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Abstract

Randomized Controlled Trials (RCTs) enroll hundreds of millions of subjects and in-
volve many human lives. To improve subjects’ welfare, I propose an alternative design
of RCTs that I call Experiment-as-Market (EXAM). EXAM Pareto optimally randomly
assigns each treatment to subjects predicted to experience better treatment effects or
to subjects with stronger preferences for the treatment. EXAM is also asymptotically
incentive compatible for preference elicitation. Finally, EXAM unbiasedly estimates
any causal effect estimable with standard RCTs. I quantify the welfare, incentive, and
information properties by applying EXAM to a water cleaning experiment in Kenya
(Kremer et al., [2011). Compared to standard RCTs, EXAM substantially improves
subjects’ predicted well-being while reaching similar treatment effect estimates with

similar precision.
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1 Introduction

Today is the golden age of Randomized Controlled Trials (RCTs; equivalently, randomized
experiments or A /B tests). RCTs started as safety and efficacy tests of farming and medical
treatments (Gawl 2009), but they have grown to become the society-wide standard of evi-
dence. RCTs are widespread in business and politics (Siroker and Koomen, 2013), as well
as public policy (Gueron and Rolston, [2013), the social sciences (Duflo et al., |2007; |Gerber
and Green, 2012), and engineering.

RCTs are high-stakes on multiple fronts. Firstly, a large number of individuals partici-
pate in RCTs. For example, I find that over 360 million patients and 22 million individuals
participated in registered clinical trials and social RCTs, respectively, during 2007-17. For
such a large subject pool, many RCTs randomize high-stakes and even life-or-death treat-
ment. For instance, in a glioblastoma therapy trial, the five-year death rate of glioblastoma
patients is 97% in the control group but only 88% in the treatment group (Stupp et al.
2009). In expectation, therefore, the lives of up to 9% of its 573 participants depend on who
receives treatments. Social RCTs also randomize critical treatment such as basic incomdy
high-wage job offers (Dal B6 et al., 2013), and HIV testing (Angelucci and Bennett, 2017).
This high-stakes nature even prompted some RCT participants to sue their experimentersE]

RCTs thus determine the fate of numerous people, giving rise to an ethical dilemma:

How can a physician committed to doing what he thinks is best for each patient
tell a woman with breast cancer that he is choosing her treatment by something
like a coin toss? How can he give up the option to make changes in treatment
according to the patient’s responses? (“Patients’ Preferences in Randomized Clin-
ical Trials” by physician and prior editor-in-chief of the New England Journal of
Medicine, Marcia Angell)

This paper develops and implements an experimental design that improves subject wel-
fare while unbiasedly and precisely estimating treatment effects. I start with defining experi-
mental designs as procedures to determine each subject’s treatment assignment probabilities
based on data about two measures of welfare: (a) the predicted treatment effect of each
treatment on each subject and (b) each subject’s willingness-to-pay (WTP) for each treat-

ment. These complementary welfare measures are allowed to be freely heterogeneous and

1“8 basic income experiments to watch out for in 2017, at http://www.businessinsider.com/
basic-income-experiments-in-2017-2017-1/#finland-2, retrieved in March 2018.

4 See, for example, Gelsinger w. University of Pennsylvania about a gene-therapy clin-
ical trial and Grimes wv. Kennedy-Krieger Institute about a social experiment that ran-
domly assigned lead reduction methods to housings. For details, see https://www.sskrplaw.

com/gelsinger-v-university-of-pennsylvania.html/and https://www.courtlistener.com/opinion/
2386331/grimes-v-kennedy-krieger-institute-inc/}, accessed in March 2018.
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correlated with each other. In practice, the experimenter may estimate them from prior
experimental or observational data or ask subjects to self-report them, especially WTP.

I propose an experimental design that I call Exzperiment-as-Market (EXAM). 1 choose this
name because EXAM is an experimental design based on an imaginary centralized market,
inspired by the long-standing idea of competitive market equilibrium from equal incomes
(Friedman) 1962} Varian, 1974; Hylland and Zeckhauser, [1979; Budish et al., [2013; He et
al, 2017). EXAM uses this artificial market to Pareto optimally incorporate both predicted
effects and WTP, extending prior pioneering designs that respect predicted effects or WTP,
but not both (Wei and Durham, [1978; |Zelen, 1979; |Angrist and Imbens, (1991 |(Chassang et
al., 2012).

Specifically, EXAM randomly assigns treatments to subjects via the following hypotheti-
cal market created in the experimenter’s computer. EXAM first endows each subject with a
common artificial budget and lets her use the budget to purchase the most preferred (high-
est WTP) bundle of treatment assignment probabilities given their prices. The prices are
personalized so that each treatment is cheaper for subjects with better predicted effects of
the treatment. EXAM computes its treatment assignment probabilities as what subjects
demand at market clearing prices, where subjects’ aggregate demand for each treatment
is balanced with its supply or capacity (assumed to be exogenously given). EXAM finally
requires every subject to be assigned to every treatment with a positive probabilityﬂ

This virtual-market construction gives EXAM nice welfare and incentive properties.
EXAM has a Pareto optimality property in that no other design makes every subject better-
off in terms of expected predicted effects of and WTP for assigned treatment. EXAM also
allows the experimenter to elicit WTP in an asymptotically incentive compatible way. That
is, when the experimenter asks subjects to self-report their WTP to be used by EXAM,
every subject’s optimal choice is to report her true WTP, at least for large experimentsf_f]

Importantly, EXAM also allows the experimenter to unbiasedly estimate the same treat-
ment effects as standard RCTs do (in a finite sample and for a wide class of treatment
effect parameters). To see this, note that EXAM gives everybody the same budget. If
subjects share the same predicted effects and WTP, therefore, the subjects purchase the
same distribution of treatment assignment. In other words, EXAM’s treatment assignment
is random (independent from potential outcomes) conditional on observable predicted effects

and WTP. As in causal inference with stratified experiments and selection-on-observables

3 EXAM is executable even without WTP and predicted effects (when WTP and predicted effects are
unknown or irrelevant to the experimenter). When the experimenter uses neither WTP nor predicted effects,
EXAM reduces to the standard RCT. EXAM therefore nests the standard RCT.

4 The incentive analysis owes much to studies on the incentive compatibility of competitive equilibria and
experimental designs (Jackson| 1992 |(Chassang et al.| |2012; |Azevedo and Budish} 2017; He et al., [2017)).



(Imbens and Rubin, 2015), the conditionally independent treatment assignment allows the
experimenter to unbiasedly estimate the average treatment effects conditional on observables.
By integrating such conditional effects, EXAM can unbiasedly estimate the (unconditional)
average treatment effect and other effects. This informational virtue materializes regardless
of whether the experimenter correctly predicts treatment effects and WTPE]

I also characterize the statistical efficiency in EXAM’s average treatment effect estima-
tion. EXAM'’s standard error is potentially smaller than RCTs’, but in general, the standard
error comparison of EXAM and a typical RCT is ambiguous. This motivates an empirical
comparison of the two designs, which also allows me to verify and quantify the other welfare,
incentive, and unbiasedness properties.

I apply EXAM to data from a water cleaning experiment in Kenya (Kremer et al., 2011).
Compared to RCTs, EXAM turns out to substantially improve participating households’
predicted welfare. Here, welfare is measured by predicted effects of clean water on child
diarrhea and revealed WTP for water cleaning. EXAM is also found to almost always
incentivize subjects to report their true WTP. Finally, EXAM’s data produces treatment
effect estimates and standard errors similar to those from RCTs. EXAM therefore produces
as valuable information as RCTs do for the whole society and future generations [

Taken together, EXAM sheds light on a way economic thinking can “facilitate the ad-
vancement and use of complex adaptive (...) and other novel clinical trial designs,” a per-
formance goal by the federal Food and Drug Administration (FDA) for 2018-2022['] Experi-
mental design is a potentially life-saving application of economic market design (Roth) 2015]).
More concretely, my analysis shows how best to use predicted treatment effects for experi-
mental design. The use of predicted effects for new experiments is established in medicine
(Food and Drug Administration, [2010) and business (White, [2012)), and emerging in the
social sciences (Hahn et al., 2011) as important interventions such as deworming and con-
ditional cash transfers ask for repeated evaluations. EXAM combines the predicted-effects
consideration with another idea of respecting subjects’ WTP for treatments.

After a review of related experimental designs, Section [2] outlines my motivation by pro-
viding facts about the impact of RCT's on participant welfare. Section |3|develops the EXAM

experimental design, and Sections {4| shows its welfare and incentive properties. Section

5 This experimental value of EXAM and competitive equilibrium from equal incomes echoes |Abdulka-
diroglu et al.[(2017)) and |[Narita[ (2016, who highlight the informational values of a different sort of mechanism
design (centralized school choice with lotteries).

6 Along the way, I develop a computer program to implement EXAM with little computational cost. A
single execution of EXAM on data with 1540 subjects and 2 treatments takes only 6 minutes on average
with a standard personal computer.

7 See https://www.fda.gov/downloads/forindustry/userfees/prescriptiondruguserfee/
ucmb11438.pdf}, retrieved in March 2018
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studies the experimental information embedded in EXAM and explains how to use data
from EXAM for causal inference. An empirical application is in Section [} Finally, Section

summarizes my findings, discusses their limitations, and outlines future directions. Proofs

are in Appendix [A.2]

1.1 Comparison with Existing Designs
Classical Experimental Design

The traditional experimental design literature (Cox and Cochran| (1992), |Athey and Imbens
(2017)) Section 7) is as old as the very concept of RCTs. This literature focuses on how to
design experiments for maximizing information measured by the power of testing the null
hypothesis of no treatment effect and other measures. This focus on information continues
in much of the modern literature on sequential and adaptive experimental designs (Hahn et

al., 2011). My interest lies more in ethics and welfare.

Preference- and Response-adaptive Designs

With its interest in subject well-being measured by WTP and predicted effects, EXAM is
closer to younger and smaller strands of the literature on preference- and response-adaptive
experimental designs. Preference-adaptive designs reflect subject preferences into treatment
assignment probabilities. For example, Randomized Consent or Preference Trials (originally
proposed by |Zelen| (1979) and further advocated by |Angrist and Imbens (1991))) randomize
subjects into two groups. In one group, subjects are allowed to choose the treatment or
the control based on their preferences. All subjects in the other group are assigned to the
control.

Selective Trials by (Chassang et al. (2012, 2015) are more general preference-adaptive
designs that let the treatment assignment probability increase in the WTP for the treatment.
See also [Bjorklund (1988) for a related experimental design proposal. Other examples of
preference-adaptive designs are development economics RCTs that elicit and use subject
preferences for treatment (Ashraf et al., 2006}, (Cohen and Dupas| 2010; |Ashraf et al., [2010;
Devoto et al., [2012; Dupas, 2014). Many of their designs are preference adaptive.

In complementary response-adaptive designs (reviewed by Hu and Rosenberger (2006)
and |[Food and Drug Administration (2010))), the experimenter incorporates predicted treat-
ment effects into treatment assignment probabilities. For example, Play-the-Winner Rules
(Zelen, 1969; Wei and Durham, [1978)) more likely assign a treatment to patients predicted

to have better treatment effects ]

8 The treatment assignment literature in econometrics (Manski, 2008) and medicine (Chakraborty and



| Building upon these prior ideas, EXAM attempts to integrate preference- and response-|

ladaptive designs into a unified design. With help from economic theory and causal infer-|

lence, EXAM is formally shown to strike an optimal balance between W'T'P and predicted|

leftects without compromising incentive compatibility and experimental information. EXAM]|

thereby extends existing preference- and response-adaptive designs: If the experimenter|
shuts down W'TP consideration by assuming constant WTP, EXAM simplifies to a Play-the-|

Winner Rule. Similarly, EXAM reduces to a Consent or Selective Trial it the experimenter|

ignores predicted effects and uses constant predicted effects. |

Multi-Armed Bandit Algorithms |

EXAM shares much of its spirit with Multi-Armed Bandit (MAB) algorithms in computer|
science, machine learning, and statistics (Bubeck and Cesa-Bianchi, 2012): Both MAB and|

EXAM attempt to strike a balance between exploration (information) and exploitation (sub-|

ject or experimenter welfare). MAB algorithms are popular in the web industry, especially|

for online ads, news, and recommendations (White, |2012). Among the many differences|
between MAB and EXAM, MAB mostly ignores incentive issues. In contrast, EXAM i

fformally and empirically shown to be nearly incentive compatible. |

|Clinical Trial Practices and Regulations |

|Clinical trial practitioners and regulators have long recognized ethical concerns with RCTs,|

las highlighted in Marcia Angell’s quote in the introduction. Their concerns resulted in|

regulations and practices that safeguard patients from excessive experimentation. Primary|

lexamples are informed consent, a “stopping rule” that requires a sequential clinical triall

to terminate if it becomes clear that its treatment is sufficiently better or worse than the|

control (Friedman et al. (1998) chapters 2 and 16), and a “randomized phase-in” designl

that assigns everybody to the treatment with randomized timing (Duflo et al./ (2007) section|

3.3.2). EXAM complements these existing practices by providing guidance about how to|

ispecify treatment assignment probabilities conditional on deciding to conduct a trial at a

particular point in time and having a pool of subjects agreeing to participate in the trial. |

2013) attempts a related but distinct task of using experimental data to optimally assign treatment
to maximize welfare alone. See also related biostatistics developments on optimal dynamic treatment regimes
by Murphy (2003) and Robins et al.| (2008) among others.




2 Why Subject Welfare?

My goal is to design an experiment with an emphasis on subject welfare. Why should I

study subject well-being? This section provides normative and practical reasons.

Normative Considerations

First, RCTs involve a large number of subjects. I assemble data on clinical trials registered
in the WHO International Clinical Trials Registry Platform (ICTRP)F]ICTRP is the largest
international clinical trial registry and subsumes domestic platforms like ClinicalTrials.gov
for the US| Table[l] Panel a shows that the sum of the sample sizes of trials registered there
is over 360 million for 2007-2017. As for social and economic RCTs, I scraped the American
Economic Association’s registry to find the sum of sample sizes of registered RCTs amounts
to above 22 million for the last decade (Table [1] Panel b)[!]

For such a large subject population, RCTs frequently randomize high-stakes treatment.
The high-stakes and occasionally life-threatening nature of many RCTs is highlighted by
examples in Table . In the first clinical trial (row i in Panel a), for example, a cholesterol-
lowering drug treatment was found to lower the 5-year death rate of heart disease patients
by about 30% relative to the baseline death rate in the control group. Other clinical trials in
Table 2] Panel a also report significant impacts on survival and other crucial outcomes[”| As
exemplified in Table 2| Panel b, social and economic RCT's also randomize treatment such as
cash transfers, health insurance, HIV testing, and police patrol, as well as other numerous
interventions related to childhood development, education, labor, and public finance (Fryer,
2017; Rothstein and von Wachter], 2017)). As expected, these treatments are often found to

have profound treatment effects.

9 http://www.who.int/ictrp/en/, retrieved in March 2018.

10 https://clinicaltrials.gov, retrieved in March 2018.

11 More detailed statistics are in Appendix Tables It is important to note that the figures
in Table |1| are likely to underestimate the total scale of the RCT landscape. Many countries (such as
Australia and Japan) do not legally require clinical trials to register (as of March 2018). Even when trials
are required to register, the expected fine for failing to do so is often negligible compared to the total
trial cost; see Stat News’ article, “Failure to report: A STAT investigation of clinical trials reporting,”
at https://www.statnews.com/2015/12/13/clinical-trials-investigation/| retrieved in March 2018.
As a consequence of these regulatory loopholes, there is likely a “dark pool” of clinical trials never reflected in
any public database like ICTRP (Goldacre, |2014). Consistent with this hypothesis, as legal and institutional
pressures for trial registration mount, the annual numbers of registered trials and subjects are rapidly growing
(about 14 million in 2007 vs. 72 million in 2016 for the number of subjects; see Appendix Figure [A1)). This
means that these figures will likely be larger in the next decade.

12 The medical ethics literature reviews other examples (Shamoo and Resnik! (2009)) chapters 12 and 13).
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Practical Considerations

Practical considerations also motivate a care for subject welfare. The successful implemen-
tation of any RCT depends on subject choices, including whether subjects participate in the
RCT, whether subjects take up and use the assigned treatment, and whether subjects stay
in contact in a follow-up period. The RCT produces useful information only if participants
are active in each step. This prerequisite is hard to achieve, however. RCTs often suffer from
subject indifference or fear in the form of non-participation, non-compliance, and dropouts
before, during, and after experiments (Friedman et al.| (1998) chapters 10 and 14, Duflo et
al.| (2007) sections 4.3 and 6.4, Glennerster| (2017) sections 2.1 and 2.2).

A welfare-conscious experimental design could alleviate non-participation, non-compliance,
and dropouts. Indeed, King et al. (2005) provide a clinical trial meta-analysis suggesting that
incorporating subject preferences makes subject recruitment easier. In a range of economet-
ric and theoretical models, welfare-enhancing treatment assignment is predicted to facilitate
compliance with treatment assignment (Bjorklund and Moffitt], |1987; Heckman and Vytlacil,
2005; |Chan and Hamilton, 2006). Chan and Hamilton| (2006) use AIDS trial data to find
that better-off subjects experiencing better treatment effects are less likely to drop outF_gl

Finally, ethical experimental designs would ease collaboration with partner governments
and companies that may have an ethical and reputational concern with involvement in RCT's
(Glennerster| (2017)) section 1).

3 Experiment-as-Market (EXAM)

3.1 Framework

The normative and practical importance of subject well-being prompts me to design an
experiment that balances subject welfare with experimental information. An experimental

design problem consists of:

e Experimental subjects iy, ..., 0,.

e Experimental treatments tq,tq,...,t,, where t; is a placebo or control.

13 In an effort to maximize the treatment take-up rate and minimize attrition, many field experiments
start with an expression-of-interest survey before randomization and recruit only survey respondents who
express strong interest. This recruitment practice causes external validity concerns. These concerns may
also be alleviated by replacing the experimenter’s discretionary selective recruitment with an experimental
design respecting subject welfare in a rule-based way. See also [Hulll (2018]) and references therein for other
survey designs and analysis methods to deal with attrition.



e Each subject ¢’s preference or WTP w; € R for treatment ¢ where w;; > w; means

subject i weakly prefers treatment ¢ over . Let w; = (w;);.

e Each treatment t’'s predicted treatment effect e; € R for subject ¢ where e; > ey,
means treatment ¢ is predicted to have a weakly better effect than ¢’ for subject 1.
When multiple outcomes matter, e;; can be set to the predicted effect on a known

function of these outcomes. Let ¢; = (eti)tm

I normalize e;; and w; by assuming e;; = wy, = 0 for every subject 7. e; and wy
are therefore the predicted effect of ¢ and WTP for ¢, respectively, relative to the control
to. This normalization is without loss of generality because only differences in WTP and
predicted effects matter for subject welfare from treatments to,...,t,,. Every experimental
design discussed below produces the same assignment probabilities with and without the
normalization.

I use e;; and w;; as complementary welfare measures, one outcome- or treatment-effect-
based and one WTP-based. Each has an established role in economic welfare analysis. The
medical literature more frequently studies treatment effects but also acknowledges that pa-
tients often have heterogeneous preferences for treatments (even conditional on treatment
effects). This is especially the case for psychologically sensitive treatments like abortion
methods (Henshaw et al., [1993)) and depression treatments (Chilvers et al., 2001). In re-
sponse to these findings, a US-government-endorsed movement tries to bridge the gap be-
tween evidence-based medicine and patient-preference-centered medicine (Food and Drug
Administration, 2016)). According to advocates, “patient-centered care (...) promotes respect
and patient autonomy; it is considered an end in itself, not merely a means to achieve other
health outcomes” (Epstein and Peters, [2009). My welfare criterion echoes this trend and
accommodates both outcome- and preference-based approaches.

Predicted effects and WTP may also be freely heterogeneous and correlated. This is
an important generality since evidence of correlation between treatment effects and WTP
is ample both in the social sciences and medicine (Preference Collaborative Review Group),
2008; [Swift and Callahan, 2009)). To be consistent with the evidence, the above setup allows

arbitrary correlation between predicted effects and WTP.

3.1.1 Where Do WTP and Predicted Effects Come From?

It is best to estimate predicted effects ey from prior experimental or observational data.

In particular, the experimenter would use prior data to estimate heterogeneous treatment

14 Here I assume WTP and predicted effects are fixed and with cardinal meaning. See Appendices
and for discussions about what to do when WTP and predicted effects are uncertain or ordinal.

9



effects conditional on observable subject characteristics and apply the estimates to each
subject i’s characteristics, producing predicted effects e;;. The most reliable data source is
a prior RCT of the same treatment, where subjects in the prior RCT can be different from
those in the new experiment to be designed. Such sequential RCTs with the same treatment
are common in medicine (Friedman et al., [1998) and business (Siroker and Koomen, 2013))
and are growing in the social sciences (e.g., many RCTs for deworming). I illustrate the use
of prior RCT data in my empirical application.

For WTP w;, there are a couple of possible sources. The experimenter may ask each
subject 7 to self-report WTP w;, as proposed by Zelen (1979)) and |Chassang et al. (2012)@
Alternatively, the experimenter may estimate WTP with prior data on subjects’ treatment
choices and their observable characteristics. Such data allows the experimenter to estimate
heterogeneous revealed WTP conditional on subject characteristics. The WTP estimates
then provide the experimenter with a prediction for each subject i’s WTP given ¢’s charac-
teristics. I conduct such demand estimation with a discrete choice model in my empirical

application in Section [6]['Y]

3.2 Experimental Designs

Taking any experimental design problem as given, an experimental design specifies treatment
assignment probabilities (p;) where p; is the probability that subject i is assigned to treat-
ment ¢ under the experimental design. The benchmark design is the standard Randomized

Controlled Trial, formalized as follows.

Definition 1 (Randomized Controlled Trial a.k.a. RCT). Randomized Controlled Trial is
an experimental design that assigns each subject 7 to each treatment ¢ with the impersonal
treatment assignment probability pf¢T that is assumed to be written as pF? = ¢;/n for

some natural number ¢; < n.

The vast majority of clinical trials use RCT or similarly impersonalized randomization, an
empirical fact shown in Appendix and Appendix Table [A.06] I call ¢; pseudo capacity
or supply and require experimental designs to satisfy the pseudo capacity constraint that
ZZ. pit < ¢ for every treatment t = tq,...,t,,. This pseudo capacity constraint is important
when treatment is expensive or hard to make and deliver.

I investigate welfare-enhancement with a design that I call Experiment-as-Market or

EXAM in short.

15 This self-reporting method raises the question of incentive compatibility. I study incentive compatibility
theoretically in Section and empirically in Section

16 Similar demand estimation but for different purposes can be found in |Ashraf et al.| (2006); (Cohen and
Dupas| (2010); |Ashraf et al| (2010); [Kremer et al.| (2011)); Devoto et al.| (2012); Dupas| (2014).

10



Definition 2 (Ezperiment-as-Market a.k.a. EXAM). In the experimenter’s computer, dis-
tribute any common artificial budget b > 0 to every subject. Find any price-discriminated
competitive market equilibrium, i.e., any treatment assignment probabilities (p},) and their

prices 7, with the following properties:ﬂ

e Effectiveness-discriminated treatment pricing: There exist @ < 0 and §; € R for each
treatment ¢ such that the price of a unit of probability of assignment to t for subjects

with e;; = e € R is
e = Q€ + ﬂt-
e Subject utility maximization: For each subject i,

(Pj;): € argmax,, cp >, PitWir 8-t Y, PitTre,; < b,

where p; = (py); and P = {p; € R™!] Zizto pi = 1 and |py| < p} where p is a large
enough number. 7, is the price of a unit of the probability of assignment to treatment
t for subject i. EXAM breaks ties or indifferences so that every subject i’s p} solves
the above problem with the minimum expenditure ), i, while (pj,): = (pj,): for

any subjects ¢ and j with w; = w; and e; = e;.

e Meeting capacity constraints: ), p}, < ¢, for every treatment ¢ = ¢4, ..., ¢, and ). p}, <
¢, only if my.,, < 0 for every i[F|

Define EXAM’s treatment assignment probabilities as

pi(e) = (1 — q)pl, + qpic”,

where ¢ = inf{q’ € [0,1]|(1 — ¢)p}; + ¢pFT € [e,1 — €] for all i and t}. Here € € [0,¢] is a

parameter fixed by the experimenter where € = min; pF¢7 is the largest possible value of EE

I name this experimental design Experiment-as-Market (EXAM) because EXAM ran-

domly assigns treatments to subjects via a synthetic centralized market. p, in Step 1 can

17 There may be multiple equilibria. I fix any equilibrium selection method.
18 The latter part is necessary to make sure that EXAM wastes treatment ¢ only when there is no enough
demand for ¢ even with a nonpositive price.
19 Why is € the largest possible value of €? Suppose ¢ > & = min; pF¢?. Then, for any ¢ € arg min, p“T,
whenever p}, < pF¢T | T have
(1= ¢}y + d'pf" & e, 1— ]
1 RCT RCT ¢

for any ¢’ € [0,1]. On the other hand, if € <€, then ¢’ = 1 guarantees that (1 — ¢')p%; + ¢'p; =p
[e,1 — ¢] for all ¢ and ¢. Thus € must be between 0 and &.

11



be seen as a generalization or variation of the classic idea of competitive market equilibrium
from equal incomes (Friedman)| [1962; Varian, 1974; Hylland and Zeckhauser, |1979; |Budish
et al., 2013; He et al., 2017).

More specifically, in Step 1 of Definition [2, EXAM endows each subject with a common
imaginary budget. EXAM then lets each subject use the budget to purchase one of the most
preferred bundles of treatment assignment probabilities, taking their prices as given. The
prices are personalized so that each treatment is cheaper for subjects predicted to benefit
more from the treatment. EXAM computes its treatment assignment probabilities as the
resulting personalized-price competitive market equilibriumm EXAM finally requires each
subject to get each treatment with a probability strictly between 0 and 1, as done in Step 2.
This requirement is important for EXAM to produce non-degenerate random assignments
and unbiasedly estimate causal treatment effects; some foundations for this desire for non-
degenerate randomization can be found in Propositionbelow, Blackwell and Girshick! (1954))
section 8.7, fmbens and Rubin| (2015) chapter 3, and [Banerjee et al| (2017) 7]

To sum up, the steps for implementing EXAM are as follows.

(1) Obtain predicted effects e; if possible and relevant, as described in Section m
(2) Obtain WTP wy if possible and relevant, as described in Section [3.1.1]

(3) Apply Definition [2| of EXAM to the data from steps 1 and 2, producing assignment
probabilities p (€).

EXAM is an enrichment of RCT. To see this, note that EXAM allows the experimenter to
turn off welfare considerations. For instance, if the experimenter does not know or care about
predicted effects, she would let e;; = e;; for all subjects ¢ and j and treatment ¢. Similarly, let
wi = wj; > 0if WTP is unknown or irrelevant; I make the common WTP positive for a minor
technical reason. For example, the experimenter may want to exclude WTP when there is
a concern that revealed or self-reported WTP may be distorted by ignorance, information
frictions, or liquidity constraints. The following fact shows that EXAM is equivalent to RCT
when the experimenter ignores both WTP and predicted effects.

20 The first step of Definition [2] raises two questions, whether such an equilibrium exists and how to find
such an equilibrium. After positively solving the first existence question in Proposition 2] below, I develop
and implement a script to find an equilibrium in the empirical application in Section [6] See [Budish et al.
(2016) for a related algorithmic development on a different problem (MBA course allocation).

#! Definition [2| leaves unspecified how to draw a final treatment assignment from p(€). It is known to
be always possible to draw a treatment assignment in a way consistent with p# (e) (Budish et al.| (2013))’s
Theorem 1, the generalized Birkhoff-von Neumann Theorem). For the moment, my analysis applies to any
method to draw a treatment assignment. I impose more structures in Section [5] and implement an algorithm
to draw an assignment in the empirical application in Section @
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Proposition 1 (EXAM nests RCT). Suppose that WTP and predicted effects are unknown
or irrelevant so that wy = wj; > 0 and ey = ey for all subjects i and j and treatment t.
Then EXAM reduces to RCT, i.e., for every € € [0, €], subject i, and treatment t, I have

pi(€) = prT'

EXAM also extends other more sophisticated designs, such as the Play-the-Winner Rule
(Wei and Durham| [1978), Consent Trials (Zelen, 1979; |Angrist and Imbens| |1991), and
Selective Trials (Chassang et al.,2012). These designs emerge if EXAM ignores either WTP
or predicted effects, but not both, as explained in Section

4 Welfare and Incentive

4.1 Welfare

As opposed to the special case in Proposition [, the experimenter is often concerned about
WTP and predicted effects (as in studies reviewed in Section[2)). In such cases, EXAM differs

from RCT and is welfare-optimal in the following sense.

Proposition 2 (Existence and Welfare). There exists pf, that satisfies the conditions in
Definition @ For any such p}, and any € € [0, €|, the resulting EXAM assignment probability
pi(€) satisfies the following property: There is no other experimental design (py) € P™ with
pit € [e,1 — €] for all subject i and treatment t, > . pu < ¢ for all t = ty,...,t,, and the
following better welfare property:

Zpith’t > prt(e)wit and Zpiteti > Zp;kt(e)eti
t t t t

for all i with at least one strict inequality.

Proposition [2| says that no other experimental design ex ante Pareto dominates EXAM in
terms of the expected WTP for and predicted effect of assigned treatment (while satisfying
the random assignment and capacity Constraints)@ This ex ante Pareto optimality is known
to imply ex post Pareto optimality and “ordinal” ex ante optimality (Bogomolnaia and
Moulin), 2001)17_3] In contrast, RCT fails to satisfy the welfare property as it ignores WTP

22 Proposition [2|implies that EXAM is ex ante Pareto optimal for expected WTP alone if the experimenter
shuts down predicted effects by assuming e;; = e;; for all subjects ¢ and j and treatment ¢. Similarly, EXAM
satisfies Pareto optimality for expected predicted effects alone when EXAM ignores WTP.

3 Ex post optimality means that no other (p;) has the following property: wi;, > wix and e, > ey
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and predicted effects. I empirically quantify the welfare gap between RCTs and EXAM in
Section [6.3

4.2 Incentive

Proposition [2| takes WTP w;; as given and assumes it to represent true WTP. In practice,
the experimenter often needs to elicit the WTP information w; from subjects, raising an in-
centive compatibility concern. This section shows EXAM allows the experimenter to extract
WTP in an almost incentive compatible way. My analysis of incentive compatibility builds
upon the literature on incentive compatibility of competitive equilibria and experimental
designs (Jackson, [1992; |(Chassang et al., 2012; |Azevedo and Budish| 2017; |He et al., [2017)).

Unfortunately, it is known that no experimental design satisfies the welfare property in
Proposition 2| and exact incentive compatibility for general problems (Hylland and Zeck-
hauser), [1979). This compels me to investigate approximate incentive compatibility in large
experimental design problems. Only for this section, consider a sequence of experimental
design problems (i1, ..., in, to,t1, s tm, (€}'))nen indexed by the number of subjects, n. Let
€" € [0,€") (where €" is € for the n-th problem) be the value of the bound parameter € the
experimenter picks for the n-th problem in the sequence. The set of treatments t,tq, ..., 1,
is fixed, but everything else may change as n increases. This modeling with a fixed number
of treatments and an increasing number of subjects is consistent with real-world experiments
with only a few treatments but with hundreds of subjects or more.

To investigate the incentive structure in EXAM, imagine that subjects report their WTP
to EXAM. EXAM then uses the reported WTP to compute treatment assignment probabil-
ities. For the n-th problem in the sequence, let p:™(w;, e;, w_;, e_;; €") be EXAM’s treatment
assignment probability vector for subject ¢ when subjects report WTP (w;, w_;) and pre-
dicted effects are (e;,e_;) where w_; = (w;);» and e_; = (e;);. 1 extend this notation to

the case where other subjects’ WTP reports and predicted effects are random:

pi"(wi, e, Fie) = / pi"(wi, e, w_g, e € ) xPr{(w_i, e_;) ~iig F}d(w_;,e_;).
(w—j,e—;)E(WXE)—1

Here Pr{(w_;,e_;) ~uq F'} denotes the probability that (w_;,e_;) is realized from n —

1 iid draws from the distribution F' € A(W x E), where A(W x E) is the set of full

support distributions over the WTP space W and the predicted effect space E. Only for

always hold for all ¢ with at least one strict inequality, where ¢; and t] are treatments ex post assigned to ¢
under the alternative design (p;:) and EXAM, respectively. Ordinal ex ante optimality is a stronger property
that there is no other (p;;) such that for all affine transformations f and g, >, pir f(wir) > >, 0j;(€) f(wit)
and ), pirg(en) > >, piy(€)g(ey) for all i with at least one strict inequality.
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this section, for simplicity, I restrict WTP and predicted effects to belong to finite sets W
and F, respectively, in any problem along the sequence. This concept allows me to state an

asymptotic incentive compatibility property.

Proposition 3 (Incentive). EXAM with WTP reporting is asymptotically incentive com-
patible, i.e., for any sequence of experimental design problems with any € in [0,€"), any
F e A(W x E), any 6 > 0, there exists ng such that, for any n > ng, any subject i, any

predicted effect e;, any true and manipulated WTP values w; and w!, I have

*T . n *T / . n
§ Dit (wi7ei7F7€ ) X Wit Z E Dit (wi7€i7F)€ ) X Wi — 6
t t

Proposition (3] says that EXAM approximately incentivizes every subject to report her
true WTP, at least for large enough experimental design problems. The experimenter using
EXAM can therefore ask subjects to report their true WTP without any deception. As
additional support for incentive compatibility, Section shows that EXAM is close to
incentive compatible in my empirical application only with a finite number of subjects. This
suggests asymptotic Proposition (3] is relevant even for real-scale problems.

For intuition, first consider a case with only one treatment ¢; that subject ¢ prefers over
the control 3. Why is there no incentive for subject i to misreport a larger WTP for ¢;7 As
long as subject ¢ prefers t; over ty, subject ¢ spends her entire budget b into purchasing ¢,
and gets an assignment probability of b/m;,. Misreporting a larger WTP would not affect
this assignment probability, confirming the incentive compatibility. More generally, exact
incentive compatibility may break down in small problems. Nevertheless, EXAM is always
asymptotically incentive compatible since there is no incentive to misreport when the prices

are exogenously fixed, which is approximately true when the number of subjects is large.

5 Information

Despite the welfare merit, EXAM also lets the experimenter estimate treatment effects as
unbiasedly and precisely as RCT does. To spell it out, I switch back to any given finite
problem and discuss not only bias but also variance in treatment effect estimation. To
compare EXAM and RCT’s empirical content, I need to specify how each design draws a
deterministic treatment assignment from its assignment probabilities. For simplicity, assume
that pyn, is an integer for every ¢ and p where n, = > ., 1{pi(¢e) = p} is the number of
subjects with assignment probability vector p and p; is the ¢-th element of p. Appendix
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generalizes the definition and argument below to a general setting where p;n, is any real

number. Consider the following method of drawing a deterministic treatment assignment.

Definition [2] (EXAM Continued). Starting from the end of Definition 2]in Section [3.2] draw

a treatment assignment from pf(¢) as follows. For each assignment probability vector p,
e Uniformly randomly pick py,n, subjects from {i|p}(e) = p} and assign them to .
For each subsequent step k=1, ..., m,

e Step k: From the remaining n, — Ei;é pin, subjects in {i[p;(e) = p}, uniformly

randomly pick p;, n, subjects and assign them to ;.

I assume RCT to draw a deterministic treatment assignment by a specialization of the above
method assuming every subject i to have pj () = pFCT.

Suppose the experimenter is interested in the causal effect of each treatment on an out-
come Y;. Following the standard potential outcome framework for causal inference (Imbens
and Rubin| 2015)), let Y;(¢) denote subject i’s potential outcome that would be observed if
subject i receives treatment t. Let D; be the binary indicator that subject i is ex post
assigned to treatment ¢. The observed outcome is written as Y; = >, D;;Y;(t). While Y;(?)
is assumed to be fixed, D;; and Y; are random variables, the distributions of which depend
on the experimenter’s choice of an experimental design. Let Y = (Y;), D; = (Dy);, and
D = (D).

The experimenter would like to learn any parameter of interest 6 of the distribution
of potential outcomes Y;(t)’s, many of which are unobservable. Formally, # is any mapping
6 : R™(m+1) 5 R that maps each possible value of (Y;(¢)) into the corresponding value of the
parameter. For example, § may be the average treatment effect (ATE;) of treatment ¢ over

2im (Yi(t) = Yi(to))

n
a function only of observed outcomes and treatment assignments. Given any experimental

control %, . The experimenter estimates ¢ with an estimator é(Y, D),

design (pi), I say an estimator 6(Y, D) is simple if O(Y, D) can be written as

0(Y,D) = Z f(Yi, Di,pi) + Z Z thpp’((Npt))ﬂp(t)ﬂp’(t)

— Zi:pi:p DZt}/Z
oy Hpi=p)

Ny = Zi:pi:p D;; but not on individual Dit’s.ﬁ I say parameter 6 is unbiasedly estimable

for some function f, fi,(t) and weights ¢y,,y, which may depend on

24 More formally, f : R x D x P — R where D = {d € {0,1}""|>",d; = 1} and P = {p;|i = i1, ..., in}-
Gipp' N IPItm+1) 5 R for each t, p, and p’. T allow f and gtppr o use known elements of the experimental
design problem such as capacities ¢; and treatment assignment probabilities p;;. I do not allow é(Y, D) to
use unknown elements, especially potential outcomes.
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with experimental design p = (pir) and a simple estimator if there exists a simple estimator

~

0(Y, D) such that
E(0(Y, D)|(pa)) = 6,

where E(-|(pi)) is expectation with respect to the distribution of D;; induced by experimental
design (pir).

EXAM turns out to be as informative as RCT in terms of the set of parameters unbiasedly
estimable with each experimental design and a simple estimator. Throughout this section,

assume p;n, > 1 for all p and ¢.

Proposition 4 (Unbiased Estimability). If parameter 0 is unbiasedly estimable with RCT
pECT and a simple estimator, then 0 is also unbiasedly estimable with EXAM p,(¢) with any

¢ >0 and a simple estimator”|

Many key parameters, such as the average treatment effect, the treatment effect on the
treated, and the mean and variance of potential outcomes are known to be unbiasedly es-
timable with RCT and a simple estimator (see Appendix |A.2)) @ Proposition [4| implies that

these parameters are also unbiasedly estimable with EXAM.

Corollary 1. The average treatment effect, the treatment effect on the treated, and the mean

and variance of potential outcomes are unbiasedly estimable with EXAM.

5.1 Unbiased ATE Estimation with EXAM Data

[ use the average treatment effect (ATE) to illustrate the intuition for and implementation
of Proposition [ and Corollary [l Why is ATE unbiasedly estimable with EXAM? EXAM
makes all subjects share the same budget constraint. As a result, if subjects share the same
predicted effects and WTP, these subjects solve the same utility maximization problem and
purchase the same vector of treatment assignment probabilities. EXAM therefore produces
treatment assignment that is independent from (unconfounded by) potential outcomes con-

ditional on predicted effects and WTP, which are observable to the experimenter:

(Yi(t): L D;l(er, wit)s. (1)

25 On the other hand, EXAM and RCT are not comparable in terms of Blackwell’s order (Blackwell and
Girshick], [1954) in my finite sample framework. This contrasts to the large sample analysis by |Chassang et
al.| (2012), where they compare their Selective Trial and RCT in terms of Blackwell’s order.

26T define the treatment effect on the treated for experimental design (pi;) as

p( iz (Yil0) = Yi(to)) D
2oi= D | 1 1 1
variance of potential outcomes as - S (Vi) — p > Yi(t)? or — S (Vi) — - i Yi(t)?

both of which are unbiasedly estimable with RCT and a simple estimator.

1
|(pir)) while the mean of potential outcomes as EZ:;lYi(t). I define the
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With this conditional independence, EXAM fits into causal inference with stratified ex-
periments, selection-on-observables, and the propensity score, i.e., treatment assignment
probabilities conditional on observables (see [Imbens and Rubin| (2015) for an overview).
In particular, conditional independence implies that the same conditional independence
holds conditional on the propensity score (Imbens and Rubin| (2015) section 12.3), which

EXAM computes as pf(€) = (p};(€)); and again known to the econometrician:
(Yi(t)e L Dylp;(e). (2)

This conditionally independent treatment assignment allows the experimenter to unbiasedly
estimate the conditional average treatment effects of each t over ¢y conditional on observable

propensity scores p;(e),

> i Hpi(e) = p}(Yi(t) — Yi(to))
>im1 Hpi(e) = p}

which I denote by CATE,;. These conditional-on-the-propensity-score effects are a version
of Marginal Treatment Effects (Bjorklund and Moffitt, |1987; [Heckman and Vytlacil, 2005]).
Marginal Treatment Effects are therefore estimable with EXAM’s data”|

By summing up such marginal or conditional effects, the experimenter can also back out

for each p,

the (unconditional) ATE, the single most important causal object identified and estimated
by RCT. That is, with weights d, = n,/n, I use CATE,;’s to get ATE as follows:

> 6,CATE, = ATE,.
p

Importantly, the key conditional independence properties and hold regardless
of whether e; and w; coincide with the true treatment effects and WTP. In this sense,
like RCT, EXAM’s informational virtue is robust to any of the experimenter’s potential
misspecifications about predicted effects and WTP.@

2T To see this, as in [Heckman and Vytlacil (2005), focus on an experimental design problem with only
one treatment ¢; compared to the control ¢o. Given EXAM’s assignment probability pj, (e), let R; ~ U [0,1]
with R; 1L (Yi(to),Yi(t1)), Zi =1 — R;, and V; = 1 — pj; (e). Write the treatment assignment as

Dty = {Ri <pjy, ()} = {1 — R 2 1 = p, (6)} = {Zi = Vi}.

Note that E(1{Z; > V;}) = pj;, (¢) as desired. This model is a special case of Heckman-Vytlacil’s model
with local instrumental variable Z; because Z; is independent of (Y;(to),Y:(¢1), Vi) by construction while
Vi can be correlated with (Y;(t9),Yi(t1)). As a result, Heckman and Vytlacil (2005)’s method allows the
experimenter to identify Marginal Treatment Effects with EXAM’s data. |Chassang et al.| (2012) provide
a similar discussion about their Selective Trial idea. See also [Kowalski| (2016[); Mogstad and Torgovitsky
(2018)) for recent developments in the marginal treatment effect method.

%% On the other hand, the welfare optimality in Proposition [2| is welfare-relevant only if the experimenter
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The above estimability argument motivates a strategy to estimate ATE with EXAM’s
data. As a warm-up, focus on {i|p;(¢) = p}, the subpopulation of subjects with propensity

vector p, and consider this regression on the subpopulation:

tm

ifi = Oy + Z 6ptDit + €;.

t=t1

By the conditional independence property 1' OLS estimate Bpt from this regression is
unbiased for CAT' E), for each treatment ¢ # ¢y. I then aggregate the resulting estimates Bpt’s
into Zp 5p3pt, which I denote by B;k This B;f is a multinomial propensity score weighting
estimator that unbiasedly estimates the average treatment effect with its variance in an

analytical form.

Proposition 5 (Bias and Variance). Suppose that the data-generating experimental design
is EXAM p*(€) = (p,(€))i with any given e > 0. B is an unbiased estimator of the average

treatment effect. In particular,

S S S

ptto )
)
Pty DPioTp p

E(Bf|p*(e)) = ATE, and Var(5;|p* (e Z 52<

Zz pz (e) Y; (t)

where Y,(t) = is the mean of Y;(t) in the subpopulation with propensity p,
Tp
Diro—p(Yilt) = Yy (1))
Sy = ] r is the variance of Yi(t) in the subpopulation, and S5, =
n, —
Dt (o—p(Yi(t) = Yi(t') — (Y (t) — Y3 (t)))?
PilO=p . r g is the variance of Y;(t) — Y;(t') in the subpopula-
n, —
tion.

Alternatively, empirical researchers may prefer a single regression controlling for propen-

sity vectors:

_G+th zt+zctpzt ) + e, (3)

t=t1 t=t1
producing an alternative estimator b;. As verified in the appendix, b; is an unbiased estimator

of a differently weighted treatment effect:

> AwCATE,
ZP )\pt

predicts treatment effects and WTP well.

E(b;1p*(e) =

" with weights A\t = 0,pe(1 — pr). (4)
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Estimators like l;;“ and Bt* allow the experimenter to unbiasedly estimate key causal effects
with EXAM. See Angrist (1998)) for a related discussion about regression and weighting

estimators.

5.2 Power Comparison of EXAM and RCT

Does EXAM compete with RCT in terms of statistical efficiency in ATE estimation? With
RCT’s data, the most standard estimator of ATE of treatment ¢ over control ty is the
difference in the average outcome between subjects assigned to treatment ¢ and those assigned

to control tg:
sror _ 2 DiYe 35 DinyYi

' B Zz Dy Zz Dy, .
This BET is a special case of 8 when p3(€) = pf°T. By Proposition , therefore, BRCT is

unbiased for ATE with the following variance, confirming a classic result about RCT.

Corollary 2 (Imbens and Rubin| (2015)’s Theorem 6.2).

JRCT | RCT srer mery St Sh St
E(BECT|pRCTY = ATE, and V(BECT|pRCT) = 2L 4 Zho _ Tt

where S? = Zi(yig)__ly@)y and SZ, = > (Yi(t) — YQ(t;z : 1(Y(t) - Y(t’)))z'

Proposition [5] and Corollary [2] imply that EXAM may produce more precise ATE es-
timates (V (5¢[p*(€)) < V(BECT|pRCT)). Such a situation occurs if potential outcomes are
well correlated (positively or negatively) with EXAM’s treatment assignment probabilities,

as illustrated by the following example.

Example 1. Suppose there is only one treatment ¢, n = 40, and ¢;, = ¢;;, = 20. Every
subject has Y;(tp) = 1. The subjects are divided into four groups A, B, C, and D of the same
size (10) based on their potential outcomes Y;(t1). Let Y;(t1) = 1,2,3, and 4 for anybody in
group A, B,C, and D, respectively. Assume the experimenter imperfectly predicts treatment
effects: e;;; = 0 for every i in group A or B while e;,; = 2 for group C or D. Let wy, > 0
for all subjects. EXAM with € < .2 gives the following treatment assignment probabilities?}
p;;,(€) = 0.2 for every i in groups A and B while pj, (¢) = 0.8 for groups C' and D. Under
RCT, pﬁCT = pﬁCT = 20/40 = 0.5 for all subjects. Applying Proposition |5/ and Corollary

15b

29 EXAM outputs these treatment assignment probabilities if I set v = — g B, = bb, and By, = 0 given

any budget b.
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to this example, I have
V(Bi[p*(e)) = 0.013... < 0.032... = V(BECT|pRCT).

This example makes clear that information production in EXAM is not a diluted version
of that in RCT. EXAM’s ATE estimation is not only unbiased but also potentially more
precise than RCT’s; this is true even if the experimenter’s prediction of treatment effects
is imperfect. Appendix provides further support for this point by showing it remains
true in an asymptotic framework.

In general, however, the precision comparison of EXAM and RCT is ambiguous. There
are other examples with V(BECT|pRCT) < V(B:|p*(€)); one such example with a binary
treatment ¢; vs. o is where pii“" = pfiT = 0.5 for every i, p*(€) # p™“?, and there is no
correlation between potential outcomes and p*(e). This ambiguity is common in precision
comparisons of experimental designs. This motivates me to empirically compare EXAM and
RCT’s estimation precision. The empirical application also allows me to verify and quantify

the welfare, incentive, and unbiasedness properties of EXAM.

6 Empirical Application

6.1 Overview

My empirical test bed for EXAM is an application to a spring protection experiment in
Kenya. Waterborne diseases, especially diarrhea, remain the second leading cause of death
among children, comprising about 17% of child deaths under age five (about 1.5 million
deaths each year).lﬂ The only quantitative United Nations Millennium Development Goal
is in terms of “the proportion of the population without sustainable access to safe drinking
water and basic sanitation,” such as protected springs.[if] Yet there is controversy about
spring protection’s health impacts. Experts argue that improving source water quality may
have only limited effects since, for example, water is likely recontaminated in transport and
storage. These arguments were made in the absence of any randomized experiment.

This controversy motivated Kremer et al.| (2011)) to analyze randomized spring protec-
tion conducted by an NGO (International Children Support) in Kenya in the mid 2000s.

30 See UNICEF and WHO'’s joint document “Diarrhoea: Why Children Are Still Dying and What Can be
Done,” at http://apps.who.int/iris/bitstream/10665/44174/1/9789241598415_eng.pdf, retrieved in
March 2018.

31 See http://www.un.org/millenniumgoals/, retrieved in March 2018. Spring protection encases the
source of a natural spring in concrete, allowing water to flow from a pipe rather than seeping from the
ground. In this way, the water source is protected from human or animal waste.
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This experiment randomly selected springs to receive protection from the universe of 200
unprotected springs. The experimenter selected at baseline and followed afterward a rep-
resentative sample of about 1500 households that regularly used some of the 200 springs
before the experiment; these households are experimental subjects. |Kremer et al. (2011))
find that spring protection substantially improves source water quality and is moderately
effective at improving household water quality after some recontamination. Diarrhea among
children in treatment households falls by about a quarter of the baseline level. I call this real
experiment ‘Kremer et al.| (2011)’s experiment” and distinguish it from EXAM and RCT as
formal concepts in my model.

Kremer et al.| (2011)’s experiment provides an ideal setup for empirically evaluating
EXAM. Their experiment is about a high-stakes treatment and produces rich data that
allows me to measure not only treatment effects but also subjects” WTP for the treatment.
I consolidate Kremer et al. (2011))’s experimental data and my methodological framework
to empirically evaluate EXAM. With the language and notation of my model, experimental
subjects are households in [Kremer et al. (2011)’s sample. The protection of the spring each
household uses at baseline is a single treatment ¢; while no protection is the control ;. Each
household i’'s WTP for better water access t; is denoted by w;,, which I estimate below.
I also estimate the heterogeneous treatment effect e;,; of spring protection ¢; on household
1’s child diarrhea outcome. Using this embedding, I implement EXAM and compare it with
RCT to see which is a better design of a hypothetical future experiment about the spring

protection treatment.

6.2 Treatment Effects and WTP
Treatment Effects

For executing EXAM, I need to measure w;;, and e;; and substitute them into EXAM. I
estimate heterogeneous treatment effects e;,; of access to better water in a similar way as
Kremer et al.| (2011). This treatment effect estimation exploits additional details of Kremer
et al.| (2011))’s experiment. The experimenter NGO aspired to eventually protect all the 200
springs but planned for the protection intervention to be phased in over four years due to
financial and administrative constraints. In each round, a subset of springs were randomly
picked to be protected. Figure I in Kremer et al.|(2011]) details the timeline of the experiment.
This experimental scheme legitimizes the following OLS regression at the (child 4, spring j,

survey round t)-level:
Yiit = (01 + 02X;)Tje + o + o + wij + €, (5)
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where Y;;; is the binary outcome indicating that child ¢ in a household drawing water from
spring j at baseline has diarrhea in survey round ¢. X; contains covariates of child 7’s house-
hold (baseline latrine or sanitation density, diarrhea prevention knowledge score, mother’s
years of education). T}; is the binary treatment indicating that spring j is treated in sur-
vey round t. a;,aq, and u;; are fixed effects. The treatment effect is ¢1 + ¢2X; and is
heterogeneous across subjects with different covariates Xj;.

Estimates from the OLS regression are in Table |3l The average treatment effect is
about 4.5% absolute reduction or about 25% relative reduction in the diarrhea outcome Y.
Households with higher scores in diarrhea prevention knowledge or mother education tend to
have better treatment effects, although the relatively large standard errors argue for caution
in interpretation. This heterogeneity may be because such households are more likely to
prefer and use protected springs, as suggested by a revealed preference analysis below.

I then use the OLS estimates to predict the treatment effect for each household i with
€10 = (ﬁl + QEQXZ‘, where le and gZA>2 are OLS estimates of ¢; and ¢, respectively. [Kremer et
al.| (2011)’s experiment randomized 7T}, and gives its coefficient estimate é,,; an interpreta-
tion as a causal effect. Estimated treatment effects é;,; exhibit significant heterogeneity, as
illustrated in Figure [I] Panel a.

WTP

I estimate heterogeneous WTP w;;, for the treatment as follows. In the experimental target
area, each household draws water from a water source the household chooses among multiple
sources in the neighborhood. This fact motivates a discrete choice model of households’ water
source choices, in which households trade off water quality against other source characteristics
such as proximity. This model produces revealed preference estimates of household WTP for
the spring protection treatment as a spring characteristic, which is identified by exogenous
variation in the treatment generated by |[Kremer et al. (2011))’s experiment.

Specifically, I use a mixed or random-coefficient logit model (Train| (2003), chapter 6):
Uije = (Bi + 11.Xi)Tje — ¢iDij + 65 + €je, (6)

where U, is household 4’s utility from source j in survey round ¢ and Dj;; is household
i’s roundtrip distance to spring j (measured in terms of minutes of walking time). f; and
¢; are random preference coefficients assumed to be distributed according to normal and
triangular distributions, respectively, with unknown parameters to be estimated. I restrict
the triangular distribution of ¢; to have the same mean and standard deviation, making sure

every household prefers proximity. ¢; are spring-type fixed effects in the spirit of Berry et
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al| (1995) and attempt to capture the average preference for potentially unobserved spring
type characteristics other than treatment 7}, and distance D;;. € is logit utility shocks iid
according to the type I extreme value distribution with usual variance normalization to 72/6.
[ estimate the model with data on households’ spring choices (in the final survey round after
random spring protection) and a standard maximum simulated likelihood method (Train
(2003), chapter 10), which I detail in Appendix [A.3.3]

The mixed logit preference estimates are in Table [4 Households have significant distaste
for distance and significant preferences for protected treatment springs (other characteristics
being equal). Not surprisingly, households with better diarrhea prevention knowledge scores
or mother education tend to have stronger revealed preferences for the spring protection
treatment. This heterogeneity is expected if such households are more conscious of water
qualityf?

I then exploit the mixed logit estimates to estimate household i’'s WTP for treatment ¢,
as Wy, = BAZ + A1 X;, where BAZ and 4; are mixed logit estimates of ; and =, respectively.

I bootstrap the random coefficient BZ from its estimated distribution. The identification of

/

wj,, is helped by Kremer et al| (2011))’s experimental variation in protection treatment 7},

since otherwise Tj; is likely correlated with unobserved spring characteristics €;;;, making it
impossible to identify the WTP for spring protection alone.

Since 1wy, is in an elusive utility unit, I convert it into a more easily interpreted measure
/
it

the mixed logit estimate of ¢; (the distaste coefficient on distance). Again, I bootstrap the

in terms of time cost of water collection. To do that, I first compute W}, /¢;, where ¢; is
random coefficient ¢; from its estimated distribution. I then multiply it by each household’s
self-reported time cost of traveling for a unit of distance. This procedure gives me a time
cost measure of WTP for the treatment, w;,. This w;, is measured by workdays utility-
equivalent to 1y, .

Estimated WTP w;, is in Figure [I| Panel b, showing the histogram of simulated values
of w;;,. The median WTP is about 25 workday-equivalent with substantial heterogeneity.
While both WTP 1w, and treatment effects é;,; show sizable heterogeneity, there turns out
to be only limited correlation between the two. This fact can be seen in the joint density plot
in Figure (1| Panel c, where there is a positive correlation between WTP w;;, and treatment
effects é;,;, but the magnitude of the correlation is small (R? is lower than 0.12 when I
regress one on the other). This demonstrates that WTP w;, and treatment effects é;;

contain different types of information about subject welfare, suggesting the importance of

32 Tables |3 and 4] show slight differences from Kremer et al.’s estimates. It is because I include the same
set of a small number of covariate interactions both in the OLS and mixed logit models while Kremer et al.
include different sets of covariate interactions and other controls in their models.
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respecting both WTP and predicted effects separately. This is what EXAM attempts to do,

as I explain next.

6.3 EXAM vs RCT

Now imagine somebody is planning a new experiment for further investigating the same
spring protection treatment. What experimental design should she use? Specifically, which is
better between RCT and EXAM? A full-fledged comparison of experimental designs requires
a meta-experiment that randomly assigns different designs to many experimental studies. To
circumvent the difficulty with such a meta-experiment, I resort to an alternative approach
exploiting the above WTP and treatment effect estimates.

My approach is to use the estimated WTP w;, and predicted effects é;,; to simulate
EXAM and compare EXAM with RCT in terms of welfare, information, and incentive prop-
erties. Throughout, I fix the set of subjects and treatments as in |[Kremer et al.| (2011)’s
experiment. That is, there are 1540 households as subjects to be assigned either to the
single water source protection treatment ¢; or the control #y. Set the treatment capacity c;,
to be the number of households assigned to the treatment ¢; in Kremer et al.’s experiment
(by the end of their survey period). I set the bound parameter € to be 0.2; I investigate how
the results change under another value of € at the end. I fix predicted effects e;; to their
point estimate é;,;.

I simulate WTP with parametric bootstrap from the estimated distribution of w;,, i.e.,
the estimated mixed logit model (6)) (conditional on each household’s fixed characteristics
X;). In this WTP simulation, I require all families with the same characteristics X; to share
the same WTP. After simulating w;,, I compute treatment assignment probabilities pf,(€)
by running EXAM on the bootstrapped data along with other fixed parameters such as the
treatment capacity.ﬁ The algorithm I use for executing EXAM is described in Appendix
A3

The simulation process for RCT is analogous except that the treatment assignment prob-
ability is fixed at pﬁCT = ¢, /n = .43. Note that this RCT is a hypothetical experimental
design in line with my Definition (1| and different from [Kremer et al. (2011)’s experiment

involving additional real-world complications.

33 To make treatment assignment probabilities take a modest number of values, I coarsen the values of
WTP and predicted effects. Specifically, for each simulation and each of WTP and predicted effects, I first
group its values into four quartiles and then replace each household’s value by the median value within the
quantile group to which the household belongs.
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Welfare

I start with evaluating EXAM’s welfare performance. Use EXAM’s treatment assignment

probabilities pj, (€) to calculate two welfare measures for each household i:
wi = Zp;‘t(e)wit and e = prt(e)eti.
t ¢

w; and e are empirical analogues of the two ex ante welfare measures in my theoretical
welfare analysis (Proposition [2)).

I find EXAM to improve on RCT in terms of the welfare measures w; and e, a result
reported in Figure 2} The figure draws the distribution of w; and e} over households and
1000 bootstrap samples. Among other things, the mean of average WTP w; for assigned
treatments is about 89% or 9.4 workday-equivalent utilities higher under EXAM than it is
under RCT. Another interpretation of this WTP improvement is about 37% of the average
WTP for the treatment (about 25 workdays). Similarly, EXAM improves the mean of e}
by about 0.8% absolute reduction or 42% reduction relative to RCT’s level. This predicted
effect benefit amounts to about 17% of the average treatment effect of the spring protection
found by Kremer et al|(2011) and Table 3] Kolmogorov-Smirnov tests find the EXAM and
RCT distributions to be significantly different both for w; and e;. This suggests EXAM’s

welfare optimality (Proposition [2)) is quantitatively and empirically relevant.

Information

Data from EXAM also allows me to obtain more or less the same econometric conclusion
about treatment effects as RCT. To see this, I augment the above counterfactual simulation
with average treatment effect estimation as follows: I first simulate wy,, run EXAM to
get treatment assignment probabilities pj(€), and use pf(e) to draw a final deterministic
treatment assignment, denoted by a binary indicator D; indicating 7 is ex post assigned to
t1. I then simulate counterfactual or predicted outcome Y; under D; by simulating the OLS

model I estimate in the last section:
Y, = (gz@l + $2Xi)Di + &; + (average of &; across all t) + (average of ;; across all j),

where objects with a hat mean estimates of the corresponding parameters in regression
. I take the average of &’s and ;;’s to adapt regression at the (i, 7,t)-level to my
counterfactual simulation setting at the household-i-level. Note that the above expression is

the definition of Y;, not a regression. Finally, I use the above simulated Y; and D; to estimate
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treatment effects with b* from this OLS regression:
Yi=a+0bD; + Cpftl(E) + €,

where I control for propensity score pj; (€) to make treatment assignment D; conditionally
random. This regression is a stripped-down version of the regression strategy in Section
. I also implement the other propensity-score-weighting estimator B*, again following the
description in Section 5] The procedure for RCT is analogous except that the treatment
assignment probability is fixed at pF¢T.

Program evaluation with EXAM turns out to be as unbiased and precise as that with
RCT. Figure [3| plots the distribution of the resulting treatment effect estimates b* and (%
over 1000 simulations. In line with Propositions [4| and , the means of b* and B* for EXAM
are indistinguishable from those under RCT. Both experimental designs successfully recover
Kremer et al.| (2011))’s average treatment effect estimate (4.5% reduction in diarrhea; recall
column 1 in Table [3)).

Perhaps more importantly, the distributions of b* and 5’* for EXAM have similar stan-
dard deviations as those for RCT. This means that the two experimental designs produce
similar exact, finite-sample standard errors in their estimates b* and B* Variations of this
observation are in Figure , which shows the distribution of p values for the estimates b*.
The four panels use p values based on exact, non-robust, robust, and /Abadie et al. (2017))’s
finite population causal standard errors, respectively, where the exact standard error means
the standard deviation in the distribution of b* in Figure . RCT produces slightly smaller
p values than EXAM, but the median p value is about 0.03 for RCT and about 0.04 for
EXAM. This means that both EXAM and RCT detect a significant average treatment effect
for a majority of cases. Overall, EXAM appears to succeed in its informational mission of
eliminating selection bias and recovering ATE precisely enough. EXAM is thus as good as

RCT at contributing to the knowledge and welfare of the society outside the experiment.

Incentive

EXAM’s WTP benefits can be regarded as welfare-relevant only if EXAM provides subjects
with incentives to reveal their true WTP. I conclude my empirical analysis with an inves-
tigation of the incentive compatibility of EXAM. I repeat the following procedure many
times: As before, I simulate wy, and run EXAM to get treatment assignment probabilities
pi(€). I then randomly pick one subject j as a WTP manipulator and one potential WTP
manipulation w’, by j. I choose the manipulator j uniformly randomly among all sub-
jects. The manipulation w’, is either from N(wj,, 100), N (wjq,,1000), U(w;q,, w;r, + 100),

Jt1
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or U(wji, — 100, w;;,) where wj, is j’s true WTP. These computational scenarios cover dif-
ferent types of misreporting, that is, both over-reporting and under-reporting with different
magnitudes. I run EXAM on the simulated data but with the WTP manipulation w/, to
get treatment assignment probabilities pl,(¢). I finally compute the true WTP gain from the

. : ;o
manipulation wy, :

Aw = Zp