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Abstract 

Randomized Controlled Trials (RCTs) enroll hundreds of millions of subjects and in-

volve many human lives. To improve subjects’ welfare, I propose an alternative design 

of RCTs that I call Experiment-as-Market (EXAM). EXAM Pareto optimally randomly 

assigns each treatment to subjects predicted to experience better treatment effects or 

to subjects with stronger preferences for the treatment. EXAM is also asymptotically 

incentive compatible for preference elicitation. Finally, EXAM unbiasedly estimates 

any causal effect estimable with standard RCTs. I quantify the welfare, incentive, and 

information properties by applying EXAM to a water cleaning experiment in Kenya 

(Kremer et al., 2011). Compared to standard RCTs, EXAM substantially improves 

subjects’ predicted well-being while reaching similar treatment effect estimates with 

similar precision. 
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1 Introduction 

Today is the golden age of Randomized Controlled Trials (RCTs; equivalently, randomized 

experiments or A/B tests). RCTs started as safety and efficacy tests of farming and medical 

treatments (Gaw, 2009), but they have grown to become the society-wide standard of evi-

dence. RCTs are widespread in business and politics (Siroker and Koomen, 2013), as well 

as public policy (Gueron and Rolston, 2013), the social sciences (Duflo et al., 2007; Gerber 

and Green, 2012), and engineering. 

RCTs are high-stakes on multiple fronts. Firstly, a large number of individuals partici-

pate in RCTs. For example, I find that over 360 million patients and 22 million individuals 

participated in registered clinical trials and social RCTs, respectively, during 2007-17. For 

such a large subject pool, many RCTs randomize high-stakes and even life-or-death treat-

ment. For instance, in a glioblastoma therapy trial, the five-year death rate of glioblastoma 

patients is 97% in the control group but only 88% in the treatment group (Stupp et al., 

2009). In expectation, therefore, the lives of up to 9% of its 573 participants depend on who 

receives treatments. Social RCTs also randomize critical treatment such as basic income1 , 

high-wage job offers (Dal Bó et al., 2013), and HIV testing (Angelucci and Bennett, 2017). 

This high-stakes nature even prompted some RCT participants to sue their experimenters.2 

RCTs thus determine the fate of numerous people, giving rise to an ethical dilemma: 

How can a physician committed to doing what he thinks is best for each patient 

tell a woman with breast cancer that he is choosing her treatment by something 

like a coin toss? How can he give up the option to make changes in treatment 

according to the patient’s responses? (“Patients’ Preferences in Randomized Clin-

ical Trials” by physician and prior editor-in-chief of the New England Journal of 

Medicine, Marcia Angell) 

This paper develops and implements an experimental design that improves subject wel-

fare while unbiasedly and precisely estimating treatment effects. I start with defining experi-

mental designs as procedures to determine each subject’s treatment assignment probabilities 

based on data about two measures of welfare: (a) the predicted treatment effect of each 

treatment on each subject and (b) each subject’s willingness-to-pay (WTP) for each treat-

ment. These complementary welfare measures are allowed to be freely heterogeneous and 
1 “8 basic income experiments to watch out for in 2017,” at http://www.businessinsider.com/ 

basic-income-experiments-in-2017-2017-1/#finland-2, retrieved in March 2018. 
2 See, for example, Gelsinger v. University of Pennsylvania about a gene-therapy clin-

ical trial and Grimes v. Kennedy-Krieger Institute about a social experiment that ran-
domly assigned lead reduction methods to housings. For details, see https://www.sskrplaw. 
com/gelsinger-v-university-of-pennsylvania.html and https://www.courtlistener.com/opinion/ 
2386331/grimes-v-kennedy-krieger-institute-inc/, accessed in March 2018. 
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correlated with each other. In practice, the experimenter may estimate them from prior 

experimental or observational data or ask subjects to self-report them, especially WTP. 

I propose an experimental design that I call Experiment-as-Market (EXAM). I choose this 

name because EXAM is an experimental design based on an imaginary centralized market, 

inspired by the long-standing idea of competitive market equilibrium from equal incomes 

(Friedman, 1962; Varian, 1974; Hylland and Zeckhauser, 1979; Budish et al., 2013; He et 

al., 2017). EXAM uses this artificial market to Pareto optimally incorporate both predicted 

effects and WTP, extending prior pioneering designs that respect predicted effects or WTP, 

but not both (Wei and Durham, 1978; Zelen, 1979; Angrist and Imbens, 1991; Chassang et 

al., 2012). 

Specifically, EXAM randomly assigns treatments to subjects via the following hypotheti-

cal market created in the experimenter’s computer. EXAM first endows each subject with a 

common artificial budget and lets her use the budget to purchase the most preferred (high-

est WTP) bundle of treatment assignment probabilities given their prices. The prices are 

personalized so that each treatment is cheaper for subjects with better predicted effects of 

the treatment. EXAM computes its treatment assignment probabilities as what subjects 

demand at market clearing prices, where subjects’ aggregate demand for each treatment 

is balanced with its supply or capacity (assumed to be exogenously given). EXAM finally 

requires every subject to be assigned to every treatment with a positive probability.3 

This virtual-market construction gives EXAM nice welfare and incentive properties. 

EXAM has a Pareto optimality property in that no other design makes every subject better-

off in terms of expected predicted effects of and WTP for assigned treatment. EXAM also 

allows the experimenter to elicit WTP in an asymptotically incentive compatible way. That 

is, when the experimenter asks subjects to self-report their WTP to be used by EXAM, 

every subject’s optimal choice is to report her true WTP, at least for large experiments.4 

Importantly, EXAM also allows the experimenter to unbiasedly estimate the same treat-

ment effects as standard RCTs do (in a finite sample and for a wide class of treatment 

effect parameters). To see this, note that EXAM gives everybody the same budget. If 

subjects share the same predicted effects and WTP, therefore, the subjects purchase the 

same distribution of treatment assignment. In other words, EXAM’s treatment assignment 

is random (independent from potential outcomes) conditional on observable predicted effects 

and WTP. As in causal inference with stratified experiments and selection-on-observables 

EXAM is executable even without WTP and predicted effects (when WTP and predicted effects are 
unknown or irrelevant to the experimenter). When the experimenter uses neither WTP nor predicted effects, 
EXAM reduces to the standard RCT. EXAM therefore nests the standard RCT. 

4 The incentive analysis owes much to studies on the incentive compatibility of competitive equilibria and 
experimental designs (Jackson, 1992; Chassang et al., 2012; Azevedo and Budish, 2017; He et al., 2017). 
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(Imbens and Rubin, 2015), the conditionally independent treatment assignment allows the 

experimenter to unbiasedly estimate the average treatment effects conditional on observables. 

By integrating such conditional effects, EXAM can unbiasedly estimate the (unconditional) 

average treatment effect and other effects. This informational virtue materializes regardless 

of whether the experimenter correctly predicts treatment effects and WTP.5 

I also characterize the statistical efficiency in EXAM’s average treatment effect estima-

tion. EXAM’s standard error is potentially smaller than RCTs’, but in general, the standard 

error comparison of EXAM and a typical RCT is ambiguous. This motivates an empirical 

comparison of the two designs, which also allows me to verify and quantify the other welfare, 

incentive, and unbiasedness properties. 

I apply EXAM to data from a water cleaning experiment in Kenya (Kremer et al., 2011). 

Compared to RCTs, EXAM turns out to substantially improve participating households’ 

predicted welfare. Here, welfare is measured by predicted effects of clean water on child 

diarrhea and revealed WTP for water cleaning. EXAM is also found to almost always 

incentivize subjects to report their true WTP. Finally, EXAM’s data produces treatment 

effect estimates and standard errors similar to those from RCTs. EXAM therefore produces 

as valuable information as RCTs do for the whole society and future generations.6 

Taken together, EXAM sheds light on a way economic thinking can “facilitate the ad-

vancement and use of complex adaptive (...) and other novel clinical trial designs,” a per-

formance goal by the federal Food and Drug Administration (FDA) for 2018-2022.7 Experi-

mental design is a potentially life-saving application of economic market design (Roth, 2015). 

More concretely, my analysis shows how best to use predicted treatment effects for experi-

mental design. The use of predicted effects for new experiments is established in medicine 

(Food and Drug Administration, 2010) and business (White, 2012), and emerging in the 

social sciences (Hahn et al., 2011) as important interventions such as deworming and con-

ditional cash transfers ask for repeated evaluations. EXAM combines the predicted-effects 

consideration with another idea of respecting subjects’ WTP for treatments. 

After a review of related experimental designs, Section 2 outlines my motivation by pro-

viding facts about the impact of RCTs on participant welfare. Section 3 develops the EXAM 

experimental design, and Sections 4 shows its welfare and incentive properties. Section 5 

5 This experimental value of EXAM and competitive equilibrium from equal incomes echoes Abdulka-
diroğlu et al. (2017) and Narita (2016), who highlight the informational values of a different sort of mechanism 
design (centralized school choice with lotteries). 

6 Along the way, I develop a computer program to implement EXAM with little computational cost. A 
single execution of EXAM on data with 1540 subjects and 2 treatments takes only 6 minutes on average 
with a standard personal computer. 

7 See https://www.fda.gov/downloads/forindustry/userfees/prescriptiondruguserfee/ 
ucm511438.pdf, retrieved in March 2018 
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studies the experimental information embedded in EXAM and explains how to use data 

from EXAM for causal inference. An empirical application is in Section 6. Finally, Section 

7 summarizes my findings, discusses their limitations, and outlines future directions. Proofs 

are in Appendix A.2. 

1.1 Comparison with Existing Designs 

Classical Experimental Design 

The traditional experimental design literature (Cox and Cochran (1992), Athey and Imbens 

(2017) Section 7) is as old as the very concept of RCTs. This literature focuses on how to 

design experiments for maximizing information measured by the power of testing the null 

hypothesis of no treatment effect and other measures. This focus on information continues 

in much of the modern literature on sequential and adaptive experimental designs (Hahn et 

al., 2011). My interest lies more in ethics and welfare. 

Preference- and Response-adaptive Designs 

With its interest in subject well-being measured by WTP and predicted effects, EXAM is 

closer to younger and smaller strands of the literature on preference- and response-adaptive 

experimental designs. Preference-adaptive designs reflect subject preferences into treatment 

assignment probabilities. For example, Randomized Consent or Preference Trials (originally 

proposed by Zelen (1979) and further advocated by Angrist and Imbens (1991)) randomize 

subjects into two groups. In one group, subjects are allowed to choose the treatment or 

the control based on their preferences. All subjects in the other group are assigned to the 

control. 

Selective Trials by Chassang et al. (2012, 2015) are more general preference-adaptive 

designs that let the treatment assignment probability increase in the WTP for the treatment. 

See also Björklund (1988) for a related experimental design proposal. Other examples of 

preference-adaptive designs are development economics RCTs that elicit and use subject 

preferences for treatment (Ashraf et al., 2006; Cohen and Dupas, 2010; Ashraf et al., 2010; 

Devoto et al., 2012; Dupas, 2014). Many of their designs are preference adaptive. 

In complementary response-adaptive designs (reviewed by Hu and Rosenberger (2006) 

and Food and Drug Administration (2010)), the experimenter incorporates predicted treat-

ment effects into treatment assignment probabilities. For example, Play-the-Winner Rules 

(Zelen, 1969; Wei and Durham, 1978) more likely assign a treatment to patients predicted 

to have better treatment effects.8 

The treatment assignment literature in econometrics (Manski, 2008) and medicine (Chakraborty and 
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Building upon these prior ideas, EXAM attempts to integrate preference- and response-

adaptive designs into a unified design. With help from economic theory and causal infer-

ence, EXAM is formally shown to strike an optimal balance between WTP and predicted 

effects without compromising incentive compatibility and experimental information. EXAM 

thereby extends existing preference- and response-adaptive designs: If the experimenter 

shuts down WTP consideration by assuming constant WTP, EXAM simplifies to a Play-the-

Winner Rule. Similarly, EXAM reduces to a Consent or Selective Trial if the experimenter 

ignores predicted effects and uses constant predicted effects. 

Multi-Armed Bandit Algorithms 

EXAM shares much of its spirit with Multi-Armed Bandit (MAB) algorithms in computer 

science, machine learning, and statistics (Bubeck and Cesa-Bianchi, 2012): Both MAB and 

EXAM attempt to strike a balance between exploration (information) and exploitation (sub-

ject or experimenter welfare). MAB algorithms are popular in the web industry, especially 

for online ads, news, and recommendations (White, 2012). Among the many differences 

between MAB and EXAM, MAB mostly ignores incentive issues. In contrast, EXAM is 

formally and empirically shown to be nearly incentive compatible. 

Clinical Trial Practices and Regulations 

Clinical trial practitioners and regulators have long recognized ethical concerns with RCTs, 

as highlighted in Marcia Angell’s quote in the introduction. Their concerns resulted in 

regulations and practices that safeguard patients from excessive experimentation. Primary 

examples are informed consent, a “stopping rule” that requires a sequential clinical trial 

to terminate if it becomes clear that its treatment is sufficiently better or worse than the 

control (Friedman et al. (1998) chapters 2 and 16), and a “randomized phase-in” design 

that assigns everybody to the treatment with randomized timing (Duflo et al. (2007) section 

3.3.2). EXAM complements these existing practices by providing guidance about how to 

specify treatment assignment probabilities conditional on deciding to conduct a trial at a 

particular point in time and having a pool of subjects agreeing to participate in the trial. 

Moodie, 2013) attempts a related but distinct task of using experimental data to optimally assign treatment 
to maximize welfare alone. See also related biostatistics developments on optimal dynamic treatment regimes 
by Murphy (2003) and Robins et al. (2008) among others. 
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2 Why Subject Welfare? 

My goal is to design an experiment with an emphasis on subject welfare. Why should I 

study subject well-being? This section provides normative and practical reasons. 

Normative Considerations 

First, RCTs involve a large number of subjects. I assemble data on clinical trials registered 

in the WHO International Clinical Trials Registry Platform (ICTRP).9 ICTRP is the largest 

international clinical trial registry and subsumes domestic platforms like ClinicalTrials.gov 

for the US.10 Table 1 Panel a shows that the sum of the sample sizes of trials registered there 

is over 360 million for 2007-2017. As for social and economic RCTs, I scraped the American 

Economic Association’s registry to find the sum of sample sizes of registered RCTs amounts 

to above 22 million for the last decade (Table 1 Panel b).11 

For such a large subject population, RCTs frequently randomize high-stakes treatment. 

The high-stakes and occasionally life-threatening nature of many RCTs is highlighted by 

examples in Table 2. In the first clinical trial (row i in Panel a), for example, a cholesterol-

lowering drug treatment was found to lower the 5-year death rate of heart disease patients 

by about 30% relative to the baseline death rate in the control group. Other clinical trials in 

Table 2 Panel a also report significant impacts on survival and other crucial outcomes.12 As 

exemplified in Table 2 Panel b, social and economic RCTs also randomize treatment such as 

cash transfers, health insurance, HIV testing, and police patrol, as well as other numerous 

interventions related to childhood development, education, labor, and public finance (Fryer, 

2017; Rothstein and von Wachter, 2017). As expected, these treatments are often found to 

have profound treatment effects. 

9 http://www.who.int/ictrp/en/, retrieved in March 2018. 
10 https://clinicaltrials.gov, retrieved in March 2018. 
11 More detailed statistics are in Appendix Tables A.1-A.6. It is important to note that the figures 

in Table 1 are likely to underestimate the total scale of the RCT landscape. Many countries (such as 
Australia and Japan) do not legally require clinical trials to register (as of March 2018). Even when trials 
are required to register, the expected fine for failing to do so is often negligible compared to the total 
trial cost; see Stat News’ article, “Failure to report: A STAT investigation of clinical trials reporting,” 
at https://www.statnews.com/2015/12/13/clinical-trials-investigation/, retrieved in March 2018. 
As a consequence of these regulatory loopholes, there is likely a “dark pool” of clinical trials never reflected in 
any public database like ICTRP (Goldacre, 2014). Consistent with this hypothesis, as legal and institutional 
pressures for trial registration mount, the annual numbers of registered trials and subjects are rapidly growing 
(about 14 million in 2007 vs. 72 million in 2016 for the number of subjects; see Appendix Figure A.1). This 
means that these figures will likely be larger in the next decade. 

12 The medical ethics literature reviews other examples (Shamoo and Resnik (2009) chapters 12 and 13). 
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Practical Considerations 

Practical considerations also motivate a care for subject welfare. The successful implemen-

tation of any RCT depends on subject choices, including whether subjects participate in the 

RCT, whether subjects take up and use the assigned treatment, and whether subjects stay 

in contact in a follow-up period. The RCT produces useful information only if participants 

are active in each step. This prerequisite is hard to achieve, however. RCTs often suffer from 

subject indifference or fear in the form of non-participation, non-compliance, and dropouts 

before, during, and after experiments (Friedman et al. (1998) chapters 10 and 14, Duflo et 

al. (2007) sections 4.3 and 6.4, Glennerster (2017) sections 2.1 and 2.2). 

A welfare-conscious experimental design could alleviate non-participation, non-compliance, 

and dropouts. Indeed, King et al. (2005) provide a clinical trial meta-analysis suggesting that 

incorporating subject preferences makes subject recruitment easier. In a range of economet-

ric and theoretical models, welfare-enhancing treatment assignment is predicted to facilitate 

compliance with treatment assignment (Björklund and Moffitt, 1987; Heckman and Vytlacil, 

2005; Chan and Hamilton, 2006). Chan and Hamilton (2006) use AIDS trial data to find 

that better-off subjects experiencing better treatment effects are less likely to drop out.13 

Finally, ethical experimental designs would ease collaboration with partner governments 

and companies that may have an ethical and reputational concern with involvement in RCTs 

(Glennerster (2017) section 1). 

3 Experiment-as-Market (EXAM) 

3.1 Framework 

The normative and practical importance of subject well-being prompts me to design an 

experiment that balances subject welfare with experimental information. An experimental 

design problem consists of: 

• Experimental subjects i1, ..., in. 

• Experimental treatments t0, t1, ..., tm where t0 is a placebo or control. 

13 In an effort to maximize the treatment take-up rate and minimize attrition, many field experiments 
start with an expression-of-interest survey before randomization and recruit only survey respondents who 
express strong interest. This recruitment practice causes external validity concerns. These concerns may 
also be alleviated by replacing the experimenter’s discretionary selective recruitment with an experimental 
design respecting subject welfare in a rule-based way. See also Hull (2018) and references therein for other 
survey designs and analysis methods to deal with attrition. 
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• Each subject i’s preference or WTP wit ∈ R for treatment t where wit ≥ wit0 means 

subject i weakly prefers treatment t over t0 . Let wi ≡ (wit)t. 

• Each treatment t’s predicted treatment effect eti ∈ R for subject i where eti ≥ et0i 
means treatment t is predicted to have a weakly better effect than t0 for subject i. 

When multiple outcomes matter, eti can be set to the predicted effect on a known 

function of these outcomes. Let ei ≡ (eti)t. 14 

I normalize eti and wit by assuming et0i = wit0 = 0 for every subject i. eti and wit 

are therefore the predicted effect of t and WTP for t, respectively, relative to the control 

t0. This normalization is without loss of generality because only differences in WTP and 

predicted effects matter for subject welfare from treatments t0, ..., tm. Every experimental 

design discussed below produces the same assignment probabilities with and without the 

normalization. 

I use eti and wit as complementary welfare measures, one outcome- or treatment-effect-

based and one WTP-based. Each has an established role in economic welfare analysis. The 

medical literature more frequently studies treatment effects but also acknowledges that pa-

tients often have heterogeneous preferences for treatments (even conditional on treatment 

effects). This is especially the case for psychologically sensitive treatments like abortion 

methods (Henshaw et al., 1993) and depression treatments (Chilvers et al., 2001). In re-

sponse to these findings, a US-government-endorsed movement tries to bridge the gap be-

tween evidence-based medicine and patient-preference-centered medicine (Food and Drug 

Administration, 2016). According to advocates, “patient-centered care (...) promotes respect 

and patient autonomy; it is considered an end in itself, not merely a means to achieve other 

health outcomes” (Epstein and Peters, 2009). My welfare criterion echoes this trend and 

accommodates both outcome- and preference-based approaches. 

Predicted effects and WTP may also be freely heterogeneous and correlated. This is 

an important generality since evidence of correlation between treatment effects and WTP 

is ample both in the social sciences and medicine (Preference Collaborative Review Group, 

2008; Swift and Callahan, 2009). To be consistent with the evidence, the above setup allows 

arbitrary correlation between predicted effects and WTP. 

3.1.1 Where Do WTP and Predicted Effects Come From? 

It is best to estimate predicted effects eti from prior experimental or observational data. 

In particular, the experimenter would use prior data to estimate heterogeneous treatment 

Here I assume WTP and predicted effects are fixed and with cardinal meaning. See Appendices A.1.3 
and A.1.4 for discussions about what to do when WTP and predicted effects are uncertain or ordinal. 
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effects conditional on observable subject characteristics and apply the estimates to each 

subject i’s characteristics, producing predicted effects eti. The most reliable data source is 

a prior RCT of the same treatment, where subjects in the prior RCT can be different from 

those in the new experiment to be designed. Such sequential RCTs with the same treatment 

are common in medicine (Friedman et al., 1998) and business (Siroker and Koomen, 2013) 

and are growing in the social sciences (e.g., many RCTs for deworming). I illustrate the use 

of prior RCT data in my empirical application. 

For WTP wit, there are a couple of possible sources. The experimenter may ask each 

subject i to self-report WTP wi, as proposed by Zelen (1979) and Chassang et al. (2012).15 

Alternatively, the experimenter may estimate WTP with prior data on subjects’ treatment 

choices and their observable characteristics. Such data allows the experimenter to estimate 

heterogeneous revealed WTP conditional on subject characteristics. The WTP estimates 

then provide the experimenter with a prediction for each subject i’s WTP given i’s charac-

teristics. I conduct such demand estimation with a discrete choice model in my empirical 

application in Section 6.16 

3.2 Experimental Designs 

Taking any experimental design problem as given, an experimental design specifies treatment 

assignment probabilities (pit) where pit is the probability that subject i is assigned to treat-

ment t under the experimental design. The benchmark design is the standard Randomized 

Controlled Trial, formalized as follows. 

Definition 1 (Randomized Controlled Trial a.k.a. RCT ). Randomized Controlled Trial is 

an experimental design that assigns each subject i to each treatment t with the impersonal 
RCT RCT treatment assignment probability pt that is assumed to be written as pt = ct/n for 

some natural number ct < n. 

The vast majority of clinical trials use RCT or similarly impersonalized randomization, an 

empirical fact shown in Appendix A.3.2 and Appendix Table A.6. I call ct pseudo capacity 

or supply and require experimental designs to satisfy the pseudo capacity constraint thatP 
i pit ≤ ct for every treatment t = t1, ..., tm. This pseudo capacity constraint is important 

when treatment is expensive or hard to make and deliver. 

I investigate welfare-enhancement with a design that I call Experiment-as-Market or 

EXAM in short. 
15 This self-reporting method raises the question of incentive compatibility. I study incentive compatibility 

theoretically in Section 4.2 and empirically in Section 6.3. 
16 Similar demand estimation but for different purposes can be found in Ashraf et al. (2006); Cohen and 

Dupas (2010); Ashraf et al. (2010); Kremer et al. (2011); Devoto et al. (2012); Dupas (2014). 
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Definition 2 (Experiment-as-Market a.k.a. EXAM ). In the experimenter’s computer, dis-

tribute any common artificial budget b > 0 to every subject. Find any price-discriminated 

competitive market equilibrium, i.e., any treatment assignment probabilities (pit
∗ ) and their 

prices πte with the following properties:17 

• Effectiveness-discriminated treatment pricing: There exist α < 0 and βt ∈ R for each 

treatment t such that the price of a unit of probability of assignment to t for subjects 

with eti = e ∈ R is 

πte = αe + βt. 

• Subject utility maximization: For each subject i, 

P P∗(pit)t ∈ arg maxpi∈P t pitwit s.t. t pitπteti ≤ b, 

Ptmwhere pi ≡ (pit)t and P ≡ {pi ∈ Rm+1| t=t0 
pit = 1 and |pit| ≤ p} where p is a large 

enough number. πteti is the price of a unit of the probability of assignment to treatment 

t for subject i. EXAM breaks ties or indifferences so that every subject i’s p ∗ solves P i 

the above problem with the minimum expenditure pitπteti while (p ∗ )t = (p ∗ )t fort it jt

any subjects i and j with wi = wj and ei = ej . P P 
• Meeting capacity constraints: p ∗ ≤ ct for every treatment t = t1, ..., tm and p ∗ 

i it i it < 

ct only if πteti ≤ 0 for every i. 18 

Define EXAM’s treatment assignment probabilities as 

∗ ∗ RCT pit(�) ≡ (1 − q)pit + qp t , 

∗ 0 RCT where q ≡ inf{q0 ∈ [0, 1]|(1 − q0)p p ∈ [�, 1 − �] for all i and t}. Here � ∈ [0, �̄] is a it + q t 
RCT 19parameter fixed by the experimenter where �̄ ≡ mint pt is the largest possible value of �. 

I name this experimental design Experiment-as-Market (EXAM) because EXAM ran-

domly assigns treatments to subjects via a synthetic centralized market. pit 
∗ in Step 1 can 

17 There may be multiple equilibria. I fix any equilibrium selection method. 
18 The latter part is necessary to make sure that EXAM wastes treatment t only when there is no enough 

demand for t even with a nonpositive price. 
RCT RCT 19 Why is �̄ the largest possible value of �? Suppose � > �̄ ≡ mint p . Then, for any t ∈ arg mint p ,t t 

∗ RCT whenever p ≤ p , I have it t 
∗ 0 RCT (1 − q 0)pit + q pt 6∈ [�, 1 − �] 

∗ 0 RCT RCT for any q0 ∈ [0, 1]. On the other hand, if � ≤ �̄, then q0 = 1 guarantees that (1 − q0)pit + q pt = pt ∈ 
[�, 1 − �] for all i and t. Thus � must be between 0 and �̄. 
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be seen as a generalization or variation of the classic idea of competitive market equilibrium 

from equal incomes (Friedman, 1962; Varian, 1974; Hylland and Zeckhauser, 1979; Budish 

et al., 2013; He et al., 2017). 

More specifically, in Step 1 of Definition 2, EXAM endows each subject with a common 

imaginary budget. EXAM then lets each subject use the budget to purchase one of the most 

preferred bundles of treatment assignment probabilities, taking their prices as given. The 

prices are personalized so that each treatment is cheaper for subjects predicted to benefit 

more from the treatment. EXAM computes its treatment assignment probabilities as the 

resulting personalized-price competitive market equilibrium.20 EXAM finally requires each 

subject to get each treatment with a probability strictly between 0 and 1, as done in Step 2. 

This requirement is important for EXAM to produce non-degenerate random assignments 

and unbiasedly estimate causal treatment effects; some foundations for this desire for non-

degenerate randomization can be found in Proposition 4 below, Blackwell and Girshick (1954) 

section 8.7, Imbens and Rubin (2015) chapter 3, and Banerjee et al. (2017).21 

To sum up, the steps for implementing EXAM are as follows. 

(1) Obtain predicted effects eti if possible and relevant, as described in Section 3.1.1. 

(2) Obtain WTP wit if possible and relevant, as described in Section 3.1.1. 

(3) Apply Definition 2 of EXAM to the data from steps 1 and 2, producing assignment 

probabilities pit
∗ (�). 

EXAM is an enrichment of RCT. To see this, note that EXAM allows the experimenter to 

turn off welfare considerations. For instance, if the experimenter does not know or care about 

predicted effects, she would let eti = etj for all subjects i and j and treatment t. Similarly, let 

wit = wjt > 0 if WTP is unknown or irrelevant; I make the common WTP positive for a minor 

technical reason. For example, the experimenter may want to exclude WTP when there is 

a concern that revealed or self-reported WTP may be distorted by ignorance, information 

frictions, or liquidity constraints. The following fact shows that EXAM is equivalent to RCT 

when the experimenter ignores both WTP and predicted effects. 

20 The first step of Definition 2 raises two questions, whether such an equilibrium exists and how to find 
such an equilibrium. After positively solving the first existence question in Proposition 2 below, I develop 
and implement a script to find an equilibrium in the empirical application in Section 6. See Budish et al. 
(2016) for a related algorithmic development on a different problem (MBA course allocation). 

21 ∗Definition 2 leaves unspecified how to draw a final treatment assignment from p (�). It is known to it
∗be always possible to draw a treatment assignment in a way consistent with pit(�) (Budish et al. (2013)’s 

Theorem 1, the generalized Birkhoff-von Neumann Theorem). For the moment, my analysis applies to any 
method to draw a treatment assignment. I impose more structures in Section 5 and implement an algorithm 
to draw an assignment in the empirical application in Section 6. 

12 



Proposition 1 (EXAM nests RCT). Suppose that WTP and predicted effects are unknown 

or irrelevant so that wit = wjt > 0 and eti = etj for all subjects i and j and treatment t. 

Then EXAM reduces to RCT, i.e., for every � ∈ [0, �̄], subject i, and treatment t, I have 

∗ RCT pit(�) = pt . 

EXAM also extends other more sophisticated designs, such as the Play-the-Winner Rule 

(Wei and Durham, 1978), Consent Trials (Zelen, 1979; Angrist and Imbens, 1991), and 

Selective Trials (Chassang et al., 2012). These designs emerge if EXAM ignores either WTP 

or predicted effects, but not both, as explained in Section 1.1. 

4 Welfare and Incentive 

4.1 Welfare 

As opposed to the special case in Proposition 1, the experimenter is often concerned about 

WTP and predicted effects (as in studies reviewed in Section 2). In such cases, EXAM differs 

from RCT and is welfare-optimal in the following sense. 

Proposition 2 (Existence and Welfare). There exists pit 
∗ that satisfies the conditions in 

Definition 2. For any such pit 
∗ and any � ∈ [0, �̄], the resulting EXAM assignment probability 

p ∗ (�) satisfies the following property: There is no other experimental design (pit) ∈ P n withit P 
pit ∈ [�, 1 − �] for all subject i and treatment t, i pit ≤ ct for all t = t1, ..., tm, and the 

following better welfare property: X X X X 
pitwit ≥ pit

∗ (�)wit and piteti ≥ pit
∗ (�)eti 

t t t t 

for all i with at least one strict inequality. 

Proposition 2 says that no other experimental design ex ante Pareto dominates EXAM in 

terms of the expected WTP for and predicted effect of assigned treatment (while satisfying 

the random assignment and capacity constraints).22 This ex ante Pareto optimality is known 

to imply ex post Pareto optimality and “ordinal” ex ante optimality (Bogomolnaia and 

Moulin, 2001).23 In contrast, RCT fails to satisfy the welfare property as it ignores WTP 

22 Proposition 2 implies that EXAM is ex ante Pareto optimal for expected WTP alone if the experimenter 
shuts down predicted effects by assuming eti = etj for all subjects i and j and treatment t. Similarly, EXAM 
satisfies Pareto optimality for expected predicted effects alone when EXAM ignores WTP. 

23 Ex post optimality means that no other (pit) has the following property: witi ≥ wit∗ and etii ≥ et ∗ii i 
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and predicted effects. I empirically quantify the welfare gap between RCTs and EXAM in 

Section 6.3. 

4.2 Incentive 

Proposition 2 takes WTP wit as given and assumes it to represent true WTP. In practice, 

the experimenter often needs to elicit the WTP information wit from subjects, raising an in-

centive compatibility concern. This section shows EXAM allows the experimenter to extract 

WTP in an almost incentive compatible way. My analysis of incentive compatibility builds 

upon the literature on incentive compatibility of competitive equilibria and experimental 

designs (Jackson, 1992; Chassang et al., 2012; Azevedo and Budish, 2017; He et al., 2017). 

Unfortunately, it is known that no experimental design satisfies the welfare property in 

Proposition 2 and exact incentive compatibility for general problems (Hylland and Zeck-

hauser, 1979). This compels me to investigate approximate incentive compatibility in large 

experimental design problems. Only for this section, consider a sequence of experimental 

design problems (i1, ..., in, t0, t1, ..., tm, (cnt ))n∈N indexed by the number of subjects, n. Let 

�n ∈ [0, �̄n) (where �̄n is �̄ for the n-th problem) be the value of the bound parameter � the 

experimenter picks for the n-th problem in the sequence. The set of treatments t0, t1, ..., tm 

is fixed, but everything else may change as n increases. This modeling with a fixed number 

of treatments and an increasing number of subjects is consistent with real-world experiments 

with only a few treatments but with hundreds of subjects or more. 

To investigate the incentive structure in EXAM, imagine that subjects report their WTP 

to EXAM. EXAM then uses the reported WTP to compute treatment assignment probabil-

ities. For the n-th problem in the sequence, let pi 
∗n(wi, ei, w−i, e−i; �n) be EXAM’s treatment 

assignment probability vector for subject i when subjects report WTP (wi, w−i) and pre-

dicted effects are (ei, e−i) where w−i ≡ (wj )j 6 and e−i ≡ (ej )j=i. I extend this notation to 

the case where other subjects’ WTP reports and predicted effects are random: 
=i 6

Z 
p ∗i

n(wi, ei, F ; �n) ≡ p ∗i
n(wi, ei, w−i, e−i; �

n)×Pr{(w−i, e−i) ∼iid F }d(w−i, e−i). 
(w−i,e−i)∈(W ×E)n−1 

Here Pr{(w−i, e−i) ∼iid F } denotes the probability that (w−i, e−i) is realized from n − 

1 iid draws from the distribution F ∈ Δ(W × E), where Δ(W × E) is the set of full 

support distributions over the WTP space W and the predicted effect space E. Only for 

always hold for all i with at least one strict inequality, where ti and t ∗ are treatments ex post assigned to ii 
under the alternative design (pit) and EXAM, respectively. Ordinal ex ante optimality is a stronger property P P ∗that there is no other (pit) such that for all affine transformations f and g, t pitf(wit) ≥ t pit(�)f(wit)P P ∗and pitg(eti) ≥ t pit(�)g(eti) for all i with at least one strict inequality. t 
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this section, for simplicity, I restrict WTP and predicted effects to belong to finite sets W 

and E, respectively, in any problem along the sequence. This concept allows me to state an 

asymptotic incentive compatibility property. 

Proposition 3 (Incentive). EXAM with WTP reporting is asymptotically incentive com-

patible, i.e., for any sequence of experimental design problems with any �n in [0, �̄n), any 

F ∈ Δ(W × E), any δ > 0, there exists n0 such that, for any n ≥ n0, any subject i, any 

predicted effect ei, any true and manipulated WTP values wi and wi
0, I have 

X X 
∗n ∗n 0 pit (wi, ei, F ; �n) × wit ≥ p i, ei, F ; �n) × wit − δ. it (w 

t t 

Proposition 3 says that EXAM approximately incentivizes every subject to report her 

true WTP, at least for large enough experimental design problems. The experimenter using 

EXAM can therefore ask subjects to report their true WTP without any deception. As 

additional support for incentive compatibility, Section 6.3 shows that EXAM is close to 

incentive compatible in my empirical application only with a finite number of subjects. This 

suggests asymptotic Proposition 3 is relevant even for real-scale problems. 

For intuition, first consider a case with only one treatment t1 that subject i prefers over 

the control t0. Why is there no incentive for subject i to misreport a larger WTP for t1? As 

long as subject i prefers t1 over t0, subject i spends her entire budget b into purchasing t1 

and gets an assignment probability of b/πit1 . Misreporting a larger WTP would not affect 

this assignment probability, confirming the incentive compatibility. More generally, exact 

incentive compatibility may break down in small problems. Nevertheless, EXAM is always 

asymptotically incentive compatible since there is no incentive to misreport when the prices 

are exogenously fixed, which is approximately true when the number of subjects is large. 

5 Information 

Despite the welfare merit, EXAM also lets the experimenter estimate treatment effects as 

unbiasedly and precisely as RCT does. To spell it out, I switch back to any given finite 

problem and discuss not only bias but also variance in treatment effect estimation. To 

compare EXAM and RCT’s empirical content, I need to specify how each design draws a 

deterministic treatment assignment from its assignment probabilities. For simplicity, assume P 
that ptnp is an integer for every t and p where np ≡ n 1{p ∗(�) = p} is the number of i=1 i 

subjects with assignment probability vector p and pt is the t-th element of p. Appendix A.1.1 
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generalizes the definition and argument below to a general setting where ptnp is any real 

number. Consider the following method of drawing a deterministic treatment assignment. 

Definition 2 (EXAM Continued). Starting from the end of Definition 2 in Section 3.2, draw 

a treatment assignment from pit
∗ (�) as follows. For each assignment probability vector p, 

• Uniformly randomly pick pt0 np subjects from {i|p ∗(�) = p} and assign them to t0.i 

For each subsequent step k = 1, ..., m, Ptk−1 ∗• Step k: From the remaining np − ptnp subjects in {i|p (�) = p}, uniformlyt=t0 i 

randomly pick ptk np subjects and assign them to tk. 

I assume RCT to draw a deterministic treatment assignment by a specialization of the above 
∗ RCT method assuming every subject i to have pit(�) = pt . 

Suppose the experimenter is interested in the causal effect of each treatment on an out-

come Yi. Following the standard potential outcome framework for causal inference (Imbens 

and Rubin, 2015), let Yi(t) denote subject i’s potential outcome that would be observed if 

subject i receives treatment t. Let Dit be the binary indicator that subject i is ex post P 
assigned to treatment t. The observed outcome is written as Yi = t DitYi(t). While Yi(t) 

is assumed to be fixed, Dit and Yi are random variables, the distributions of which depend 

on the experimenter’s choice of an experimental design. Let Y ≡ (Yi), Di ≡ (Dit)t, and 

D ≡ (Di). 

The experimenter would like to learn any parameter of interest θ of the distribution 

of potential outcomes Yi(t)’s, many of which are unobservable. Formally, θ is any mapping 

θ : Rn×(m+1) → R that maps each possible value of (Yi(t)) into the corresponding value of the 

parameter. For example, θ may be the average treatment effect (ATEt) of treatment t over P n (Yi(t) − Yi(t0))
control t0, i=1 . The experimenter estimates θ with an estimator θ̂(Y, D), 

n 
a function only of observed outcomes and treatment assignments. Given any experimental 

design (pit), I say an estimator θ̂(Y, D) is simple if θ̂(Y, D) can be written as X XXX 
θ̂(Y, D) = f(Yi, Di, pi) + gtpp0 ((Npt))µ̂p(t)µ̂p0 (t) 

i t p p0 P 
i:pi=p DitYi 

for some function f , µ̂p(t) ≡ P n , and weights gtpp0 , which may depend on 
pt 1{pi = p}P i=1 

Npt ≡ Dit but not on individual Dit’s.
24 I say parameter θ is unbiasedly estimable i:pi=p P 

More formally, f : R × D × P → R where D ≡ {d ∈ {0, 1}m+1| dt = 1} and P ≡ {pi|i = i1, ..., in}.t 
0gtpp0 : N|P|(m+1) → R for each t, p, and p . I allow f and gtpp0 to use known elements of the experimental 

design problem such as capacities ct and treatment assignment probabilities pit. I do not allow θ̂(Y, D) to 
use unknown elements, especially potential outcomes. 
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with experimental design p ≡ (pit) and a simple estimator if there exists a simple estimator 

θ̂(Y, D) such that 

E(θ̂(Y, D)|(pit)) = θ, 

where E(·|(pit)) is expectation with respect to the distribution of Dit induced by experimental 

design (pit). 

EXAM turns out to be as informative as RCT in terms of the set of parameters unbiasedly 

estimable with each experimental design and a simple estimator. Throughout this section, 

assume ptnp > 1 for all p and t. 

Proposition 4 (Unbiased Estimability). If parameter θ is unbiasedly estimable with RCT 
RCT ∗ pt and a simple estimator, then θ is also unbiasedly estimable with EXAM pit(�) with any 

� > 0 and a simple estimator.25 

Many key parameters, such as the average treatment effect, the treatment effect on the 

treated, and the mean and variance of potential outcomes are known to be unbiasedly es-

timable with RCT and a simple estimator (see Appendix A.2).26 Proposition 4 implies that 

these parameters are also unbiasedly estimable with EXAM. 

Corollary 1. The average treatment effect, the treatment effect on the treated, and the mean 

and variance of potential outcomes are unbiasedly estimable with EXAM. 

5.1 Unbiased ATE Estimation with EXAM Data 

I use the average treatment effect (ATE) to illustrate the intuition for and implementation 

of Proposition 4 and Corollary 1. Why is ATE unbiasedly estimable with EXAM? EXAM 

makes all subjects share the same budget constraint. As a result, if subjects share the same 

predicted effects and WTP, these subjects solve the same utility maximization problem and 

purchase the same vector of treatment assignment probabilities. EXAM therefore produces 

treatment assignment that is independent from (unconfounded by) potential outcomes con-

ditional on predicted effects and WTP, which are observable to the experimenter: 

(Yi(t))t ⊥⊥ Di|(eti, wit)t. (1) 

25 On the other hand, EXAM and RCT are not comparable in terms of Blackwell’s order (Blackwell and 
Girshick, 1954) in my finite sample framework. This contrasts to the large sample analysis by Chassang et 
al. (2012), where they compare their Selective Trial and RCT in terms of Blackwell’s order. 

26 I define the treatment effect on the treated for experimental design (pit) asPn 
(Yi(t) − Yi(t0))Dit 1 Pni=1E( P |(pit)) while the mean of potential outcomes as Yi(t). I define then i=1 

i=1 Dit n P P P P1 n 1 n 1 n 1 n 
variance of potential outcomes as (Yi(t) − Yj (t))

2 or (Yi(t) − Yj (t))
2 ,i=1 j=1 i=1 j=1n n n − 1 n 

both of which are unbiasedly estimable with RCT and a simple estimator. 
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27 

With this conditional independence, EXAM fits into causal inference with stratified ex-

periments, selection-on-observables, and the propensity score, i.e., treatment assignment 

probabilities conditional on observables (see Imbens and Rubin (2015) for an overview). 

In particular, conditional independence (1) implies that the same conditional independence 

holds conditional on the propensity score (Imbens and Rubin (2015) section 12.3), which 

EXAM computes as pi 
∗(�) ≡ (pit

∗ (�))t and again known to the econometrician: 

(Yi(t))t ⊥⊥ Di|pi ∗ (�). (2) 

This conditionally independent treatment assignment allows the experimenter to unbiasedly 

estimate the conditional average treatment effects of each t over t0 conditional on observable 

propensity scores pi 
∗(�), 

∗P n 1{p (�) = p}(Yi(t) − Yi(t0))i=1 iP n for each p,
1{p ∗(�) = p}i=1 i 

which I denote by CAT Ept. These conditional-on-the-propensity-score effects are a version 

of Marginal Treatment Effects (Björklund and Moffitt, 1987; Heckman and Vytlacil, 2005). 

Marginal Treatment Effects are therefore estimable with EXAM’s data.27 

By summing up such marginal or conditional effects, the experimenter can also back out 

the (unconditional) ATE, the single most important causal object identified and estimated 

by RCT. That is, with weights δp ≡ np/n, I use CAT Ept’s to get ATE as follows: 

X 
δpCAT Ept = AT Et. 

p 

Importantly, the key conditional independence properties (1) and (2) hold regardless 

of whether eti and wit coincide with the true treatment effects and WTP. In this sense, 

like RCT, EXAM’s informational virtue is robust to any of the experimenter’s potential 

misspecifications about predicted effects and WTP.28 

To see this, as in Heckman and Vytlacil (2005), focus on an experimental design problem with only 
∗ one treatment t1 compared to the control t0. Given EXAM’s assignment probability pit1 

(�), let Ri ∼ U [0, 1] 
∗with Ri ⊥⊥ (Yi(t0), Yi(t1)), Zi = 1 − Ri, and Vi = 1 − pit1 

(�). Write the treatment assignment as 

∗ ∗ Dit1 = 1{Ri ≤ pit1 
(�)} = 1{1 − Ri ≥ 1 − pit1 

(�)} = 1{Zi ≥ Vi}. 

∗Note that E(1{Zi ≥ Vi}) = p (�) as desired. This model is a special case of Heckman-Vytlacil’s modelit1 

with local instrumental variable Zi because Zi is independent of (Yi(t0), Yi(t1), Vi) by construction while 
Vi can be correlated with (Yi(t0), Yi(t1)). As a result, Heckman and Vytlacil (2005)’s method allows the 
experimenter to identify Marginal Treatment Effects with EXAM’s data. Chassang et al. (2012) provide 
a similar discussion about their Selective Trial idea. See also Kowalski (2016); Mogstad and Torgovitsky 
(2018) for recent developments in the marginal treatment effect method. 

28 On the other hand, the welfare optimality in Proposition 2 is welfare-relevant only if the experimenter 
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The above estimability argument motivates a strategy to estimate ATE with EXAM’s 

data. As a warm-up, focus on {i|p ∗(�) = p}, the subpopulation of subjects with propensity i 

vector p, and consider this regression on the subpopulation: 

tmX 
Yi = αp + βptDit + �i. 

t=t1 

By the conditional independence property (2), OLS estimate β̂pt from this regression is 

unbiased for CAT Ept for each treatment t 6 I then aggregate the resulting estimates ˆ= t0. βpt’s P 
into p δpβ̂pt, which I denote by β̂t 

∗ . This β̂t 
∗ is a multinomial propensity score weighting 

estimator that unbiasedly estimates the average treatment effect with its variance in an 

analytical form. 

Proposition 5 (Bias and Variance). Suppose that the data-generating experimental design 
∗is EXAM p ∗(�) ≡ (pit(�))it with any given � > 0. β̂t 

∗ is an unbiased estimator of the average 

treatment effect. In particular, 

X � S2 S2 S2 � 
pt pt0 ptt0E(β̂∗|p ∗ (�)) = AT Et and Var(β̂∗|p ∗ (�)) = δ2 + − ,t t p ptnp pt0 np npp P 

∗ Yi(t)i:pi (�)=p
where Ȳp(t) ≡ is the mean of Yi(t) in the subpopulation with propensity p, 

npP 
(Yi(t) − ¯i:p ∗(�)=p Yp(t))

2 

S2 ≡ i is the variance of Yi(t) in the subpopulation, and S2 ≡pt ptt0 np − 1P 
∗ (Yi(t) − Yi(t

0) − (Ȳp(t) − Ȳp(t
0)))2 

i:pi (�)=p
is the variance of Yi(t) − Yi(t

0) in the subpopula-
np − 1 

tion. 

Alternatively, empirical researchers may prefer a single regression controlling for propen-

sity vectors: 
tm tmX X 

Yi = a + btDit + ctp ∗ 
it(�) + ei, (3) 

t=t1 t=t1 

producing an alternative estimator ̂bt 
∗ . As verified in the appendix, ̂b∗ 

t is an unbiased estimator 

of a differently weighted treatment effect: P 
p λptCAT Ept

E(b̂ ∗|p ∗ (�)) = P 
λpt 

with weights λpt ≡ δppt(1 − pt). (4)t 
p 

predicts treatment effects and WTP well. 
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Estimators like b̂∗ 
t and β̂t 

∗ allow the experimenter to unbiasedly estimate key causal effects 

with EXAM. See Angrist (1998) for a related discussion about regression and weighting 

estimators. 

5.2 Power Comparison of EXAM and RCT 

Does EXAM compete with RCT in terms of statistical efficiency in ATE estimation? With 

RCT’s data, the most standard estimator of ATE of treatment t over control t0 is the 

difference in the average outcome between subjects assigned to treatment t and those assigned 

to control t0: P P 

β̂RCT DitYi Pi Dit0 Yi 
t ≡ Pi − . 

i Dit Dit0i 

βRCT ∗ RCT βRCT This ˆ is a special case of β̂∗ when p (�) = p . By Proposition 5, therefore, ˆ ist t it t t 

unbiased for ATE with the following variance, confirming a classic result about RCT. 

Corollary 2 (Imbens and Rubin (2015)’s Theorem 6.2). 

S2 S2 S2 

E(β̂t
RCT |p RCT ) = AT Et and V (β̂t

RCT |p RCT ) = t + t0 − tt0 , 
ct ct0 n P 

i(Yi(t) − Ȳ (t))2 
P 

i(Yi(t) − Yi(t
0) − (Ȳ (t) − Ȳ (t0)))2 

where St 
2 ≡ and Stt

2 
0 ≡ . 

n − 1 n − 1 

Proposition 5 and Corollary 2 imply that EXAM may produce more precise ATE es-

timates (V (β̂∗|p ∗(�)) < V (β̂RCT |pRCT )). Such a situation occurs if potential outcomes are t t 

well correlated (positively or negatively) with EXAM’s treatment assignment probabilities, 

as illustrated by the following example. 

Example 1. Suppose there is only one treatment t1, n = 40, and ct0 = ct1 = 20. Every 

subject has Yi(t0) = 1. The subjects are divided into four groups A, B, C, and D of the same 

size (10) based on their potential outcomes Yi(t1). Let Yi(t1) = 1, 2, 3, and 4 for anybody in 

group A, B, C, and D, respectively. Assume the experimenter imperfectly predicts treatment 

effects: et1i = 0 for every i in group A or B while et1i = 2 for group C or D. Let wit1 > 0 

for all subjects. EXAM with � < .2 gives the following treatment assignment probabilities29: 

p ∗ (�) = 0.2 for every i in groups A and B while pit
∗ 
1 
(�) = 0.8 for groups C and D. Underit1 

RCT RCT RCT, p = p = 20/40 = 0.5 for all subjects. Applying Proposition 5 and Corollary 2 t1 t0 

29 EXAM outputs these treatment assignment probabilities if I set α = − 
15b 

, βt1 = 5b, and βt0 = 0 given 
8 

any budget b. 
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to this example, I have 

V (β̂∗|p ∗ (�)) = 0.013... < 0.032... = V (β̂RCT |p RCT ).t t 

This example makes clear that information production in EXAM is not a diluted version 

of that in RCT. EXAM’s ATE estimation is not only unbiased but also potentially more 

precise than RCT’s; this is true even if the experimenter’s prediction of treatment effects 

is imperfect. Appendix A.1.2 provides further support for this point by showing it remains 

true in an asymptotic framework. 

In general, however, the precision comparison of EXAM and RCT is ambiguous. There 

are other examples with V (β̂t
RCT |pRCT ) < V (β̂t 

∗|p ∗(�)); one such example with a binary 
RCT RCT treatment t1 vs. t0 is where p = p = 0.5 for every i, p ∗(�) 6 pRCT , and there is no = t0 t1 

correlation between potential outcomes and p ∗(�). This ambiguity is common in precision 

comparisons of experimental designs. This motivates me to empirically compare EXAM and 

RCT’s estimation precision. The empirical application also allows me to verify and quantify 

the welfare, incentive, and unbiasedness properties of EXAM. 

6 Empirical Application 

6.1 Overview 

My empirical test bed for EXAM is an application to a spring protection experiment in 

Kenya. Waterborne diseases, especially diarrhea, remain the second leading cause of death 

among children, comprising about 17% of child deaths under age five (about 1.5 million 

deaths each year).30 The only quantitative United Nations Millennium Development Goal 

is in terms of “the proportion of the population without sustainable access to safe drinking 

water and basic sanitation,” such as protected springs.31 Yet there is controversy about 

spring protection’s health impacts. Experts argue that improving source water quality may 

have only limited effects since, for example, water is likely recontaminated in transport and 

storage. These arguments were made in the absence of any randomized experiment. 

This controversy motivated Kremer et al. (2011) to analyze randomized spring protec-

tion conducted by an NGO (International Children Support) in Kenya in the mid 2000s. 

30 See UNICEF and WHO’s joint document “Diarrhoea: Why Children Are Still Dying and What Can be 
Done,” at http://apps.who.int/iris/bitstream/10665/44174/1/9789241598415_eng.pdf, retrieved in 
March 2018. 

31 See http://www.un.org/millenniumgoals/, retrieved in March 2018. Spring protection encases the 
source of a natural spring in concrete, allowing water to flow from a pipe rather than seeping from the 
ground. In this way, the water source is protected from human or animal waste. 
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This experiment randomly selected springs to receive protection from the universe of 200 

unprotected springs. The experimenter selected at baseline and followed afterward a rep-

resentative sample of about 1500 households that regularly used some of the 200 springs 

before the experiment; these households are experimental subjects. Kremer et al. (2011) 

find that spring protection substantially improves source water quality and is moderately 

effective at improving household water quality after some recontamination. Diarrhea among 

children in treatment households falls by about a quarter of the baseline level. I call this real 

experiment “Kremer et al. (2011)’s experiment” and distinguish it from EXAM and RCT as 

formal concepts in my model. 

Kremer et al. (2011)’s experiment provides an ideal setup for empirically evaluating 

EXAM. Their experiment is about a high-stakes treatment and produces rich data that 

allows me to measure not only treatment effects but also subjects’ WTP for the treatment. 

I consolidate Kremer et al. (2011)’s experimental data and my methodological framework 

to empirically evaluate EXAM. With the language and notation of my model, experimental 

subjects are households in Kremer et al. (2011)’s sample. The protection of the spring each 

household uses at baseline is a single treatment t1 while no protection is the control t0. Each 

household i’s WTP for better water access t1 is denoted by wit1 , which I estimate below. 

I also estimate the heterogeneous treatment effect et1i of spring protection t1 on household 

i’s child diarrhea outcome. Using this embedding, I implement EXAM and compare it with 

RCT to see which is a better design of a hypothetical future experiment about the spring 

protection treatment. 

6.2 Treatment Effects and WTP 

Treatment Effects 

For executing EXAM, I need to measure wit1 and et1i and substitute them into EXAM. I 

estimate heterogeneous treatment effects et1i of access to better water in a similar way as 

Kremer et al. (2011). This treatment effect estimation exploits additional details of Kremer 

et al. (2011)’s experiment. The experimenter NGO aspired to eventually protect all the 200 

springs but planned for the protection intervention to be phased in over four years due to 

financial and administrative constraints. In each round, a subset of springs were randomly 

picked to be protected. Figure I in Kremer et al. (2011) details the timeline of the experiment. 

This experimental scheme legitimizes the following OLS regression at the (child i, spring j, 

survey round t)-level: 

Yijt = (φ1 + φ2Xi)Tjt + αi + αt + uij + �ijt, (5) 
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where Yijt is the binary outcome indicating that child i in a household drawing water from 

spring j at baseline has diarrhea in survey round t. Xi contains covariates of child i’s house-

hold (baseline latrine or sanitation density, diarrhea prevention knowledge score, mother’s 

years of education). Tjt is the binary treatment indicating that spring j is treated in sur-

vey round t. αi, αt, and uij are fixed effects. The treatment effect is φ1 + φ2Xi and is 

heterogeneous across subjects with different covariates Xi. 

Estimates from the OLS regression (5) are in Table 3. The average treatment effect is 

about 4.5% absolute reduction or about 25% relative reduction in the diarrhea outcome Yijt. 

Households with higher scores in diarrhea prevention knowledge or mother education tend to 

have better treatment effects, although the relatively large standard errors argue for caution 

in interpretation. This heterogeneity may be because such households are more likely to 

prefer and use protected springs, as suggested by a revealed preference analysis below. 

I then use the OLS estimates to predict the treatment effect for each household i with 

êt1i ≡ φ̂1 + φ̂2Xi, where φ̂1 and φ̂2 are OLS estimates of φ1 and φ2, respectively. Kremer et 

al. (2011)’s experiment randomized Tjt and gives its coefficient estimate êt1i an interpreta-

tion as a causal effect. Estimated treatment effects êt1i exhibit significant heterogeneity, as 

illustrated in Figure 1 Panel a. 

WTP 

I estimate heterogeneous WTP wit1 for the treatment as follows. In the experimental target 

area, each household draws water from a water source the household chooses among multiple 

sources in the neighborhood. This fact motivates a discrete choice model of households’ water 

source choices, in which households trade off water quality against other source characteristics 

such as proximity. This model produces revealed preference estimates of household WTP for 

the spring protection treatment as a spring characteristic, which is identified by exogenous 

variation in the treatment generated by Kremer et al. (2011)’s experiment. 

Specifically, I use a mixed or random-coefficient logit model (Train (2003), chapter 6): 

Uijt = (βi + γ1Xi)Tjt − ciDij + δj + �ijt, (6) 

where Uijt is household i’s utility from source j in survey round t and Dij is household 

i’s roundtrip distance to spring j (measured in terms of minutes of walking time). βi and 

ci are random preference coefficients assumed to be distributed according to normal and 

triangular distributions, respectively, with unknown parameters to be estimated. I restrict 

the triangular distribution of ci to have the same mean and standard deviation, making sure 

every household prefers proximity. δj are spring-type fixed effects in the spirit of Berry et 
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al. (1995) and attempt to capture the average preference for potentially unobserved spring 

type characteristics other than treatment Tjt and distance Dij . �ijt is logit utility shocks iid 

according to the type I extreme value distribution with usual variance normalization to π2/6. 

I estimate the model with data on households’ spring choices (in the final survey round after 

random spring protection) and a standard maximum simulated likelihood method (Train 

(2003), chapter 10), which I detail in Appendix A.3.3. 

The mixed logit preference estimates are in Table 4. Households have significant distaste 

for distance and significant preferences for protected treatment springs (other characteristics 

being equal). Not surprisingly, households with better diarrhea prevention knowledge scores 

or mother education tend to have stronger revealed preferences for the spring protection 

treatment. This heterogeneity is expected if such households are more conscious of water 

quality.32 

I then exploit the mixed logit estimates to estimate household i’s WTP for treatment t1 

0 ≡ ˆas ŵit1 
βi + γ̂1Xi, where β̂i and γ̂1 are mixed logit estimates of βi and γ1, respectively. 

I bootstrap the random coefficient β̂i from its estimated distribution. The identification of 

ŵ0 is helped by Kremer et al. (2011)’s experimental variation in protection treatment Tjt it1 

since otherwise Tjt is likely correlated with unobserved spring characteristics �ijt, making it 

impossible to identify the WTP for spring protection alone. 

Since ŵit
0 
1 
is in an elusive utility unit, I convert it into a more easily interpreted measure 

in terms of time cost of water collection. To do that, I first compute ŵit
0 
1 
/ĉi, where ĉi is 

the mixed logit estimate of ci (the distaste coefficient on distance). Again, I bootstrap the 

random coefficient ĉi from its estimated distribution. I then multiply it by each household’s 

self-reported time cost of traveling for a unit of distance. This procedure gives me a time 

cost measure of WTP for the treatment, ŵit1 . This ŵit1 is measured by workdays utility-

equivalent to ŵit
0 
1 
. 

Estimated WTP ŵit1 is in Figure 1 Panel b, showing the histogram of simulated values 

of ŵit1 . The median WTP is about 25 workday-equivalent with substantial heterogeneity. 

While both WTP ŵit1 and treatment effects êt1i show sizable heterogeneity, there turns out 

to be only limited correlation between the two. This fact can be seen in the joint density plot 

in Figure 1 Panel c, where there is a positive correlation between WTP ŵit1 and treatment 

effects êt1i, but the magnitude of the correlation is small (R2 is lower than 0.12 when I 

regress one on the other). This demonstrates that WTP ŵit1 and treatment effects êt1i 
contain different types of information about subject welfare, suggesting the importance of 

32 Tables 3 and 4 show slight differences from Kremer et al.’s estimates. It is because I include the same 
set of a small number of covariate interactions both in the OLS and mixed logit models while Kremer et al. 
include different sets of covariate interactions and other controls in their models. 
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respecting both WTP and predicted effects separately. This is what EXAM attempts to do, 

as I explain next. 

6.3 EXAM vs RCT 

Now imagine somebody is planning a new experiment for further investigating the same 

spring protection treatment. What experimental design should she use? Specifically, which is 

better between RCT and EXAM? A full-fledged comparison of experimental designs requires 

a meta-experiment that randomly assigns different designs to many experimental studies. To 

circumvent the difficulty with such a meta-experiment, I resort to an alternative approach 

exploiting the above WTP and treatment effect estimates. 

My approach is to use the estimated WTP ŵit1 and predicted effects êt1i to simulate 

EXAM and compare EXAM with RCT in terms of welfare, information, and incentive prop-

erties. Throughout, I fix the set of subjects and treatments as in Kremer et al. (2011)’s 

experiment. That is, there are 1540 households as subjects to be assigned either to the 

single water source protection treatment t1 or the control t0. Set the treatment capacity ct1 

to be the number of households assigned to the treatment t1 in Kremer et al.’s experiment 

(by the end of their survey period). I set the bound parameter � to be 0.2; I investigate how 

the results change under another value of � at the end. I fix predicted effects et1i to their 

point estimate êt1i. 

I simulate WTP with parametric bootstrap from the estimated distribution of ŵit1 , i.e., 

the estimated mixed logit model (6) (conditional on each household’s fixed characteristics 

Xi). In this WTP simulation, I require all families with the same characteristics Xi to share 

the same WTP. After simulating ˆ , I compute treatment assignment probabilities p ∗ wit1 it(�) 

by running EXAM on the bootstrapped data along with other fixed parameters such as the 

treatment capacity.33 The algorithm I use for executing EXAM is described in Appendix 

A.3.4. 

The simulation process for RCT is analogous except that the treatment assignment prob-

ability is fixed at pRCT ≡ ct1 /n = .43. Note that this RCT is a hypothetical experimental t1 

design in line with my Definition 1 and different from Kremer et al. (2011)’s experiment 

involving additional real-world complications. 

To make treatment assignment probabilities take a modest number of values, I coarsen the values of 
WTP and predicted effects. Specifically, for each simulation and each of WTP and predicted effects, I first 
group its values into four quartiles and then replace each household’s value by the median value within the 
quantile group to which the household belongs. 
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Welfare 

I start with evaluating EXAM’s welfare performance. Use EXAM’s treatment assignment 

probabilities pit
∗ 
1 
(�) to calculate two welfare measures for each household i: X X 

∗ ∗ ∗ ∗ w ≡ p and e ≡ pi it(�)wit i it(�)eti. 
t t 

wi 
∗ and ei 

∗ are empirical analogues of the two ex ante welfare measures in my theoretical 

welfare analysis (Proposition 2). 

I find EXAM to improve on RCT in terms of the welfare measures wi 
∗ and ei 

∗, a result 

reported in Figure 2. The figure draws the distribution of wi 
∗ and ei 

∗ over households and 

1000 bootstrap samples. Among other things, the mean of average WTP wi 
∗ for assigned 

treatments is about 89% or 9.4 workday-equivalent utilities higher under EXAM than it is 

under RCT. Another interpretation of this WTP improvement is about 37% of the average 

WTP for the treatment (about 25 workdays). Similarly, EXAM improves the mean of ei 
∗ 

by about 0.8% absolute reduction or 42% reduction relative to RCT’s level. This predicted 

effect benefit amounts to about 17% of the average treatment effect of the spring protection 

found by Kremer et al. (2011) and Table 3. Kolmogorov-Smirnov tests find the EXAM and 

RCT distributions to be significantly different both for wi 
∗ and e ∗ 

i . This suggests EXAM’s 

welfare optimality (Proposition 2) is quantitatively and empirically relevant. 

Information 

Data from EXAM also allows me to obtain more or less the same econometric conclusion 

about treatment effects as RCT. To see this, I augment the above counterfactual simulation 

with average treatment effect estimation as follows: I first simulate wit1 , run EXAM to 

get treatment assignment probabilities p ∗ 
it(�), and use p ∗ 

it(�) to draw a final deterministic 

treatment assignment, denoted by a binary indicator Di indicating i is ex post assigned to 

t1. I then simulate counterfactual or predicted outcome Yi under Di by simulating the OLS 

model I estimate in the last section: 

Yi ≡ (φ̂1 + φ̂2Xi)Di + α̂i + (average of α̂t across all t) + (average of ûij across all j), 

where objects with a hat mean estimates of the corresponding parameters in regression 

(5). I take the average of α̂t’s and ûij ’s to adapt regression (5) at the (i, j, t)-level to my 

counterfactual simulation setting at the household-i-level. Note that the above expression is 

the definition of Yi, not a regression. Finally, I use the above simulated Yi and Di to estimate 
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treatment effects with b̂∗ from this OLS regression: 

Yi = a + bDi + cpit
∗ 
1 
(�) + ei, 

where I control for propensity score p ∗ (�) to make treatment assignment Di conditionallyit1 

random. This regression is a stripped-down version of the regression strategy (3) in Section 

5. I also implement the other propensity-score-weighting estimator β̂∗, again following the 

description in Section 5. The procedure for RCT is analogous except that the treatment 

assignment probability is fixed at pRCT 
t . 

Program evaluation with EXAM turns out to be as unbiased and precise as that with 

RCT. Figure 3 plots the distribution of the resulting treatment effect estimates b̂∗ and β̂∗ 

over 1000 simulations. In line with Propositions 4 and 5, the means of b̂∗ and β̂∗ for EXAM 

are indistinguishable from those under RCT. Both experimental designs successfully recover 

Kremer et al. (2011)’s average treatment effect estimate (4.5% reduction in diarrhea; recall 

column 1 in Table 3). 

Perhaps more importantly, the distributions of b̂∗ and β̂∗ for EXAM have similar stan-

dard deviations as those for RCT. This means that the two experimental designs produce 

similar exact, finite-sample standard errors in their estimates b̂∗ and β̂∗ . Variations of this 

observation are in Figure 4, which shows the distribution of p values for the estimates b̂∗ . 

The four panels use p values based on exact, non-robust, robust, and Abadie et al. (2017)’s 

finite population causal standard errors, respectively, where the exact standard error means 

the standard deviation in the distribution of b̂∗ in Figure 3. RCT produces slightly smaller 

p values than EXAM, but the median p value is about 0.03 for RCT and about 0.04 for 

EXAM. This means that both EXAM and RCT detect a significant average treatment effect 

for a majority of cases. Overall, EXAM appears to succeed in its informational mission of 

eliminating selection bias and recovering ATE precisely enough. EXAM is thus as good as 

RCT at contributing to the knowledge and welfare of the society outside the experiment. 

Incentive 

EXAM’s WTP benefits can be regarded as welfare-relevant only if EXAM provides subjects 

with incentives to reveal their true WTP. I conclude my empirical analysis with an inves-

tigation of the incentive compatibility of EXAM. I repeat the following procedure many 

times: As before, I simulate wit1 and run EXAM to get treatment assignment probabilities 

p ∗ (�). I then randomly pick one subject j as a WTP manipulator and one potential WTP it

manipulation w0 by j. I choose the manipulator j uniformly randomly among all sub-jt1 

jects. The manipulation w0 is either from N(wjt1 , 100), N(wjt1 , 1000), U(wjt1 , wjt1 + 100),jt1 
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or U(wjt1 − 100, wjt1 ) where wjt1 is j’s true WTP. These computational scenarios cover dif-

ferent types of misreporting, that is, both over-reporting and under-reporting with different 

magnitudes. I run EXAM on the simulated data but with the WTP manipulation w0 tojt1 

get treatment assignment probabilities pit
0 (�). I finally compute the true WTP gain from the 

manipulation w0 :jt1 X X 
Δw ≡ p 0 p ∗ 

it(�)wjt − it(�)wjt. 
t t 

EXAM is found to give subjects little incentive for WTP misreporting, empirically ver-

ifying Proposition 3. Figure 5 shows this by drawing the distribution of Δw over 1000 

simulations and households. Across all scenarios, the WTP gain Δw from misreporting is 

mostly negative and well below zero on average. This further suggests that EXAM may pro-

vide subjects with stronger average incentives for truthful WTP reporting than RCT does 

(because subjects in RCT are indifferent among all possible WTP reports). EXAM may 

therefore be better at eliciting reliable WTP data.34 

Role of Design Parameters 

Finally, I analyze how the results depend on the choice of design parameters, especially �, 

which governs how close EXAM must be to RCT. With a smaller value of � = 0.1, the same 

set of results as in Figures 2-5 are reported in Appendix Figures A.2-A.5. These figures show 

qualitatively the same results as Figures 2-5 do. This confirms the above baseline empirical 

analysis is robust. 

Yet there is a key quantitative difference: Appendix Figure A.2 with � = 0.1 finds 

better welfare performance of EXAM compared to Figure 2 with � = 0.2. On the other 

hand, Appendix Figure A.4 and Figure 4 suggest EXAM’s statistical efficiency deteriorates 

as � drops from 0.2 to 0.1. This tradeoff is intuitive as smaller values of � allow EXAM’s 

assignment probabilities to get away from RCT’s and focus more on welfare enhancement, 

which may come at the cost of diluted information. The parameter � thus embodies the 

welfare vs information tradeoff among different versions of EXAM. This observation raises 

an intriguing yet challenging methodological question of how to optimally specify �. I leave 

this direction for future research. 
34 Appendix Table A.8 shows that even the most profitable manipulations lead to normalized gains 

Δw/wit1 smaller than 0.025. This suggests that there are unlikely to be manipulations that produce large 
gains. 
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7 Takeaway and Future Directions 

Motivated by the high-stakes nature of many RCTs, I propose a data-driven stratified experi-

ment dubbed Experiment-as-Market (EXAM). EXAM is a solution to a hybrid experimental-

design-as-market-design problem of maximizing participants’ welfare subject to the con-

straint that the experimenter must produce as much information and incentives as standard 

RCTs do (Propositions 2-5). These properties are then verified and quantified in an em-

pirical application where I simulate my design on a water source protection experiment. 

Taken together, the body of evidence suggests that EXAM improves subject well-being with 

little information and incentive costs. The demonstrated benefits are conservative in that 

they do not incorporate potential additional benefits from EXAM for improving recruitment, 

compliance with assigned treatment, and attrition (recall the discussion in Section 2). 

This paper takes a step toward introducing welfare and ethics into experimental design. 

This opens the door to several open questions. Practically, the most crucial step is to 

implement EXAM in the field. In order to make EXAM and other ethical experimental 

designs workable in practice, it is important to design an easy-to-use interface through which 

EXAM interacts with subjects as well as an algorithm to implement EXAM. A related 

question is how best to obtain predicted effects and WTP in practice. The brief empirical 

and computational analysis in Section 6 is an effort to tackle these practical challenges. 

Econometrically and theoretically, this paper’s analysis is simplistic in many respects, 

asking for a variety of extensions. Key extensions include analyzing EXAM in an instrumen-

tal variable setting where subjects may not comply with treatment assignment; analyzing 

experimental designs with endogenous subject participation and dropout; introducing mon-

etary compensation and other contracts like informed consent; analyzing EXAM’s dynamic 

or sequential properties; optimally choosing sample size and treatment definitions (in ad-

dition to designing treatment assignment probabilities given the sample size and treatment 

definition); considering information frictions and psychological elements in patient prefer-

ences; and analyzing games among experimenters with experimental design as an action or 

strategy. I leave these challenging directions for future research. 
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Table 1: Magnitude of the RCT Landscape 

(a) Registered Medical Clinical Trials & Sample Sizes 

Sample Period 2007-2017 May 

Total Number of Clinical Trials Registered 296,597 
Sum of Sample Sizes 367,902,580 

(b) Registered Social and Economic Experiments & Sample Sizes 

Sample Period 2007-2017 May 

Total Number of Economic RCTs Registered 1055 
Sum of Sample Sizes 22,190,304 

Notes: Panel a provides summary statistics of clinical trials registered in the WHO International Clinical 
Trials Registry Platform (ICTRP, http://www.who.int/ictrp/en/, retrieved in March 2018). The sample 
consists of clinical trials registered there between January 1st 2007 to May 30th 2017. I exclude trials with 
registered sample size larger than five millions. Panel b provides summary statistics of economic RCTs 
registered in the American Economic Association RCT Registry (https://www.socialscienceregistry. 
org, retrieved in March 2018). The sample consists of RCTs registered there between January 1st 2007 to 
May 30th 2017 and where the unit of outcome measurement is an individual or a household. I focus on RCTs 
with individual or household subjects in order to make it possible to sum up sample sizes. See Section 2 
for discussions about this exhibit and Appendix A.3.1 for the detailed computational procedure. Additional 
results are in Appendix Figure A.1 and Tables A.1-A.6. 
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Table 3: OLS Regression Estimates of Heterogeneous Treatment Effects 

Notes: This table shows OLS regression estimates of heterogeneous treatment effects of spring protection. 
Data from all four survey rounds (2004, 2005, 2006, 2007), sample restricted to children under age three at 
baseline (in 2004) and children born since 2004 in sample households. Diarrhea defined as three or more 
“looser than normal” stools within 24 hours at any time in the past week. Different columns differ in the 
set of baseline household characteristics interacted with the treatment indicator. The gender-age controls 
include linear and quadratic current age (by month), and these terms interacted with a gender indicator. I 
use specifications without additional controls. Stars *, **, and *** mean significance at 90%, 95%, and 99%, 
respectively, based on Huber-White robust standard errors clustered at the spring level. See Section 6.2 for 
the model description and discussions about this table. 
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Table 4: Maximum Simulated Likelihood Estimates of Mixed Logit Model of Spring Choice 

Notes: This table shows mixed logit estimates used for estimating heterogeneous WTP for the treatment. 
Each observation is a unique water collection trip recorded in the final round of household surveys (2007). The 
omitted water source category is non-program springs outside the target area of the experiment. Different 
columns differ in the set of baseline household characteristics interacted with the treatment indicator. The 
indicator for the spring that each household used at baseline is in the models, but its coefficient estimate 
is not shown in the table. Standard errors are based on the information matrix with the Hessian being 
estimated by the outer product of the gradient of the simulated likelihood at the estimated parameter value. 
Stars *, **, and *** mean significance at 90%, 95%, and 99%, respectively. See Section 6.2 for the model 
description and discussions about this table. See Appendix A.3.3 for the estimation procedure to produce 
these estimates. 
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Figure 1: Treatment Effects and WTP for the Treatment 

(a) Heterogeneity in Treatment Effects êt1i (b) Heterogeneity in WTP ŵit1 

(c) Correlation between Treatment Effects & WTP 

Notes: This figure shows the pattern of heterogeneity in estimated WTP ŵit1 and predicted treatment 
effects êt1i. Panel a is about the predicted treatment effects êt1 i measured in percentage point reduction 
in the incidence of child diarrhea in the past week, while Panel b is about WTP for the spring protection 
treatment ŵit1 , measured by time cost of water collection in the unit of workdays. Both predicted effects êt1i 
and WTP ŵit1 are based on the main statistical specifications including all of the interactions between the 
treatment indicator and household characteristics (baseline latrine density, diarrhea prevention knowledge 
score, and mother’s years of education). Panel c demonstrates the correlation between WTP ŵit1 and 
predicted treatment effects êt1i. For the sake of visibility, I focus on the three standard deviations around 
the mean. See Section 6.2 for discussions about this figure. See Appendix A.3.3 for the detailed computational 
procedure. 
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Figure 2: EXAM vs RCT: Welfare 

∗(a) Average WTP for Assigned Treatments wi 

∗(b) Average Predicted Effects of Assigned Treatments ei 

Notes: To compare EXAM and RCT’s welfare performance, this figure shows the distribution of average 
subject welfare over 1000 bootstrap simulations under each experimental design. Panel a measures welfare 

∗with respect to average WTP w for assigned treatments while Panel b with respect to average predicted i 
∗effects e of assigned treatments. A dotted line indicates the distribution of each welfare measure for RCT i 

while a solid line indicates that for EXAM. Each vertical line represents mean. Both predicted effects êt1i 
and WTP ŵit1 are based on the main statistical specifications including all of the interactions between the 
treatment indicator and household characteristics (baseline latrine density, diarrhea prevention knowledge 
score, and mother’s years of education). See Section 6.3 for discussions about this figure. 
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Figure 3: EXAM vs RCT: Average Treatment Effect Estimates 

(a) Distribution of Treatment Effect Estimates b̂∗ 

(b) Distribution of Average Treatment Effect Estimates β̂∗ 

Notes: This figure compares EXAM and RCT’s causal inference performance by showing the distribution 
of average treatment effect estimates under each experimental design. Grey bins indicate average treatment 
effect estimates for RCT while transparent bins with black outlines indicate those for EXAM. The solid 
vertical line indicates the mean for EXAM while the dashed vertical line indicates that for RCT. See Section 
6.3 for discussions about this figure. 
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Figure 4: EXAM vs RCT: p Values for b̂∗ 

(a) Exact, Finite Sample p Values (b) Non-robust p Values 

(c) Robust p Values (d) Abadie et al. (2017)’s p Values 

Notes: This figure compares EXAM and RCT’s causal inference performance by showing the distribution 
of p values accompanying treatment effect estimates b̂∗ under each experimental design. The p values are 
based on exact, non-robust, robust, or Abadie et al. (2017)’s finite population causal standard errors. Grey 
bins indicate p values for RCT while transparent bins with black outlines indicate those for EXAM. The 
solid vertical line indicates median for EXAM while the dashed vertical line indicates that for RCT. See 
Section 6.3 for discussions about this figure. 
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Figure 5: EXAM vs RCT: Incentive 

(a) WTP manipulation ∼ true WTP+N(0, 100) (b) WTP manipulation ∼ true WTP+N(0, 1000) 

(c) WTP manipulation ∼ true WTP+U(0, 100) (d) WTP manipulation ∼ true WTP+U(−100, 0) 

Notes: This figure shows the histogram of true WTP gains from potential WTP misreports to EXAM, 
quantifying the incentive compatibility of EXAM. Different panels use different ways of drawing WTP 
manipulations indicated by the panel titles. Each solid vertical line represents the mean WTP gain from 
potential WTP misreports to EXAM. The dash vertical line is for RCT, where the true WTP gain from 
any WTP misreport is zero. See Section 6.3 for discussions about this figure. 
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A Appendix (For Online Publication) 

A.1 Methodological Details P 
Throughout Appendix A.1, I impose the simplifying assumption that i pit

∗ (�) ∈ Z for every 

t. It is possible to dispense with this assumption with additional notational burden. 

A.1.1 Propositions 4 and 5: Generalizations 

This section extends Proposition 5 to a general case where ptnp (the expected number of 

subjects with propensity vector p and assigned to treatment t under EXAM) may not be P 
an integer. Let Npt ≡ 1{p ∗(�) = p}Dit be a random variable that stands for the number i i 

of subjects with propensity vector p and assigned to treatment t. Denote the realization of P 
Npt by npt ≡ i 1{pi ∗(�) = p}dit where dit is the realization of Dit. Let n be the greatest pt 

integer less than or equal to ptnp. With this regularity condition, I extend Definition 2 as 

follows to use EXAM to draw a deterministic treatment assignment and the associated npt’s. 

Definition 2 (EXAM Continued; Generalization). Starting from the end of Definition 2 

in Section 3.2, draw a treatment assignment from p ∗ (�) as follows. First apply Budish et it

al. (2013)’s algorithm (in their Appendix B) to draw (npt) ∈ N that satisfy the following 

properties (I detail their algorithm and its use below): 

• npt = ptnp for all p and t such that ptnp ∈ N. 

• npt ∈ {n , n + 1} for all p and t such that ptnp ∈/ N.pt pt P 
• t npt = np for all p. P P 
• = i p ∗ (�) for all t. p npt it

• E(npt) = ptnp for all p and t. 

Given the drawn values of (npt), for each propensity vector p, 

• I uniformly randomly pick npt0 subjects from {i|pi ∗(�) = p} and assign them to t0. 

For each subsequent step k = 1, ..., m, 

• Step k: From the remaining np − 
Ptk−1 subjects, I uniformly randomly pick nptkt=t0 

npt 

subjects and assign them to tk. 
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When ptnp is an integer for all p and t, npt = ptnp always holds for all p and t so that this 

generalized definition reduces to Definition 2 in Section 5. With this extended Definition 2, 

Proposition 4 holds as it is in the main text. I obtain the following characterization of the 

variance of ATE estimator β̂t 
∗, which nests Proposition 5 in Section 5. 

Proposition 5 (Generalization). Suppose that the data-generating process is EXAM p ∗(�) ≡ 

β̂∗(p ∗ with any given � > 0. is an unbiased estimator of the average treatment effect it(�))it t 

with the following variance. 

X n X h�S2 � � S2 � i S2 o 
pt0 pt0 ptt0δ2V (β̂t 

∗|p ∗ (�)) = p (1 − pt0 np + npt0 ) + 
n + 1 

(pt0 np − npt0 ) − . 
npt0 pt0 npp t0∈{t0,t} P 

∗ Yi(t)i:pi (�)=p¯where recall that δp ≡ np/n, Yp(t) ≡ is the mean of Yi(t) in the subpopulation 
npP 

∗ (Yi(t) − ¯ (t))2 
i:p (�)=p Yp

with propensity p, S2 ≡ i 
pt is the variance of Yi(t) in the subpopula-

np − 1P 
∗ (Yi(t) − Yi(t

0) − (Ȳp(t) − Ȳp(t
0)))2 

i:pi (�)=p
tion, and S2 ≡ is the variance of Yi(t) − Yi(t

0)ptt0 np − 1 
in the subpopulation. 

Using Budish et al. (2013)’s Algorithm 

In the above generalized Definition 2, I use Budish et al. (2013)’s algorithm to draw (npt). 

To do so, I embed my setting into their notation as follows: N ≡ {p ∈ [0, 1]m+1| there 
exists some subject i such that p ∗(�) = p} is the set of “agents” in their terminology. Leti 

O ≡ {t0, t1, ..., tm} be the set of “objects.” H ≡ {H1, H2} is a “constraint structure” where 

H1 ≡ H0 ∪H1
0 , H0 ≡ {{(p, t)}p∈N,t∈O}, H0 ≡ {(p, t)|t ∈ O}p∈N , and H2 ≡ {(p, t)|p ∈ N}t∈O.1 

Upper and lower constraints are as follows. 

• ¯ = 1 and q = 0 if s ∈ H0.qs s P 
• q̄s = q = np − npt if s ∈ H1

0 .ts P P 
• ¯ = q = p ∗ (�) − n if s ∈ H2.qs s i it p pt 

Budish et al. (2013) show that applying their algorithm to this problem produces (xpt) 

such that npt ≡ npt + xpt satisfies the properties in Definition 2. For completeness, I define 

their algorithm; see their Appendix B for more details. I first construct a network flow as 

follows. Let Ω ≡ {{(p, t)}p∈N,t∈O} and X = (xω)ω∈Ω. The set of vertices is composed of the 

45 



source s and the sink s0, two vertices vω and vω0 for each element ω ∈ Ω, and vS for each 

S ∈ H \ [(∪ω∈Ω{ω}) ∪ (N × O)]. I place (directed) edges according to the following rule. 

• For each ω ∈ Ω, an edge e = (vω, vω0 ) is placed from vω to vω0 . 

• For each k = 1, 2, an edge e = (vS , vS0 ) is placed from S to S0 6= S where S, S 0 ∈ Hk, 

if S0 ⊂ S and there is no S00 ∈ Hk where S 0 ⊂ S 00 ⊂ S. 

• An edge e = (s, vS ) is placed from the source s to vS if S ∈ H1 and there is no S 0 ∈ H1 

where S ⊂ S0 . 

• An edge e = (vS , s
0) is placed from vS to the sink s0 if S ∈ H2 and there is no S 0 ∈ H2 

where S ⊂ S0 . 

I associate flow with each edge as follows. For each edge e = (vω, vω0 ), I associate flow 

xe = xω. For each e that is not of the form (vω, vω0 ) for some ω ∈ Ω, the flow xe is (uniquely) 

set to satisfy the flow conservation, that is, for each vertex v different from s and s0, the 

sum of flows into v is equal to the sum of flows from v. I use this network flow to define the 

following algorithm. 

Definition 3 (Budish et al. (2013)’s Algorithm). If deg[X(H)] ≡ |{S ∈ H|xs ∈ Z}| = |H|, 
then stop the algorithm. Otherwise, move on to the following steps: 

(1) Cycle-Finding Procedure 

(a) Step 0 : Since deg[X(H)] < |H| by assumption, there exists an edge e1 = (v1, v
0 )1

such that its associated flow xe1 is fractional. Define an edge f1 = (v1, v1
0 ) from 

v1 to v1
0 . 

(b) Step t = 1, ...: Consider the vertex vt 
0 that is the destination of edge ft. 

i) If vt 
0 is the origin of some edge ft0 ∈ {f1, ..., ft−1}, then stop. The procedure 

has formed a cycle (ft0 , ft0+1, ..., ft) composed of edges in {f1, ..., ft}. Proceed to 

Termination-Cycle Procedure below. 

ii) Otherwise, since the flow associated with ft is fractional by construction and 

the flow conservation holds at vt
0, there exists an edge et+1 = (ut+1, u

0 
t+1) 6= et 

with fractional flow such that vt 
0 is either its origin or destination. Draw an edge 

ft+1 by ft+1 = et+1 if vt 
0 is the origin of et+1 and ft+1 = (ut

0 
+1, ut+1) otherwise. 

Denote ft+1 = (vt+1, vt
0 
+1). 

(2) Termination-Cycle Procedure 
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(a) Construct a set of flows associated with edges (x1 
e) which is the same as (xe), 

except for flows (xeτ )t0≤τ ≤t, that is, flows associated with edges that are involved in 

the cycle from the last step. For each edge eτ such that fτ = eτ , set x1 +α,eτ 
= xeτ 

and each edge eτ such that fτ 6 eτ , set xe
1 
τ 
= xeτ − α, where α > 0 is the = 

largest real number such that the induced expected assignment X1 = (x1 
ω)ω∈Ω 

still satisfies all constraints in H. By construction, x1 
S = xS if xS is an integer, 

and there is at least one constraint set S ∈ H such that xS 
1 is an integer while xS 

is not. Thus deg[X1(H)] >deg[X(H)]. 

(b) Construct a set of flows associated with edges (xe
2) which is the same as (xe), 

except for flows (xeτ )t0≤τ ≤t, that is, flows associated with edges that are involved in 

the cycle from the last step. For each edge eτ such that fτ = eτ , set xe
1 
τ 
= xeτ −β, 

and each edge eτ such that fτ 6 eτ , set x1 = + β, where β >= 0 is the eτ 
xeτ 

largest real number such that the induced expected assignment X2 = (xω
2 )ω∈Ω 

still satisfies all constraints in H. By construction, x2 
S = xS if xS is an integer, 

and there is at least one constraint set S ∈ H such that xS 
2 is an integer while xS 

is not. Thus deg[X2(H)] >deg[X(H)]. 
β 

(c) Set γ by γα + (1 − γ)(−β) = 0, i.e., γ = . 
α + β 

(d) Decompose X into X = γX1 + (1 − γ)X2 . 

Note that deg[Xk(H)] >deg[X(H)] for both k = 1, 2, implying that repeating the above 

algorithm transforms the original X into a distribution over deterministic (xpt)’s where 

every xpt is an integer. The induced distribution can then be used to draw deterministic 

(xpt) consistent with X. Budish et al. (2013)’s Theorem 1 and Appendix B show that the 

resulting (xpt) has the property that npt ≡ npt + xpt satisfies the conditions in Definition 2. 

A.1.2 Asymptotic Power Comparison of EXAM and RCT 

This section shows that EXAM’s ATE estimation is potentially more precise than RCT’s 

even in an asymptotic framework. This observation provides additional support for the finite 

sample discussion in Section 5. 

Sequence of Experimental Design Problems 

Following Abadie et al. (2017), I consider a sequence of finite populations of potential subjects 

indexed by population size N . For each population N , I randomly sample subjects who 

participate in the experiment. Let RN,i denote the indicator of subject i being sampled from 

population N , i.e., RN,i = 1 if i is sampled and RN,i = 0 otherwise. Denote the number 
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PNof subjects by n = i=1 RN,i. Given each finite population N , I consider a sequence of 

experimental design problems, each of which consists of 

• A set of n experimental subjects {i|RN,i = 1}. 

• Experimental treatments t0, t1, ..., tm. 

• Each treatment t’s pseudo capacity cN,t ∈ N with Σtm = n.t=t0 
cN,t 

• Each subject i’s WTP wN,it for each i ∈ {j|RN,j = 1}. 

• Each treatment t’s predicted treatment effect eN,ti for each i ∈ {j|RN,j = 1}. 

Among these components, experimental treatments are nonrandom and do not depend on 

N or n. The other elements are random because RN,i is random. I allow cN,t to be random 

even conditional on {i|RN,i = 1}. 
I study a sequence of experimental designs pN = (pN,it)i:RN,i=1,t=t0,...,tm along with the 

sequence of experimental design problems. pN is random because some of the components of 

an experimental design problem is random. For each sampled experimental design problem 

and each i ∈ {j|RN,j = 1}, I use DN,it = 1 to indicate that subject i is assigned to treatment 

t, and DN,it = 0 to indicate that subject i is assigned to any other treatment or control. 

The distribution of (DN,it) depends on the algorithm to draw deterministic treatment as-

signments. Let YN,i(t) be the fixed potential outcome of subject i that would be observed 

if i is sampled from population N and assigned to treatment t. The observed outcome of 

subject i in the sample is YN,i = 
Ptm DN,itYN,i(t). I observe (YN,i, DN,i, wN,i, eN,i) for each t=t0 

subject i in the sample. 

Sequence of Parameters and Estimators 

I consider a sequence of two parameters as estimands, the population average treatment effect 

and the sample average treatment effect, defined as follows: 

N NX X 
βpop 1

(YN,i(t) − YN,i(t0)) and βsample 1 
= = RN,i(YN,i(t) − YN,i(t0)).N,t N,t N n 

i=1 i=1 

Let βpop = (βpop sample sample sample )0 N N,t1 N,tm N , ..., βN,tm N,t is nonrandom , ..., βpop )0 and β = (βN,t1 
. Note that βpop 

while βsample 
N,t is random due to the random sampling of a subject sample. I put the following 

assumption. 
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Assumption 1. There exist G sequences of nonempty subpopulations, {PN,1}, ..., {PN,G}, 
such that for all N , (i) PN,1, ..., PN,G form a partition of population N , (ii) for all g, for all 

i, j ∈ PN,g, I have (wN,it, eN,ti)t = (wN,jt, eN,tj )t, and (iii) if (wN,it, eN,ti)t = (wN,jt, eN,tj )t for 

some i ∈ PN,g and j ∈ PN,g0 , then g = g0 . P 
Denote the size of PN,1, ..., PN,G by N1, ..., NG, respectively. Let ng = RN,i be the i∈PN,g 

number of subjects sampled from subpopulation PN,g. Now consider two parameters defined 

on subpopulation PN,g: X X1 1 
βN,gt 
pop = (YN,i(t) − YN,i(t0)) and βN,gt 

sample = RN,i(YN,i(t) − YN,i(t0)). 
Ng ng

i∈PN,g i∈PN,g 

Let βpop (βpop and βsample (βsample = , ..., βpop )0 N,g = , ..., βsample )0 . The population average N,g N,gt1 N,gtm N,gt1 N,gtm 
sample treatment effect βN,t 

pop and the sample average treatment effect βN,t can be written as the 

and βsample weighted average of βpop , respectively: N,gt N,gt 

G GX X 
βpop Ng 

βpop and βsample ng 
βsample = = .N,t N,gt N,t N,gt N n 

g=1 g=1 

sample As in Section 5, I estimate both βpop and β withN,t N,t 

GX ng
β̂∗ β̂∗ = N,t N,gt, n 

g=1 

where P P 
RN,iDN,itYN,i RN,iDN,it0 YN,i i∈PN,g i∈PN,g β̂∗ = P − P .N,gt RN,iDN,it RN,iDN,it0i∈PN,g i∈PN,g 

I assume that if two subjects are in different subpopulations, EXAM gives them different as-

signment probabilities and puts them in different subsamples. Let β̂∗ = ( β̂∗ , ..., β̂∗ )0 .N,g N,gt1 N,gtm 

Asymptotic Distribution of β̂∗ 
N,t 

β̂∗To derive the asymptotic distribution of I need a series of regularity conditions. N,t, 

first assume that each subject is sampled independetly with the same sampling probability, 

and the expected sample size of each subsample goes to infinity as N goes to infinity. Let 

δN,g = Ng/N . 
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Assumption 2. (i) There is a sequence of sampling probabilities, ρN , such that for all 

r ∈ {0, 1}N , 

PN 
i=1 ri i=1 riPr(RN = r) = ρN (1 − ρN )

N− 
PN 

. 

(ii) For all g, NgρN →∞, ρN → ρ ∈ [0, 1] and δN,g → δg ∈ [0, 1] as N →∞. 

I apply EXAM to each realized experimental design problem to obtain treatment assignment 

probabilities. Denote the assignment probabilities by pN 
∗ (�). I impose the following restric-

tion on the distribution of capacities conditional on sample. Below expectations are taken 

over RN ≡ (RN,1, ..., RN,N )
0, (cN,t) and (DN,it). 

Assumption 3. For all g, there is a sequence of constant vectors of size m + 1, qN,g, such 

that E[p ∗ (�)|RN = r] = qN,g,t for all t, all r ∈ {0, 1}N , and all i ∈ PN,g ∩ {j|rj = 1}.N,it

∗ ∗ ∗For each subject i ∈ PN,g ∩{k|RNk = 0}, define p (�) as p (�) = p (�) for an arbitrary N,it N,it N,jt

j ∈ PN,g ∩ {k|Rk = 1}. I also define random variable DN,it with i ∈ {k|Rk = 0} such that 

the following assumption is true and treatment assignments are independent across subjects 

given assignment probabilities pN 
∗ (�). 

Assumption 4. (DN,it)t=t0,...,tm and (DN,jt)t=t0,...,tm are independent for any i 6= j condi-

tional on RN = r. 

I put a few additional regularity conditions. 

1 P 
Assumption 5. For all g, there exists some δ > 0 such that the sequence i∈PN,g Ng 
is bounded. 

E[|YN,i|4+δ] 

Now let XN,it = DN,it − E[DN,it], DN,i = (DN,i,t1 , ..., DN,i,tm )
0 , XN,i = (XN,i,t1 , ..., XN,i,tm )

0 , 

and for each g, ⎡ ⎤⎞⎛⎞⎛ 0
YN,i YN,i 

1 X ⎢⎢⎣ 
⎥⎥⎦⎜⎝ XN,i 

⎜⎝ 
⎟⎠ XN,i 

⎟⎠ΩN,g = E . 
Ng 

i∈PN,g 1 1 

Assumption 6. For all g, ΩN,g → Ωg, where the limit is full rank. 

Let βN,it = YN,i(t) − YN,i(t0) and βN,i = (βN,i,t1 , ..., βN,i,tm )
0 . For all g and all i ∈ PN,g, let 

Xtm
�N,i = DN,it YN,i(t) − YN,i(t) . 

Ngt=t0 i∈PN,g 
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1 P 1 P 
X 0Let Δcond

g = limN→∞ V ar(XN,i�N,i) and Δehw
g = limN→∞ E(XN,i�N,i

2 
N,i).i∈PN,g i∈PN,g Ng Ng 

Assumption 7. For all g, Δcond
g and Δehw

g exist and are positive definite. 

√ ng Ng p
)βpopAssumption 8. For all g, n( − −→ 0 as N →∞.N,g n N 

Proposition 6 (Asymptotic Distribution of β̂∗ ). Suppose Assumptions 1, 2, 3, 4, 5, 6, 7 N,t

and 8 hold. Let Hg = limN→∞ ). Then,
Ng 

N,i

1 P 
i∈PN,g 

E(XN,iX
0 

√ d− βpopn(β̂∗ 
N,tj N,tj 

) −→ N (0, V 1
∗ 
,jj ), 

where V1
∗ 
,jj is the j-th diagonal element of V ∗ ≡ 

PG δgH
−1(ρΔcond + (1 − ρ)Δehw)H−1 .1 g=1 g g g g 

√
− βsample d

n(β̂∗ ) −→ N (0, V ∗ ),N,tj N,tj 2,jj PG H−1ΔcondH−1where V2
∗ 
,jj is the j-th diagonal element of V ∗ ≡ δg g g .2 g=1 g 

Asymptotic Efficiency Comparison of EXAM and RCT 

How does EXAM compare to RCT in terms of asymptotic standard errors? With RCT, the 

and βsample estimator for βpop isN,t N,t P P 
DN,itYN,i DN,it0 YN,i 

β̂RCT i:RN,i=1 i:RN,i=1 
N,t = P − P . 

DN,it DN,it0i:RN,i=1 i:RN,i=1 

β̂RCT is a special case of β̂∗ when wN,it = wN,jt > 0 and eN,ti = eN,tj for all i, j and t (recallN,t N,t 

Proposition 1). For this RCT special case, Assumption 1 holds with G = 1 and PN,1 being the 
√ ng Ng 

)βpopset of all subjects. Assumption 8 also holds since n( − N,g = 0 for all g and N . Let 
n N 

1 PN 1 PN�N,i = D0 (βN,i − βpop)+ YN,i(t0) − YN,i(t0), Δcond = limN→∞ V ar(XN,i�N,i)N,i N i=1 i=1N N 

and Δehw = limN→∞ 
1 PN E(XN,i�

2 X 0 ). Proposition 6 therefore implies the following i=1 N,i N,iN 
result. 

βRCT Corollary 3 (Asymptotic Distribution of ˆN,t ). Suppose Assumptions 2, 3, 4, 5, 6 and 7 
1 PNhold with G = 1 and pN,it

∗ (�) = cN,t/N for all i, t, and N . Let H = limN→∞ E(XN,iX
0 ).i=1 N,iN 

√ d
βRCT − βpopn( ˆ ) −→ N (0, V RCT ),N,tj N,tj 1,jj 
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where V RCT is the j-th diagonal element of V RCT ≡ H−1(ρΔcond + (1 − ρ)Δehw)H−1 .1,jj 1 

βRCT sample −→ N (0, V RCT ), 
√ 
n( ˆN,tj 

− βN,tj 
) 

d
2,jj 

≡ H−1ΔcondH−1where V RCT is the j-th diagonal element of V RCT .2,jj 2 

To compare EXAM and RCT by their asymptotic variances, consider a simple situation 

where there is only one treatment. For EXAM, let P 
i∈PN,g 

(YN,i(t) − ȲN,g(t))
2 

qg,t = lim qN,g,t, S
2 = lim and 

N→∞ 
gt 

N→∞ Ng P 
i∈PN,g 

(YN,i(t) − YN,i(t
0) − (ȲN,g(t) − ȲN,g(t

0)))2 

S2 = lim ,gtt0 
N→∞ Ng P 

YN,i(t)i∈PN,g where ȲN,g(t) = . For RCT, let 
Ng PN 

i=1(YN,i(t) − ȲN (t))
2 

qt = lim qN,t, St 
2 = lim and 

N→∞ N→∞ N PN (YN,i(t) − YN,i(t
0) − (ȲN (t) − ȲN (t

0)))2 

S2 i=1= lim ,tt0 
N→∞ N PN YN,i(t)

where qN,t = E[cN,t/n] and ȲN (t) = i=1 . I assume these limits exist. 
N 

Assumption 9. For all g, qg,t1 , S
2 , S2 and S2 exist with qg,t1 ∈ (0, 1).gt1 gt0 gt1t0 

Assumption 10. qt1 , S
2 , S2 and S2 exist with qt1 ∈ (0, 1).t1 t0 t1t0 

Corollary 4 (Binary Treatment Case). Suppose there is only one treatment t1 to be compared 

to the control t0. For EXAM, under Assumptions 1, 2, 3, 4, 5, 6, 7, 8 and 9, 

G√ X S2 S2 

− βpop d gt1 gt0 n(β̂∗ ) −→ N (0, δg( + − ρS2 )). (7)N,t1 N,t1 gt1t0 

g=1 
qg,t1 1 − qg,t1 XG S2 S2√ d gt1− βsample gt0 n(β̂∗ − S2 

N,t1 N,t1 
) −→ N (0, δg( + )). (8)gt1t0qg,t1g=1 

1 − qg,t1 

For RCT, suppose Assumptions 2, 3, 4, 5, 6, 7 and 10 hold with G = 1 and pN,it
∗ (�) = cN,t/N 

for all i and t. Then, 

√ d S2 S2 

βRCT − βpop t1 t0 n( ˆ ) −→ N (0, + − ρS2 ). (9)N,t1 N,t1 t1t0qt1 1 − qt1 
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S2 S2√ 
βRCT sample d t1 t0 n( ˆ − β ) −→ N (0, + − S2 ). (10)N,t1 N,t1 t1t0qt1 1 − qt1 

The asymptotic variance comparison of RCT and EXAM depends on the limiting distri-

bution of potential outcomes and treatment assignment probabilities. EXAM may produce 

more precise ATE estimates than RCT if potential outcomes are well correlated with EXAM’s 

treatment assignment probabilities. The following example illustrates this possibility, pro-

viding an asymptotic analogue of Example 1. 

Example 2. Suppose there is only one treatment t1, and ρN = 1 for all N so that n = N with 

probability one. Every subject has YN,i(t0) = 0 for all N . The subjects in every population 

are divided into four groups A, B, C and D based on their potential outcomes YN,i(t1). Let 

YN,i(t1) = 1, 2, 3, and 4 for anybody in group A, B, C and D, respectively. Denote the 

number of subjects in group A, B, C and D by NA, NB , NC and ND, respectively. The 

sequences of pseudo capacities and the size of groups A, B, C and D are as follows: 

• If N = 4k for some k ∈ N, cN,t0 = cN,t1 = 2k and NA = NB = NC = ND = k. 

• If N = 4k + 1 for some k ∈ N, cN,t0 = 2k, cN,t1 = 2k + 1, NA = k + 1 and NB = NC = 

ND = k. 

• If N = 4k + 2 for some k ∈ N, cN,t0 = 2k + 1, cN,t1 = 2k + 1, NA = NB = k + 1 and 

NC = ND = k. 

• If N = 4k + 3 for some k ∈ N, cN,t0 = 2k + 1, cN,t1 = 2k + 2, NA = NB = NC = k + 1 

and ND = k. 

Assume the experimenter imperfectly predicts treatment effects: eN,t1i = 0 for every i in 

group A or B while eN,t1i = 2 for every i in group C or D. Let wN,it1 = 1 for every i in 

group A or B and wN,it1 = 2 for every i in group C or D. There are two subpopulations, 

PN,1 and PN,2, such that i ∈ PN,1 for every i in group A or B and i ∈ PN,2 for every i in 

group C or D. For every N , EXAM with � < .2 gives the following treatment assignment 

probabilities35: p ∗ (�) = 0.2 for every i ∈ PN,1 while p ∗ (�) = 0.8 for every i ∈ PN,2.N,it1 N,it1 

RCT Under RCT, pN,t1 
= cN,t1 /N = qN,t1 . Note that δN,1 = N1/N = (NA + NB )/N → 0.5, 

δN,2 = N2/N = (NC + ND)/N → 0.5, qN,1,t1 → 0.2, qN,2,t1 → 0.8 and qN,t1 → 0.5 as N →∞. 

Applying Corollary 4 to this example, I have 

0.53125 1.25 
βRCT aV ar(β̂∗ ) = < = aV ar( ˆ ).N,t1 N,t1N N 

35 EXAM outputs these treatment probabilities if I set α = − 
15b 

, βt1 = 5b, and βt0 = 0 given any budget 
8PN ∗b. Note that the capacity constraint holds, i.e., ≤ cN,t1 .i=1 pN,it1 
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sample where aV ar is the asymptotic variance relative either βpop or β , both of which pro-N,t1 N,t1 

duce the same asymptotic variance by ρ = 1. The above inequality means that EXAM’s 

ATE estimation may be asymptotically more precise than RCT’s even if the experimenter 

imperfectly predicts potential outcomes. 

A.1.3 Uncertainty in Predicted Effects and Preferences 

Unlike the baseline setting in the main body, the experimenter’s information about prefer-

ences and predicted effects may be uncertain and probabilistic. What experimental design 

should the experimenter use with uncertain preferences and predicted effects? An uncertain 

experimental design problem consists of experimental subjects, treatments, pseudo capacities, 

and the following objects. 

• Each subject i’s preference or WTP w̃it for treatment t where w̃it is a random variable. 

• Each treatment t’s predicted treatment effect ẽti for subject i where ẽti is a random 

variable. 

w̃it and ẽti are the experimenter’s statistical perceptions about WTP and predicted treatment 

effect, respectively. Denote wit ≡ E(w̃it) and eti ≡ E(ẽti) where each expectation is with 

respect to the distribution of w̃it and ẽti, respectively. 

When I apply EXAM to (wit, eti), the resulting EXAM nests RCT, is efficient with respect 

to (wit, eti), is approximately incentive compatible, and is as informative as RCT in the same 

senses as in Propositions 1-5. 

A.1.4 Ordinal Predicted Effects and Preferences 

The experimenter’s information about preferences and predicted effects may be ordinal. 

What experimental design should the experimenter use with ordinal preferences and pre-

dicted effects? An ordinal experimental design problem consists of experimental subjects, 

treatments, pseudo capacities, and the following objects. 

• Each subject i’s ordinal preference %i for treatment t where t %i t
0 means subject i 

weakly prefers treatment t over t0 . %i may involve ties and indifferences. 

• Each treatment t’s ordinal predicted treatment effect %t for subject i where i %t i
0 

means treatment t is predicted weakly more effective for subject i than for subject i0 . 

Again, %t may involve ties and indifferences. 

I consider the following adaptation of EXAM to this ordinal experimental design problem. 
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Definition 4 (Ordinal EXAM). (1) Create any cardinal WTP wit 
0 of each subject i for 

each treatment t so that wit 
0 > wit

0 
0 if and only if t �i t

0 . 

(2) Create any cardinal predicted effect of each treatment t for each subject i so that 

eti 
0 > e0 if and only if i �t i

0 .ti0 

(3) Run EXAM (as defined in Definition 2) on (wit
0 , eti

0 ) to get treatment assignment prob-

abilities p ∗o(�)it 

Ordinal EXAM nests RCT, is approximately incentive compatible, and is as informative 

as RCT in the same senses as in Propositions 1, 3, and 4, respectively. For approximate 

incentive compatibility, I modify the setting so that subjects report ordinal preferences %i in-

stead of cardinal WTP w0 Moreover, ordinal EXAM has the following nice welfare property it. 

with respect to ordinal preferences and predicted effects. 

Proposition 7. pit 
∗o(�) is ordinally efficient in the following sense. There is no other ex-P 

perimental design (pit) with pit ∈ [�, 1 − �] for all subject i and treatment t, i pit ≤ ct for 

all t = t1, ..., tm,, and with the following better welfare property: For all cardinal WTP wit 

consistent with ordinal %i and all cardinal predicted effects eti consistent with ordinal %t, I 

have X X X X 
∗o ∗o pitwit ≥ pit (�)wit and piteti ≥ pit (�)eti 

t t t t 

for all i with at least one strict inequality. 

A.2 Proofs 

Proof of Proposition 1 

∗ RCT Suppose to the contrary that there exist some � ∈ [0, ̄�], i, and t such that p 6= p . Sinceit(�) t 

eti = etj for all subjects i and j and treatment t, I have πteti ≡ αeti + βt = αetj + βt ≡ πtetj 

for all subjects i and j and treatment t. Combined with wit = wjt for all subjects i and j 

and treatment t, this implies that any subjects i and j face the same utility maximization 

problem: 

P P P P 
arg maxpi∈P ( t pitwit s.t. t pitπteti ≤ b) = arg maxpj ∈P ( t pjtwjt s.t. t pjtπtetj ≤ b). 

∗ ∗ RCT ∗This implies pjt(�) = pit(�) 6 pt = ct/n by the requirement in Definition 2 that (pit)t = = 

(p ∗ for any i and j with wi = wj and ei = ej .jt)t P∗ ∗ ∗ ∗If pjt(�) = pit(�) > ct/n for some t =6 t0, then n
j=1 pjt(�) = npit(�) > nct/n = ct, which P P∗ RCT implies n p > ct (since 

n p = ct). This contradicts the capacity constraint in j=1 jt j=1 t 

55 



6

∗ ∗ ∗the definition of p If pjt(�) = pit(�) < ct/n, then there is another treatment t0 =6 t for which it. P P∗ ∗ ∗ p = pit0 (�) > ct/n since ct/n = p (�) = 1 for any subject j. This implies that Pjtn 

0 (�) t t jt

j=1 pjt
∗ 

0 (�) = npit
∗ 
0 (�) > nct0 /n = ct0 , again contradicting the capacity constraint if t0 = t0. 

∗ ∗ ∗The only remaining possibility is pjt0 
(�) = pit0 

(�) > ct0 /n ≥ � > 0. This implies pjt(�) = 
∗ ∗ ∗ RCT p (�) < ct/n ≤ 1 − � for some t 6 and so p = pit < ct/n (since p = ct/n for any i).= t0it jt t P 
But this is a contradiction since j can increase the value of her objective function t pjtwjt 

∗ ∗ ∗ ∗by changing pjt0 
and pjt to pjt0 

− δ and pjt + δ, respectively, for small enough δ > 0, since 

wjt > wjt0 = 0. Such pjt
∗ 

0 
− δ and pjt 

∗ + δ satisfy the budget constraint since πteti ≤ 0 for 

every i and so X X 
∗ ∗ ∗ ∗ pjt0 πt0et0j 

+ (pjt0 
− δ)πt0et0j + (pjt + δ)πtetj ≤ pjt0 πt0et0j 

≤ b. 
t0 6 t0=t0,t 

Therefore, it cannot be the case that p ∗ (�) = p ∗ (�) > ct0 /n. Thus, for every � ∈ [0, �̄], i, jt0 it0 

∗ RCT and t, it must be the case that pit(�) = pt . 

Proof of Proposition 2 

EXAM always exists: It is enough to find (pit
∗ ) that satisfies the conditions in Step (1) of 

Definition 2. 

Lemma 1. There exists (pit
∗ ) that satisfies a weaker version of Definition 2 that is the same 

as Definition 2 except that EXAM breaks ties or indifferences so that every subject i’s piP 
solves the utility maximization problem with the minimum expenditure t pitπteti (but it is 

not necessarily the case (pit
∗ )t = (p ∗ for any i and j with wi = wj and ei = ej ).jt)t 

Proof of Lemma 1. Fix α at any negative constant α∗ < 0. Fix βt0 = 0. Define a 

space of possible values of β ≡ (βt)t by B ≡ βt0 × [0, nb − α∗ ē1{ē > 0}]m where ē = 

max{eti}. For any given γ ≥ 0, define the demand correspondence for each subject i by P P 
pi 
∗(β, γ) ≡argmaxpi∈P t(pitwit − γpit(α∗ eti + βt)) s.t. t pit(α

∗ eti + βt) ≤ b. Define the 

excess demand correspondence zγ (·) : B → Rm+1 by X X 
zγ (β) = { pi − c|pi ∈ p ∗ (β, γ) for every i} ≡ p ∗ (β, γ) − ci i 

i i 

where c ≡ (ct). This correspondence zγ (·) is upper hemicontinuous in β and convex-valued 

because it is a linear finite sum of p ∗ 
i (β, γ)’s, which are upper hemicontinuous and convex-

valued as shown below. 

Step 1. For every subject i and γ ≥ 0, her demand correspondence pi 
∗(β, γ) is nonempty, 

convex-valued, and upper hemicontinuous in β. 
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∗ 0 ∗Proof of Step 1. pi (β, γ) is convex-valued since for any pi, p ∈ pi (β, γ) ⊂ P and δ ∈ [0, 1], it i P 
holds that pδ,i = δpi + (1 − δ)p0 i is in p ∗ 

i (β, γ) because the objective pδ,itwit − γpδ,it(α∗ eti + P t 

βt) = t(wit − γ(α∗ eti + βt))pδ,it is linear and pδ,i satisfies the budget constraint because P P P 
pδ,it(α

∗ eti + βt) = δ pit(α
∗ eti + βt) + (1 − δ) p0 eti + βt) ≤ δb + (1 − δ)b = b.t t t it(α

∗ 

p ∗ 
i (β, γ) is non-empty and upper-hemicontinuous by the maximum theorem. To see this, note 

that (1) the utility function is linear and (2) the correspondence from β to the choice set P 
{pi ∈ P | t pit(α

∗ eti + βt) ≤ b} is both upper-hemicontinuous and lower-hemicontinuous as 

well as compact-valued and nonempty ((pit)t=t0,t1,...,tm = (1, 0, ..., 0) is for free and always in 

the choice set). Thus the maximum theorem implies that pi 
∗(β, γ) is non-empty and upper-

hemicontinuous, completing the proof of Step 1. 

˜Let c̄ ≡ max ct and B ≡ 0 × [−¯ c) − α∗ ̄ e > 0}]m . Define a truncation function f :c, n(b + ¯ e1{¯
B̃ → B by f(β) ≡ 0 × (max{0, min{βt, nb − α∗ ē1{¯ .e > 0}}})t=t1,...,tm Define correspondence 

˜gγ : B → B by gγ (β) ≡ f(β) + zγ (f(β)). 

Step 2. For all γ ≥ 0, gγ has a fixed point βγ 
∗ ∈ gγ (βγ 

∗). 

Proof of Step 2. zγ (f(β)) is upper hemicontinuous and convex-valued as a function of β ∈ B̃

because f(·) is continuous and zγ (·) is an upper hemicontinuous and convex-valued cor-

respondence, as explained above. This implies that gγ (β) is upper hemicontinuous and 

convex-valued as well. The range of gγ (β) lies in B̃, i.e., gγ : B̃ → B̃. It is because 

• f(β) ≡ 0 × (max{0, min{βt, nb − α∗ ē1{¯ ∈ [0, nb − α∗ ̄ e > 0}]m+1 ,e > 0}}})t=t1,...,tm e1{¯
which is by nb − α∗ ē1{¯ < 0).e > 0} ≥ 0 (recall α∗ 

• c̄ ≡ max ct ≥ 1. 

• zγ (f(β)) ∈ [−¯ because, for any β ∈c, n]m+1 B̃ and t, the excess demand zt,γ (β) is at 

least −c̄ (since the supply of any treatment t is ct ≤ c̄ by definition) and at most n 

(since there are n subjects and the demand for any treatment t by any subject i is at 

most 1). 

Finally, B is nonempty by −¯ c) ≤ n(b + ¯ e1{¯ gγ (β) ≡ f(β) + ˜ c < 0 < n(b + ¯ c) − α∗ ̄ e > 0}. 
zγ (f(β)) is therefore an upper hemicontinuous, nonempty, and convex-valued correspondence 

˜defined on the non-empty, compact, and convex set B. By Kakutani’s fixed point theorem, 

there exists a fixed point βγ 
∗ ∈ gγ (βγ 

∗), proving Step 2. 

Step 3. For any sequence of γn > 0 with limn→∞ γn = 0, consider the associated sequence 

of fixed points β∗ (β∗ ). There exists a subsequence of (β∗ ) that converges to some γn 
∈ gγn γn γn 

β∗ . Any such limit β∗ is a fixed point of g0 in the sense that β∗ ∈ g0(β∗). 
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Proof of Step 3. The space of possible values of β∗ is B ≡ βt0 e1{¯ ,× [0, nb − α∗ ̄ e > 0}]m 
γn 

which is compact. The Bolzano-Weierstrass Theorem therefore implies the existence of a 

convergent subsequence of (βγ
∗ 
n 
). 

The last part follows from β∗ ∈ limn→∞ gγn (β
∗) ⊂ g0(β∗), which I show below, where 

limn→∞ gγn (β
∗) is the set-theoretic limit define by {β| limn→∞ 1{β ∈ gγn (β

∗)} = 1}. This 
set-theoretic limit exists by the following reason: Since β∗ ∈ B and f(β∗) = β∗, I have X 

gγn (β ∗ ) ≡ f(β ∗ ) + zγn (f(β ∗ )) = β ∗ + zγn (β ∗ ) = β ∗ + pi 
∗ (β ∗ , γn) − c. 

i 

For proving the existence of limn→∞ gγn (β
∗), it is enough to show limn→∞ p ∗(β∗, γn) exists. 

To show it, note that if p1 ∈ p ∗(β∗, γj ) and p1 ∈/ p ∗(β∗, γk) for γj > γk > 0, then for all γl 
with γk > γl > 0, I have 

p 1 ∈/ p ∗ (β ∗ , γl), 

which is true by the following reason: p1 ∈ p ∗(β∗, γj ) and p1 ∈/ p ∗(β∗, γk) imply there exists 

some p2 satisfying the budget constraint and such that X X 
2 2 1 1 pitwit − γkpit(α ∗ eti + βt) > pitwit − γkpit(α ∗ eti + βt) 

t t 

while X X 
2 2 1 1 pitwit − γj pit(α ∗ eti + βt) ≤ pitwit − γj pit(α ∗ eti + βt). 

t t 

Taking the difference between the last two equations results in X X 
2 1 pit(α ∗ eti + βt) > pit(α ∗ eti + βt). 

t t P P 
Plugging this inequality back into an earlier expression, I get p2 p1 There-t itwit > t itwit. 

fore, p1 ∈/ p ∗(β∗, γl). Note also that for any small � > 0 there exists infinitely many n such that 

γn < � and finitely many m such that γm > �. By a result from measure theory (Billingsley 

(2008) p.52), therefore, lim infn→∞ p ∗(β∗, γn) = lim supn→∞ p ∗(β∗, γn) and the set-theoretic 

limit limn→∞ p ∗(β∗, γn) exists, implying by the above argument that limn→∞ gγn (β
∗) also 

exists. 
˜It only remains to prove limn→∞ gγn (β) ⊂ g0(β) for all β ∈ B. Suppose to the con-

trary there exist some b and β such that b ∈ limn→∞ gγn (β) but b ∈/ g0(β). Thus b ∈ P P 
limn→∞argmaxpi∈P ( t pitwit − γnpit(α∗ eti + βt) s.t. t pit(α

∗ eti + βt) ≤ b) but there ex-P P 
ists some b∗ satisfying the budget constraint such that b∗ > But this t itwit bitwit. P P t 

implies limn→∞ t bit
∗ wit − γnbit

∗ (α∗ eti + βt) > limn→∞ t bitwit − γnbit(α∗ eti + βt) since 
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γn → 0. This is a contradiction to the assumption b ∈ limn→∞ gγn (β). It is thus true 

that β∗ ∈ limn→∞ gγn (β
∗) ⊂ g0(β∗), implying β∗ ∈ g0(β∗). 

Step 4. For the fixed point β∗ = limγn→0 βγ
∗ 
n 
of g(·), the associated price function vector 

(πte ≡ α∗ e + ft(β∗))t, where ft(β∗) is the t-th element of f(β∗), satisfies the conditions in 

Lemma 1. 

Proof of Step 4. By the definition of a fixed point and correspondence g(·), there exists 
∗ ∗ ∗ ∗ z ≡ (z ) ∈ z(f(β∗)) such that β∗ = ft(β∗)+ z for all t. Fix any such z and the associated t t t 

β∗ . It is enough to show that the associated equilibrium treatment assignment probability P P 
vector (p ∗ ∗ s.t. eti + ft(β∗)) ≤ b) satisfies the it) with (pit)t ∈argmaxpi∈P ( t pitwit t pit(α

∗ 

capacity constraint for every treatment t = t1, ..., tm. For each treatment t, there are three 

cases to consider: 

Case 1: β∗ < 0. Then ft(β∗) ≡ max{0, min{β∗, nb − α∗ ē1{ē > 0}}} = 0 and hence t P t P 
β∗ ∗ ∗ ∗ ∗ 
t = ft(β∗) + z implies β∗ = zt ≡ i pit − ct < 0, implying i p < ct, i.e., the capacity t t it 

constraint holds. 

∈ [0, nb − α∗¯ e > 0}]. By the definition of f , I have ft(β∗)Case 2: β∗ e1{¯ = β∗ Thent t . 

β∗ = ft(β∗) + z ∗ implies z ∗ = 0, i.e., the capacity constraint holds with equality. t t t 

Case 3: β∗ > nb − α∗ ē1{ē > 0}. Then ft(β∗) = nb − α∗ ē1{ē > 0} and hence β∗ = t t 

ft(β
∗)+ z ∗ implies that z ∗ − nb + α∗ ̄ e > 0} > 0, i.e., treatment t is in excess demand = β∗ e1{¯t t t 

at price πte ≡ α∗ e + ft(β∗). However, for any possible predicted effect level e ≤ ē, I have ⎧ ⎨nb + α∗(e − ē) ≥ nb if ē > 0 
πte ≡ α ∗ e + ft(β ∗ ) = α ∗ e + nb − α ∗ ¯ e > 0} = ⎩ 

e1{¯
nb + α∗ e ≥ nb otherwise, 

where the last inequality is by α∗ < 0 and e ≤ ē ≤ 0. Therefore, for each subject i,P 
p ∗ ≤ b/πteti ≤ 1/n. This implies that p ∗ ≤ 1 ≤ ct, a contradiction. it i it 

Finally, the construction of β∗ as β∗ = limγn→0 βγ
∗ 
n 
guarantees that every subject i’s P 

pi solves the utility maximization problem with the minimum expenditure t pitπteti This 

completes the proof of Step 4 and Lemma 1. 

∗∗I use Lemma 1 to show there exists (pit ) that satisfies the conditions in Definition 2. 

Let (p ∗ ) be the assignment probability profile found in Lemma 1. Define I(w, e) ≡ {i ∈it
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{i1, ..., in}|wi = w, ei = e} be the set of subjects whose WTP and predicted effect vectors 

are w and e, respectively. For each w, e, and i ∈ I(w, e), let P 
p ∗ 

i∈I(w,e) i∗∗ pi ≡ . 
|I(w, e)| 

p ∗∗ 
i solves the utility maximization problem in Step (1) of Definition 2 with the minimum P P P P∗∗ ∗ ∗∗ ∗expenditure since t pi wit = t pi wit and t pi πteti = t pi πteti ≤ b. The above con-

∗∗ ∗∗ ∗∗struction guarantees that p = p for any i and j with wi = wj and ei = ej . p alsoi j iP P 
satisfies the capacity constraints by p ∗∗ = p ∗ ≤ ct for all t, where the last inequality i i i i 

∗∗is by Lemma 1. pi thus satisfies the conditions in Definition 2. 

EXAM is ex ante Pareto efficient subject to the randomization and capacity constraint: 

Suppose to the contrary that there exists � ∈ [0, �̄) such that pit
∗ (�) is ex ante Pareto 

dominated by another feasible treatment assignment probabilities (pit(�))i,t ∈ P n with P 
pit(�) ∈ [�, 1 − �] for all i and t and i pit ≤ ct for all t = t1, ..., tm,, i.e., P P 
• t t p ∗ for all i andpit(�)eti ≥ it(�)eti P P 
• t pit(�)wit ≥ t pit

∗ (�)wit for all i 

with at least one strict inequality. Let me use pit(�) to define the following treatment assign-

ment probabilities: 

RCT pit ≡ [pit(�) − qpt ]/(1 − q), 

∗ 0 RCT where q ≡ inf{q0 ∈ [0, 1]|(1 − q0)p p ∈ [�, 1 − �] for all i and t} is the mixing weight it + q t 

used for defining and computing pit
∗ (�) in Definition 2. In other words, pit are the treatment 

assignment probabilities such that the following holds: 

RCT pit(�) = (1 − q)pit + qpt . P
RCT Since both pit(�) and pt are in convex set P n , pit is also in P n (note that t pit = P 

RCT 
t[pit(�) − qpt ]/(1 − q)) = (1 − q)/(1 − q) = 1 for every i). For each i, I have X X X X 

∗ RCT ∗ RCT pit(�)eti ≥ pit(�)eti ⇔ ((1 − q)pit + qp t )eti ≥ ((1 − q)pit + qp t )eti 
t t t tX X 

∗⇔ (1 − q)piteti ≥ (1 − q)piteti 
t tX X 

∗⇔ piteti ≥ piteti. 
t t 
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Similarly, for each i, I have X X X X 
∗ RCT ∗ RCT pit(�)wit ≥ pit(�)wit ⇔ ((1 − q)pit + qp t )wit ≥ ((1 − q)pit + qp t )wit 

t t t tX X 
∗⇔ (1 − q)pitwit ≥ (1 − q)pitwit 

t tX X 
∗⇔ pitwit ≥ pitwit. 

t t 

Therefore, the assumption that pit(�) ex ante Pareto dominates pit
∗ (�) implies that pit ex 

ante Pareto dominates p ∗ , i.e., itP P 
• piteti ≥ p ∗ for all i andt t iteti P P 
• t t p ∗ for all ipitwit ≥ itwit 

with at least one strict inequality. There are two cases to consider. 

P P 
Case 1: p˜ i > p ∗ e for some ĩ. This implies t itet̃ t ĩt t̃i XX XX XX XX 

piteti > p ∗ − βt)/α > p ∗ − βt)/αiteti ⇔ pit(πteti it(πteti 

t i t i t i t i 

(by the definition of πte ≡ αe + βt with α = 0) 6XX XX 
⇔ pitπteti /α > pit

∗ πteti /α 
t i t iX X 
(since = p ∗ pit it = ct) 

i iXX XX 
⇔ < p ∗ .pitπteti itπteti 

t i t i 

(since α < 0 by Definition 2) 

I thus have XX XX 
pitπteti < p ∗ πteti . (11)it

t i t i P P P 
However, it has also to be the case that ≥ p ∗ for any i since (a) pitwit ≥t pitπteti t itπteti tP 

t pit
∗ wit by assumption and (b) (pit

∗ )t is (a mixture of) the cheapest among all feasible as-

signment probability vectors that i most prefers under prices (πte)t,e and budget b. Thus P P P P 
≥ p ∗ , a contradiction to inequality (11). t i pitπteti t i itπteti 

∗ ∗Case 2: 
P 

p˜
P 

p w˜ for some ̃i. Since ̃i most prefers (p )t among all assignment t itwĩt > t ˜ it ˜it it

probability vectors in P n that satisfies the budget constraint under prices (πte)t,e, the strictly 
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more preferred treatment assignment probability vector (p˜ )t must violate the budget con-P P it

straint, i.e., p˜ πte > b ≥ p ∗ πte , where the second weak inequality comes from the t it t̃i t ĩt t̃i 

assumption that (p˜
∗ )t satisfies the budget constraint under prices (πte). Moreover, for any 
itP P 

= ˜other subject i 6 i, t ≥ t p ∗ since (p ∗ is (a mixture of) the cheapest among pitπteti itπteti it)t 

all assignment probability vectors in P that i most prefers under prices (πte)t,e and budget 

b. I thus have X XX X XX XX XX 
∗ ∗ ∗ pĩtπte + pitπteti > p˜ πte + pitπteti ⇔ pitπteti > pitπteti . t̃i it t̃i 

i6 i i6 it ˜ t t ˜ t i t i t= = P P 
However, by the logic described in Case 1, the assumption ( piteti ≥ p ∗ for all i)t t iteti P P P P 
implies that ≤ p ∗ , a contradiction. i t pitπteti i t itπteti 

Therefore, pit
∗ (�) with any � ∈ [0, �̄) is never ex ante Pareto dominated by another treatment 

assignment probabilities (pit(�))i,t ∈ P n with pit(�) ∈ [�, 1 − �] for all i and t. 

Proof of Proposition 3 

The proof uses intermediate observations. 

Lemma 2. EXAM is “envy-free,” i.e., for any experimental design problem, any � ∈ [0, �̄), 

any subjects i and j with eti = etj for all t, X X 
p ∗ p ∗ 
it(�)wit ≥ jt(�)wit. 

t t 

Proof of Lemma 2. In Definition 2, all subjects have the same budget and any subjects i 

and j with eti = etj face the same price πte of treatment t. For any subjects i and j with P P∗ ∗ ∗ eti = etj for all t, therefore, (p satisfies i’s budget constraint and p ≥ pjt)t t itwit t jtwit. 

This implies the desired conclusion since X X X X X X 
∗ ∗ ∗ RCT ∗ RCT pitwit ≥ pjtwit ⇔ (1 − q) pitwit + q pt wit ≥ (1 − q) pjtwit + q pt wit 

t t t t t tX X 
⇔ p ∗ p ∗ 

it(�)wit ≥ jt(�)wit, 
t t 

RCT RCT where the first equivalence is by pt = pt ≡ ct/n. 

Lemma 3. EXAM with WTP reporting is “semi-anonymous.” That is, for any sequence of 

experimental design problems, any n with any �n ∈ [0, ̄�n), any subjects i and j with eti = etj 
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for all t, let (wi, wj , w−{i,j}) be a permutation of (wj , wi, w−{i,j}) obtained by permuting i and 

j’s WTP reports wi and wj . Semi-anonymity means that 

∗n ∗n p (wi, wj , w−{i,j}; �
n) = p (wj , wi, w−{i,j}; �

n),i j 

∗n ∗n p (wi, wj , w−{i,j}; �
n) = p (wj , wi, w−{i,j}; �

n), andj i 

∗n ∗n p (wi, wj , w−{i,j}; �
n) = p (wj , wi, w−{i,j}; �

n), for all k =6 i, j k k 

Proof of Lemma 3. In Definition 2 of EXAM, all subjects have the same budget and any 

subjects i and j with eti = etj face the same price πte of treatment t. For any subjects i 

and j with eti = etj for all t, therefore, given any w−{i,j}, subject i with WTP report wj 

solves the same constrained utility maximization problem as subject j with WTP report wj 

∗n ∗n ∗ndoes. Therefore, p (wi, wj , w−{i,j}; 0) = p (wj , wi, w−{i,j}; 0) and p (wi, wj, w−{i,j}; 0) = i j j 

p ∗n(wj , wi, w−{i,j}; 0). This implies semi-anonymity since i 

∗n ∗n n RCTn p (wi, wj , w−{i,j}; �
n) ≡ (1 − q n)p (wi, wj , w−{i,j}; 0) + q pi i i 

∗n n RCTn = (1 − q n)p (wj , wi, w−{i,j}; 0) + q pj j 

≡ p ∗n(wj , wi, w−{i,j}; �
n),j 

where qn is the mixing probability q for the n-th problem in the sequence of experimental 
RCTn RCTn ndesign problems while p = p ≡ c /n. The last line follows from the fact that i j t 

the switch of wi and wj have no effect on the utility maximization problem for any other 

k 6= i, j. 

Lemmas 2 and 3 imply Proposition 3 by using Theorem 1 of Azevedo and Budish (2017) 

(precisely, a generalization of their Theorem 1 in their Supplementary Appendix B). 

A Statistical Lemma and Its Proof 

Lemma 4. Assume a sample of m subjects is uniformly randomly drawn (i.e., every com-

bination of m subjects occurs with equal probability) from the fixed finite population of n 

subjects with a fixed vector of a variable (X1, ..., Xn). Denote the random sample by I. Let 
1 P n 1 P n 1 P 1 P 

µ ≡ Xi, σ2 ≡ (Xi − µ)2 , µ̂ ≡ Xi and σ̂2 ≡ (Xi − µ̂)2 .i=1 i=1 i∈I i∈I n n − 1 m m − 1 
Then, 

n − m 
V (µ̂) = σ2 and E(σ̂2) = σ2 . 

nm 
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1 P 1 P n σ2 nProof of Lemma 4. Let Wi = 1{i ∈ I} so that µ̂ = i=1 XiWi and ˆ = (Xi − 
m m − 1 i=1

m m m m(n − m) 
µ̂)2Wi. Then E(Wi) = E(Wi 

2) = for all i, implying V (Wi) = − ( )2 = 
2 

for 
n n n n

m(m − 1)
all i. Since E(WiWj ) = 6 6for any i = j, it is the case that for any i = j, 

n(n − 1) 

m m 
Cov(Wi,Wj ) = E[(Wi − )(Wj − )] 

n n 
m m m 

= E(WiWj ) − E(Wj ) − E(Wi) + ( )2 (12) 
n n n 

m(m − 1) m 
= − ( )2 

n(n − 1) n 
m(n − m) 

= − . 
n2(n − 1) 

It follows that 

X1 
n

V (µ̂) = V ( XiWi)2m
i=1 X XX 

= 
m

1 
2 
( 

n

Xi 
2V (Wi) + 

n

XiXj Cov(Wi,Wj )) 
i=1 i=1 6j=i X XX1 m(n − m) 

n
m(n − m) 

n

X2 = 
2 
( 

2 i − XiXj ) 
m n n2(n − 1)

i=1 i=1 6j=i X XXn − m 
n

1 
n

X2 = ( − 
2 i XiXj ) 

n m n − 1 
i=1 i=1 6j=i Xn n n nXX Xn − m 1 1 

X2 X2 = ( − )i XiXj + i n2m n − 1 n − 1 
i=1 i=1 j=1 i=1 X XXn − m n 

n
1 

n n

X2 = 
2

( i − XiXj ) 
n m n − 1 n − 1 

i=1 i=1 j=1 X XXn − m 
n

1 
n n

X2 = ( −i XiXj ) 
nm(n − 1) n 

i=1 i=1 j=1 X X X Xn − m 
n

2 
n n

1 
n

= ( Xi 
2 − Xi Xj + ( Xi)

2) 
nm(n − 1) n n 

i=1 i=1 j=1 i=1 X X Xn − m 
n

2 
n

1 
n

= (Xi 
2 − Xi Xj + ( Xj )

2) 
nm(n − 1) n n2 

i=1 j=1 j=1 X Xn − m 
n

1 
n

= (Xi − Xj )
2 

nm(n − 1) n 
i=1 j=1 
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n − m 
σ2 = . 

nm 

For the other part, 

X1 
n

E(σ̂2) = E( (Xi − µ̂)2Wi) 
m − 1 

i=1 X1 
n

= E( (Xi 
2Wi − 2XiWiµ̂+ µ̂ 2Wi)) 

m − 1 
i=1 
nX1 

X2 2 2)= E( µ + mµ̂i Wi − 2mˆ
m − 1 

i=1 X 
=

1 
E( 

n

Xi 
2Wi − mµ̂2) 

m − 1 
i=1 X1 m 

n

= ( X2 − m(V (µ̂) + [E(µ̂)]2)) 
m − 1 n i 

i=1 X1 m 
n

n − m 
= ( Xi 

2 − σ2 − mµ 2) 
m − 1 n n 

i=1 

1 m(n − 1) n − m 
= ( σ2 − σ2) 

m − 1 n n 

= σ2 , 

where the third last equality is by E(µ̂) = µ while the second last equality is by the definition 

of σ2 . 

Proof of Proposition 4 

The proof uses the following lemma. 

Lemma 5. There exists estimator θ̂EXAM,t such that E(θ̂EXAM,t|p ∗(�)) = E(µ̂RCT (t)
2|pRCT )P 

DitYi
where µ̂RCT (t) ≡ i with Dit being the treatment assignment indicator under RCT. 

ct 

1 P n 1 P nProof of Lemma 5. Let µt ≡ Yi(t) and St 
2 ≡ (Yi(t) − µt)

2 . I have 
n i=1 n − 1 i=1

RCT )2E(µ̂RCT (t)
2|p RCT ) = V ar(µ̂RCT (t)|p RCT ) + E(µ̂RCT (t)|p 

n − ct 
S2 2 = + µt t nct Xn − ct 1 

n

= ( Yi(t)
2 − nµt 

2) + µt 
2 

nct n − 1
i=1 
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Xn − ct 1 
n

n(ct − 1) 2 = Yi(t)
2 + µt , (13)

(n − 1)ct n (n − 1)cti=1 

where the second equality holds by the first part of Lemma 4 and the fact that E(µ̂RCT (t)|pRCT ) = 

µt. 

Below I construct unbiased estimators with EXAM’s data for each term in the right-
1 P n 2hand side of equation (13), that is, i=1 Yi(t)

2 and µt . I then combine these estimators 
n 

into developing an unbiased estimator for E(µ̂RCT (t)
2|pRCT ) (which I interpret as a param-

1 P 1 P 
eter) with EXAM. Under EXAM p ∗(�), θ̂1t = p i:p ∗ Y 2Dit unbiasedly estimates (�)=p i

in pt 
1 P n because i=1 Yi(t)

2 

n X X1 1 
E(θ̂1t|p ∗ (�)) = Yi(t)

2E(Dit|p ∗ (�)) 
n pt ∗ p i:pi (�)=p X X1 1 

Yi(t)
2 = pt 

n pt ∗ p i:pi (�)=p X X 
=

1 
Yi(t)

2 

n ∗ p i:pi (�)=p X1 
n

= Yi(t)
2 . 

n 
i=1 

Next I obtain an unbiased estimator for µt 
2 under EXAM p ∗(�). Recall np ≡ 

P 
i
n 
=1 1{pi ∗(�) = P 

p} is the number of subjects with assignment probability vector p and Npt ≡ ∗ Dit isi:pi (�)=p 

a random variable that stands for the number of subjects with assignment probability vector 
1 P 1 P 

p and assigned to treatment t. Let µpt ≡ i:p ∗(�)=p Yi(t), µ̂EXAM,pt ≡ i:p ∗(�)=p YiDit 
np i ptnp i P np ptnp P np

and µ̂EXAM,t ≡ p µ̂EXAM,pt. Note that µt = p µpt. By Definition 2 (3), con-
n Npt n 

ditional on (Npt), every deterministic treatment assignment consistent with (Npt) happens 

with equal probability. This implies that 

∗ npt
E(Dit|(Npt) = (npt), p i (�) = p) = . 

np 

In addition, conditional on (Npt) = (npt), the set {i : pi ∗(�) = p, Dit = 1} can be regarded 

as a random sample of npt subjects from the subpopulation of np subjects with propensity 
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vector p. Applying the first part of Lemma 4, I have 

1 X np − npt 
S2V ar( YiDit|(Npt) = (npt), p ∗ (�)) = pt,Npt npnpt∗i:pi (�)=p 

1 P 
where S2 = ∗ (Yi(t) − µpt)

2 . It follows from the above expressions that pt i:pi (�)=pnp − 1 

X1 
E(µ̂EXAM,pt|(Npt) = (npt), p ∗ (�)) = YiE(Dit|(Npt) = (npt), p ∗ (�)) 

ptnp ∗i:pi (�)=p X1 npt npt
= Yi = µpt, (14) 

ptnp np ptnp∗i:pi (�)=p 

and � �2 Xnpt 1 
V ar(µ̂EXAM,pt|(Npt) = (npt), p ∗ (�)) = V ar( YiDit|(Npt) = (npt), p ∗ (�)) 

ptnp Npt ∗i:pi (�)=p � npt 
�2 np − npt 

S2 = pt. (15) 
ptnp npnpt 

Definition 2 (3) also implies that treatment assignments are independent across subpopula-

tions with different propensities conditional on (Npt). Hence, µ̂EXAM,pt is independent across 

p conditional on (Npt). I have X np ptnp
E(µ̂ 2 |(Npt), p ∗ (�)) = E(( µ̂EXAM,pt)

2|(Npt) = (npt), p ∗ (�))EXAM,t n Nptp XX 0npnp0 ptnp p np0t= E(µ̂EXAM,pt|(Npt), p ∗ (�)) E(µ̂EXAM,p0t|(Npt), p ∗ (�)) 
0 n2 npt np0t p p =6 p X n2 � �2 

p ptnp 2+ E(µ̂ |(Npt) = (npt), p ∗ (�))EXAM,pt2 
p 

n npt XX npnp
X n2 

p 
� ptnp 

�2 
= 

n2 

0 
µptµp0t + 

n2 npt 
(V ar(µ̂EXAM,pt|(Npt) = (npt), p ∗ (�)) 

p p0 6=p p 

+ E(µ̂EXAM,pt|(Npt) = (npt), p ∗ (�))2) XX X 2 � �2n� � �2 o 
0npnp np ptnp npt 

�2 np − npt 
S2 npt 2 = µptµp0t + pt + µpt 

0 n2 n2 npt ptnp npnpt ptnpp p 6=p p XX 0 X n2 

S2npnp p np − npt 2 = 
2 

µptµp0t + 
2 
( + µ )pt pt

0 n n npnptp p 6=p p 
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X X n2 np p np − npt 
S2 = ( µpt)

2 + ptn n2 npnptp p 

np2 
X np 

2 − npt 
S2 = µ +t pt, 

p 
n2 npnpt 

where I use the independence of µ̂EXAM,pt across p conditional on (Npt) for the second 

equality, equation (14) for the third and the fourth equalities and equation (15) for the 

fourth equality. By the law of iterated expectations, 

E(µ̂ 2 |p ∗ (�)) = E(E(µ̂ 2 |(Npt), p ∗ (�))|p ∗ (�))EXAM,t EXAM,tX n2 1 1 
= µ 2 + p 

(E( |p ∗ (�)) − )S2 
t pt2 

p 
n Npt np X n2 11 1 

= µ 2 
t + 

2 
p 
( (1 − ptnp + npt) + (ptnp − npt) − )Spt 

2 

n n n + 1 nppt ptp X n2 
p 1 − ptnp + 2npt 12 )S2 = µt + ( − (16) 

n2 npt(npt + 1) np 
pt, 

p 

where the third equality holds because Definition 2 (3) implies ⎧ 
+ n = n⎪⎪⎪1 − ptnp pt if npt pt⎨ 

Pr(Npt = npt|p ∗ (�)) = ptnp − npt if npt = npt + 1⎪⎪⎪⎩0 otherwise. 

1 P ptnp
S2Now consider an unbiased estimator for Spt

2 . Let p̂t ≡ i:p ∗(�)=p(Yi− µ̂EXAM,pt)
2Dit. 

iptnp − 1 Npt 

This Ŝ2 is unbiased for S2 , becausept pt

S2 S2E( p̂t|p ∗ (�)) = E(E{ ̂ |(Npt), p ∗ (�)}|p ∗ (�))pt� Npt − 1 � 1 X 1 X � 
= E E (Yi − Yj Djt)

2Dit|(Npt), p ∗ (�) |p ∗ (�) 
ptnp − 1 Npt − 1 Npt∗ ∗i:pi (�)=p j:pj (�)=p 

Npt − 1 
S2 = E( pt|p ∗ (�)) 

ptnp − 1 
ptnp − 1 

S2 = 
ptnp − 1 pt 

= S2 
pt, 

where the first equality holds by the law of expected iterations, I use the second part of 
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Lemma 4 for the third equality and the fact that E(Npt|p ∗(�)) = ptnp for the fourth equality. 
2 ˆ 2Combining this with equation (16), I obtain an unbiased estimator for µ : θ2t = µ̂ −t EXAM,t 

2P np 1 − ptnp + 2npt 1 
( − )Ŝ2 By equation (13), the following is an unbiased estimator p 2 pt. n npt(npt + 1) np 

for E(µ̂RCT (t)
2|pRCT ): 

n − ct n(ct − 1)ˆ ˆ ˆθEXAM,t = θ1t + θ2t. 
(n − 1)ct (n − 1)ct 

Let Di be the set of all feasible deterministic treatment assignments for subject i, i.e., X 
Di ≡ {di ≡ (dit)t ∈ {0, 1}m+1| dit = 1}. 

t 

Let DEXAM 
i and Di

RCT be the sets of deterministic treatment assignments that happen 

with a positive probability under EXAM and RCT, respectively. That is, Di
EXAM ≡ {di ∈ 

Di| Pr(di|p ∗(�)) > 0} and DRCT ≡ {di ∈ Di| Pr(di|pRCT ) > 0}, where Pr(di|(pit)) is the i 

probability that di occurs under experimental design (pit). With Definition 2, Dit = 1 holds 

with a positive probability for every t and i both under EXAM and RCT, implying 

DRCT = DEXAM 
i i = Di. (17) 

With the support equivalence property (17), I am ready to show the proposition. Recall 

that given any experimental design (pit), I say an estimator θ̂(Y, D) is simple if θ̂(Y, D) can 

be written as X XXX 
θ̂(Y, D) = f(Yi, Di, pi) + gtpp0 µ̂p(t)µ̂p0 (t) 

i t p p0 P 
i:pi=p DitYi 

for some function f , weights gtpp0 ’s, and µ̂p(t) = P n . Suppose that pa-
pt 1{pi = p}i=1 

rameter θ is unbiasedly estimable with RCT pRCT and a simple estimator θ̂RCT (Y, D) = P P 
RCT 2 

i f(Yi, Di, p ) + t µRCT (t):i gt ̂

E(θ̂RCT (Y, D)|p RCT ) = θ. (18) 

Note that gt is constant since for RCT, the only potential randomness in gt comes from P 
( i Dit)t, which is the same as the constant pseudo-capacity vector (ct)t. Now consider 
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another estimator for EXAM: X Pr(Di|pRCT ) X 
θ̂EXAM (Y, D) ≡ f(Yi, Di, p RCT 

i ) + gtθ̂EXAM,t. 
Pr(Di|p ∗(�))

i t 

With the knowledge of the original estimator θ̂RCT (Y, D), it is possible to compute θ̂EXAM (Y, D) 

since Pr(Di|pRCT ) and Pr(Di|p ∗(�)) are known to the experimenter. This θ̂EXAM (Y, D) is 

unbiased for θ under EXAM: 

E(θ̂EXAM (Y, D)|p ∗ (�)) X Pr(Di|pRCT ) X 
= E( f(Yi, Di, p RCT 

i ) + gtθ̂EXAM,t|p ∗ (�))
Pr(Di|p ∗(�))

i t X X Pr(di|pRCT ) X 
= Pr(di|p ∗ (�)) f(Yi(di), di, p RCT ) + gtE(µ̂ 2 RCT )i RCT (t)|pPr(di|p ∗(�))

i di∈DEXAM t 
iX X X 

RCT 2 RCT )= Pr(di|p RCT )f(Yi(di), di, p i ) + gtE(µ̂RCT (t)|p 
i di∈DRCT t 

i 

= E(θ̂RCT (Y, D)|p RCT ) 

= θ, 

P 
where Yi(di) ≡ t ditYi(t) is the value of observed outcome Yi when Di = di, the second 

equality is by Lemma 5, the third equality is by the support equivalence property (17), and 

the last equality is by the unbiasedness assumption (18). This means that θ̂EXAM (Y, D) is 

an unbiased estimator for θ under EXAM p ∗(�). To complete the proof of Proposition 4, it 

only remains to show θ̂EXAM (Y, D) is a simple estimator under EXAM. 

Lemma 6. θ̂EXAM (Y, D) is a simple estimator under EXAM p ∗(�). 

Proof of Lemma 6. First note that 

X X X 
Ŝ2 1 ptnp �ptnp �2 2 
pt = ( Yi 

2Dit − 2 YiDit µ̂EXAM,pt + µ̂EXAM,ptDit) 
ptnp − 1 Npt Npt∗ ∗ ∗i:pi (�)=p i:pi (�)=p i:pi (�)=p 

1 X 
Y 2 (ptnp)

2
2 = ( Dit − µ̂ ).i EXAM,ptptnp − 1 ∗ 

Npt
i:pi (�)=p 

I therefore have 

θ̂EXAM,t 

n − ct n(ct − 1)ˆ ˆ≡ θ1t + θ2t
(n − 1)ct (n − 1)ct 
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n − ct 1 P 1 P n(ct − 1) 2 
P np 

2 1 − ptnp + 2npt 1 
= ∗ Y 2 (µ̂ − ( − )Ŝ2 )p i:pi (�)=p i Dit+ EXAM,t p 2 pt(n − 1)ct n (n − 1)ct n n (n + 1)pt pt pt np nP P n − ct n(ct − 1) P np ptnp
= p i:p ∗(�)=p Yi 

2Dit + ( p µ̂EXAM,pt)
2 

i (n − 1)ctnpt (n − 1)ct n Npt oP n2 
p 1 − ptnp + 2npt 1 1 P (ptnp)

2
2− ( − ) ( ∗ Y 2 µ̂ )p i:pi (�)=p i Dit − EXAM,ptn2 npt(npt + 1) np ptnp − 1 Npt P P n − ct (ct − 1)np 

2 1 − ptnp + 2npt 1 
= ∗ ( − ( − ))Y 2Ditp i:pi (�)=p i(n − 1)ctnpt (n − 1)ctn(ptnp − 1) npt(npt + 1) np 

n(ct − 1)nP P npnp0 ptnp p
0 
tnp0 

+ 0 µ̂EXAM,ptµ̂EXAM,p0t
(n − 1)ct p p n2 Npt Np0t P n2 1 − ptnp + 2n 1 1 (ptnp)

2 o 
+ p 

( pt − ) µ̂2 
p n2 EXAM,ptnpt(npt + 1) np ptnp − 1 Npt 

2 2 0P P P P (ct − 1)npnp0 ptpt 
= p i:p ∗(�)=p a1ptYi 

2Dit + p p0 6=p µ̂EXAM,ptµ̂EXAM,p0t 
i (n − 1)ctnNptNp0t P (ct − 1)np

4p2 
t 1 1 − ptnp + 2npt 1 1 2+ ( + ( − ) )µ̂p EXAM,pt(n − 1)ctnNpt Npt npt(npt + 1) np ptnp − 1P P P 

∗= i a1p (�)tYi 
2Dit + p p0 a2pp0tµ̂EXAM,ptµ̂EXAM,p0t,i 

where npt is the greatest integer less than or equal to ptnp and 

n − ct (ct − 1)n2 1 − ptnp + 2n 1 
a1pt = − p 

( pt − )
(n − 1)ctnpt (n − 1)ctn(ptnp − 1) npt(npt + 1) np⎧ 2 2 0(ct − 1)npnp0 ptpt⎪⎪ if p 6 0⎨ = p
(n − 1)ctnNptNp0t a2pp0t = 4 2(ct − 1)nppt 1 1 − ptnp + 2npt 1 1 ⎩ . 

⎪⎪ ( + ( − ) ) if p = p0 
(n − 1)ctnNpt Npt npt(npt + 1) np ptnp − 1

It follows that 

θ̂EXAM (Y, D) P Pr(Di|pRCT ) P
RCT ˆ≡ i f(Yi, Di, pi ) + t gtθEXAM,t

Pr(Di|p ∗(�)) P Pr(Di|pRCT ) P P P P 
RCT= [ f(Yi, Di, p )+ gta1p ∗(�)tY 2Dit]+ gt 0 a2pp0tµ̂EXAM,ptµ̂EXAM,p0ti i t i i t p pPr(Di|p ∗(�)) P P P P 

= i f
∗(Yi, Di, pi) + t p p0 gtpp0 µ̂EXAM,ptµ̂EXAM,p0t, 
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Pr(Di|pRCT ) P 
where f ∗(Yi, Di, pi) = f(Yi, Di, p

RCT ) + gta1pitY 2Dit and gtpp0 = gta2pp0t.i t iPr(Di|p ∗(�)) 
Therefore, θ̂EXAM (Y, D) is a simple estimator under EXAM p ∗(�). 

Proof of Corollary 1 

The mean of potential outcomes for treatment t is unbiasedly estimable with RCT and a 
n DitYi ˆsimple estimator by the following reason. Let θ̂(Y, D) = 

P 
i=1 . θ(Y, D) is a simple 

ct P pRCT Yi(t) 1 P n t nunbiased estimator by E(θ̂(Y, D)|pRCT ) = = Yi(t).i=1 i=1 ct n 
ATE of treatment t over control t0 is also unbiasedly estimable with RCT and a simple 

n DitYi Dit0 Yi
estimator. To see this, let θ̂(Y, D) = 

P 
i=1( − ). This is a simple estimator, and 

ct ct0 

it follows from the above argument for the mean potential outcome that E(θ̂(Y, D)|pRCT ) = P n1 P 1 P (Yi(t) − Yi(t0))n n i=1Yi(t) − Yi(t0) = .i=1 i=1 n n n 
The variance of potential outcomes for treatment t is unbiasedly estimable with RCT 

and a simple estimator. Consider two possible definitions of the variance of potential out-
n P P1 P 1 n P2 1 n 1 P n comes: S2 = (Yi(t) − Yj (t))

2 and = (Yi(t) − Yj (t))
2 .t i=1 j=1 t i=1 j=1 n − 1 n n n 

To see that St 
2 is unbiasedly estimable with RCT and a simple estimator, let θ̂1(Y, D) = 

1 P n 1 P nDit(Yi − µ̂RCT (t))
2, where µ̂(t) = DitYi. Since I can write θ̂1(Y, D) as i=1 i=1 ct − 1 ct P n DitY 2 ct

θ̂1(Y, D) = i=1 
i − µ̂2(t), this is a simple estimator with 

ct − 1 ct − 1 

DitYi 
2 ct 0f(Yi, Di, pi) = , gt = − and gt0 = 0 for all t 6= t. 

ct − 1 ct − 1 

For RCT, {i : Dit = 1} can be seen as a random sample of ct subjects from the population 

of n subjects. Using Lemma 4, I obtain E(θ̂1(Y, D)|pRCT ) = St 
2 . P2To see that t is also unbiasedly estimable with RCT and a simple estimator, let 

n − 1 P n n − 1 DitYi 
2 

θ̂2(Y, D) = θ̂1(Y, D). Since I can write θ̂2(Y, D) as θ̂2(Y, D) = i=1 − 
n n ct − 1 

n − 1 ct 
µ̂2(t), this is a simple estimator with 

n ct − 1 

n − 1 DitY 2 n − 1 ct
f(Yi, Di, pi) = i , gt = − and gt0 = 0 for all t0 6= t. 

n ct − 1 n ct − 1 

n − 1 n − 1 P2It follows that E(θ̂2(Y, D)|pRCT ) = E(θ̂1(Y, D)|pRCT ) = S2 = .t t n n 
Finally, I consider the unbiased estimability of the average treatment effect on the treated 
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(ATT) with RCT and EXAM. I first define ATT of t over t0 conditional on the treatment 

assignment being d as P n (Yi(t) − Yi(t0))dit
AT T (t|d) ≡ i=1 P .n 

i=1 dit 

I define ATT of t over t0 for experimental design (pit) as �P n � 
i=1(Yi(t) − Yi(t0))Dit

AT T (t|(pit)) ≡ E(AT T (t|D)|(pit)) = E P n |(pit) . 
i=1 Dit 

For RCT, 

X X1 
n

1 
n

AT T (t|p RCT ) = (Yi(t) − Yi(t0))p RCT = (Yi(t) − Yi(t0)) = AT E. t ct n 
i=1 i=1 

Since ATE is unbiasedly estimable with RCT and a simple estimator, ATT is also unbiasedly 

estimable with RCT. For EXAM, 

X1 
n

AT T (t|p ∗ (�)) = P (Yi(t) − Yi(t0))p ∗ (�)∗ it
i pit(�) i=1 X X1 

= P (Yi(t) − Yi(t0))pt 
p ∗ (�)i it ∗ p i:pi (�)=p X Xptnp 1 

= P (Yi(t) − Yi(t0)) 
p ∗ (�) npi it ∗ p i:pi (�)=p X ptnp

= P CAT Ept.∗ 
i pit(�)p 

ptnp
Since P is known to the experimenter and CAT Ept is unbiasedly estimable with 

i pit
∗ (�) P ptnp ˆEXAM and β̂pt, ATT is unbiasedly estimable with EXAM and p P ∗ βpt. 

i pit(�) 

Proof of Proposition 5 P 
I define Npt ≡ 1{p ∗(�) = p}Dit as a random variable that stands for the number ofi i 

subjects with propensity vector p and assigned to treatment t. Denote the realization of NptP 
by npt ≡ i 1{pi ∗(�) = p}dit. Recall that npt is defined as the greatest integer less than or 

equal to ptnp (the expected number of subjects with propensity vector p and assigned to 

treatment t). Define N as the set of all (npt) that satisfy the following: 

• npt = npt for all p and t such that ptnp ∈ N. 
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• npt ∈ {n , n + 1} for all p and t such that ptnp ∈/ N.pt pt P 
• t npt = np for all p. P P 
• p npt = i pit

∗ (�) for all t. 

I also define D(npt) as the set of deterministic treatment assignments where the realization 

of (Npt) is (npt): X X 
D(npt) ≡ {d ∈ {0, 1}n×(m+1)| dit = 1 for every i and 1{p ∗ (�) = p}dit = npt for every p and t}.i 

t i 

The method of drawing deterministic treatment assignments in Definition 2 in Section 5 and 

Appendix A.1.1 satisfies the following properties. 

Lemma 7 (Small Support). The support of (Npt) is included by N . 

Lemma 8 (Conditional Uniformity). Conditional on any (npt) in the support of (Npt), every 

deterministic treatment assignment consistent with (npt) happens with equal probability: ⎧ ⎨|D(npt)|−1 if d ∈ D(npt)
Pr(D = d|(Npt) = (npt), p ∗ (�)) = ⎩0 otherwise. 

To show the mean part of Proposition 5, note that by Lemma 8, every feasible treatment 

assignment occurs equally likely conditional on (Npt) so that for every p, t and i with pi 
∗(�) = 

p, 
∗ npt

E(Dit|(Npt) = (npt), p (�) = p) = . (19)i np 

I therefore have 

E(β̂∗|(Npt) = (npt), p ∗ (�) = p)t i X 
ˆ ∗ = E( δpβpt|(Npt) = (npt), p i (�) = p) 

pX 
= δpE(β̂pt|(Npt) = (npt), p ∗ (�) = p)i 

p X �X 
∗ 

�DitYi(t) Dit0 Yi(t0)� ∗ 
� 

= δpE 1{pi (�) = p} − |(Npt) = (npt), p i (�) = p
Npt Npt0p i X X �E(Dit|(Npt) = (npt), p ∗(�) = p)Yi(t) |(Npt) = (npt), p ∗(�) = p)Yi(t0)�∗ i E(Dit0 i = δp 1{pi (�) = p} − 

npt npt0p i X X 
∗ 

�(npt/np)Yi(t) (npt0 /np)Yi(t0)� 
= δp 1{pi (�) = p} − 

npt npt0p i 
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X X1 
= δp 1{pi ∗ (�) = p}(Yi(t) − Yi(t0)) 

npp i X 
= δpCAT Ept, 

p 

where I use equation (19) for the fifth equality. By the law of iterated expectation, I conclude 

E(β̂t 
∗|p ∗ (�)) = E[E(β̂t 

∗|(Npt) = (npt), p ∗ (�))|p ∗ (�)] X 
= E[ δpCAT Ept|p ∗ (�)] 

pX 
= δpCAT Ept. 

p 

For the variance part of Proposition 5, I prove the general version given in Appendix A.1.1. 

For notational simplicity, I make conditioning on p ∗(�) implicit. By the law of total variance, 

V (β̂t 
∗) can be written as: 

β ∗ β ∗ β ∗ V ( ˆ ) = E(V ( ˆ |(Npt))) + V (E( ˆ |(Npt))).t t t P 
As I show above, E(β̂t 

∗|(Npt)) = p δpCAT Ept, implying V (E(β̂t 
∗|(Npt))) = 0. Thus 

β ∗ β ∗ V ( ˆt ) = E(V ( ˆt |(Npt))). (20) 

To show that E(V (β̂∗|(Npt))) is equal to the expression in Proposition 5, I introduce a lemma. t 

Lemma 9. For all (npt) in the support of (Npt), 

X �S2 S2 S2 � 
pt pt0 ptt0V (β̂t 

∗|(Npt) = (npt)) = δp 
2 + − . 

p 
npt npt0 np 

Proof of Lemma 9. By Lemma 8, treatment assignments are independent across subpopula-

tions with different propensities conditional on (Npt). β̂pt is therefore independent across p 

conditional on (Npt). Hence, X 
β ∗ ˆV ( ˆt |(Npt) = (npt)) = V ( δpβpt|(Npt) = (npt)) 

pX 
= δ2V (β̂pt|(Npt) = (npt)).p

p 

S2 S2 S2 
pt pt0 ptt0It is therefore enough to show that V (β̂pt|(Npt) = (npt)) = + − . For notational 

npt npt0 np 
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simplicity, I make conditioning on (Npt) = (npt) implicit. Let Iptt0 be a random set of 

subjects with propensity vector p and assigned to either treatment t or t0, i.e., 

Iptt0 ∗≡ {i|p (�) = p and Dit + Dit0 = 1}.i � � 
np

Iptt0 takes on values equally likely, a consequence of Lemma 8. By the law of 
npt + npt0 

total variance, V (β̂pt) can be written as: 

V (β̂pt) = E(V (β̂pt|Iptt0 )) + V (E(β̂pt|Iptt0 )). (21) 

Conditional on Iptt0 = I, the randomness in β̂pt comes from the randomness in choosing npt 

subjects assigned to treatment t and npt0 subjects assigned to treatment t0 from the set I of 

npt + npt0 subjects. Every combination occurs with equal probability, so the standard results 

of binary-treatment RCT (Theorems 6.1 and 6.2 in Imbens and Rubin (2015)) apply: 

X1 
E(β̂pt|Iptt0 = I) = (Yi(t) − Yi(t0)), 

npt + npt0 i∈I 

S2 S2 S2 

βpt|Iptt0 pt|I pt0|I ptt0|IV ( ˆ = I) = + − , 
npt npt0 npt + npt0 

where S2 and S2 are the variances of Yi(t), Yi(t0) and Yi(t) − Yi(t0), respectively, pt|I , S
2 

ptt0|Ipt0|I 

conditional on the set of subjects I. Regarding np, npt +npt0 , and Yi(t) − Yi(t0) as performing 

the roles of n, m, and Xi in Lemma 4, respectively, I use Lemma 4 to get 

X 
βpt|Iptt0 

1 np − npt − npt0 S2V (E( ˆ = I)) = V ( (Yi(t) − Yi(t0))) = ptt0 
, 

npt + npt0 np(npt + npt0 )i∈I 

E(S2 ) E(S2 ) E(S2 ) S2 S2 S2 

βpt|Iptt0 pt|I pt0|I ptt0|I pt pt0 ptt0E(V ( ˆ = I)) = + − = + − , 
npt npt0 npt + npt0 npt npt0 npt + npt0 

where the last equality is by the second part of Lemma 4. Combining these with equation 
S2 S2 S2 
pt pt0 ptt0(21), I have V (β̂pt) = + − . 

npt npt0 np 

By Lemma 7, Npt can take on either n or n + 1. Since Npt has expectation ptnp, the pt pt 
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marginal distribution for each Npt must be ⎧ ⎪⎪⎪1 − ptnp + npt if npt = npt⎨ 
Pr(Npt = npt) = ptnp − n if npt = n + 1 (22)

pt pt⎪⎪⎪⎩0 otherwise. 

Using equation (20), Lemma 9, and equation (22), I have 

nX � S2 S2 S2 �o 
pt pt0 ptt0V (β̂∗ ) = E δ2 + −t p Npt Npt0 npp X n X � S2 � S2 o 

pt0 ptt0δ2 = E −p Npt0 npp t0∈{t0,t} X n X h�S2 � � S2 � i S2 o 
pt0 pt0 ptt0 = δp 

2 (1 − pt0 np + npt0 ) + (pt0 np − npt0 ) − . 
n n + 1 nppt0 p t0∈{t0,t} pt0 

Proof of Equation (4) 

I prove equation (4) with two lemmas below. P ˆLemma 10. E(B̂t|p ∗(�)) = λptCAT Ept for all t where Bt is the OLS estimate of Bt in p 

this regression: 

tmX X 
Yi = BtDit + Cp1{pi ∗ (�) = p} + Ei. (23) 

t=t1 p 

Proof of Lemma 10. I reparametrize the regression as follows with (Bt, Dp), where Dp ≡ 

Cp + 
Ptm Btpt.t=t1 

tmX X 
Yi = Bt(Dit − p ∗ 

it(�)) + Dp1{p ∗ 
i (�) = p} + Ei. (24) 

t=t1 p 

ˆThis reparametrization does not change Bt. Note also that Yi can be written as follows. 

tmX XX 
Yi = 1{pi ∗ (�) = p}Yp(0) + 1{pi ∗ (�) = p}CAT EptDit + µi, 

p p t=t1 P 
1{p ∗(�) = p}Yi(0) P

i i ∗where Yp(0) ≡ P and 1{p (�) = p}µi = 0 for every p. Therefore, the∗ i i1{p (�) = p}i i 
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ˆOLS estimates ( B̂t, Dp) of (Bt, Dp) in regression (24) can be written as follows. 

tmX X XX 
(B̂t, D̂p) = argmin [ 1{pi ∗ (�) = p}Yp(0) + 1{pi ∗ (�) = p}CAT EptDit 

(Bt,Dp) i p p t=t1 

tmX X 
− Bt(Dit − pit

∗ (�)) − Dp1{pi ∗ (�) = p}]2 

t=t1 p 

tm tmX X X X 
= argmin [ 1{pi ∗ (�) = p}(Yp(0) − Dp + CAT EptDit) − Bt(Dit − pit

∗ (�))]2 

(Bt,Dp) i p t=t1 t=t1 

tmX X X 
= arg min [{ 1{pi ∗ (�) = p}(Yp(0) − Dp + CAT EptDit}2 

(Bt,Dp) i p t=t1 

tm tmX X X 
− 2 1{pi ∗ (�) = p}(Yp(0) − Dp + CAT EptDit) Bt(Dit − pit

∗ (�)) 
p t=t1 t=t1 

tmX 
+ { Bt(Dit − pit

∗ (�)}2] 
t=t1 

tmX X X 
= arg min [{ 1{p ∗ (�) = p}(Yp(0) − Dp + CAT EptDit)}2 

i 
(Bt,Dp) i p t=t1 X tm tm tmX X X 

∗ ∗ ∗− 2 1{pi (�) = p} CAT EptDit Bt(Dit − p (�)) + { Bt(Dit − pit(�))}2]it

p t=t1 t=t1 t=t1 

P 
because i(Dit − pit

∗ (�)) = 0. Minimizing this over Bt leads to P P 
1{p ∗(�) = p}CAT EptDit(Dit − p ∗ (�))i p i it

B̂t = P ∗ . 
i(Dit − pit(�))2 

P P 
p i 1{pi ∗(�) = p}pit∗ (�)

Because P (Dit = 1) = and 
n P 

1{p ∗(�) = p}p ∗ (�)∗ i i itP (p (�) = p|Dit = 1) = P P ,i ∗ ∗1{(p (�) = q}p (�)q i i itP 
it follows that the numerator is equal to p pt(1 − pt)δpCAT Ept and that the denominator P P 
is equal to p pt(1 − pt)δp. This implies that E(B̂t|p ∗(�)) = p λptCAT Ept. 

ˆ b̂∗Lemma 11. Bt = t for any t and any realization of treatment assignment Dit. 

Proof of Lemma 11. By the Frisch-Waugh-Lovell theorem, the OLS estimates of (23) can be 

obtained by regressing each of Yi and Dit on the fully-saturated propensity score controls and 
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then using the residuals from these regressions as the dependent and independent variables 

for a bivariate regression that omits the propensity score controls. Consider the auxiliary 

regressions that produce these residualized variables: they have Dit on the left hand side, 

with a saturated control for pi 
∗(�) on the right. By the law of iterated expectations, the 

conditional expectation function associated with this auxiliary regression is 

E[Dit|p ∗ 
i (�)] = p ∗ 

it(�). 

In other words, the conditional expectation function E[Dit|pi ∗(�)] is linear in regressors p ∗ (�),it

so it and the associated auxiliary regression function coincide (note that I use a saturated 

model for p ∗ 
i (�)). Therefore, regression (3), which additively separably and linearly controls 

for pit
∗ (�)’s, produces the same estimate as regression (23). 

Proof of Proposition 6 

The proof uses the following lemma. 

Lemma 12. Suppose Assumptions 1, 2, 3, 4, 5, 6, and 7 hold. For all g, as N →∞, 

d√ − βpop (ρΔcond(β̂∗ ) −→ N (0, H−1 + (1 − ρ)Δehw)H−1).ng N,g N,g g g g g 

√ d
β ∗ − βsample ΔcondH−1 ng( ˆ ) −→ N (0, H−1 ).N,g N,g g g g 

Proof of Lemma 12. This result is a consequence of Theorem 3 of Abadie et al. (2017). 

To verify their assumptions hold, fix any g, and regard subpopulation PN,g as the entire 

population. Note that Ng → ∞ as N → ∞ by Assumption 2 (ii). DN,i and 1 in my 

notation correspond to UN,i and ZN,i in Abadie et al. (2017). Their Assumption 3 holds by 

the following reason: For all g and i ∈ PN,g, 

Pr((DN,it)t=t0,...,tm = di|RN = r) = E[Pr((DN,it)t=t0,...,tm = di|RN = r, (cN,t))|RN = r] 
tmX 

= E[ p ∗ (�)1{dit = 1}|RN = r]N,it

t=t0 

tmX 
= qN,g,t1{dit = 1}, 

t=t0 

where the third equality holds by my Assumption 3. Then, Pr((DN,it)t=t0,...,tm = di) = 

E[Pr((DN,it)t=t0,...,tm = di|RN = r)] = Pr((DN,it)t=t0,...,tm = di|RN = r). Under my Assump-

79 



tion 4, 

N NY Y 
Pr((DN,it) = (di)|RN = r) = Pr((DN,it)t=t0,...,tm = di|RN = r) = Pr((DN,it)t=t0,...,tm = di), 

i=1 i=1 

and 

NY 
Pr((DN,it) = (di)) = E[Pr((DN,it) = (di)|RN = r)] = Pr((DN,it)t=t0,...,tm = di). 

i=1 

Therefore, (DN,1,t)t=t0,...,tm , ..., (DN,N,t)t=t0,...,tm are jointly independent from each other, and 

independent of RN . Assumption 3 in Abadie et al. (2017) therefore holds. Since E[DN,i] = 

(qN,g,t1 , ..., qN,g,tm )
0 for i ∈ PN,g, Assumption 7 in Abadie et al. (2017) holds. Note that 

tm tm tmX X X 
YN,i = DN,itYN,i(t) = DN,it(YN,i(t) − YN,i(t0)) + DN,itYN,i(t0) = D0 βN,i + YN,i(t0),N,i

t=t0 t=t1 t=t0 

and βsample implying Assumption 8 in Abadie et al. (2017) holds. I next show that my βpop 
N,g N,g 

and θcausal,sample are equal to their θN
causal 

N N, respectively. To make it explicit that θcausal and 
causal,sample causal,sample θ vary across g in our setting, denote them by θcausal and θ . SinceN N,g N,g 

E[XN,i] = 0 and E[XN,iX
0 ] is constant across i ∈ PN,g,N,iX X� 1 �−1 1 

θcausal ≡ N,i]Ng Ng 
N,g E[XN,iX

0 E[XN,iYN,i] 
i∈PN,g i∈PN,g X 

= (E[XN,1XN,
0 

1])
−1 

N,i

1 
E[XN,i(D

0 βN,i + YN,i(t0))]
Ng 

i∈PN,g X 
= (E[XN,1X

0 
N

1 

g 
N,1])

−1 E[XN,i((XN,i + E[DN,i])
0βN,i + YN,i(t0))] 

i∈PN,g X 
= (E[XN,1X

0 ])−1E[XN,1X
0 ]

N

1 

g 
N,1 N,1 βN,i 

i∈PN,g 

= βpop 
N,g, 

and X X 
θcausal,sample � 1 �−1 1 
N,g ≡ RN,iE[XN,iX

0 ] RN,iE[XN,iYN,i]N,ing ng
i∈PN,g i∈PN,g X 

= (E[XN,1X
0 1 

RN,iE[XN,i((XN,i + E[DN,i])
0βN,i + YN,i(t0))]N,1])

−1 

ng 
i∈PN,g 
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X 
= (E[XN,1X

0 
N,1]

1 
N,1])

−1E[XN,1X
0 

ng 
RN,iβN,i 

i∈PN,g 

= βsample 
N,g . 

Note that γcausal in Abadie et al. (2017)’s notation is N,g X X X 
γN,g 
causal =

1 
E[YN,i] = 

1 
E[D0 

N,1]βN,g 
pop +

1 
YN,i(t0).N,iβN,i + YN,i(t0)] = E[D0 

Ng Ng Ng
i∈PN,g i∈PN,g i∈PN,g 

For i ∈ PN,g, X 
= D0�N,i N,i(βN,i − βpop ) + YN,i(t0) − 

N

1 

g 
N,g YN,i(t0) 

i∈PN,g 

tmX X1 
N,iθ

causal = DN,it(YN,i(t) − YN,i(t0)) − D0 
N,g + YN,i(t0) − YN,i(t0)

Ngt=t1 i∈PN,g X1 
θcausal = YN,i − D0 
N,g − YN,i(t0)N,i Ng 

i∈PN,g X1 
N,iθ

causal 
N,1]β

pop= YN,i − X 0 
N,g − E[D0 

N,g − YN,i(t0)
Ng 

i∈PN,g 

θcausal − γcausal = YN,i − X 0 
N,g ,N,i N,g 

P 
]βpop 1 

= E[D0where the last equality is by γN,g 
causal 

N,1 N,g + YN,i(t0) shown above. It only i∈PN,g Ng Ptmremains to check Abadie et al. (2017)’s Assumption 5 holds. Since kXN,ik ≤ t=t1 
|XN,it| ≤ P 1 Ptm (|DN,it| + |p ∗ (�)|) ≤ 2 with probability one for all i, 

Ng 
E[kXN,ik4+δ] ≤t=t1 N,it i∈PN,g 

1 P 1 P 
1 = 1 for all N and for any δ > 0. Hence, the sequences E[|YN,i|4+δ],i∈PN,g i∈PN,g Ng Ng 

1 P 1 P 
E[kXN,ik4+δ], and E[k1k4+δ] are uniformly bounded under my As-i∈PN,g i∈PN,g Ng Ng 

sumption 5. Applying Abadie et al. (2017)’s Theorem 3 gives me Lemma 12. 

β̂∗ is independent across g since each subject is sampled independently, and (DN,1t)t=t0,...,tmN,g 

, ..., (DN,Nt)t=t0,...,tm are jointly independent from each other and independent of RN (a conse-PNquence of my Assumption 4). Notice that E[n/N ] = E[ i=1 RN,i]/N = ρN and V ar(n/N) = PN p p
V ar( i=1 RN,i)/N

2 = ρN (1 − ρN )/N → 0. Thus, n/N −→ ρN . Similarly, ng/Ng −→ ρN . 
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p p pp
The continuous mapping theorem implies ng/n = δN,g(ng/Ng)/(n/N) −→ δg. I have 

X X√
− βpop √ G

ng
G

Ng 
βpopn(β̂∗ ) = n( β̂∗ − )N N N,g N,gn N 

g=1 g=1 XG G√ ng 
X ng Ng− βpop )βpop= n[ (β̂∗ ) + ( − ]N,g N,g N,gn n N 

g=1 g=1 

GX r 
ng √ − βpop √ ng Ng 

)βpop= [ ng(β̂
∗ ) + n( − ]N,g N,g N,gn n N 

g=1 

GX
d

H−1(ρΔcond−→ N (0, δg + (1 − ρ)Δehw)H−1).g g g g 
g=1 p pp

where the last convergence is by ng/n −→ δg, Lemma 12, and Assumption 8. Similarly, 

XG G√ √ ng 
X ngsample sample β ∗ β̂∗ n( ˆN − βN ) = n( N,g − βN,g ) 

n n 
g=1 g=1 

√ G
ng 

X 
− βsample = n (β̂∗ )N,g N,g n 

g=1 rGX ng √ sample = ng(β̂
∗ − β )N,g N,g n 

g=1 

GX
d

H−1ΔcondH−1−→ N (0, δg g g g ), 
g=1 p pp

where the last convergence is by ng/n −→ δg and Lemma 12. 

Proof of Corollary 4 

Note that 

�N,i = DN,it1 (YN,i(t1) − ȲN (t1)) + (1 − DN,it1 )(YN,i(t0) − ȲN (t0)). 

I have 

E[XN,i�N,i] = Pr(DN,i = 1)(1 − qN,t1 )(YN,i(t1) − ȲN (t1)) + Pr(DN,i = 0)(−qN,t1 )(YN,i(t0) − ȲN (t0)) 

= qN,t1 (1 − qN,t1 )(YN,i(t1) − ȲN (t1) − (YN,i(t0) − ȲN (t0))), 
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and 

E[X2 
N,i�

2 
N,i] = Pr(DN,i = 1)(1 − qN,t1 )

2(YN,i(t1) − ȲN (t1))
2 + Pr(DN,i = 0)(−qN,t1 )

2(YN,i(t0) − ȲN (t0))
2 

2 = qN,t1 (1 − qN,t1 )
2(YN,i(t1) − ȲN (t1))

2 + (1 − qN,t1 )qN,t1 
(YN,i(t0) − ȲN (t0))

2 . 

1 PN 2I therefore get Δehw = limN→∞ 
N i=1 E(XN,i

2 �N,i
2 ) = qt1 (1 − qt1 )

2S2 + (1 − qt1 )q S2 andt1 t1 t0 

1 PNΔcond = Δehw − limN→∞ 
2E[XN,i�N,i]

2 = Δehw − q (1 − qt1 )
2S2 . I also have i=1 t1 t1t0N 

E[X2 )2 
N,i] = Pr(DN,i = 1)(1 − qN,t1 )

2 + Pr(DN,i = 0)(−qN,t1 

= qN,t1 (1 − qN,t1 ), 

1 PNleading to H = limN→∞ i=1 E[X2 ] = qt1 (1 − qt1 ). (7) and (8) follow from substituting N,iN 
the above observations into Proposition 6. Analogously, (9) and (10) follow from Corollary 

3. 

Proof of Proposition 7 

By Proposition 2, there is no other experimental design (pit) with pit ∈ [�, 1−�] for all subject P P P P0 ∗o 0 0 ∗o 0i and treatment t and such that pitwit ≥ pit (�)wit for all i and piteti ≥ pit (�)etit t t t 

for all i with at least one strict inequality. wit 
0 and e0 ti are consistent with ordinal %i and %t, 

respectively. Therefore, there is no other experimental design (pit) such that for all cardinal 

WTP wit consistent with ordinal %i and all cardinal predicted effects eti consistent with P P P P∗o ∗oordinal %t, I have pitwit ≥ pit (�)wit for all i and piteti ≥ pit (�)eti for all i witht t t t 

at least one strict inequality. 

A.3 Empirical Details 

A.3.1 Why Subject Welfare? Data 

Table 1 Panel a, Appendix Figure A.1 Panel a, and Appendix Tables A.1-A.3 are based on 

data I assemble from the WHO International Clinical Trials Registry Platform (ICTRP) at 

http://www.who.int/ictrp/en/, retrieved in March 2018. I first use the “date of registra-

tion” variable to define the year associated with each trial. Starting from the universe of 

trials registered between January 1st 2007 to May 31st 2017, I exclude outlier trials with 

registered sample size greater than 5 millions. Some trials come with sample size classified as 

“Not Specified.” I set their sample size as zero. This makes my total sample size calculation 

conservative. For a trial that does not have a well-defined trial phase, I classify its trial phase 
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as “Not Specified.” Finally, for each trial, I define its “Geographical Region” according to 

which country runs the registry including that trial. Many registries like ClinicalTrial.gov 

recruit subjects in multiple countries under the same trial ID, making it challenging to pin 

down the physical location of each trial. 

Table 1 Panel b, Appendix Figure A.1 Panel b, and Appendix Tables A.4 and A.5 are 

based on data I assemble from the American Economic Association’s registry (AEA registry) 

for randomized controlled trials at https://www.socialscienceregistry.org, retrieved on 

May 27th, 2017. From the AEA registry, I obtain information about each experiment such 

as the sample size, the year when the experiment was conducted, the country where the 

experiment was conducted, registered keywords, and the randomization unit. When some 

information is missing, I manually enter it by referring to accompanying documents such as 

experimental design descriptions and abstracts. I classify an item as “Not specified” when I 

cannot specify it even after the manual procedure. When the sample size of an experiment 

is unspecified, I set the sample size as zero. This makes my total sample size calculation 

conservative. I use the “starting date of experiment” to define the year associated with each 

trial. Finally, for each trial, I define its “Geographical Region” according to the country in 

which the experiment was conducted. I include all registered experiments conducted during 

2007-2017 period. 

A.3.2 Do Clinical Trials Use Simple Randomization? 

Do clinical trials randomize treatment as in Definition 1 of RCT? I provide an answer to 

this question using the Clinical Trial Registry India (CTRI). To my knowledge, CTRI is 

the only major clinical trial registry that provides data about randomization methods in 

clinical trials. I assembled data about individual clinical trials including the date the trial 

was conducted and the method used to randomize subjects into control or treatment groups. 

The data includes trials spanning from October 9th, 2007 to October 9, 2017. I removed 

trials with sample size 0 and trials that have been classified as “NA” for randomization 

method. According to the CTRI description manual, the relevant variable (“method of 

generating random sequence”) takes some of the following categories: 

• Computer generated randomization: A machine randomly assigns the subject or subject 

group to a study or treatment group. 

• Permuted block randomization (fixed): Participants are randomly allocated in a way 

that maintains a covariate balance across treatment groups. Allocation occurs by 

assigning a specified number of participants to a block that has a specified number of 

treatment assignments. In this case, the block size is fixed. 
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• Permuted block randomization (variable): Same method as permuted block random-

ization (fixed), but with varying block sizes. 

• Random number table: Each subject or subject group is assigned a number, and a 

random number table determines if the subject is assigned to a control or treatment 

group. 

• Coin toss, lottery, toss of dice, shuffling cards etc.: Based on a coin toss, the subject, 

or subject group is placed in either a control or treatment group. 

• Stratified randomization: In order to control for covariates (patient characteristics 

which might affect the outcomes), a stratum is generated for each combination of 

covariates, and subjects are assigned to the appropriate strata of covariates. After all 

subjects are assigned to strata, simple randomization is performed within each stratum 

to assign subjects to a treatment or control group. 

• Stratified block randomization: Same method as stratified randomization, but once 

patients are assigned to their strata, permuted block randomization is performed within 

each stratum. 

• Adaptive randomization: Adaptive randomization, like stratified randomization, takes 

covariates into account. In the “minimization method,” for example, a new patient is 

sequentially assigned to the group with the fewest number of existing patients with the 

same covariates, making covariates balanced across groups. 

• Other : 179 trials listed “Other” as the method of randomization 

The popularity of each randomization method is described in Appendix Table A.6. The 

table shows that 85% of all trials use one of the impersonal simple randomization methods 

that do not take patient covariate or past data into account. This suggests that Definition 

1 of RCT is a reasonable approximation to most clinical trials. 

A.3.3 Treatment Effects and Preferences: Details 

Sample Restriction in Treatment Effect Estimation (Table 3) 

For the OLS regressions in Table 3, I impose the same sample restriction as Kremer et al. and 

exclude the following children: children not at Intent-to-Treat springs, i.e., springs found to 

be nonviable after treatment random assignment, children in households that receive water 

guards in 2007, children not in representative households (defined as households that are 
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named at least twice by all users of a given spring when survey enumerators ask spring 

users at a spring to name households that also use the same spring), children above age 3 at 

baseline and children above age 3 when they join the sample in later rounds, children whose 

anthropometric (weight, height, BMI) and age data are flagged as having serious error, and 

children in households with missing data on whether they use the identified spring exclusively 

or use multiple springs. 

Estimation of the Mixed Logit WTP Model (Table 4) 

With the random utility function (6), choice likelihoods take the following form (Train (2003), 

chapter 6): Z 
exp ((βi + γ1Xi)Tjt − ciDij + δj )

P (oijt = 1|θ, γ1, δj ) = P f(βi, ci|θ)d(βi, ci) 
(βi,ci) h∈H exp ((βi + γ1Xi)Tht − ciDih + δh) 

where oijt ∈ {0, 1} is the indicator that household i chooses source j in trip t among alterna-

tives h ∈ H and f(βi, ci|θ) is the mixing distribution parametrized by θ. f(βi, ci|θ) is taken 

to be the normal distribution with unknown mean and variance for the spring protection 

treatment coefficient βi and the triangular distribution (restricted to be nonnegative) for the 

distance coefficient ci. I use the quasi Newton method to maximize a simulation approxima-P 
tion of the joint likelihood P (oijt = 1|θ, γ1, δj ) with respect to θ, γ1, and δj , producing ijt 

maximum simulated likelihood estimates θ, ˆ γ̂1, and δ̂j . I compute standard errors using the 

information matrix with the Hessian being estimated by the outer product of the gradient 

of the simulated likelihood at the estimated parameter value. 

Simulation of WTP (Figure 1 Panel b and Subsequent Figures) 

I create simulated WTP data for Figure 1 Panel b and subsequent figures with parametric 

bootstrap below. 

(1) Simulate a value of the distance coefficient c ∼ T riangular(θcD) for each household 

group sharing the same characteristics where θcD is the point estimate of the parameter 

of the distance coefficient distribution, i.e., the estimated mean and standard deviation. 

To correct for potential measurement error in distance, follow Kremer et al. (2011)’s 

method and multiply the distance coefficient by -1/0.38, where 0.38 is the correlation 

across survey rounds in the reported walking distance to the reference spring and is 

taken to be the size of measurement error from recall error. See Kremer et al. (2011)’s 

Section IV.B for details. 
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(2) Draw a value of the treatment coefficient w ∼ N(µ̂, σ̂) for each household group sharing 

the same characteristics where µ̂ and σ̂ are the point estimates of mean µ and standard 

deviation σ of the treatment coefficient distribution. 

(3) Compute the ratio w/c as WTP for the treatment in terms of minutes of walking 

time. Follow Kremer et al. (2011)’s method to get WTP in terms of the number of 

workdays taken to walk to the spring in a year. Specifically, multiply the ratio by 

(32 × 52)/(60 × 8) where 32 × 52 is the average number of water trips taken by a 

household per year and 60 × 8 is the number of minutes per workday. See Kremer et 

al. (2011)’s Section IV.B for details. 

A.3.4 EXAM vs RCT: Algorithm Details 

In this section, I describe the details of the algorithm I use for computing EXAM’s treatment 

assignment probabilities pit
∗ (�) in my empirical application in Section 6.3. I first define sub-

routines and then call them together at the end to perform the main computation. Though 

simple, this algorithm works well in my application: The market clearing error, defined as pP P P 
( p ∗ − ct)2/ ct, is smaller than 0.005 in all simulation runs. t i it t 
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Algorithm 1 Experimental as Market (EXAM) 

Input: n the number of subjects, m the number of treatments, (ct) ∈ N treatment t’sP 
pseudo capacity with t ct = n, (wit) subject i’s WTP for treatment t, (eti) treatment 
t’s predicted treatment effect for subject i, b the budget constraint 

Output: (pit
∗ ) treatment t’s assignment probability for subject i, (α∗, βt 

∗) parameters deter-
mining treatment t’s equilibrium price of the form π∗ = α∗ e + β∗ , errormin minimizedte t 

market clearing error relative the total capacity of treatments 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

function InitialAlpha( ) 
α ← generate random number ∼ Uniform(−b, 0) 
return α 

function InitBeta( ) 
βt0 ← 0 
for each t = t1, ..., tm do 

βt ← generate random number ∼ Uniform(−b, b) 

. set the value of α 

. set the initial value of βt 

return (βt) 

function Price(α, (βt)) 
for each i, t = t1, ..., tm do 

πteti = αeti + βt 

return (πteti ) 

function Demand((πteti )) 
for each i do P 

(pit)t ← arg max t witpit 
(pit)t∈P 

return (pit) 

function ExcessDemand((pit)) 
for each t = t1, ..., tm doP 

dt ← pit − cti 

return (dt) 

function ClearingError((dt)) 
if dt < 0 for all t then 

return 0 
else pP P 

error ← d2/t t t ct 
return error 

. return an m-dimensional vector 

. get the price of treatment t 

. return the n × m price matrix 

. get subject i’s demand for treatment t 
. perform utility maximization for each subject iP 

s.t. pit ≤ bt πteti 

. return the n × m demand matrix 

. get the excess demand for treatment t 

. return the m-dimensional excess demand vector 

. get the market clearing error 

. return the market clearing error 
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27: δβ ← b/50 

28: function BetaNew((βt, dt)) 
29: for each t = t1, ..., tm do 

βnew30: t ← βt + dtδβ 

31: return (βt
new) 

32: function ClearMarket( ) 
33: α ← InitialAlpha( ) 
34: (βt) ← InitBeta( ) 
35: (πteti ) ← Price(α, (βt)) 
36: (pit) ← Demand((πteti )) 
37: (dt) ← ExcessDemand((pit)) 
38: error ← ClearingError((dt)) 
39: errormin ← error 
40: ClearingThreshold ← 0.01 
41: IterationThreshold ← 10 
42: iterations ← 0 
43: while True do 
44: if iterations > IterationThreshold then 
45: α ← InitialAlpha( ) 
46: (βt) ← InitBeta( ) 
47: iterations ← 0 
48: else 
49: (βt) ← BetaNew((βt) , (dt)) 

50: (πteti ) ← Price(α, (βt)) 
51: (pit) ← Demand((πteti )) 
52: (dt) ← ExcessDemand((pit)) 
53: error ← ClearingError((dt)) 
54: if error < errormin then 
55: errormin ← error 
56: α∗ ← α 
57: (βt 

∗) ← (βt) 
58: (p ∗ ) ← (pit)it

59: if errormin < ClearingThreshold then 
60: break 
61: iterations += 1 
62: return ((p ∗ 

it), α
∗, (βt 

∗), errormin) 

. scaling factor for βt’s to set new prices 

. recalibrate βt’s to set new prices 

. the main function 

. initialize the minimum of clearing error 
. threshold for the market clearing error 

. threshold for iteration times 
. initialize iteration time count 

. start new equilibrium research 

. the new prices reduce the error 

. return the outputs 
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A.3.5 Additional Tables and Figures 

Figure A.1: Magnitude of Parts of the RCT Landscape: Details 

(a) Registered Medical Clinical Trials & Sample Sizes: Time Evolution 

(b) Registered Social & Economic RCTs & Sample Sizes: Time Evolution 

Notes: Panel a provides summary statistics of clinical trials registered in the WHO International Clinical 
Trials Registry Platform (ICTRP, http://www.who.int/ictrp/en/, retrieved in March 2018). The sample 
consists of clinical trials registered there between January 1st 2007 to May 30th 2017. I exclude trials with 
registered sample size larger than five millions. Panel b provides summary statistics of economic RCTs 
registered in the American Economic Association RCT Registry (https://www.socialscienceregistry. 
org, retrieved in March 2018). The sample consists of RCTs registered there between January 1st 2007 to 
May 30th 2017 and where the unit of outcome measurement is an individual or a household. I focus on 
RCTs with individual or household subjects in order to make it possible to sum up sample sizes. See Section 
2 for discussions about this exhibit and Appendix A.3.1 for the detailed computational procedure. 
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Table A.6: Do Clinical Trials Use Simple Randomization? 

Notes: This table shows summary statistics of the popularity of different randomization methods in clinical 
trials, based on the Clinical Trial Registry India (CTRI). The data includes trials spanning from October 
9th, 2007 to October 9, 2017. I removed trials with sample size 0 and trials that have been classified as 
“NA” for randomization method. See Appendix A.3.2 for discussions about this table. 
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Table A.7: A Selection of High-stakes RCTs (Continued from Table 2) 

(a) Medical Clinical Trials 

Subjects Sample Size 

i Coronary Heart Disease Patients 4444 Individuals 
ii Patients with Elevated Intraocular Pressure 1636 Individuals 
iii HIV Negative Gay Men and Transgender Women 2499 Individuals 
iv Serodiscordant Couples 1763 Couples 
v Postmenopausal Women 16608 Individuals 

(b) Social and Economic Experiments 

Subjects Sample Size 

I Poor Households in Kenya 940 Households 
II Crime Hot Spots in Minneapolis 110 Spots 
III Unmarried Women in Malawi 1007 Individuals 
IV Uninsured Individuals in Oregon 12229 Individuals 
V Public Sector Job Applicants in Mexico 350 Job Vacancies 

Notes: This is a continuation of Table 2. This table lists examples illustrating the high-stakes nature of 
certain RCTs. See the following references for the details of each RCT: 

Panel a Study i: Scandinavian Simvastatin Survival Study Group and Others (1994) 
Panel a Study ii: Kass et al. (2002) 
Panel a Study iii: Grant et al. (2010) 
Panel a Study iv: Cohen et al. (2011) 
Panel a Study v: Writing Group for the Women’s Health Initiative Investigators and Others (2002) 
Panel b Study I: Haushofer and Shapiro (2016) 
Panel b Study II: Sherman and Weisburd (1995) 
Panel b Study III: Angelucci and Bennett (2017) 
Panel b Study IV: Baicker et al. (2013) 
Panel b Study V: Dal Bó et al. (2013), where the control is a lower wage job offer. 

See Section 2 for discussions about this table. 
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Figure A.2: EXAM vs RCT: Welfare (Robustness Check with � = 0.1) 

∗(a) Average WTP for Assigned Treatments wi 

∗(b) Avg Predicted Effects of Assigned Treatments ei 

Notes: This figure reports the same results as Figure 2 except that this figure sets � to 0.1. To compare 
EXAM and RCT’s welfare performance, this figure shows the distribution of average subject welfare over 1000 
bootstrap simulations under each experimental design. Panel a measures welfare with respect to average 

∗ ∗WTP w for assigned treatments while Panel b with respect to average predicted effects e of assigned i i 
treatments. A dotted line indicates the distribution of each welfare measure for RCT while a solid line 
indicates that for EXAM. Each vertical line represents mean. Both predicted effects êt1i and WTP ŵit1 are 
based on the main statistical specifications including all of the interactions between the treatment indicator 
and household characteristics (baseline latrine density, diarrhea prevention knowledge score, and mother’s 
years of education). See Section 6.3 for discussions about this figure. 
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Figure A.3: EXAM vs RCT: ATE Estimates (Robustness Check with � = 0.1) 

(a) Distribution of Average Treatment Effect Estimates b̂∗ 

(b) Distribution of Average Treatment Effect Estimates β̂∗ 

Notes: This figure reports the same results as Figure 3 except that this figure sets � to 0.1. This figure 
compares EXAM and RCT’s causal inference performance by showing the distribution of average treatment 
effect estimates under each experimental design. Grey bins indicate average treatment effect estimates for 
RCT while transparent bins with black outlines indicate those for EXAM. The solid vertical line indicates 
mean for EXAM while the dashed vertical line indicates that for RCT. See Section 6.3 for discussions about 
this figure. 
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Figure A.4: EXAM vs RCT: p Values (Robustness Check with � = 0.1) 

(a) p Values for b̂∗ (Exact, Finite Sample) (b) p Values for b̂∗ (Non-robust) 

(c) p Values for b̂∗ (Robust) (d) p Values for b̂∗ (Abadie et al., 2017) 

Notes: This figure reports the same results as Figure 4 except that this figure sets � to 0.1. This figure 
compares EXAM and RCT’s causal inference performance by showing the distribution of p values 
accompanying average treatment effect estimates b̂∗ under each experimental design. The p values are based 
on exact, non-robust, robust, or Abadie et al. (2017)’s standard errors. Grey bins indicate p values for 
RCT while transparent bins with black outlines indicate those for EXAM. The solid vertical line indicates 
median for EXAM while the dashed vertical line indicates that for RCT. See Section 6.3 for discussions 
about this figure. 
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Figure A.5: EXAM vs RCT: Incentive (Robustness Check with � = 0.1) 

(a) WTP manipulation ∼ true WTP+N(0, 100) (b) WTP manipulation ∼ true WTP+N(0, 1000) 

(c) WTP manipulation ∼ true WTP+U(0, 100) (d) WTP manipulation ∼ true WTP+U(−100, 0) 

Notes: This figure reports the same results as Figure 5 except that this figure sets � to 0.1. This figure shows 
the histogram of true WTP gains from potential WTP misreports to EXAM, quantifying the incentive 
compatibility of EXAM. Different panels use different ways of drawing WTP manipulations indicated by 
the panel titles. Each solid vertical line represents the mean WTP gain from potential WTP misreports to 
EXAM. The dash vertical line is for RCT, where the true WTP gain from any WTP misreport is zero. See 
Section 6.3 for discussions about this figure. 
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