significant
number of developers, and these datasets are publicly avail-
able on GitHub (https://github.com/farhan-93/bugtriage).

5.2. Evaluation Measure. Top-k accuracy was used to evalu-
ate the proposed bug triage system. We calculated the top-1
to top-10 accuracy values for a valid comparison with state-
of-the-art triage methods. Equation (2) was used to calculate
the top-k accuracy.

Top‐k accuracy = ∑N
i=1I reci@k, devið Þ

Nj j : ð2Þ

Function I returns 1 if the recommendation list has the
correct developer for the ith bug report. The reported results
are an average of five trials. For the performance evaluation,
the same validation methods were used as those in the com-
parative papers. Time-split validation was used to compare
the method with deep triage [3], where 10% of the total data
were separated from the end for validation, and the remain-
ing 90% of the data were used for training. Similarly, 20% of
the data from the end were used for validation, and the
remaining 80% were used to train for the DA-CNN [4].

5.3. Addressing the Research Questions

5.3.1. RQ 1: Is the BERT-Based Bug Triage Method Superior
to Other Context-Insensitive and Context-Sensitive ELMo-
Based Bug Triage Methods? Many embedding techniques,

New model

New
developers
bug data

Preprocess/
cleaning data

Split
data

Train
data

Test
data

Tokenize data and
zero padding

Dev 1

Dev 2

Dev n

Dev m

Train

Load base model

Softmax (Old class
+ new class)

Old
developers

data

Exemplar
(New data +

some old
data) Train

Prediction

Figure 3: Proposed fine-tune model to add newly added developer to the existing bug triage model.

10 Journal of Sensors

https://github.com/farhan-93/bugtriage


including context-insensitive (word2vec and GloVe) and
context-sensitive (ELMo) methods, have been used for bug
triage systems. The pretrained vectors of word2vec and
GloVe are also available and can be trained on new datasets.
Moreover, the ELMo-pretrained model can be used for
embedding and fine-tuning using current data during
embedding. Zaidi et al. [5] and S. Lee et al. [2] used word2-
vec for word representation. In addition, S. Lee et al. trained
the word2vec model using bug report data, while Zaidi et al.
used the pretrained word2vec vectors. Furthermore, Zaidi
et al. used GloVe-pretrained vectors and a pretrained ELMo
embedding model. Their results demonstrated the superior-
ity of ELMo compared to word2vec and GloVe.

Similarly, the pretrained BERT model was used for bet-
ter word representation. The BERT is deeper model than
ELMo, which yields good performance. Further, BERT uses
a transformer-based architecture, and ELMo uses a bidirec-
tional language model. Moreover, ELMo extracts context-
aware features in both directions and concatenates them
to make contextual representations. This concatenation
limits the ELMo technique to take advantage of both left
and right context information simultaneously. In contrast,
BERT uses the masked language model in which it replaces
words in a sentence randomly with a small probability
(mask). Then, the transformers generate a prediction for
masked words based on their left and right surrounding
unmasked words [48].

The BERT method has demonstrated state-of-the-art
performance in many NLP-based tasks. Moreover, BERT
has also performed better in bug triage than the existing
bug triage systems. Tables 2 and 3 list the top-1 to top-10
accuracy results of the BERT-based triage system for differ-
ent datasets. The experimental results reveal a noticeable
increase in the top-1 to top-10 accuracy values for all data-
sets compared to the state-of-the-art method, evidencing
BERT-based triage’s superiority over the word2vec, GloVe,
and ELMo methods.

Some statistical tests were conducted to check the sig-
nificance of the results. The proposed method was vali-
dated on eight distinct open-source datasets. First, the
Kruskal–Wallis test was conducted for the top-1, top-5,
and top-10 accuracy of the proposed model, including
the ELMo-CNN, GloVe-CNN, and word2vec-CNN. The
Kruskal–Wallis test has a p value of less than 0.05 for
top-1, top-5, and top-10 accuracy, exhibiting the signifi-
cance of the accuracy results. The Nemenyi post hoc test
was conducted to identify the significance between various
bug triage methods. The post hoc test demonstrates that
the proposed method has significantly different accuracy
values than GloVe and word2vec for top-1 and top-5
accuracy. However, the proposed method has significantly
different results than the word2vec-CNN for top-10 accu-
racy. Moreover, no significant difference exists between the
proposed method and the ELMo-CNN.

We also performed the analysis of variance (ANOVA)
single-factor test to double-check the significance of the
accuracy values. The same observations were found in the
Kruskal–Wallis test, with p values of less than 0.05 for top-
1, top-5, and top-10 accuracy. The Tukey honest significance

difference (HSD) test is the post hoc test performed after
ANOVA to identify the significant difference between two
groups statistically. The Tukey HSD demonstrates that the
proposed method has significantly different values than the
word2vec-CNN and GloVe-CNN for top-1 and top-5 accu-
racy. The proposed method has significantly different values
than word2vec-CNN for top-10 accuracy. However, no sig-
nificant difference exists between the ELMo-CNN and
BERT-CNN for top-1, top-5, and top-10 accuracy.

Figure 4 is the Demšar diagram demonstrating the com-
parison of all bug triage methods with different word-
embedding techniques on all datasets. The critical distance
value is 1.382 with α = 0:05. The connection between
methods indicates the insignificant difference in accuracy
results. The Demšar diagram also partially supports the
research question.

Thus, the statistical tests partially support our research
questions. Overall, the proposed method demonstrates a
considerable difference in top-k accuracy compared to vari-
ous bug triage methods using diverse word-embedding tech-
niques. The proposed method has significantly different
accuracy values than the word2vec-CNN and GloVe-CNN,
but no significant difference exists between the proposed
and ELMo-CNN methods.

5.3.2. RQ 2: Does the BERT-Based Base Model Have better
Top-K Accuracy on Bug Data? The proposed base model
was validated on various datasets used in state-of-the-art
methods. The experimental results indicate a significant
increase in top-1 accuracy by 4% and 10% for the Eclipse
Platform and Firefox small datasets, respectively. The Fire-
fox dataset with a threshold of zero presented similar
results for top-1 accuracy. The difference in accuracy
decreased as the threshold increased. Top-10 accuracy
exhibited a negligible difference from the ELMo-CNN for
thresholds of 10 and 20. However, the base model dis-
played a notable difference in the top-k accuracy for
thresholds of zero and five, implying that the BERT-based
bug triage is a good option when the number of samples
for each developer is very low. Overall, the BERT-based
bug triage system demonstrated promising results for the
top-1 to top-10 accuracy values. Tables 2 and 3 present
detailed results for the top-k accuracy metric for all data-
sets. In summary, the BERT-based triage model is efficient
at gaining good top-k accuracy.

The Friedman test was performed to test the significance
of the experimental results at a 5% α value (significance
level). The research question is addressed as a hypothesis
that can be confirmed or rejected. As mentioned, the
reported results are an average of five trials. The statistical
test had a p value of less than 0.05 for all datasets. However,
an α value of > 0.05 was recorded for the top-9 and top-10
accuracy values of the Firefox dataset with 20 thresholds.
Overall, the statistical analysis has a p value of less than
0.05 most of the time. Therefore, the statistical test confirms
the stated research question—the results of the proposed
method have significant top-k accuracy. However, the signif-
icance is lost for top-9 and top-10 accuracy when the num-
ber of samples per class increases.

11Journal of Sensors



5.3.3. RQ 3: Is Fine-Tuning a Pretrained Model Better than
Training the Model from Scratch? Training a deep learning
model from scratch is very costly because it requires more

time. Fine-tuning is more efficient than allowing a model
to learn from scratch if the model was aimed at learning
the same domain task and sufficient new data are available

Table 2: Average top-1 to top-10 Accuracy obtained on Platform, Firefox small [2], and Firefox-thresholded [3] datasets.

Dataset Techniques
Top-1
Acc.

Top-2
Acc.

Top-3
Acc.

Top-4
Acc.

Top-5
Acc.

Top-6
Acc.

Top-7
Acc.

Top-8
Acc.

Top-9
Acc.

Top-10
Acc.

Platform [2]

S. Lee et al. [2] 36.1 45.8 50.5 53.7 56.7 — — — — —

Word2Vec-
CNN [5]

38.036 48.870 55.160 58.220 62.492 65.604 67.632 69.324 70.832 71.714

GloVe-CNN
[5]

40.132 51.004 56.234 60.318 63.770 65.964 68.252 70.058 71.554 72.930

ELMo-CNN
[5]

43.622 51.830 56.366 60.704 63.822 66.528 69.068 70.964 72.794 74.264

Our 47.88 57.62 63.34 65.89 68.22 69.06 69.91 71.39 73.72 74.36

Firefox [2]

S. Lee et al. [2] 27.1 36.7 42.8 47.1 50.5 — — — — —

Word2Vec-
CNN [5]

27.396 37.894 44.256 48.346 51.604 54.422 57.006 58.858 60.430 61.750

GloVe-CNN
[5]

28.614 38.660 45.062 50.094 53.024 56.374 58.496 60.522 62.410 64.224

ELMo-CNN
[5]

30.418 41.104 47.81 52.508 55.738 58.362 60.404 62.314 63.598 64.696

Our 40.22 49.29 53.56 57.83 60.37 62.25 53.37 64.94 66.07 67.34

Firefox [3] 0
threshold

Deep Triage [3] — — — — — — — — — 38.1

Word2Vec-
CNN [5]

15.2 23.52 28.77 32.07 35.15 37.34 39.56 41.37 42.89 43.63

GloVe-CNN
[5]

16.84 25.22 31.78 33.78 35.76 39.19 42.19 43.96 43.96 45.32

ELMo-CNN
[5]

20.86 29.04 34.332 38.03 41.18 43.57 45.72 47.68 49.28 50.73

Our 28.96 37.86 43.44 46.80 49.48 51.74 53.91 55.87 57.24 58.47

Firefox [3] 5
threshold

Deep Triage [3] — — — — — — — — — 44.5

Word2Vec-
CNN [5]

17.43 25.01 29.58 33.28 37.50 40.87 42.98 44.32 45.76 45.91

GloVe-CNN
[5]

18.47 26.80 32.62 36.94 38.29 41.34 43.41 45.31 46.01 47.64

ELMo-CNN
[5]

26.51 37.02 43.29 48.17 51.77 54.20 56.05 58.12 59.78 61.41

Our 30.19 40.67 46.99 51.67 54.77 56.94 59.19 60.87 62.46 63.79

Firefox [3] 10
threshold

Deep triage [3] — — — — — — — — — 51.4

Word2Vec-
CNN [5]

19.19 27.55 33.58 39.05 41.41 43.85 45.13 46.02 47.90 51.06

GloVe-CNN
[5]

19.25 29.69 34.65 40.23 42.64 44.68 46.68 48.35 49.44 51.67

ELMo-CNN
[5]

31.01 42.85 49.83 54.50 57.96 60.77 63.78 64.92 66.62 67.90

Our 34.87 44.55 51.15 55.49 58.44 61.74 63.03 65.34 67.45 68.02

Firefox [3] 20
threshold

Deep triage [3] — — — — — — — — — 55.8

Word2Vec-
CNN [5]

24.34 34.40 39.73 44.62 48.19 58.68 52.93 54.78 56.74 58.94

GloVe-CNN
[5]

23.16 33.43 39.63 44.72 48.58 52.10 54.34 56.74 58.50 59.92

ELMo-CNN
[5]

35.89 47.03 53.93 58.94 62.14 65.04 67.49 69.39 70.89 72.65

Our 38.42 48.44 53.88 59.32 62.74 65.49 67.75 69.46 71.21 72.72

12 Journal of Sensors



Table 3: The average top-1 to top-10 accuracy obtained on S. Guo et al.’s dataset [4]. The dataset is split and 20% of data is used for testing.
The best performing values are shown in bold.

Dataset Techniques
Top-1
Acc.

Top-2
Acc.

Top-3
Acc.

Top-4
Acc.

Top-5
Acc.

Top-6
Acc.

Top-7
Acc.

Top-8
Acc.

Top-9
Acc.

Top-10
Acc.

Mozilla

CNN-DA [4] 12.44 19.09 22.54 24.91 26.93 28.26 30.17 31.71 33.00 34.46

One-Hot+CNN
[4]

8.16 15.69 19.67 20.768 23.57 25.19 27.18 28.35 30.11 32.86

BOW+NB [4] 8.15 11.43 13.69 15.78 17.49 18.68 19.76 21.29 22.65 23.69

Word2Vec-
CNN [5]

12.74 17.83 21.96 25.70 27.41 29.31 31.24 32.92 34.53 35.76

GloVe-CNN [5] 16.09 24.12 29.02 31.82 34.11 36.31 38.47 40.08 41.27 42.63

ELMo-CNN [5] 16.73 25.18 30.15 33.98 36.47 38.95 40.89 42.37 44.05 45.40

Our 27.61 37.12 41.08 44.80 47.37 50.36 53.06 55.33 56.19 57.37

NetBeans

CNN-DA [4] 35.54 48.02 54.36 58.93 62.66 65.39 68.11 71.11 72.73 74.89

One-Hot+CNN
[4]

30.49 44.62 48.76 53.91 56.18 60.29 63.79 66.61 67.93 69.15

BOW+NB [4] 21.57 30.41 .36.49 40.39 43.59 45.72 46.25 50.18 51.95 54.00

Word2Vec-
CNN [5]

35.73 48.40 53.99 59.10 61.34 62.71 64.58 66.18 67.80 68.92

GloVe-CNN [5] 38.51 49.27 55.17 59.11 62.01 64.81 67.99 70.87 71.26 72.84

ELMo-CNN [5] 40.17 53.13 59.05 63.02 66.07 68.25 70.06 71.54 72.92 74.23

Our 48.85 56.07 61.61 64.61 67.99 70.73 72.10 75.89 77.97 79.81

1 2

CD

Proposed
ELMo–CNN

3 4

Word2vec–CNN
GloVe–CNN

(a) Top-1

1 2

CD

Proposed
ELMo–CNN

3 4

Word2vec–CNN
GloVe–CNN

(b) Top-5

1 2

CD

Proposed
ELMo–CNN

3 4

Word2vec–CNN
GloVe–CNN

(c) Top-10

Figure 4: The Demšar diagram compares proposed method with Word2vec-CNN, GloVe-CNN, and ELMo-CNN for top-1, top-5, and top-
10 accuracy. The CD is the critical distance value, which is 1.382 with α = 0:05. Subfigures (a), (b), and (c) show the average rank of triage
methods for top-1, top-5, and top-10 accuracy, respectively.

13Journal of Sensors



for training. In our case, sufficient bug report data were
available, and the pretrained model could be fine-tuned
when the new data were available.

For evidence, we trained two separate models: the model
from scratch and the fine-tuned model. The BERT model
was trained using bug data to train the model from scratch.
In contrast, the pretrained BERT model was used for the
fine-tuned model, trained on 800 million words from Book
Corpus and 2,500 million words from the English Wikipe-
dia. Bug data have many bug reports and a considerable
amount of text. However, after removing the stop words
and cleaning the data, the length of many sentences
decreased. Training a BERT model from scratch requires
much more data. However, the fine-tuned model was effi-
ciently trained using the pretrained model and converged
into fewer iterations.

Furthermore, the experimental results support the
research question. The top-1 accuracy of the scratch model
was 19%, whereas the top-1 accuracy of the fine-tuned
model was 28.96%. The scratch model took 20 epochs for
training, and the fine-tuned model demonstrated better
results in just 10 epochs. To validate this observation, we
observed the training times for both the from-scratch and
fine-tuned models. We executed the code on an RTX 2080
graphics processing unit (GPU) system. Each epoch of the
scratch model took an average of 2.5 minutes for training
using the training set from the Firefox [4] dataset. However,
each epoch of the fine-tuned model took an average of 2
minutes for training. Therefore, the scratch model took an
average of 48 minutes for 20 epochs, and the fine-tuned
model took an average of 20 minutes for 10 epochs. Thus,
using the pretrained model is a better option for training a
model from scratch.

5.3.4. RQ 4: Can the Continuous Fine-Tuning Approach Solve
the Newly Added Developer Problem? Adding a set of new
developers to an existing model is an ongoing problem.
The existing methods cannot add new developers and
require training from scratch for all developers (new devel-
opers and previous developers). As mentioned in Section 3,
Käding et al. applied the continuous fine-tuning concept to
allow the method to add new classes when they are available.
Similarly, new developers can be added via continuous fine-
tuning whenever data on new developers are available. In
addition, the dataset was prepared for this task. The Firefox
20 threshold dataset has 169 developers separated randomly
into sets of 100 developers, six sets of 10 developers, and
nine developers. The 100-class dataset was used to train
the base model, and the remaining sets were used for contin-
uous fine-tuning and adding new developers to the existing
model.

Realistically, new developers have no triage history; thus,
no data would be available for the training model. Therefore,
we assumed that 10 developers were new, and a manual triage
manager created their histories according to their skills. Then,
the manual triage history could fine-tune the model to add
new developers to the existing model. After adding new devel-
opers, the experimental results revealed good top-1 to top-10
accuracy results for the continuous fine-tuning method. The

basemodel for all 169 classes exhibited 38.42% top-1 accuracy,
whereas the base model demonstrated 42.77% accuracy for the
100-class data. By incrementing the remaining developer sets,
the fine-tuning model had 39.20% top-1 accuracy.

Creating a manual triage history of at least 10 bug
reports is problematic because it is very challenging for a
manual triager to determine at least 10 reports from another
developer’s history to create a triage history for a new devel-
oper. Therefore, the Eclipse Platform dataset was divided
into the base and incremental sets to make it a more realistic
scenario.

The Platform dataset has 225 developers divided into
200 and 25 developers for the base and fine-tuned incremen-
tal models, respectively. In addition, the 25 developers have
three bug reports, at most, in their history. From these bug
reports, one bug report was chosen for testing. The experi-
mental results of the base model indicate 47.88% top-1 accu-
racy for all 225 developer classes, whereas the base model
exhibited 51.20% top-1 accuracy for 200 classes. However,
the fine-tuned model had 49.17% top-1 accuracy for the base
and incremental testing sets (200 plus 25 classes). The top-1
accuracy of the fine-tuned model was better than the base
model for all 225 classes; however, it was not significant.

The detailed results of the Firefox 20 threshold and
Eclipse Platform datasets are presented in Table 4. The table
lists the top-1 to top-10 accuracy values for each iteration. In
the technique column, the base demonstrates the scratch
model for the base classes, and Inck indicates the fine-
tuning method for each incremental iteration, where the col-
umn “classes” presents the number of base and increment
developer classes in each iteration.

Comparing the first and second scenarios, developers
from the first scenario have a minimum of 20 bug reports
in their histories. Some have more than 20 bug reports, as
many as 100 to 150 bug reports. These bug reports are man-
ually triaged, and a developer may fix many bug reports of a
different nature. Moreover, it is also possible that two or
more developers may have fixed bug reports of the same
nature in the past. Therefore, it can be a challenge for effi-
cient learning, causing low accuracy. In the second scenario,
new developers have a maximum of three bug reports. Dur-
ing the fine-tuning of the pretrained model, new classes
exhibit good accuracy results compared to the base method
results for all 225 classes. Additionally, different developers
may have bug reports of the same nature. Nevertheless, this
situation has no significant effect on learning and is not the
cause of accuracy loss because the model learns the features
of new developers from their data and does not lose knowl-
edge when learning about additional developers. In sum-
mary, the continuous fine-tuning method presents
promising results for adding new developers to an existing
model. However, the accuracy results are not significant;
thus, they require improvement.

5.3.5. RQ 5: What Problem Is Continuous Fine-Tuning
Facing, and What Is Its Effect on the Accuracy Results? Con-
tinuous learning can be achieved by continuous fine-tuning
[7]. In the bug triage problem, continuous fine-tuning dem-
onstrated better results than training a model from scratch.

14 Journal of Sensors



As listed in Table 4, the from-scratch model (base model
technique) has 38.42% top-1 accuracy on all 169 classes.
Furthermore, continuous fine-tuning exhibits 39.20% accu-
racy for the same dataset. First, the base model was trained
on 100 developers’ data to make a pretrained base model
for fine-tuning. Then, the remaining developers were added
continuously, as in continuous learning.

However, continuous fine-tuning has a catastrophic for-
getting problem, common in deep neural networks and
sequential transfer learning. This problem happens due to
the forgetting of previous knowledge and overfitting of new
data.

In our bug triage case, the model learns new developer
classes more efficiently and trains on complete base data
in chunks in a few iterations. However, some bug reports
were misclassified from the base testing data, demonstrating
catastrophic forgetting and affecting the overall efficiency of
the continuous fine-tuning model. However, our model was
also trained on some parts of the base data with new data
during fine-tuning. Still, the proposed model lost some
knowledge and was overfitted to the new data. As presented
in Table 4, the top-k accuracy decreased in each iteration
from Inc1 to Inc6, indicating the forgetting of knowledge
from the previous model. In the future, we aim to develop
a more efficient triage model that can address the cata-
strophic forgetting problem using the knowledge distillation
method.

Knowledge distillation transfers learned knowledge from
the parent model to the child model without losing knowl-
edge. We can implement this concept using the knowledge
distillation loss function. The base model knowledge is
transferred to a fine-tuned model to increase the triage sys-
tem accuracy and efficiency.

5.3.6. RQ 6: Is the Proposed Model Efficient? Deep learning
models require considerable memory to store weights, long
training times, and computation times. The use of the pre-

trained language model reduces training time. The BERT
model on the bug dataset requires more iterations to con-
verge; however, the proposed pretrained BERT model
exhibits good results and converges in fewer iterations. Fur-
thermore, the BERT model requires more memory to restore
the pretrained model because it has 11 transformer layers.
Nevertheless, it does not require sophisticated GPUs. The
experiments were conducted on two systems: (1) a Core i9-
9900X CPU with 64GB RAM and Nvidia RTX 2080 with
12GB of dedicated memory and (2) a Core i7-8700 CPU
with 64GB RAM and Nvidia GeForce GTX 1080 Ti.

We applied the proposed method to a set of datasets
with varying sizes from different open-source projects (i.e.,
Eclipse, Mozilla, and NetBeans). The Platform [2] is the
smallest dataset with 4825 bug reports and 225 developers.
The Firefox [2], Mozilla [4], and NetBeans [4] are massive
datasets that have 13667 reports with 848 developers,
15502 reports with 1022 developers, and 19149 reports with
265 developers, respectively. The proposed method showed
good performance on all the datasets. By increasing dataset
size, we can expect that the training time and training steps
increase, such as each epoch of Platform dataset [2] took 30
seconds for training and trained in 109 training steps. Fire-
fox dataset [2] took 1 minute and 20 seconds for training
each epoch in 308 training steps. In comparison, each epoch
took approximately 430 training steps and 1 minute and 50
seconds to train the model on the NetBeans [4] dataset. Fur-
ther, the model grows gradually when the dataset of new
developer classes is available. Table 4 shows the experimen-
tal results, indicating that the model gradually grows when
adding new developer classes.

However, we did not test the proposed method for
industrial projects because the bug data are not publicly
available. Nevertheless, we hope that the proposed method
can be adapted to industrial projects because their bug
reports also include a summary, description, and developer
information.

Table 4: The average top-1 to top-10 accuracy obtained on Firefox 20 threshold data and Platform dataset. “Base” in Technique column
shows the first trained model and Inck shows the class increment iterations, where column “classes” shows the number of base classes
+increment classes.

Dataset Methods Classes
Top-1
Acc.

Top-2
Acc.

Top-3
Acc.

Top-4
Acc.

Top-5
Acc.

Top-6
Acc.

Top-7
Acc.

Top-8
Acc.

Top-9
Acc.

Top-10
Acc.

Firefox 20
threshold

Base 169 38.42 48.44 53.88 59.32 62.74 65.49 67.75 69.46 71.21 72.72

Base 100 42.77 55.21 63.02 67.37 71.73 74.87 76.42 78.77 80.02 82.54

Inc1 100 + 10 41.61 52.89 62.74 67.26 69.16 71.35 74.01 74.40 78.13 79.58

Inc2 110 + 10 40.89 53.45 61.32 66.01 68.00 71.98 74.19 74.69 76.98 78.11

Inc3 120 + 10 40.16 52.98 60.74 65.42 67.34 70.13 73.43 74.23 75.45 76.77

Inc4 130 + 10 39.86 52.40 60.01 64.99 66.70 69.32 73.00 74.12 75.13 75.96

Inc5 140 + 10 39.90 53.01 59.61 64.01 65.40 68.01 72.68 74.01 74.11 75.26

Inc6 150 + 10 39.54 52.46 58.74 63.48 64.40 67.77 71.00 72.45 73.89 74.36

Inc6 160 + 9 39.20 52.17 57.98 62.78 64.20 67.00 70.21 71.40 72.74 74.10

Platform

Base 225 47.88 57.62 63.34 65.89 68.22 69.06 69.91 71.39 73.72 74.36

Base 200 51.20 62.34 66.92 68.92 70.20 72.70 73.46 75.01 76.96 78.87

Inc1 200 + 25 49.17 60.97 64.55 67.93 69.83 71.94 73.41 74.25 75.10 76.37

15Journal of Sensors



5.4. Comparison with Other Research. Recently, many stud-
ies have been proposed for bug triage, demonstrating prom-
ising results. The proposed bug triage method outperformed
some of these recent methods. A comparison was made with
just a few studies whose datasets are publicly available. Com-
parisons with the most recent studies were not possible
because many studies have not published their datasets,
and most studies only shared the Bugzilla link and stated
the bug data collection period. Reproducing a dataset is chal-
lenging and time-consuming because the reproduced dataset
may have changes affecting the results and causing unfair
comparisons. Moreover, these studies’ source codes are also
publicly unavailable, so we cannot apply their techniques to
our datasets. Thus, we compared the proposed triage
method with only the few methods that have published data-
sets for a fair comparison.

The proposed method outperformed the Deep Triage
[3], DA-CNN [4], one-hot CNN [4], BOW with Naïve Bayes
[4], GCN-based bug triage [44], word2vec-CNN [5], GloVe-
CNN [5], and ELMo-CNN [5] methods. In addition, the
proposed method demonstrated notable top-1 to top-10
accuracy results except on the Firefox 20 threshold dataset
because it was better than the Firefox 20 threshold by a neg-
ligible margin. Tables 2 and 3 present the detailed experi-
mental results and a comparison with the stated bug triage
techniques. Overall, the proposed methods demonstrated
good top-k accuracy values compared to all techniques.
The GCN-based bug triage research is not complete because
it is a conference paper, and we still require extended results
for a fair comparison. However, the proposed method has
better results than the GCN-based bug triage technique.
Our method demonstrated 40.22% top-1 accuracy, whereas
the GCN-based method exhibited 29.37% accuracy for the
Firefox [2] dataset. Comparing the top-10 accuracy, the
GCN-based method had 66.50% accuracy, and the BERT-
based method was at 67.34%, which is not a substantial dif-
ference. Therefore, we did not add the results to the compar-
ison table.

6. Threats to Validity

6.1. Construct Validity. The model performance was esti-
mated using the same protocols as the previous methods to
split the dataset for training and testing. Moreover, dataset
creation for newly added developers was operated under sev-
eral assumptions. The proposed and existing bug triage
methods require the developers’ triage histories. To provide
this, we created two datasets: one from Firefox 20 and the
other from the Eclipse Platform dataset. The second dataset
explains a more realistic scenario in which developers with a
maximum of three bug reports are selected. We assumed
these bug reports were manually triaged according to their
skills and input into the model to learn the new developers.
Additionally, the proposed method was validated using pub-
lished data from previous studies; therefore, we expected no
construct validity for this research. Furthermore, we
intended to determine a more realistic scenario for new
developer dataset construction in future research.

6.2. Internal Validity. As mentioned, the data published by
previous researchers were used to validate the proposed
model. They collected data using APIs from open-source
projects and incorporated all reports in a specific closed
and fixed period. They extracted all required information
using regular expressions to complete the dataset. We
ensured that all bug reports were publicly available for spe-
cific projects. We hope that no internal threats to validity
exist because we used published data.

6.3. External Validity. The three open-source projects
(Mozilla, Eclipse, and NetBeans) were considered in Bug-
zilla. Bugzilla is compatible with previous studies; therefore,
the results may not apply to all other open-source and
industrial projects. However, these open-source projects
are long-lived systems, are large, and have possible biases.
Additionally, the method should apply to all other open-
source and industrial projects because each report has a
summary and description. Moreover, replicating this study
with open-source and industrial various projects could be
beneficial.

Another possible limitation of this study is that the pro-
posed research was only compared with a few datasets. It
was impossible to compare the findings with those of many
other studies because most employed different datasets. The
data-gathering duration or time frames were not the same
even when two projects were compared. Most researchers
only provided limited data, such as the Bugzilla main page/
source URL, time interval, resolution, and status, among
other aspects. Furthermore, most previous research did not
clarify the cleaning methods in-depth, making it challenging
to ensure that we were using the same dataset. Therefore, we
used only publicly available datasets to validate this method.

7. Conclusion

Bug triage is a crucial problem in software engineering,
which requires an appropriate tool for assigning devel-
opers/fixers to reported bugs. A significant amount of
research has been done by various researchers. Nevertheless,
these methods are still lacking good top-k accuracy for large-
scale datasets. Furthermore, these methods cannot add new
developers to the trained model, which is a considerable
challenge in the bug triage problem.

This paper provides a solution for adding new devel-
opers to an existing model and achieving higher top-k accu-
racy than existing triage techniques. Therefore, we proposed
a transformer-based bug triage system that recommends a
ranked developer set for a bug report. In the system, the
context-sensitive word representation technique BERT is
used for effective word representation. Moreover, the pro-
posed system can add new developers to the existing sys-
tem. The proposed method was validated on datasets
from well-known open-source projects, such as Eclipse,
Mozilla, and NetBeans. We used the top-k accuracy metric
as the criterion for comparing performance with state-of-
the-art triage methods. The few developers with small triage
histories were separated to make a dataset for new devel-
opers. We assumed that these developers were new, and a

16 Journal of Sensors



manual triager assigned bug reports to them. The experimen-
tal results demonstrated that the BERT-based triage method
is better than the state-of-the-art methods discussed in com-
parison and is a good choice for adding new developers to
existing models.

Additionally, the method can add a new developer or set
of developers and assign a new bug report to a new devel-
oper. The BERT-based model performed better than ELMo,
GloVe, and word2vec because BERT is deeper and uses a
masked language model. The proposed triage method dem-
onstrates notable top-k accuracy values for all datasets. The
top-9 and top-10 accuracy values exhibited a negligible dif-
ference in accuracy results when the reports per developer
were a minimum of 20.

We performed statistical tests, the Kruskal–Wallis and
single-factor ANOVA tests, to support the significance of
the experimental results. The significance test supports the
reported results and research questions with a 95% confi-
dence interval. The proposed base model has significant
top-k accuracy. However, the significance test indicates no
significant accuracy results for top-9 and top-10 accuracy,
where the number of samples per developer is at least 20.
In addition, the Nemenyi and Tukey HSD tests were per-
formed to check the significance of the difference for the
proposed and existing triage models with different word rep-
resentations. The proposed method exhibited a significant
difference from the word2vec-CNN and GloVe-CNN. No
significant difference exists between the proposed and
ELMo-CNN triage methods. Nevertheless, the proposed
method has higher top-1 accuracy than the ELMo-CNN
technique.

Furthermore, fine-tuning a pretrained language model
demonstrated better results than training a model from
scratch. Training a model from scratch requires more time,
more training iterations, and a significant amount of data.
Continuous fine-tuning provides a solution for adding new
developers, who can be added when their bug data become
available. Then, the method fine-tunes the pretrained model
on new data and some parts of the previous data in just a few
iterations. However, it has a catastrophic memory problem
and requires improvement because the pretrained model
loses some knowledge. We do not argue that the proposed
approach is best for handling new developers, but it is a solu-
tion. Significant research is required to find a better solution
to add new developers to the existing model.

In the future, we intend to use the knowledge distillation
technique to overcome the catastrophic memory problem
and determine a more efficient approach to adding a new
developer. Moreover, to acquire a more appropriate triage
system, we plan to enhance this work using various word-
embedding techniques with continuous fine-tuning and
knowledge distillation.

Data Availability

The datasets used for the experiments are available on
https://github.com/farhan-93/bugtriage. We used publicly
available datasets, and their link can also be found in relative
articles.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This research was supported partly by the Chung-Ang Uni-
versity research grant in 2021 and partly by the National
Research Foundation of Korea (NRF) grant (NRF-
2021R1F1A1059492).

References

[1] Y. Yin, X. Dong, and T. Xu, “Rapid and efficient bug assign-
ment using ELM for IOT software,” IEEE Access, vol. 6,
pp. 52713–52724, 2018.

[2] S.-R. Lee, M.-J. Heo, C.-G. Lee, M. Kim, and G. Jeong, “Apply-
ing deep learning based automatic bug triager to industrial
projects,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering - ESEC/FSE 2017,
pp. 926–931, New York, New York, USA, 2017.

[3] S. Mani, A. Sankaran, and R. Aralikatte, “DeepTriage: explor-
ing the effectiveness of deep learning for bug triaging,” in Pro-
ceedings of the ACM India Joint International Conference on
Data Science and Management of Data, pp. 171–179, Kolkata,
India, 2019.

[4] S. Guo, X. Zhang, X. Yang et al., “Developer activity motivated
bug triaging: via convolutional neural network,” Neural Pro-
cessing Letters, vol. 51, no. 3, pp. 2589–2606, 2020.

[5] S. F. A. Zaidi, F. M. Awan, M. Lee, H. Woo, and C. G. Lee,
“Applying convolutional neural networks with different word
representation techniques to recommend bug fixers,” IEEE
Access, vol. 8, pp. 213729–213747, 2020.

[6] S. F. A. Zaidi and C.-G. Lee, “One-class classification-based
bug triage system to assign a newly added developer,”
IEEE2021 International Conference on Information Network-
ing (ICOIN), pp. 738–741, Jeju Island, Korea (South), 2021.

[7] C. Käding, E. Rodner, A. Freytag, and J. Denzler, “Fine-tuning
deep neural networks in continuous learning scenarios,” in
Asian Conference on Computer Vision, pp. 588–605, Cham,
2017.

[8] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad,
“Assigning change requests to software developers,” Journal
of Software: Evolution and Process, vol. 24, no. 1, pp. 3–33,
2012.

[9] R. Shokripour, Z. M. Kasirun, S. Zamani, and J. Anvik, “Auto-
matic bug assignment using information extraction methods,”
in 2012 International conference on advanced computer science
applications and technologies (ACSAT), pp. 144–149, Kuala
Lumpur, Malaysia, 2012.

[10] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why
so complicated? Simple term filtering and weighting for
location-based bug report assignment recommendation,” in
2013 10th Working Conference on Mining Software Reposito-
ries (MSR), pp. 2–11, San Francisco, CA, USA, 2013.

[11] M. Linares-Vásquez, K. Hossen, H. Dang, H. Kagdi,
M. Gethers, and D. Poshyvanyk, “Triaging incoming change
requests: bug or commit history, or code authorship?,” in
2012 28th IEEE International Conference on Software Mainte-
nance (ICSM), pp. 451–460, Trento, Italy, 2012.

17Journal of Sensors

https://github.com/farhan-93/bugtriage


[12] H. Naguib, N. Narayan, B. Brügge, and D. Helal, “Bug report
assignee recommendation using activity profiles,” in 2013
10th Working Conference on Mining Software Repositories
(MSR), pp. 22–30, San Francisco, CA, USA, 2013.

[13] G. Yang, T. Zhang, and B. Lee, “Towards semi-automatic bug
triage and severity prediction based on topic model and multi-
feature of bug reports,” in 2014 IEEE 38th Annual Computer
Software and Applications Conference, pp. 97–106, Vasteras,
Sweden, 2014.

[14] S. Wang, W. Zhang, and Q. Wang, “Fixercache: unsupervised
caching active developers for diverse bug triage,” in Proceed-
ings of the 8th ACM/IEEE International Symposium on Empir-
ical Software Engineering and Measurement, pp. 1–10, Torino,
Italy, 2014.

[15] T. Zhang, G. Yang, B. Lee, and E. K. Lua, “A novel developer
ranking algorithm for automatic bug triage using topic model
and developer relations,” in 2014 21st Asia-Pacific Software
Engineering Conference, pp. 223–230, Jeju, Korea (South),
2014.

[16] X. Xia, D. Lo, Y. Ding, J. M. Al-Kofahi, T. N. Nguyen, and
X. Wang, “Improving automated bug triaging with specialized
topic model,” IEEE Transactions on Software Engineering,
vol. 43, no. 3, pp. 272–297, 2017.

[17] W. Zhang, Y. Cui, and T. Yoshida, “En-lda: an novel approach
to automatic bug report assignment with entropy optimized
latent dirichlet allocation,” Entropy, vol. 19, no. 5, p. 173, 2017.

[18] A. Yadav, S. K. Singh, and J. S. Suri, “Ranking of software
developers based on expertise score for bug triaging,” Informa-
tion and Software Technology, vol. 112, pp. 1–17, 2019.

[19] D.-G. Lee and Y.-S. Seo, “Improving bug report triage perfor-
mance using artificial intelligence based document generation
model,” Human-Centric Computing and Information Sciences,
vol. 10, no. 1, pp. 1–22, 2020.

[20] S. Banitaan and M. Alenezi, “Decoba: utilizing developers
communities in bug assignment,” 12th International Confer-
ence on Machine Learning and Applications, 2013, pp. 66–71,
Miami, FL, USA, 2013.

[21] W. Zhang, S. Wang, Y. Yang, and Q. Wang, “Heterogeneous
network analysis of developer contribution in bug reposito-
ries,” in 2013 International Conference on Cloud and Service
Computing, pp. 98–105, Beijing, China, 2013.

[22] T. Zhang and B. Lee, “A hybrid bug triage algorithm for devel-
oper recommendation,” in Proceedings of the 28th annual
ACM symposium on applied computing, pp. 1088–1094, Coim-
bra, Portugal, 2013.

[23] H. Hu, H. Zhang, J. Xuan, and W. Sun, “Effective bug triage
based on historical bug-fix information,” in 2014 IEEE 25th
International Symposium on Software Reliability Engineering,
pp. 122–132, Naples, Italy, 2014.

[24] M. Kumari, A. Misra, S. Misra, L. Fernandez Sanz,
R. Damasevicius, and V. Singh, “Quantitative quality evalua-
tion of software products by considering summary and com-
ments entropy of a reported bug,” Entropy, vol. 21, no. 1,
p. 91, 2019.

[25] V. Etemadi, O. Bushehrian, R. Akbari, and G. Robles, “A
scheduling-driven approach to efficiently assign bug fixing
tasks to developers,” Journal of Systems and Software,
vol. 178, article 110967, 2021.

[26] R. Almhana and M. Kessentini, “Considering dependencies
between bug reports to improve bugs triage,” Automated Soft-
ware Engineering, vol. 28, no. 1, pp. 1–26, 2021.

[27] H. Jahanshahi, K. Chhabra, M. Cevik, and A. Baþar, “Dabt: a
dependency-aware bug triaging method,” in Evaluation and
Assessment in Software Engineering, pp. 221–230, Trondheim
Norway, 2021.

[28] P. Bhattacharya and I. Neamtiu, “Fine-grained incremental
learning and multi-feature tossing graphs to improve bug tria-
ging,” in 2010 IEEE International Conference on Software
Maintenance, pp. 1–10, Timisoara, Romania, 2010.

[29] A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. N. Nguyen,
“Fuzzy set-based automatic bug triaging (nier track),” in Pro-
ceedings of the 33rd International Conference on Software Engi-
neering, pp. 884–887, Waikiki, Honolulu, HI, USA, 2011.

[30] J. Anvik and G. C. Murphy, “Reducing the effort of bug report
triage,” ACM Transactions on Software Engineering and Meth-
odology (TOSEM), vol. 20, no. 3, pp. 1–35, 2011.

[31] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritiza-
tion in bug repositories,” in 2012 34th International Confer-
ence on Software Engineering (ICSE), pp. 25–35, Zurich,
Switzerland, 2012.

[32] S. Banitaan and M. Alenezi, “Tram: An approach for assigning
bug reports using their metadata,” in 2013 Third International
Conference on Communications and Information Technology
(ICCIT), pp. 215–219, Beirut, Lebanon, 2013.

[33] M. Alenezi, K. Magel, and S. B. JSW, “Efficient bug triaging
using text mining,” Journal of Software, vol. 8, no. 9,
pp. 2185–2191, 2013.

[34] J. Xuan, H. Jiang, Y. Hu et al., “Towards effective bug triage
with software data reduction techniques,” IEEE Transactions
on Knowledge and Data Engineering, vol. 27, no. 1, pp. 264–
280, 2015.

[35] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and
P. Runeson, “Automated bug assignment: ensemble-based
machine learning in large scale industrial contexts,” Empirical
Software Engineering, vol. 21, no. 4, pp. 1533–1578, 2016.

[36] A.-C. Florea, J. Anvik, and R. Andonie, “Spark-based cluster
implementation of a bug report assignment recommender sys-
tem,” in International Conference on Artificial Intelligence and
Soft Computing, pp. 31–42, Cham, 2017.

[37] M. Alenezi, S. Banitaan, andM. Zarour, “Using categorical fea-
tures in mining bug tracking systems to assign bug reports,”
https://arxiv.org/abs/1804.07803.

[38] A. Sarkar, P. C. Rigby, and B. Bartalos, “Improving bug
triaging with high confidence predictions at ericsson,” in
2019 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pp. 81–91, Cleveland, OH,
USA, 2019.

[39] Y. Zhao, T. He, and Z. Chen, “A unified framework for bug
report assignment,” International Journal of Software Engi-
neering and Knowledge Engineering, vol. 29, no. 4, pp. 607–
628, 2019.

[40] R. A. Khurma, H. Alsawalqah, I. Aljarah, M. A. Elaziz, and
R. Damaševicius, “An enhanced evolutionary software defect
prediction methodˇ using island moth flame optimization,”
Mathematics, vol. 9, no. 15, p. 1722, 2021.

[41] V. Dedik and B. Rossi, “Automated bug triaging in an indus-
trial context,” in 2016 42th Euromicro conference on software
engineering and advanced applications (SEAA), pp. 363–367,
Limassol, Cyprus, 2016.

[42] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo, “Automatic bug
triage using semi-supervised text classification,” https://arxi-
v.org/abs/1704.04769.

18 Journal of Sensors



[43] X. Peng, P. Zhou, J. Liu, and X. Chen, Improving Bug Triage
with Relevant Search, SEKE, 2017.

[44] S. F. A. Zaidi and C.-G. Lee, “Learning graph representation of
bug reports to triage bugs using graph convolution network,”
in 2021 International Conference on Information Networking
(ICOIN), pp. 504–507, Jeju Island, Korea (South), 2021.

[45] C. A. Choquette-Choo, D. Sheldon, J. Proppe, J. Alphonso-
Gibbs, and H. Gupta, “A multi-label, dual-output deep neural
network for automated bug triaging, pp. 937–944, Boca Raton,
FL, USA, 2019.

[46] T. W. W. Aung, Y. Wan, H. Huo, and Y. Sui, “Multi-triage: a
multi-task learning framework for bug triage,” Journal of Sys-
tems and Software, vol. 184, article 111133, 2022.

[47] S. F. A. Zaidi, H. Woo, and C. -G. Lee, “A graph convolution
network-based bug triage system to learn heterogeneous graph
representation of bug reports,” IEEE Access, vol. 10, pp. 20677–
20689, 2022.

[48] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: pre-
training of deep bidirectional transformers for language
understanding,” https://arxiv.org/abs/1810.04805.

[49] Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing, and
R. Feris, “Spottune: transfer learning through adaptive fine-
tuning,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 4805–4814, Long
Beach California, 2019.

[50] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert,
“icarl: Incremental classifier and representation learning,” in
Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pp. 2001–2010, Honolulu, Hawaii, 2017.

19Journal of Sensors


	Toward an Effective Bug Triage System Using Transformers to Add New Developers
	1. Introduction
	2. Related Work
	2.1. Information Retrieval-Based Bug Triage Systems
	2.2. Social Network Analysis-Based Bug Triage Systems
	2.3. Dependency-Based Bug Triage Systems
	2.4. Machine Learning-Based Bug Triage Systems
	2.4.1. Conventional Machine Learning-Based Bug Triage Systems
	2.4.2. Deep Learning-Based Bug Triage Systems


	3. Motivation
	4. Methodology
	4.1. Base Model
	4.1.1. Preprocessing
	4.1.2. Tokenizer
	4.1.3. BERT Model
	4.1.4. Fully Connected Layer and Classifier Layer

	4.2. Fine-Tuned Model
	4.2.1. Exemplar
	4.2.2. Extended Classification Layer

	4.3. Training

	5. Evaluation and Results
	5.1. Data Collection
	5.2. Evaluation Measure
	5.3. Addressing the Research Questions
	5.3.1. RQ 1: Is the BERT-Based Bug Triage Method Superior to Other Context-Insensitive and Context-Sensitive ELMo-Based Bug Triage Methods?
	5.3.2. RQ 2: Does the BERT-Based Base Model Have better Top-K Accuracy on Bug Data?
	5.3.3. RQ 3: Is Fine-Tuning a Pretrained Model Better than Training the Model from Scratch?
	5.3.4. RQ 4: Can the Continuous Fine-Tuning Approach Solve the Newly Added Developer Problem?
	5.3.5. RQ 5: What Problem Is Continuous Fine-Tuning Facing, and What Is Its Effect on the Accuracy Results?
	5.3.6. RQ 6: Is the Proposed Model Efficient?

	5.4. Comparison with Other Research

	6. Threats to Validity
	6.1. Construct Validity
	6.2. Internal Validity
	6.3. External Validity

	7. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

