
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Toward High-Performance Computing
and Big Data Analytics Convergence:
The Case of Spark-DIY
SILVINA CAÍNO-LORES1 (Student Member, IEEE), JESÚS CARRETERO1 (Senior Member,
IEEE), BOGDAN NICOLAE2 (Member, IEEE), ORCUN YILDIZ2, AND TOM PETERKA2

(Member, IEEE)
1 Computer Architecture and Technology Area (ARCOS), Department of Computer Science and Engineering, University Carlos III of Madrid, Leganés, Spain
(e-mail: {scaino,jcarrete}@inf.uc3m.es)
2Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA (e-mail {bnicolae,oyildiz,tpeterka}@anl.gov)

Corresponding author: Silvina Caíno-Lores (e-mail: scaino@inf.uc3m.es).

ABSTRACT Convergence between high-performance computing (HPC) and big data analytics (BDA)
is currently an established research area that has spawned new opportunities for unifying the platform
layer and data abstractions in these ecosystems. This work presents an architectural model that enables
the interoperability of established BDA and HPC execution models, reflecting the key design features that
interest both the HPC and BDA communities, and including an abstract data collection and operational
model that generates a unified interface for hybrid applications. This architecture can be implemented in
different ways depending on the process- and data-centric platforms of choice and the mechanisms put in
place to effectively meet the requirements of the architecture. The Spark-DIY platform is introduced in the
paper as a prototype implementation of the architecture proposed. It preserves the interfaces and execution
environment of the popular BDA platform Apache Spark, making it compatible with any Spark-based
application and tool, while providing efficient communication and kernel execution via DIY, a powerful
communication pattern library built on top of MPI. Later, Spark-DIY is analyzed in terms of performance
by building a representative use case from the hydrogeology domain, EnKF-HGS. This application is a clear
example of how current HPC simulations are evolving toward hybrid HPC-BDA applications, integrating
HPC simulations within a BDA environment.

INDEX TERMS Big data analytics, high performance computing, Spark, DIY, MPI.

I. INTRODUCTION

CONVERGENCE between high-performance comput-
ing (HPC) and big data analytics (BDA) is now an

established research area that has spawned new research
topics such as data-intensive scientific computing, high-
performance data analytics, and hybrid platforms and infras-
tructures based on virtualization techniques and novel storage
hierarchies. HPC-BDA convergence became a hot topic as
applications and their associated data evolved outside of their
original ecosystems. At that time, the problem for HPC was
How can we cope with increasing datasets?, while BDA was
wondering How can we run analytics faster? Since then, the
HPC [1] and BDA [2] communities have recognized new
opportunities in unifying the platform layer and data abstrac-
tions for both HPC and BDA [3]. This situation led to the
advent of specific research topics, such as high-performance

data analytics and data-driven science.
The divergence between HPC and BDA software ecosys-

tems emerged early this century when software infrastructure
and tools for data analytics that had been developed by
online service providers were open sourced and picked up
by various scientific communities to solve their own data
analysis challenges [4]. Major technical differences between
HPC and BDA ecosystems include software development
paradigms and tools, virtualization and scheduling strategies,
storage and networking models, resource allocation policies,
and strategies for redundancy and fault tolerance [5]. These
technical differences, in turn, tend to make future cross-
boundary collaboration and progress increasingly problem-
atic. This leads to a challenging scenario that involves un-
derstanding a different community and computing model in
order to inspire new approaches to replicate features that

VOLUME 4, 2016 1

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

become necessary, and managing a computing infrastructure
built for a completely different paradigm. While each of these
domains has its set of unique requirements in terms of the
underlying infrastructure, there is an increased pressure for
leveraging technology, methods and tools from across these
domains.

However, many issues remain unsolved, and this situa-
tion has been worsened by the appearance of new applica-
tion domains that are completely hybrid in nature, such as
autonomous vehicles, surveillance, e-science with big data
sources, monitoring of large scale infrastructures, and smart
cities. These domains have in common the need to support
the simulation of complex models, assimilating voluminous
and variable real-time data in order to generate refined
models for better understanding of the domain, to prescribe
pattern-based control actions, or to predict a future behav-
ior. Under these circumstances, borrowing features from the
other paradigm proves insufficient, and deeper convergence
becomes necessary in order to cope with mixed requirements,
new infrastructures, and upcoming performance expecta-
tions. Major technical requirements involved in this process
include highly scalable performance, high memory band-
width, low power consumption, and excellent short arith-
metic performance. Consequently, BDA and HPC platforms
today remain largely incompatible.

The objective in this work is to architect an abstract system
that enables the interoperability of established BDA and
HPC execution models, in light of their canonical underlying
infrastructures and considering the requirements of hybrid
applications, which we analyze in depth. We summarize our
contributions as follows:

1) A definition of a generic unified distributed data ab-
straction (UDDA) and its associated unified opera-
tional model (UOM), which sets the foundation of
a theoretical frame for the analysis and definition of
composite HPC-BDA applications. This data abstrac-
tion embodies a careful selection of the features re-
quired to interoperate BDA and HPC operations and
generates the guidelines that must be enforced by im-
plementations of the architecture in order to preserve
interoperability.

2) A generalist execution model interoperability architec-
ture for HPC-BDA applications based on the UDDA
and UOM definitions. It includes a transparent ex-
ecution delegation system (EDS) that transfers each
stage of the composite application to the appropriate
execution model (process- or data-centric).

3) An implementation of the former architecture, based
on Spark and MPI, which we named Spark-DIY. This
framework is suitable for stateful and stateless opera-
tions on generalist data types, and it is optimized for
primitive data types as well. It allows the composition
of applications with HPC and BDA stages, including
different mechanisms to interact with parallel and dis-
tributed storage.

4) An implementation of a real-world use case from the

hydrogeology domain enriched with features enabled
by our architecture, such as cloud and streaming sup-
port for delocalization and data assimilation, respec-
tively.

The contributions of this paper are an extension of our
previous work [6], where we introduced the basic ideas be-
hind Spark-DIY and provided a preliminary implementation.
Specifically, we focus on three new directions: (1) we study
the big data-HPC convergence problem in a more compre-
hensive manner, with a thorough review of the existing body
of literature; (2) we propose new technical content related to
the general model of the proposed architecture; and (3) we
introduce several optimizations in our reference implemen-
tation and expand the scale and scope of our evaluations to
study its effectiveness.

The rest of this paper is organized as follows: Sections II
and III introduce the BDA and HPC ecosystems, respectively,
and develop on their current state; Section IV presents
relevant works related to the HPC-BDA convergence prob-
lem; Section V analyzes the challenges and opportunities
of the convergence of such paradigms; Section VI details
the proposal of an abstract architecture suitable for the in-
teroperation of process- and data-centric platforms, which is
later implemented in Section VII, using Apache Spark and a
communication library built on MPI, and evaluated in Section
VIII on a real use case from the hydrogeology domain;
and Section IX summarizes this work, its applications, and
directions for future research.

II. BIG DATA ANALYTICS ECOSYSTEM
Big data affects many different ecosystems and areas of
research and business; thus it has no unique definition, and
its scope is still a controversial topic in these communities.
From the data analysis perspective, the multi-V model reflects
a way to define big data by describing several of its features,
and it keeps evolving over time adding more attributes as
needed [7]. The core characteristics included in this model
are as follows:

• Volume of data. Volume is necessary in order to get
valuable insight from analytics tools. Usually one finds
volumes on the order of petabytes or terabytes at the
enterprise level. These volumes can also be quantified
on the order of billions of records, tables, files, or trans-
actions depending on the data structure required by the
underlying storage system. In order to provide sufficient
quality of service, big data systems and applications
must be designed to handle such large data volumes
efficiently and reliably.

• Velocity of data production and processing. Data can
be produced and consumed at different rates. Big data
systems can even incorporate diverse source frequen-
cies and processing speeds, including batch processing,
streaming, and near and real-time speed.

• Variety of data types. Nowadays a data source can be
anything (sensors, web applications, mobile devices,
etc.). Hence, data can be highly heterogeneous and may

2 VOLUME 4, 2016

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

be unstructured. In addition, data types depend greatly
on the application and its domain: we find structured
statistical data in business intelligence, time series, and
geospatial data in the Internet-of-Things (IoT), and me-
dia, text and graph data in social environments. Plat-
forms must be able to understand and integrate this
diverse data to aggregate the knowledge from different
sources.

In addition, from the business perspective there are other
key features, such as the following [8]:

• Veracity of data. The volume of data is key to obtaining
knowledge, but the derived information would be flawed
if the quality of data is low. High-quality big data must
be reliable in terms of trust and integrity, in order to
attain acceptable veracity.

• Value in business terms. The model or analysis that
results from processing big data must provide enterprise
value to make up for the investment expenses necessary
to collect and analyze data.

These definitions have a key aspect in common: big data
focuses on data that is perceived as large in volume. This
paradigm shift has affected all areas of computing from
data acquisition transfer and storage to data analysis and
visualization. This shift was reflected in traditional areas of
business and science, such as genomics, climatology, finance,
and business intelligence, which were able to obtain better
knowledge with existing methods but also promoted novel
areas of research to exploit the intrinsic value of data and im-
prove the system’s capability to cope with the requirements
of data processing and storage. Areas such as IoT and BDA
developed greatly thanks to the advances in big data.

Big data analytics is one of the best examples of how big
data disrupted an established area such as business intelli-
gence, exploiting advanced analytics techniques operating
on big data to evolve from descriptive tools to predictive
and prescriptive models. Today, enterprises are exploring big
data to incorporate knowledge discovery into their business
in order to detect interrelations among apparently unrelated
attributes of datasets [9]. Enterprises can now understand
the current state of the business and customer behavior
through complex techniques such as predictive analytics,
data mining, statistical analysis, data visualization, artificial
intelligence, and natural language processing, paired with
support platforms such as Map-Reduce, in-database analyt-
ics, in-memory databases, and columnar data stores. Some of
these techniques have been around for years, and they have
been revamped because of their good adaptability to very
large datasets with minimal data preparation. In addition,
infrastructures such as cloud computing offer the possibility
to lower the economical costs of deploying BDA and building
analytics workflows at different levels of abstractions.

Figure 1 represents the traditional knowledge discovery
workflow for BDA, which includes dealing with data ac-
quisition from diverse sources, processing and combining
data in many ways in order to build a model that can be

ACQUISITION

DB

WAREHOUSE

SENSOR
NETWORK

STREAM

PROCESSING

(filtering, aggregation,
transformation)

MODELLING

(estimation,
validation)

ANALYSIS

(post-processing,
visualisation,

feedback)

FIGURE 1: Typical workflow of a BDA application.

FIGURE 2: Representation of the lambda architecture.

used for analysis and visualization, and incorporating feed-
back mechanisms to refine data processing and modeling
stages. This workflow has been usually combined with the
lambda architecture [10] to provide scalable integration and
interoperability across different datasets through real-time
analytics. This architecture was proposed with the goal of
providing a generalist platform to serve different applications
with diverse latency needs in a streaming environment. As
shown in Figure 2, the lambda architecture includes a speed
layer for pure stream processing in real time, a batch layer for
storing raw data and processing higher quality views of long-
term data, and a presentation layer that manages queries and
output visualization.

Areas such as mobile technology, social media, IoT, and
data-driven sciences are expected to generate data to a global
total in the order of dozens of zettabytes [2]. Those data will
yield valuable information for smart applications, science,
and decision-making processes in business.

A. CLOUD COMPUTING AND BEYOND
BDA faces the challenge of continuously adapting to in-
creasing data volume and complexity. This translated to a
continuous need to scale out reliably when scale up becomes
infeasible [11]. In this context, cloud computing became a
widely adopted infrastructure for BDA [12].

Cloud computing is a popular paradigm that relies on
resource sharing and virtualization to provide the end user
with a transparent, scalable and elastic system that can be
expanded or reduced on the fly. It emerged with the idea of
virtually unlimited resources obtainable on demand [13], and
its popularity is a consequence of some of the core features
of cloud service models, such as the following:

• Minimal management effort, since the infrastructure
is maintained and administrated by a third-party and
system deployment can be eased by relying on high-
level service models from Platform-as-a-Service up to

VOLUME 4, 2016 3

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

Analytics-as-a-Service [14].
• Automatic or manual scale up or down according to

utilization, thus supporting elasticity.
• Potential to reduce economical costs, as it follows a pay-

as-you-go model.
• Flexible data sharing and platform integration for het-

erogeneous analytics workloads.
Given these benefits, enterprises and scientific institu-

tions have been making efforts to make their applications
cloud-ready [15]. Nevertheless, cloud computing presents
challenges related to the lack of control of the underlying
hardware infrastructure, the privacy concerns that arise from
hosting datasets on third-party servers, and the transfer time
and cost required to upload and download large quantities
of data [16]. For some applications relying on many data
sources generating large volumes of data at high velocities,
centralizing all data to a very limited number of data centers
is no longer viable, especially if low latency is required by
the end users.

These limitations led to models that evolved cloud archi-
tectures aiming to alleviate the data centralization problem
by combining processing, storage, and communication in
distributed services that run closer to the data production
environment in a hierarchical multitiered manner. These
paradigms include mobile cloud computing [17], edge com-
puting [18], [19] and fog computing [20]. Figure 3 shows
how edge devices interact with intermediate aggregation and
processing components to derive local analytics and reduce
the volume of data to be transferred to higher-level layers.
Fog data centers orchestrate and abstract their network and
computing resources in order to relay aggregated data to
the final cloud, where data are finally stored for archival
purposes, and broad analysis is conducted. Upcoming sce-
narios might provide terabytes of data per hour, making ef-
ficient real-time operations critical for monitoring, decision-
making, and digital twin coordination. In addition to highly
distributed platforms, high-performance computing infras-
tructures and methods are expected to improve the processing
capabilities of cloud providers to cope with these extreme
data and computation requirements [2]. Of particular impor-
tance in this context is the concept of storage elasticity, that
is the ability to dynamically adapt storage services to the
data needs, in terms of both sustained I/O throughput [21]
and storage space [22]; otherwise the cost of operating
with data on the cloud becomes prohibitively expensive.
This elasticity dimension has important consequences in the
design of converged high-performance computing and big
data analytics frameworks: they need to be able to adapt to
sudden changes in the data layout and requirements on the
fly, hiding the details of how the computation needs to be
reorganized in response to these changes, while maintaining
high performance and scalability.

B. DATA-CENTRIC BATCH AND STREAM PROCESSING
Minimizing data movements is important for the final per-
formance. At the application development stage, working

with programming models that provide an abstraction of
resource allocation, data management, and task execution via
the data-processing layer can result in an improvement of
performance and locality.

The Map-Reduce [23] data-processing model was the most
relevant data-centric model when BDA research took off,
since it enables analytics on big datasets by parallelizing
computations for HPC and multicore environments [24]. A
Map-Reduce-based algorithm consists of a two-phase algo-
rithm that takes as input a set of key-value pairs retrieved
from the input files. The input is split across a group of homo-
geneous map functions, which process the data and forward
the result to the reduce tasks in order to aggregate and write
the final result. The original Map-Reduce implementation
by Google relies on the Google File System (GFS) [25]
to achieve locality by block replication and considers data-
aware task scheduling. A similar approach is followed by
the open-source Map-Reduce implementation, Hadoop [26],
and its partner file system Hadoop Distributed File System
(HDFS) [27]. Map-Reduce applications work with many
large files and need to execute fast transfers and operations on
a wide and diverse dataset. It saw wide adoption in dedicated
data analytics clusters and cloud computing. Recent advances
extend the capability of resource-limited infrastructure (e.g.
on-premise clusters, edge devices) with ephemeral, short-
lived resources from public clouds to provide a boost during
peak utilization [28]. Besides the numerous works that took
advantage of the multitude of runtime implementations and
optimizations in a variety of scenarios, Map-Reduce also had
a major impact on subsequent models that were inspired by
its paradigm.

One of the models that emerged from Map-Reduce is Map-
Reduce-merge [29], a model that adds a merge phase that
can efficiently aggregate the data already partitioned and
sorted by the map and reduce modules. Map-Reduce does not
directly support processing multiple related heterogeneous
datasets, a limitation that causes efficiency issues when Map-
Reduce is applied in relational operations such as joins. The
Map-Reduce-merge model can, on the other hand, express
relational algebra operators and implement several join algo-
rithms.

Map-iterative-reduce [30] is an alternative model that ex-
tends Map-Reduce to better support reduce-intensive ap-
plications, while substantially improving its efficiency by
eliminating the implicit synchronization barrier between the
map and the reduce phases. Among implementations of map-
iterative-reduce we can find Twister [31], Haloop [32] and
Twister4Azure [33]. The work in [34] suggests that iterative
and interactive applications are the ones that could take the
highest advantage of in-memory data storage for fast reuse.

The Spark [35] programming model supports a wide range
of functionalities that enable the development of applications
that do not fit nicely to the Map-Reduce paradigm, such as
many iterative machine learning algorithms and interactive
data analysis tools. The Spark framework relies heavily on
the concept of resilient distributed dataset (RDD) [36] to

4 VOLUME 4, 2016

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

FIGURE 3: Architecture of a massively distributed infrastructure comprising edge devices, intermediate fog nodes, and core
cloud datacenters.

provide this functionality. RDDs are in-memory collections
of data, and the operations on them are tracked in order to
provide fault tolerance. According to its authors, the system
has proven to be highly scalable and fault tolerant. However,
in most Java-based Map-Reduce platforms [37] the deep
component stack and its dependence on the JVM entails a
significant memory consumption that also affects execution
time because of frequent garbage collection operations [38],
[39], and serialization if bindings to other languages are
used [40]. A performance comparison between Hadoop and
Spark frameworks in terms of CPU, memory and I/O usage
is presented in [41].

Map-Reduce-based programming models have also
evolved into language frameworks that provide a data access
layer through a set of APIs, thus eliminating the need to reim-
plement repetitive tasks by working on top of the processing
layer [42]–[46]. For example, Spark has inspired subsequent
works such as GraphX [42], which extends the framework
to support graph parallel computing. Working with graphs
has, as indicated by the authors, specific challenges and
requirements that were not fully addressed by previous
works. In a similar trend, several frameworks have explored
the possibility of building rich data SQL-like abstractions for
database processing. For example, Spark SQL [43] extends
Spark to integrate database processing into the framework.
Pig Latin [44], HiveQL [45] and REX [46] rely on high-level
data-flow languages, and execution frameworks whose com-
pilers produce sequences of batch-processing Map-Reduce
programs.

Moreover, some models evolved into workflow frame-
works to support the composition of heterogeneous and cou-
pled components to simulate different aspects of an appli-
cation model [47]. As these modules interact and exchange
significant volumes of data at runtime, minimizing these
transfers and making them efficient have a major impact
on the overall performance [48]. Consequently, data locality
enforcement has been studied in several works tackling task
and job scheduling [49], data-flow optimization [50], and
resource allocation [51].

In-memory computing has also affected database-oriented
platforms with approaches such as Phoenix [52] for shared-

and-distributed-memory machines. Shark [53], which sup-
ports the Hive warehousing system [54] on Spark, is a pop-
ular similar approach but oriented toward SQL-based data
analytics by means of machine learning. These algorithms
are typically iterative; thus, in-memory computing suits well
the need for cached data to be reused. Similarly, pure Map-
Reduce paradigms have benefited from in-memory trends,
resulting in platforms for memory-intensive workloads such
as Mammoth [37], Piccolo [55], Main-Memory Map-Reduce
(M3R) [56], and Hyracks [57].

Some of the former works indicate that in-memory
databases and computing are able to scale to petascale
systems [37], [58]. No further work has found indication
whether this could hold for exascale systems, however. New
technologies based on multicore processors can improve the
performance of applications by favoring locality through in-
tranode data sharing, which minimizes data exchanges across
compute nodes [48], [59]. The prospective usage of Map-
Reduce-based models at different levels of parallelism within
the computing infrastructure, as typically done in HPC sys-
tems, might provide a shared-space programming abstraction
that replaces existing parallel programming models such as
message passing.

III. HIGH-PERFORMANCE COMPUTING ECOSYSTEM
High-performance computing refers to the usage of aggre-
gated computing power in order to run complex parallel pro-
grams efficiently and as fast as possible. This term is tightly
related to the concept of supercomputing, which pushes HPC
to the highest operational rate of the available technology.
Nowadays, top modern supercomputers perform on the order
of 100 petaflops, and a machine capable of delivering one
exaflop is expected to appear around 2020 [60].

All this computational power and sophisticated infrastruc-
tures involve massive investment in hardware development,
runtime design, and daily operational costs. Naturally, these
means have been put to the service of strategic areas of
science and industry that rely on complex numerical applica-
tions that cannot be run on commodity machines because of
their performance requirements. Those include sectors such
as aviation, energy, pharmaceutical, oil and gas, and automo-

VOLUME 4, 2016 5

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

FIGURE 4: Application model for the typical HPC scientific application.

tive, and high-end scientific research on climate, medicine,
bioinformatics, and physics.

To exploit the scalability and performance of supercom-
puters, HPC applications rely heavily on parallelism tech-
niques to maximize the usage of resources. Supported by
advanced execution engines, these applications coordinate
parallel processing on many cores and nodes with network-
intensive data transfers between compute and storage nodes.
In addition, some applications need to iterate to refine their
results, modify the underlying model, or incorporate new
data. Figure 4 depicts these relationships, which form the
structure of many HPC applications. The core simulated
models are typically initialized with a combination of input
data and base environmental conditions as parameters, and
the simulation domain is distributed so that kernel computa-
tions can be conducted in parallel. Ideally, these simulations
are pleasingly parallel, and computations can be executed
independently while incorporating partial new data. Once
kernels converge, the resulting data are merged with the
results coming from the other processing units in order to
update the model, typically leading to a communication-
intensive process that results in the input that will be fed
to the following step. As a fault tolerance measure, most
simulations include checkpointing procedures to store inter-
mediate models and restore the simulation from them in case
of failure. Simulation results are then written to storage.

HPC has been also affected by current data-centric trends,
and scientists are already tackling how HPC can benefit from
the availability of big data and analytics techniques. High-
performance data analytics, data-intensive scientific comput-
ing, visualization and machine learning are areas of research
that currently inherit the performance and scalability aspira-
tions of traditional HPC, while incorporating new challenges
that affect how data are managed and transmitted at all levels
of the system and software stack.

A. SUPERCOMPUTERS AND DATA-INTENSIVE
CLUSTERS
Large scale HPC infrastructures (such as supercomputers,
grids, clouds, and clusters) have been widely developed
with the objective of providing a suitable platform for high-
performance and high-throughput computing. Since these
paradigms typically require massive hardware resources and
dedicated middleware, large scale computing holds specific
challenges in order to achieve sufficient efficiency in terms
of memory, CPU, I/O, network latencies, and power con-
sumption, to name a few. These systems are oriented toward
supporting resource-demanding and complex applications
with heavy resource requirements; thus they need dedicated
platforms that orchestrate tasks and manage resources in
order to behave in a coordinated manner. These pieces of
software constitute the middleware that permits node in-
tercommunication, data transmission, load balancing, task
assignment and fault tolerance.

Traditional HPC infrastructures [61]–[64] are built in such
a way that storage and computation are not located in the
same nodes, following the schema depicted in Figure 5.
Networks are also isolated to avoid the interference of I/O
operations to the parallel file system with computation com-
munications. Parallel file systems maintain a logical space
view and provide an efficient access to data, which can be
distributed through several sites and among multiple I/O
servers and disks to deliver a higher degree of parallelism.

Several issues are still not solved with regard to these
infrastructures. In particular, computer scientists have real-
ized that, as problems become larger and more complex,
a powerful infrastructure is not sufficient to achieve proper
scalability in terms of overall performance, resource utiliza-
tion, and power efficiency. With the advent of data-centric
trends, recent works have suggested that improving data
locality across all layers of the system stack is key to move
toward exascale infrastructures efficiently [65].

6 VOLUME 4, 2016

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

LOGIN NODE

RESOURCE
MANAGEMENT

COMPUTE
NODE

STORAGE
NODE

COMPUTE
NODE

STORAGE
NODE

STORAGE
NODE

COMPUTE
NODE

Job submission

High-speed
interconnection

Storage network

FIGURE 5: Traditional architecture of an HPC infrastructure,
with isolated storage and computation networks.

Some authors claim that the current architecture of high-
end computing systems is inefficient because storage is com-
pletely segregated from the compute resources. Thus, further
network interconnections are needed to access storage [66].
Storage systems constitute one of the greatest bottlenecks
when dealing with data-intensive computations [67]. There-
fore, data awareness in file systems and storage infrastruc-
tures can significantly improve the system’s overall locality,
as other layers can benefit from the system’s knowledge of
data placement. In order to avoid the drawbacks of tradi-
tional parallel file systems, a new generation of distributed
file systems has emerged as support layers for data-centric
frameworks such as Map-Reduce. The Hadoop File System
(HDFS) [68] and the Google File System (GFS) [25] are
relevant examples of such file systems portraying a focus on
data locality. Work in this area has also been conducted to
improve locality by moving data to the node’s memory to
minimize interaction with storage nodes. This resulted in new
infrastructure architectures that incorporate deeper memory
hierarchies and local storage in compute nodes, following the
model of cloud-oriented data-centers [69].

The influence of big data and analytics in supercomput-
ing is also reflected in the incorporation of new hardware
architectures tailored for deep learning and data-intensive
computing [3], resulting in dedicated accelerators such as
vector processors, tensor processing units (TPUs), general-
purpose graphical processing units (GPGPUs), and field-
programmable gate arrays (FPGAs). These new technologies
provide further computational power for applications, but it
is still unclear which areas will require the full Exascale
power that will be provided by impending heterogeneous
infrastructures, since the bottleneck might remain at upper

Internode parallelism

COMPUTE NODE

Intranode parallelism

CPU CORE CORE

ACC CORE CORE

COMPUTE NODE

Intranode parallelism

CPU CORE CORE

ACC CORE CORE
CUDA
OpenCL
OpenACC

OpenMP
Cilk
TBB

MPI

FIGURE 6: Parallelism layers in HPC programming models,
including inter and intranode parallelism.

layers of the software stack such as monitoring, resource
management, data management, and communications [70].
In addition, applications are also evolving toward complex
workflows involving iterative analytics, data-intensive op-
erations, and compute-intensive computations. Making an
efficient usage of supercomputers in this landscape will
require algorithm, execution model, and data management
refinements to support applications with mixed requirements,
without diminishing usability.

B. PARALLEL PROGRAMMING MODELS AND
EXECUTION MODELS
HPC applications aim to run at the maximum level of
parallelism provided by supercomputers in order to reduce
execution time and increase scalability. On submission, ap-
plications are provided with a set of allocated processing
units distributed across several nodes, and optionally differ-
ent types of accelerators might be assigned if present in the
infrastructure. Figure 6 represents these diverse processing
units.

The Message Passing Interface (MPI) standard [71] is the
most common procedure to exploit internode parallelism in
HPC environments and is the basis for numerous runtimes
and workflows for scientific computing. The implementa-
tions of MPI allow the execution of standard operations
comprising multiple processes on distributed-memory plat-
forms, which provides coarse-grained parallelism sufficient
for petascale applications.

Thread-level parallelism is the basis for fine-grained intra-
node parallelism for multicore CPUs. Developers can choose
from a wide range of threading libraries such as POSIX
threads, Intel’s Threading Building Blocks (TBB) [72], and
Microsoft’s Parallel Patterns Library [73]. Nowadays, the
open specification for multiprocessing (OpenMP) [74] is
still one of the most-used tools for parallelization, mostly
because its annotation-based nature minimizes the impact on
sequential code. As machines reached petascale, combining
MPI and OpenMP became a common procedure to reach
massive parallelism on machines supporting distributed and
shared-memory [75]–[77].

Current HPC infrastructures have incorporated different
types of accelerators to enhance the performance of specific
applications. Programming models adapted accordingly to

VOLUME 4, 2016 7

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

ease the access to further finer-grained intranode parallelism.
GPGPUs are the most widely adopted accelerator in current
HPC machines, given their many-core architecture, which
pushes forward massive parallelism to the order of thou-
sands of cores on a single chip. Several libraries enable
the interaction with GPGPUs, such as OpenCL [78], Nvidia
CUDA [79], and OpenACC [80], supporting data offload to
the accelerators, kernel operator definition, direct execution
of such code on the device, and result retrieval back to the
host CPU. Accelerator runtimes have also been integrated
with intranode parallelism through OpenMP [81], and inter-
node parallelism via MPI [82], [83]. The mechanisms to
build hybrid runtimes exploiting both intra and internode
parallelism had a major influence on subsequent advances
in further parallelism integration, and they are expected to
be present in future exascale systems to cope with the need
for adaptive hybrid programming models for heterogeneous
extreme-scale machines [84].

IV. CURRENT TRENDS IN HPC AND BDA
CONVERGENCE
In the literature we can find many attempts to incorporate the
beneficial features of HPC and BDA into their correspond-
ing areas. Section IV-A presents relevant works trying to
accelerate BDA by means of HPC computing models (mainly
MPI) and advanced techniques to interact with the underlying
network and accelerators. Correspondingly, Section IV-B
presents how data-centric paradigms and BDA infrastruc-
tures (primarily clouds) have been exploited to enhance HPC.

Finally, Section IV-C analyzes the most relevant endeavors
toward HPC and BDA interoperability for hybrid applica-
tions, not necessarily attempting to improve one model or
the other but focusing on the goal of both paradigms coex-
istence in a single application. These works are scarcer than
others that focus on improving a single ecosystem, but they
are highly relevant since they are oriented toward avoiding
reprogramming applications and exploiting the advantages of
both worlds. This is the primary approach in our work.

A. USAGE OF HPC TO ENHANCE BDA
The focus on performance of HPC is attractive for BDA users
who must deal with increasing number of problems but have
limited processing time. We hereby introduce how previous
works accelerated BDA by exploiting the high-performance
and scalability of computing models such as MPI, and spe-
cific architectural features of HPC infrastructures.

1) Process-Centric Computing Models: MPI and OpenMP
Implementations of traditionally data-centric frameworks
such as Map-Reduce have been developed by using MPI.
The main limitation of these solutions is that significant
reimplementation effort is required to modify tools, libraries,
and applications to use these frameworks, which can im-
pede adoption and introduce overheads. One such framework
was proposed in [85], in the form of a parallel library
that allows algorithms to be expressed by using the Map-

Reduce paradigm, simplifying programming by using map
and reduce operations callable from C++, C, FORTRAN, or
scripting languages such as Python. Another related work
is Smart [86], a framework that mimics Map-Reduce to
execute data analytics algorithms alongside computational
simulations in time-sharing or space-sharing modes, in a
process known as in-situ analytics. The framework uses both
MPI and OpenMP to parallelize tasks over distributed and
shared-memory. A more recent Map-Reduce framework over
MPI is Mimir [87]. It includes a redesign of the execution
model with optimization techniques to increase performance,
reduce memory usage, and improve scalability. Another vari-
ant is FT-MRMPI [88], an extension that provides a fault-
tolerant Map-Reduce framework on MPI for HPC clusters.

Other works attempted to develop novel approaches to
data-centric programming. For example, in [89] the authors
proposed an event-driven pipeline and in-memory shuffle
using DataMPI-Iteration, which provided overlapping of
computation and communication for iterative BDA comput-
ing and showed a speedup of 9x-21x over Apache Hadoop
and 2x-3x over Apache Spark for PageRank and K-means.
Another approach for running data-centric applications on
MPI beyond the Map-Reduce model was proposed in [90],
where the authors presented a set of building blocks that
provide scalable data movement capability to computational
scientists and visualization researchers for writing their own
parallel analysis. This work is the origin of the Do-It-Yourself
parallel runtime (DIY) [91], a full data-driven execution
engine usable for any topology defined by the user.

2) Infrastructure: Networking and Accelerators
Optimizing data-centric platforms for specific heterogeneous
architectures is a popular direction to accelerate BDA. Mr-
Phi [92] targets Intel Xeon Phi coprocessors. A solution for
hybrid cloud bursting is discussed in [93] and extended with
a detailed performance model [28]. A similar solution for
Spark on GPUs was IBMSparkGPU [94], but it is valid for
local tasks only. Trace [95], is a high-throughput tomographic
reconstruction engine for large-scale datasets using both
(thread-level) shared-memory and (process-level) distributed
memory parallelization using a special data structure called
a replicated reconstruction object. The authors also studied
in [96] various frameworks for deep learning networks that
can scale across multiple machines with full parallel sup-
port and distributed execution, such as TensorFlow, CNTK,
Deeplearning4j, MXNet, H2O, Caffe, Theano, and Torch.

Some solutions have been proposed to accelerate big data
processes using FPGAs. Ghasemi et al. [97] created a custom
Map-Reduce framework that is capable of combining Map-
Reduce FPGA kernels with a template interface. Segal et
al. [98] presented SparkCL, and automatically generated
OpenCL kernel for Altera FPGAs. However, they identi-
fied that, because of architectural limitations, data transfer
overhead suggests that only highly compute-intensive tasks
should be offloaded [99]. In [100] the authors propose a
solution to implement Map-Reduce entirely in an FPGA. In

8 VOLUME 4, 2016

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

order to overcome former problems, data are read entirely
from Java to the FPGAs and the final results are copied back
into Spark using memory mapped byte buffers, which avoid
straining FPGA resources.

Networking and storage are closely related and have been
exploited to improve BDA platforms. A first attempt to opti-
mize Map-Reduce storage on HPC clusters by utilizing Lus-
tre as the storage provider for Remote Direct Memory Access
(RDMA) intermediate data was presented in [101]. Other
works tried to adapt Map-Reduce and its underlying HDFS to
use GPFS [102]–[104] or provide subfiles and locality [105].
Results indicated that BDA platforms still suffered from the
reduced locality offered by such a setting. Consequently, the
authors in [106] proposed a two-layer storage system that
exploits PFS performance but incorporates an intermediate
in-memory storage system, with good results.

A proposal to accelerate Spark communication was pre-
sented in [107], which used a high-performance RDMA-
accelerated data shuffle in the Spark framework on high-
performance networks and provided a performance improve-
ment of 80%. We also can see interest in the usage of HPC
systems for BDA in the commercial sector. For example,
PayPal has shown how the high concurrency and low latency
of HPC systems can be used for fraud detection [108].

B. USAGE OF BDA TO ENHANCE HPC
Evidence of convergence in the opposite direction also ap-
pears, especially in works aiming to incorporate data-centric
computing models, such as Map-Reduce in HPC applica-
tions, and in efforts to exploit BDA computing facilities, such
as clouds to scale scientific computing.

1) Data-Centric Computing Models: Map-Reduce
Scientific applications and their adaptability to new com-
puting paradigms have elicited increasing attention from the
scientific community. The applicability of the Map-Reduce
scheme for scientific analysis has been notably studied, es-
pecially for data-intensive applications resulting in an overall
increased scalability for large datasets, even for tightly cou-
pled applications [109].

Several works have analyzed how current HPC applica-
tions could be adapted to Map-Reduce models. In [110],
Srirama et al. studied how some scientific algorithms could
be adapted to the Hadoop Map-Reduce framework. They
established a classification of algorithms according to the
structure of the Map-Reduce schema these would be trans-
formed to. They suggested that not all of those algorithms
would be optimally adapted by their selected Map-Reduce
implementation, yet they would suit other similar platforms
such as Twister or Spark. They focused on the transformation
of particular algorithms to Map-Reduce by redesigning the
algorithms themselves. A similar approach is HAMA [111],
a framework that provides matrix and graph computation
primitives on top of Map-Reduce. An advantage of this
framework over traditional MPI approaches to matrix com-
putations is the fault tolerance provided by the underlying

Hadoop framework. An approach for using Hadoop Map-
Reduce in scientific workflows was explained in [112], whose
authors proposed a new architecture named SciFlow. This
architecture consisted of a new layer added on top of Hadoop,
enhancing the patterns exposed by the framework with new
operations (join, merge, etc.). Scientific workflows are repre-
sented as a DAG composed of these operations. A theoretical
analysis of migrating common HPC-oriented workflows to a
BDA processing platform (i.e., Apache Hadoop) was made
in [113]. The authors implemented six representatives of
common scientific workflow patterns in an Apache Hadoop
environment and discussed implementation challenges as
well as Hadoop environment applicability for each of the
basic patterns.

Other works attempting to tailor Map-Reduce and data
analytics frameworks have been developed for HPC. These
environments target a particular family of applications or
processor architecture, but they are not generalized for reuse
in other contexts. A preliminary work was ROOT [114], an
object-oriented C++ high-energy physics (HEP) framework
designed for storing and analyzing petabytes of data effi-
ciently by using an object container optimized for statistical
data analysis over very large datasets. Another attempt is
an extension of Map-Reduce with access patterns (MRAP)
[115], which targets HPC analytics with a focus on data
locality.

BDA analytics tools, such as Hadoop and Spark, are
being explored to provide straightforward data distribution
and caching mechanisms in data-intensive HPC applications.
Their data-centric nature permits reasoning about tasks over
distributed data abstractions without worrying about task
scheduling, which is managed by the middleware to enforce
data locality and minimize transfers. The inherent parallelism
of these tools has resulted in positive experimental results
showing their suitability for massively parallel workloads
such as MTC-like workflows [116]. Other works explored
the usage of high-level machine learning libraries for HPC
typographic reconstruction [117] with good results. Never-
theless, challenges remain with respect to workflows built
with a pure HPC focus, which rely on MPI and traditional
storage infrastructures [118].

Because Spark underlies many BDA tools, the perfor-
mance of Spark for scientific computing has been studied
in several works. Sherish et al. recently showed in [119]
how BDA tools can be used for HEP data analysis because
extremely large HEP datasets can be represented and held
in memory across the system and accessed interactively
by encoding an analysis using the high-level programming
abstractions in Spark. Kira [120], a flexible and distributed
astronomy image processing toolkit using Apache Spark,
was used to implement a source extractor application called
Kira SE for astronomy images. The study shows that Spark
may be an alternative to an equivalent C program for many-
task applications. Another interesting study was presented
in [121], where the performance of a Spark implementation
of a classification algorithm in the domain of high-energy

VOLUME 4, 2016 9

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

physics (HEP) was evaluated. The results showed that the
implementation scaled well but the performance was poor
compared with the results of an untuned MPI implementation
of the same algorithm.

2) Infrastructure: Distributed Storage and Cloud Computing
Scientific workflows are composed of heterogeneous and
coupled components that interact and exchange significant
volumes of data at runtime. Making these transfers efficient
has a potential major impact on the overall performance of
the resulting application [122]. As a consequence, both the
storage infrastructure and the logical file system abstractions
could affect performance and scalability, thus making data
management a key aspect in workflow design and implemen-
tation [123]. In order to support the degree of scalability and
performance required by modern simulators, one of the key
elements to take into consideration is the avoidance of I/O
bottlenecks [124]. Given the workflow nature of many state-
of-the-art simulators for scientific computing, Srirama et al.
[125] proposed a workflow-partitioning strategy to reduce
the data communication in the resulting deployment. Matri
et al. [126], [127] analyzed the applicability of binary large
objects (known as blobs) and object storage systems to solve
the problems with POSIX-IO-compliant file systems and as
a mechanism to replace distributed file systems for BDA
analytics.

Several works have addressed the opportunities of shift-
ing scientific workflows from traditional HPC and HTC
infrastructures to BDA computing infrastructures such as
clouds. In particular, authors have focused on exploring data-
intensive workflows, since they are the most tightly related
to conventional BDA applications in terms of data volumes
[128], [129]. Experimentation with well known workflows
shows that running costs could be significantly decreased
with BDA infrastructures, but performance would suffer from
virtualization and latency overheads [130]–[132]. The rela-
tionship between Map-Reduce and the cloud for scientific
applications has also been tackled in [133], which establishes
that performance and scalability tests results are similar
between traditional clusters and virtualized infrastructures.
Nonetheless, these results for Map-Reduce workflows are
not generalizable to other application models found in HPC,
since the performance of network in cloud is worse than that
of HPC by one to two orders of magnitude [134], [135].
Other authors indicate, however, that the low maintenance
and economical cost of clouds made it a viable option for
small scale clusters with a tolerable performance loss [136],
[137]. Consequently, cloud computing has been proved as a
good solution for scientists who need resources instantly and
temporarily for fulfilling their computing needs [138].

In this context, trends evolved toward migrating scientific
applications to the cloud by means of several techniques.
D’Angelo [139] described a Simulation-as-a-Service schema
in which parallel and distributed simulations could be exe-
cuted transparently, which requires dealing with model parti-
tioning, data distribution and synchronization. He concludes

that the potential challenges concerning hardware, perfor-
mance, usability and cost that could arise could be overcome
and optimized with the proper simulation model partitioning.
Following a similar approach, Yu et al. [140] proposed an
application adaptation middleware to allow legacy code mi-
gration to the cloud. In this work, a virtualization architecture
is implemented by means of a web interface and a Software-
as-a-Service market and development platform. Similarly,
[141] proposes moving desktop simulation applications to the
cloud via virtualized bundled images. These are generalist
approaches that do not take into consideration the internal
structure of the HPC applications, thus might not suffice
for the resource-intensive computations required by HPC
simulations.

C. ENDEAVORS TOWARD HPC AND BDA
INTEROPERABILITY
The scientific community is aware that tools such as Apache
Spark provide an interesting baseline for integration of sci-
entific simulations in BDA environments. However, the data
abstraction and application model of Spark are not easily
supported using MPI, which is the main programming model
in HPC [142]. Using Spark for HPC applications, while
appealing, poses important convergence challenges.

The work in [143] introduced a methodology for graph
processing to bridge the gap between Spark-based graph
computing and HPC. Evaluations made on the Blue Wa-
ters supercomputer showed poor scalability of Spark vs.
MPI+OpenMP for graph operations. In an effort to progress,
Fox et al. presented in [144] a framework, named HPC-
ABDS, that detected points for possible integration but also
identified problems with workflow systems, data transport,
and file management layers. Gittens et al. explored [145] the
tradeoffs of performing linear algebra using Apache Spark
compared with traditional C and MPI implementations on
HPC platforms. The results showed a poor performance of
Spark vs. MPI for matrix multiplications: from 2x to 25x per-
formance gap. However, the authors highlighted the potential
of incorporating MPI-based execution models to Spark, in-
dicating that overheads might be tolerable. In this context,
achieving a data model fully compatible for Spark and MPI
that provides scalability, performance, and interoperability
suitable for scientific data assimilation remains a challenge
not fully satisfied by any existing platform but desired by the
scientific community.

This paper presents an abstract architecture for execution
model interoperability that, to the best of our knowledge,
has not been introduced before in the literature. In addition,
we provide an implementation that allows users to benefit
from efficient MPI libraries accessible from Spark with little
effort on their side. As a result, we have developed a plat-
form, called Spark-DIY, that provides advanced capabilities
compared with other related solutions in the literature. For
example, compared with [107], we provide compatible block
management between the native side and Spark by using Java
Native Interface (JNI). Compared with [101], our solution

10 VOLUME 4, 2016

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

provides not only powerful I/O through MPI but also com-
puting scalability. Moreover, our implementation constitutes
a general solution that is not specific to any domain of data
type, unlike the work presented in [119]. Our approach is
more similar to the solution proposed in [146], but Anderson
et al. used HDFS to exchange data among Spark and MPI,
while we use memory directly for increasing efficiency.
Moreover, we rely on an intermediate library based on MPI
that manages the block communication graph, which avoids
the burden of direct MPI usage.

Besides the former works, two platforms are very close
to Spark-DIY in terms of aim and functionality. Spark-DIY
is similar to Spark-MPI [147], a solution that extends the
Spark ecosystem with the MPI applications using the Process
Management Interface (PMI) to allow the creation of MPI
processes from Spark. We relied on Spark-MPI to inspire
the deployment mechanism of Spark-DIY, and we incorpo-
rated significant architectural and implementation features
that make Spark-DIY much more complete and general.
Alchemist [148] is another effort in this direction, focusing
on the ability to call MPI-based libraries from Spark. Using
Alchemist with Spark helps accelerate HPC computations,
while still retaining the benefits of working within the Spark
environment. The differences between Spark-DIYand Al-
chemist are mainly in terms of internal implementation.

V. CONVERGENCE CHALLENGES AND
OPPORTUNITIES
To study the challenges and opportunities for convergence,
we have summarized the main features of both ecosystems
in Table 1. We now analyze the challenges and opportunities
they yield for future convergence.

From the domain perspective, the iterative nature of the
simulation algorithms clearly yields collective operations that
do not fit nicely into the typical BDA paradigms. Therefore,
significant efforts must be conducted to converge simulations
and BDA algorithms [149].

Regarding workflow development and deployment, we
conclude that a promising research line for large-scale scien-
tific workflows would be working toward a hybrid approach
between MPI and BDA-oriented data abstractions. Such a
model would blend the slim MPI processes and their gen-
eralist nature with the ability to reason about data processing
without explicitly implementing data parallelism that BDA
platforms provide. The former features are highly desired by
scientists who want to focus on their problem, rather than
on the computational elements of their work. This would
result in a highly productive and efficient mechanism to build
and deploy both scientific workflows and BDA applications,
which is currently desired by the exascale community [149],
[150].

Another major point arising related to data management in
BDA solutions is the lack of flexibility for programmers to
express complex data structures. This approach does not fit
the complexity of data in HPC applications that need to show
complex views of data to the users and the underlying system

software. The data requirements of scientific applications are
expected to become larger in the next few years, increasing
the pressure on the parallel file systems, which are currently
seen as a serious performance bottleneck. It becomes increas-
ingly important to better understand application data models
and to be able to efficiently map them on the underlying
storage through novel techniques.

In addition, upcoming platforms will take into consider-
ation other middleware aspects that made BDA platforms
so successful, such as transparent fault tolerance. As a con-
sequence, there is a need to integrate the fault tolerance
techniques found in HPC, mostly oriented toward batch and
iterative workloads (e.g., multilevel checkpointing), with the
methods from the BDA side that tackle large volumes of tasks
(e.g., data replication and provenance). This also has an effect
on locality, and tradeoffs between these techniques must be
addressed.

From the infrastructure side, we have seen that memory
has become the limiting factor for new BDA platforms. We
also note that emerging MTC scientific workflows require
significant amount of memory for processing, caching, and
exploiting in-memory solutions for enhanced performance.
As a consequence, instead of tailoring the hardware to the
execution of many small tasks, upcoming data-intensive
infrastructures should heavily invest in both volatile and
nonvolatile memory and deepen the storage stack. Hence,
increasing memory in commodity clusters and clouds is
key to supporting the upcoming execution platforms. These
additional resources could mitigate the requirements of new
workloads, and they would help to support the emerging in-
memory and caching mechanisms coming from data-aware
computing. In addition, this integration with more BDA-
oriented infrastructures is expected to benefit pure HPC
workloads in the near future [151].

To summarize, the desired confluence of BDA and HPC
raises a number of challenges: overcoming the differences
in cultures and tools; adopting new infrastructure architec-
tures; ensuring the coexistence of stream and batch models;
and coordinating resource allocation efficiently in virtualized
and shared environments. Software libraries for common
intermediate processing tasks need to be promoted, and a
complete software ecosystem for application development is
needed. The divergence of programming models and lan-
guages poses a convergence issue with regard not only to
interoperability of the applications but also to the interop-
erability between data formats from different programming
languages.

VI. CONVERGENCE ARCHITECTURE FOR HPC-BDA
APPLICATIONS
Our approach is to integrate the data-centric and process-
centric execution models without enforcing the usage of one
model or the other, by allowing the user to freely switch
between the two models and select the one that adapts better
to each stage of the problem. There are three motivations
for pursuing the interoperability between these execution

VOLUME 4, 2016 11

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

TABLE 1: Summary of the main features of BDA and the HPC ecosystems.

BIG DATA ANALYTICS ECOSYSTEM

DATA-CENTRIC PLATFORMS CLOUD, FOG

Pros

Fault-tolerance by design Flexibility through virtualization
Transparent data locality Diverse local storage (NVRAM, SSD, scratch)
Productive programming interface Elasticity
Synergetic pre-built tools for composite jobs Massive geographic distribution

Cons

Low resource management control Resource sharing
Significant memory overhead High latency
Poor support of binary input Enterprise hardware
Deep software and communication stack Privacy concerns
Poor integration with simulation kernels

HIGH PERFORMANCE COMPUTING ECOSYSTEM

PARALLEL PROGRAMMING PLATFORMS SUPERCOMPUTER

Pros

Exploit maximum parallelism Top-tier hardware including accelerators
Low overhead Centralised
Generalist interface Fast interconnections
Bare-metal access

Cons

Limited data abstractions Decoupled storage
Steep learning curve Limited availability
No native provenance nor replication
Low portability

models:
1) BDA users can rely on process-centric execution mod-

els to accelerate and scale their workloads.
2) HPC users gain access to high-level BDA libraries and

increase their productivity.
3) Both types of users benefit from the flexibility to

select the paradigm that matches their infrastructure,
whether it is a cloud (BDA-oriented, and suitable for
data-centric computing) or a supercomputer (HPC-
oriented, and tailored for maximum communication
and processing performance.) Furthermore, they could
incorporate operations not typically available in their
native settings.

Guided by our objective to offer the user the best features
from each ecosystem, we formulate the following design
goals for the integrated architecture:

D1 Interoperability. Process- and data-centric platforms
target different canonical problems; therefore adapting
a problem from one to the other should be explicit. To
make the user aware of which model is currently active,
we must keep both platforms separated but unified in
terms of programmability and interoperable through
explicit conversions.

D2 Production readiness. We believe that the viability of
our solution will depend on being able to use standard
versions of the underlying execution models without
any changes. Thus, interoperability must be enabled
through a middleware layer transparently to the users,

so that applications built for pure platforms could run
almost out-of-the-box.

D3 Usability. Although the user must be aware of the ex-
plicit interoperability, including overheads associated
with switching contexts, the knowledge of the underly-
ing data model and interoperation mechanisms should
be minimal to preserve the nature of the programming
and data interface. This would reduce the learning
curve and minimize the impact on existing code.

D4 Flexibility. We want to support multiple data types and
provide flexibility for different datasets to coexist in
the same application. This includes the need to support
stateful and stateless datasets.

D5 Performance. The data locality capability of data-
centric execution models is a key feature and must
be enforced as much as possible. On the other hand,
the efficiency and scalability of process-centric exe-
cution models should be exploited whenever possible
to accelerate communication- and compute-intensive
operations.

These design goals are embodied in Figure 7, which de-
picts the interactions between the main components of our
envisioned architecture:

• A unified distributed data abstraction for generic data
types (D1, D3, D4).

• An associated unified operational model to interact with
said data abstraction (D1, D3).

• An execution delegation system capable of selecting

12 VOLUME 4, 2016

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

the appropriate execution model for each step in the
application (D1, D2, D5).

These elements are detailed in the following sections.

A. UNIFIED DISTRIBUTED DATA ABSTRACTION
BDA data abstractions rely heavily on the concept of par-
tition, block or chunk to manipulate large collections of
records in a single-program-multiple-data (SPMD) manner.
By distributing the overall data volume in chunks, data-
centric platforms naturally abstract parallelism from the ap-
plication developer. Moreover, since data drives the compu-
tation, and workload balance is planned on the fly based on
results from intermediate steps, such abstractions facilitate
the efficient allocation of computing resources with minimal
intercommunication. In addition, these abstractions are typi-
cally immutable and stateless, in the sense that operations on
these datasets result in a new dataset containing the updated
records.

On the other hand, HPC applications are not enforced
to use any specific abstraction, given their process-centric
nature, in which computation and data parallelization are
explicitly managed by the programmer. Nevertheless, such
applications are usually built for primitive data types, since
input and output data are normally stored in binary files
and most operations are numerical. As opposed to the BDA
abstractions, a key feature of HPC datasets is their need for
statefulness, required to preserve the results from previous
operations since data structures are reused.

Any architecture that aims to interoperate process- and
data-centric execution models must be able to cope with
the core characteristics of their respective data abstractions.
In our design, we propose having a unified distributed data
abstraction (UDDA) inspired by the data-awareness and task-
based parallelism of data-centric abstractions (D3) but with
the possibility to preserve state as required by HPC applica-
tions (D4). As shown in Figure 7, this abstraction represents
a distributed collection of data organized in chunks, which
can be locally accessible by both process- and data-centric
computing units (D1).

Our analysis of features and requirements for HPC and
BDA applications suggests that in order to implement this
data abstraction the following properties should be enforced:

• Internal data types contained in the distributed data
abstraction should not be limited. Collections of user-
defined data types should be possible to preserve the
semantic richness of BDA abstractions (D4).

• In order to ensure that the BDA SPMD operations and
HPC process-centric computations hold simultaneously
given a UDDA, the records contained in the collection
must all belong to the same data type.

• The number of data chunks in a UDDA should be set
automatically for the users’ convenience, following the
trend in BDA platforms. However, HPC users some-
times need to impose a specific number of chunks to
meet application domain limitations (e.g., when each

data chunk represents an individual parametrisation of a
domain). Therefore, data redistribution should be made
available to support interoperability between datasets
representing different domain topologies.

• Location of data chunks should be transparent to the
users and respected as much as possible by the execu-
tion engines. In addition, users should not be aware of
the underlying topological relationships between data
chunks, neither for interacting with individual records
nor for defining new operations on the overall dataset
(D3). Nevertheless, implementations of a UDDA will
have to rely on locality information to track chunks.

B. UNIFIED OPERATIONAL MODEL
BDA programming models are typically based on data flow,
assuming that operations manipulate distributed datasets, and
generate new datasets as result. They are massively inspired
by functional programming and tend to avoid state changes,
mutable data, and dependencies to global or local state. This
has the benefit of providing identical results each time a
function is called with the same input, regardless of previous
operations. If there is no data dependency between such
expressions, their order can be reversed, or they can be
performed in parallel and will not interfere with one another.
These features made these paradigms popular because it is
easy to reason about data in this way, and building parallel
program becomes less error-prone if the user does not have to
take state into consideration. Statefulness also assists prove-
nance, since operations can be reexecuted in case of failure.

In contrast, HPC programming interfaces rely heavily on
in-place stateful paradigms, in which computation, commu-
nication, and data updates occur under the same program-
ming scope. Intra and internode-level parallelism occurs at
different levels, and the memory model is key to build an
application since operations on data remain stateful and affect
subsequent control flow and output results. Consequently,
HPC applications are complex to design and code, and users
are required to be much more aware of the implications of
every change they conduct on the dataset.

Consequently, the flexibility of HPC programming
paradigms can be sometimes overwhelming, while semanti-
cally rich paradigms are usually favored by end users because
of higher productivity and smoother learning curve. Nonethe-
less, the declarative nature of BDA approaches excels in
usability and adoption but lacks the capability to express the
stateful procedural methods required in HPC.

Keeping hybrid applications in mind, which are composed
of interleaving BDA and HPC stages, a unified architecture
for BDA and HPC must clearly support traditional data-
centric operations and incorporate HPC-oriented function-
ality (D1). In addition, as shown in Figure 7, it must also
support the definition of operators for lambda expressions,
while remaining compatible with existing implementations
of high-level libraries (e.g., for machine learning or graph
processing) and computing kernels (D3). The UOM inte-
grates these needs into an abstract function space that aggre-

VOLUME 4, 2016 13

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

WORKERWORKER

DATA-CENTRIC
EXECUTION MODEL

SHARING
AREA

PROCESS-CENTRIC
EXECUTION MODEL

MASTER

COMPOSED APPLICATION

USER-DEFINED
OPERATORS

HIGH-LEVEL
LIBRARIES

UNIFIED OPERATIONAL MODEL

EXECUTION DELEGATION SYSTEM

UNIFIED DISTRIBUTED DATA ABSTRACTION

STORAGE SYSTEM

EXTERNAL
KERNELS

DATA
CHUNK

PROCESS-CENTRIC
EXECUTION MODEL

SHARING
AREA

DATA-CENTRIC
EXECUTION MODEL

DATA
CHUNK

FIGURE 7: Overview of the abstract generalist architecture for HPC-BDA.

gates all potential function definitions between two UDDAs.
Our analysis indicates that certain specializations are neces-
sary in order to expose a set of operations capable of meeting
the requirements of composite applications, such as stateful
functions, cardinality, and type-preserving functions.

C. EXECUTION DELEGATION SYSTEM

As depicted in Figure 7, the proposed architecture follows a
master-worker scheme. With this structure, the definition of
the application and the execution model-dependent parallel
execution can be isolated, thus making clear for the user
whether a task will be conducted locally or in a distributed
manner (D1). The master entity holds the application, which
defines the required UDDAs, and relies on the implemen-
tation of the UOM to interact with their content and to
describe the steps it is composed of. On execution, parallel
steps will be delegated to the worker entities through the
execution delegation system (EDS), which will interpret the
requested operations and select the appropriate execution
model (D5). For increased adoption and simplicity to the end
user, the EDS constitutes an entity that is independent of the
underlying execution models and acts only as in intermediary
without disrupting them (D2).

Given a UOM function space, a subset of functions will
map to the data-centric execution model, and another subset
will map to the process-centric execution model. The objec-
tive of the EDS is to enable the delegation of those operations
to the appropriate execution model, further defining sets such
subsets in relation to the execution models it must interact
with.

VII. IMPLEMENTATION OF THE ARCHITECTURE: THE
SPARK-DIY PLATFORM
In this section, we introduce an implementation of our
generalist architecture for BDA and HPC, named Spark-
DIY, based on Apache Spark and the highly scalable data-
intensive communication pattern library DIY (Do-It-Yourself
block parallelism) [152]. As a result, Spark-DIY is able to
run Spark ultimately on top of MPI to enable the efficient
execution of HPC operations on a supercomputer, to assist
in the integration of existing scientific codes into a BDA
environment, and to preserve the usability and flexibility of
BDA tools.

Figure 8 shows the interactions between the main com-
ponents of the proposed implementation in relation to the
abstract entities described in the generalist architecture. The
following sections explain their role from the end users’
perspective and the accompanying internal behavior of the
system.

A. SELECTED EXECUTION PLATFORMS

All implementations of the generalist HPC-BDA architecture
must build upon existing execution platforms as building
blocks. Their data abstractions, programming interfaces, and
execution models will impose technical limitations on the
necessary interoperation mechanisms for each element in the
architecture. Therefore, it is necessary to analyze in depth
each execution model to find the key features that will enable
the implementation of the architecture.

Below we describe major features of the execution plat-
forms selected for this implementation.

14 VOLUME 4, 2016

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

MPI PROCESS

SPARK WORKER

STATELESS SHARING AREA

MPI PROCESS

SPARK WORKER

STATELESS SHARING AREA

DIY
PROCESS

SPARK
EXECUTOR

PARTITION BLOCK

COMPANION SERVER

STATEFUL SHARING AREA

SPARK
EXECUTOR

DIY
PROCESS

BLOCK PARTITION

STORAGE SYSTEM

SPARK DRIVER

SPARK-DIY API

CALLBACK INTERFACE

COMPOSED APPLICATION

LAMBDA
OPERATORS

SPARK LIBRARIES

UNIFIED OPERATIONAL MODEL

EXECUTION DELEGATION SYSTEM

SPARK CONTEXT SPARK MASTER

UNIFIED DISTRIBUTED DATA ABSTRACTION

SPECIALISED
HPC KERNELS

COMPANION SERVER

STATEFUL SHARING AREA

SPARK RDD DIY BLOCK TOPOLOGY

FIGURE 8: Implementation of Spark-DIY, including optimizations and enhancements.

1) Data-Centric Execution Platform: Apache Spark
Spark is arguably the most popular BDA processing frame-
work, and it also supports numerous other tools for machine
learning, graph analytics, and stream processing, among
others. Being initially inspired by the Map-Reduce model,
Spark supports extended functionality and operates primarily
in memory by means of its core data abstraction: the resilient
distributed dataset (RDD) [36]. A RDD is a read-only, re-
silient collection of objects partitioned across multiple nodes
that hold provenance information (lineage) and can be re-
built, in case of failures, by partial recomputation from an-
cestor RDDs. RDDs are by default ephemeral, which means
that once computed and consumed, they are discarded from
memory. However, since some RDDs might be repeatedly
needed during computations, the user can explicitly mark
them as persistent, which moves them in a dedicated cache
for persistent objects or moves them to local or distributed
storage.

Two types of operations can be executed in Spark: trans-
formations that execute a function independently in each
partition and actions that trigger data shuffles between the
partitions. Transformations are executed in a lazy manner and
are triggered by actions. The operations that are contained
between two communication points are called stages.

2) Process-Centric Execution Platforms: DIY
DIY is an C++ and MPI library that offers efficient and
highly scalable communication patterns over a generic block-
based data model. In DIY, algorithms are written in terms

of data blocks that constitute the basic units of domain
decomposition and parallel work. Blocks are linked forming
neighborhoods that represent the domain in a distributed
manner. The assignment of blocks to MPI processes, often
multiple DIY blocks per MPI rank, is controlled by the DIY
runtime transparently to the user.

Given a block decomposition and assignment to MPI
processes, the user is able to run reusable communication
patterns between the blocks in a neighborhood and global op-
erations over all blocks, such as reductions. Therefore, DIY
users can execute common communication patterns just by
defining the block type and domain topology, without knowl-
edge of the underlying communication details. Consequently,
a problem can be decomposed into a large number of data-
parallel subproblems, and data can be efficiently exchanged
among them by using regular local and global communi-
cation patterns whose implementation has been tuned for
HPC. DIY has been applied in a diverse array of science and
analysis codes [153]–[157] and has demonstrated efficient
scaling on leadership-class supercomputers.

B. INTEROPERATION MECHANISMS

The similarity between Spark RDDs and DIY block paral-
lelism and the resemblance between Spark Map-Reduce and
DIY merge-reduce communication patterns are the basis for
our integration of these two models. We will emphasize the
data and programming interfaces exposed by Spark as much
as possible to preserve its compatibility with other tools,
libraries, and platforms in the BDA ecosystem. Moreover, we

VOLUME 4, 2016 15

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

will incorporate HPC features through the careful inclusion
of DIY.

Given the design of the generalist architecture, three as-
pects of Spark and DIY need to be connected: their data
abstractions, to implement the UDDA; their programming
models, to implement the UOM; and their execution models,
to implement the EDS.

The implementation details needed to connect each of
these components between the two execution models are
summarized in Figure 9 and detailed in the following sec-
tions.

1) Implementation of the Unified Distributed Data
Abstraction
In the case of both Spark and DIY, the way data are arranged
determines the development of algorithms and the behavior
of the execution model. This also happens with respect to
the UDDA defined in the architecture. Consequently, the
first aspect that must be aligned is the way in which both
frameworks represent their data abstractions, conforming to
the definition of the UDDA. Briefing, UDDAs rely on a set of
chunks and their associated state. Both Spark and DIY build
upon the concept of partitioned datasets (RDDs and DIY
block topologies, respectively), so first we need to establish a
mapping between these two data abstractions.

If we think of the RDD as the equivalent of the distributed
domain represented by a DIY block decomposition, each data
partition in an RDD maps directly to a data block in DIY. In
this context, the RDD dataset is partitioned into independent
DIY blocks, where each partition Pi maps to a corresponding
block Bi, preserving the same data elements inside the parti-
tion and respecting locality and order relationships, since no
data transfers occur to build this mapping. As a consequence,
the resulting dataset constitutes a distributed collection that
reflects the inner structure of a RDD. DIY blocks are ordered
in a 1-D ordering based on their global block ID, the subscript
i in Bi. No other spatial or abstract ordering is assumed.
While for a particular problem, a certain block topology
(eg, a 3-D lattice) may reduce communication distance, the
Spark-DIY framework is generic and does not know this. Nor
do we provide any hints as to inform the framework, favoring
flexibility and ease of use over potential performance gains in
this case.

This is the basis for the implementation of the UDDA,
since at this point we already have two mechanisms to
handle distributed collections of data, and a suitable mapping
between the data chunks. An additional benefit of relying
heavily on RDDs to implement the UDDA is the fact that we
can exploit the Spark framework to control data partitioning
and enforce locality. These two features are closely related to
the locality and cardinality properties of UDDAs. Neverthe-
less, RDDs are stateless, and UDDAs require the possibility
to include statefulness in their definition. This is a complex
technical challenge we tackle in Sec. VII-C.

Another aspect the UDDA must address is resilience. It
should come as no surprise that the underlying data models

may handle resilience differently; and in fact this is the
case with RDDs and DIY blocks. RDDs are fundamentally
resilient, whereas DIY blocks, usually maintained only in
main memory of an underlying MPI program, can be lost in
the case of unexpected termination. DIY offers an out-of-core
mode where blocks are cached to disk, and it also has parallel
I/O functionality to read/write all blocks from/to a DIY file
in a parallel file system. In our current implementation, we
use only the main memory features of DIY. The UDDA
therefore changes its resilience characteristics depending on
whether the UDDA currently represents a Spark RDD or
a DIY block. Although the program is temporarily non-
resilient while in a DIY section, the resilience properties
of the UDDA are restored when switching back to a Spark
section. Furthermore, if a DIY section is long-running and
resilience is a concern, then checkpoint-restart can be used to
address it.

In this regard, our approach can take advantage of Ve-
loC [158], an exascale-ready checkpointing system that
leverages heterogeneous storage hierarchies to implement
multilevel resilience strategies. Two key features of VeloC
are particularly interesting in this context: (1) it exposes a
memory-based API that is well suited to protect the critical
data structures stored in main memory by DIY; and (2)
it implements an asynchronous mechanism that hides the
overhead of the resilience strategies in the background, while
DIY continues running. Therefore, with this approach, DIY
sections can be made resilient with minimal overhead. Note
that Spark also makes use of checkpointing to prune the
lineage (needed to recover lost RDD partitions) or provide
stateful transformations. Thus, by delegating checkpointing
to VeloC instead of the native Spark implementation, a
unified checkpointing mechanism can be implemented that
exploits synergies between RDDs and DYI blocks to further
reduce the overhead of resilience.

2) Implementation of the Unified Operational Model
Spark actions and transformations constitute a complete in-
terface that covers many functions in the UOM, with the
particularity that all of them are stateless. On the other hand,
DIY offers further flexibility to incorporate its communica-
tion patterns and stateful operations, while providing support
to interact with native code, existing simulation kernels, and
parallel file systems. Since the Spark API already offers a
comprehensible programming interface that is easily expand-
able, we preserve it in our implementation of the Spark-DIY
API with the addition of new operations. Ultimately, users
would write a Spark program that can be enriched with this
new functionality.

Spark-DIY operations on partitions are triggered by the
internal algorithms in DIY but expressed as user-defined
callbacks written by the user in Scala as part of the driver
code, who also defines the data type of the records and the
supported operators (e.g., unary for independent transforma-
tions, binary for reductions, hash for partitioning, and kernel
for invoking native code). Moreover, high-level libraries re-

16 VOLUME 4, 2016

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

FIGURE 9: Interoperation mechanisms between Spark and
DIY in the Spark-DIY platform.

main available through the usual Spark API.

3) Implementation of the Execution Delegation System
Figure 8 shows the deployment of Spark-DIY and the inter-
action of the Spark and DIY components that constitute this
implementation of the EDS. Starting from the Spark driver,
which is the component that guides the entire execution, tasks
will be executed either as executors spawned inside the Spark
workers or as DIY processes. Spark workers are deployed
as an MPI application so that a valid communicator exists
for DIY operations before their execution. This assists the
adaptation of the dynamic task-based execution model from
the Spark framework to the static set of MPI processes used
by DIY.

The EDS relies on the Spark context for data partitioning
and the Spark master for task scheduling and serialization.
Moreover, a middlelayer handles task delegation to DIY
processes for specific Spark-DIY functions and the imple-
mentation of the data mapping for the UDDA.

Given the previous implementation of the UOM, pure
Spark operations will be delegated to the data-centric ex-
ecution model, namely, Spark executors. The remaining
computing-intensive operations will be delegated to the DIY
execution model, thus being executed in MPI processes. Ul-
timately, all Spark-DIY operations start by spawning Spark
executors, which will then delegate the operation to DIY
code. Upon invoking a function that is delegated to DIY,
several tasks are conducted internally:

1) Spawn executors. Since DIY algorithms are block-
parallel, we exploit the one-to-one association between
each partition of an RDD and the corresponding block
in the DIY domain. We let Spark handle data serializa-
tion, partitioning, and executor creation by wrapping
the partition-block conversion in a function that is
passed to a mapPartitions Spark operator. This operator
creates executors that live in the MPI environment and
contain the data of the corresponding partition, which
enforces locality.

2) Map RDD partitions to DIY blocks. The partition set is
converted to a DIY domain, where each partition cor-
responds to a block. Transformations can be conducted
with independent blocks following a similar approach

to the Spark counterpart, while shuffle operations are
translated to DIY communication patterns. In order to
achieve this, in most cases data needs to be copied from
the Java to the native side.

3) Delegate operation to DIY: Once the domain is es-
tablished, we can run the DIY operations through a
wrapper in JNI that executes the user-defined callbacks
for computation. The results are retrieved afterwards
and converted back to an RDD, and the execution is
resumed in Spark.

C. OPTIMIZATIONS AND ENHANCEMENTS
In the former implementation the specific features of each
execution model sometimes limit the potential performance
and functionality that can be attained. For example, deal-
ing with generic user-defined data types on the DIY side
involves conducting more serialization steps than would be
required for primitive data types. Another issue is that stateful
functions cannot be supported without external assistance.
This section describes the optimizations and extensions we
incorporated into this implementation to fully support the
generalized architecture, and extend the functionality enabled
by the selected execution platforms.

We have conducted optimizations to solve two kinds of
issues: limitations to the implementation the UDDA and
UOM and performance problems related to the way in which
execution platforms interoperate. For the first case, we have
to find a way to support stateful functions and persistent
datasets, which cannot be done out of the box since we
ultimately rely on Spark RDDs and executors, which do not
preserve state. For the second case, the need for generality
in the data abstractions adds significant overhead in terms of
memory and execution time due to the need for additional
serialization. Moreover, HPC-oriented storage is currently
not supported because all data I/O is supposed to be han-
dled through the Spark context, thus forcing applications to
conduct additional stages to make input data suitable for
subsequent process-centric operations. These circumstances
add significant overhead and limit the performance and scal-
ability of applications built with this platform.

The following paragraphs describe the elements in Figure
8 that are related to these improvements. After these en-
hancements, Spark-DIY is capable of supporting the three
base application models depicted in Figure 10: applications
requiring DIY transformations with RDDs as input and out-
put; data ingestion from a Spark RDD into a process-centric
application; and iterative analysis of data resulting from a
process-centric operator. These base models can be combined
to design more complex applications, which makes Spark-
DIY much more flexible and general than other solutions
such as Alchemist [148].

1) Shared-Memory Regions for Stateful Operations
In order to integrate RDDs and stateful functions, we in-
troduce a new architectonic element capable of preserving
state after an RDD operation, which means the dataset is

VOLUME 4, 2016 17

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

(a) DIY transformations. (b) Data ingestion. (c) Iterative analysis.

FIGURE 10: Base application models supported by Spark-DIY.

reused and updated with the results of such operation. This
entity is depicted in Figure 8 as a companion server that
is intrinsically associated with a specific Spark worker in a
peer-to-peer manner and can communicate with the executors
spawned in it.

The companion server is responsible for managing a
shared-memory region that is allocated, attached, and main-
tained during the whole execution of this entity. Therefore,
it can hold a data chunk and maintain it even after the
task that runs an operation finishes and the corresponding
executor dies. This allows functions to update the values in
the data chunk and preserve the results without returning a
new dataset, effectively meeting the statefulness requirement.

As a result, this implementation splits the data-sharing
area defined in the generalist architecture into two regions:
a stateful data-sharing area maintained by the companion
server and a stateless data-sharing area used as intermediate
in-memory storage for communicating the Spark and DIY
execution platforms.

2) Data Serialization Minimization

The Spark-DIY API exposes operations on data abstractions
that are generic and can be tailored for user-defined data
types. Doing so, however, has significant performance im-
plications since the internal memory management involves
several serialization and deserialization steps, not just on the
Spark side, but also on the DIY side and the code that bridges
them.

Nevertheless, optimizations can be conducted if collec-
tions are limited to native data types. Spark-DIY offers

TABLE 2: Comparison of the data manipulation time for a
collection of integers in the initial approach to Spark-DIY,
and its optimization for primitive data types.

Block Size Initial Optimized Improvement

0.25M 2.67s 0.05s 98.12%

1M 11.44s 0.07s 99.40%

2M 21.60s 1.08s 95.00%

an interface for these types with reduced overhead, since
serialization between Spark and DIY is not required. In
addition, for datasets containing native data types, data can
be shared directly between the RDD partition and the DIY
block, which reduces the number of copies conducted during
the delegation process.

The impact of these optimizations can lead to a significant
reduction in the data manipulation overhead introduced by
Spark-DIY each time a partition is processed in DIY, as
indicated in Table 2. This is especially useful for scientific
tasks, since most of their data are numeric.

3) External Data Management via MPI I/O
The current Spark-DIY implementation relies on the Spark
context to interact with storage, thus limiting the I/O possi-
bilities for HPC-oriented stages and forcing the addition of
auxiliary operations to make input data suitable for subse-
quent process-centric operations.

To overcome this issue, we use once again the companion

18 VOLUME 4, 2016

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

server entity to act as an intermediary proxy to the storage
system, which can now also be a HPC-oriented parallel
file system. The companion server is implemented as an
MPI algorithm capable of conducting collective and parallel
operations on input data, which is now placed in the stateful
shared data region for subsequent usage from either the Spark
or the DIY operators. This enables all the potential of MPI
I/O to benefit from the highly optimized parallel I/O in HPC
systems as an alternative to current big data storage systems
such as HDFS.

D. USAGE
Basically, in Spark-DIY, end users can execute their appli-
cations without major modifications. The aaplications are
exposed to a limited number of additional elements of the
interoperation layer in addition to the basic Spark API, but
they are supplied as a driver by the Spark-DIY system. The
driver code of the Spark application (in Scala or Java) must
define and use these components as follows:

1) Select the record data type. A catalog is offered where
users can select a prebuilt data type that handles type
conversion and memory management from and to the
C++ code. Since users may want to use a custom data
type not present in the catalog, we have also devel-
oped the internals of Spark-DIY in a generic manner.
New data types can be defined in a helper file that is
later used by the proxy code generation utility. New
data types must define serialization and deserialization
functions, since both RDD and DIY block elements
need to be serializable.

2) Define the callback operators for the record. Similarly
as in Spark, the operations to be conducted on records
must be defined. To access these operators from DIY,
users must implement the proper method as an object
that extends the Spark-DIY callback interface.

3) Delegate execution on a DIY dataset. Once an RDD is
created, along with its operators, we can run the desired
operation. Its result is a new RDD that can be further
used in the driver with subsequent combinations of
Spark functions or DIY algorithms.

Listing 1 shows a simple word count application written
in Spark-DIY, which maps to the first application model in
Figure 10. Lines 11-14 conduct a pure Spark map but create
an RDD of the DIY data type PairRecord. This RDD is used
as input to generate a DIY dataset in line 16, which is the
input for the DIY reduction in line 17. Notice that the creation
of such a dataset involves the specification of the base RDD,
the final cardinality of the dataset (variable numBlocks), the
Spark context that will assist task management, and whether
the dataset is stateful or not. The output dataset is an RDD
of the same data type that can be used in subsequent Spark
operations. Lines 1 to 6 contain the definition of the callbacks
required for the reduction and the key-based partitioning
of data records. These functions will be invoked by the
underlying DIY algorithms, so they must comply with the

Listing 1: Example of a word count application written with
the Spark-DIY DIYreduceByKey operator.
1 class WordcountCallback extends PairDIYCallback {
2 override def binary(x:PairRecord,
3 y:PairRecord): PairRecord = {
4 new PairRecord(x.first, x.second + y.second)
5 }
6 override def key_hash(x:PairRecord): Long = x.first.##
7 }
8

9 def main() {
10 // ...
11 val mapRDD = sparkContext
12 .textFile(file)
13 .flatMap(_.split(" "))
14 .map(x => new PairRecord(x, 1))
15

16 val mapDDD = new PairDDD(mapRDD, numBlocks,
sparkContext, statefulness)

17 val outRDD = mapDDD.DIYreduceByKey(new
WordcountCallback())

18 // ...
19 }

Listing 2: Example of a data ingestion application written
with the Spark-DIY DIYoffload operator.
1 class KernelCallback extends OffloadDIYCallback {
2 override def kernel() = {
3 // Call kernel interface
4 }
5 override def input(ptr:Long) = {
6 // Arrange data in memory
7 }
8 override def output(ptr:Long) = {
9 // Retrieve data from memory

10 }
11 }
12

13 def main() {
14 // ...
15 for (i <- 0 to iterations)
16 var mapRDD = streamContext
17 .socketTextStream(host, port)
18 .flatMap(_.split(" "))
19 .map(x => x.toDouble)
20

21 var offDDD = new OffloadDDD(mapRDD, numBlocks,
sparkContext, stateful)

22 var outRDD = offDDD.DIYoffload(new KernelCallback())
23 }
24 // ...
25 }

callback interface exposed by Spark-DIY.

Listing 2 shows a simple iterative data ingestion appli-
cation written in Spark-DIY (corresponding to the second
application model in Figure 10). Inside the loop, first we
get the input data from a stream as a collection of primitive
doubles (lines 16-19). Such data are offloaded to a DIY
operator (line 21) that links to a simulation or processing
kernel defined in the kernel interface, that describes how the
kernel is called, and how input and output data are arranged
(lines 1-10). The requested dataset will be stateful in this
case, because we will update its contents with fresh data
obtained in the following iteration.

VOLUME 4, 2016 19

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

VIII. USE CASE: THE ENKF-HGS HYDROGEOLOGIC
DATA ASSIMILATION WORKFLOW
Having good-quality predictions of the behavior of hydro-
logical environmental systems is key for water management.
These systems are represented by complex mathematical
models that incorporate numerous elements and rely on
multiscale non linear processes and matrix operations. The
inherent computational complexity of these computations has
led scientists to implement parallel versions of these models
in the form of tailored simulators for multicore environments.
EnKF-HGS is one of the state of the art simulators in
the hydrology domain to provide functionality for real-time
stochastic simulations of the groundwater and surface water
profiles.

EnKF-HGS is a representative use case of many applica-
tions currently found in scientific computing [159]–[162] that
can be solved by the Monte Carlo method, which involves a
large random sampling to determine the properties of some
phenomenon or system behavior. Each simulation in the
ensemble of realizations represents a long-running compute-
and I/O-intensive process, which comprises the sequential
execution of two proprietary simulation kernels: an input data
filter, named GROK, and HydroGeoSphere (HGS) [163].
Each model realization represents an instantiation of the nu-
merical model provided with a different combination of input
parameters and system conditions. In order to update the
model with the assimilated data, a communication-intensive
stage must be conducted afterwards, which is implemented
by using MPI in the original version of EnKF-HGS.

Recent technological and mathematical advances allowed
significant improvements in the precision of the simulations
by integrating data acquisition techniques with the mod-
eling process [164]. This allows the aggregation of data
from different sources and presenting them to the user in a
single format for further analysis, by using a cloud-based
data integration system to store and explore data [165]. A
similar approach was proposed for EnKF-HGS, including an
architecture for a system combining a wireless environmental
monitoring module as data source and a cloud-based com-
puting service to perform environmental simulations [166].
The tool is also meant to incorporate real-time sensor data
to refine its predictions. This motivates the need to develop
a version of the simulator able to exploit BDA features
such as cloud and streaming support, which is currently not
easily available for MPI environments. Figure 11 depicts
the elements involved in EnKF-HGS operations with real-
time data assimilation in the cloud: the user provides a base
model that will be distributed, simulated with EnKF-HGS
kernels, and updated with the data fed by the sensor network
deployed in the Swiss valleys; after each step, results are
stored in a distributed manner in cloud storage for subse-
quent iterations. The combination of these performance and
infrastructure requirements makes a case for the need for
scalable HPC-BDA convergence in EnKF-HGS. Moreover,
this would be beneficial for other applications that show
similar needs to fuse sensor and simulation data, including

weather forecasting [167] and carbon cycle [168] studies.
In [169], we reported our experience combining traditional

HPC with BDA-inspired paradigms and platforms, in the
context of scientific ensemble workflows such as EnKF-
HGS. Our goal was to provide a suitable environment that
combined the HPC and BDA elements required by EnKF-
HGS, so we integrated the simulation kernels with the
Apache Spark framework, which also supports streaming. We
found that Spark was unable to scale because of the large
memory requirements, and it generated errors and did not
scale well for the Kalman filter cooperative processes, mainly
due to the shuffle phase in large-scale reductions, combined
with the overhead of the platform. Limitations of the shuffle
phase have been reported by others [170], [171] as well.
They can be traced back to multiple causes: high memory
utilization for buffering of shuffle blocks, load imbalance,
explosion of files, high I/O contention, etc. The following
sections describe how this application can be enhanced to
cope with its scalability and interoperability requirements
through Spark-DIY and its composition capabilities. The re-
sults of its optimizations as scale increases are also presented.

A. BUILDING ENKF-HGS WITH SPARK-DIY
EnKF-HGS is based on the data ingestion application model,
because it incorporates stream data into the simulation stage
in an iterative manner. The result the implementation of
EnKF-HGS in Spark-DIY was an application with a parallel
region in charge of executing the GROK and HGS kernels
in Spark tasks for data assimilation, and a model update
region that delegates matrix analysis to DIY as an MPI kernel
through the Spark-DIY offload operator. This structure is
depicted in Figure 12.

This implementation of EnKF-HGS combines the shared-
memory enhancements of Spark-DIY to enable statefulness
in the model analysis region of the application. Delegated
DIY tasks are also used to incorporate the base input data in
the appropriate columnar view, reading through the compan-
ion servers via MPI I/O, and getting the result into Spark by
means of DIY operations. The legacy kernels can be executed
as usual afterwards, and the results are fed to the MPI anal-
ysis kernel invoked by DIY, which will execute the filtering
stage and update the model inplace without needing any data
collection in the driver process. Subsequent iterations will
continue to operate in a distributed manner until the final
output is stored in chunks. An additional benefit of using
Spark-DIY in this case is that we can reuse the original model
update kernel implemented in MPI, which drastically reduces
the development effort to obtain a full implementation of a
BDA-capable EnKF-HGS. Moreover, we can exploit some
features specific to Spark-DIY to our advantage:

• The shared-memory regions that support stateful op-
erations have a main role in this implementation be-
cause the in-place update of the model is necessary to
eliminate the need to collect the matrices in the driver
process. This is because of the analysis kernel being
inherently stateful. Furthermore, these regions minimize

20 VOLUME 4, 2016

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

CLOUD
STORAGE

SENSOR
NETWORK

CLOUD COMPUTING
INFRASTRUCTURE

RUN EnKF-HGS

Simulate
instantiation

Integrate
observations

Postprocess
ensemble

Update
modelDistribute

model

CLIENT
Base

 model

Ensemble
statistics

Sensor
data

Ensemble
statistics

FIGURE 11: Interoperation of EnKF-HGS with the data assimilation sensor network and its supporting cloud infrastructure.

DIY TASKS SPARK TASKS DIY TASKS

SHARED
INPUT
FILES

INPUT DATA
DISTRIBUTION

READ
INITIAL
MODEL

BASE
REALISATION GROK

KERNEL
HGS

KERNEL

GROK
KERNEL

HGS
KERNEL

HGS
KERNEL

REALISATION
FILE r

i

GROK
KERNEL

READ
INPUT

READ
INPUT

READ
INPUT OUTPUT DATA

COLLECTION

FINAL
OUTPUT
FILES

ANALYSIS
KERNEL

IN-PLACE
MATRIX

COMPOSITION

ANALYSIS
KERNEL

IN-PLACE
MATRIX

COMPOSITION

ANALYSIS
KERNEL

IN-PLACE
MATRIX

COMPOSITION

FIGURE 12: Implementation of data-centric EnKF-HGS on Spark-DIY. The data assimilation is mapped to Spark tasks, and
the model update region is delegated to DIY processes. Input data are read via MPI I/O through DIY tasks in collaboration with
the companion servers.

the serializations between iterations because they re-
main active after they are created by the companion
servers. This has a positive effect on the reduction of
data management overhead.

• The optimizations introduced in Spark-DIY tackling
primitive data types also contribute to reducing the
negative effects of serialization on performance. Since
EnKF-HGS relies on numeric algorithms, all of its data
are handled in terms of floats or integers, thus simplify-
ing the management of shared buffers.

• The MPI I/O external data management represents a
major benefit versus a pure Spark implementation be-
cause of the way in which input data is organized. Input
files can be read in parallel to retrieve the particular data
required in each process, exactly in the way it is needed

(i.e., in columns). This is advantageous because MPI
I/O has good performance and scalability, and enables
future optimizations for data management. Moreover,
data are read directly into the shared-memory region of
the companion server, reducing the overhead of passing
data from Spark to DIY. Although this has the drawback
of adding some overhead due to the need to involve
the companion servers, it effectively removes any input
bottlenecks in the driver. A similar argument could be
provided in favor of storing the output directly through
this mechanism.

B. EXPERIMENTAL SETUP

For experimental evaluation, we have analyzed the behavior
of EnKF-HGS implemented in Spark-DIY with the original

VOLUME 4, 2016 21

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

MPI implementation and a version written in pure Spark, as
presented in [172].

The experiments were run on 44 bare metal nodes of
the Chameleon cloud at the University of Chicago run-
ning Apache Spark version 2.2.0. Each node has an Intel
Xeon CPU E5-2670v3@2.30GH (Haswell) processor with
12 physical cores and 135 GB of RAM each. Both the Spark
and Spark-DIY clusters were configured with single-core
workers to limit the number of executors in order to obtain
a fair comparison against the MPI deployment. Therefore,
each executor is mapped to one worker, and each worker
is mapped to an MPI process. Each computing unit (i.e.,
executor) was given 3 GB of memory.

The behavior was measured as the number of realizations
increases and with a constant workload per realization. Two
situations were analyzed: running only one iteration and
running several iterations. However, for this paper we report
results for one and two iterations of the Kalman filter, because
succeeding iterations incorporate further randomness that
could lead to inadequate comparisons. Both cases cover the
entire application workflow.

C. PERFORMANCE RESULTS
Figure 13 shows the average results of the evaluation of
EnKF-HGS on Spark-DIY to compare its performance, mea-
sured in execution time, with a pure Spark implementation
of EnKF-HGS, and its original MPI implementation taken as
baseline. The three implementations were evaluated on the
Chameleon testbed with real initial input data and synthetic
data for assimilation to limit the heavy stochastic nature of
the simulation kernels. The experiments were run five times,
resulting in standard deviations lower than 1% of the total
execution time in 77% of the cases. The remaining cases
always show standard deviations lower than 6% of the total
execution time.

The results for one iteration show that Spark-DIY per-
forms similarly to Spark, which is positive because this
means the delegation layer is not introducing significant over-
heads. In addition, both implementations show good results
against MPI when more than one node is involved in the
computation.

In the case of more iterations, the Spark implementation is
outperformed by MPI and also by Spark-DIY an average of
14% for 1 to 128 workers. This is related to the need for data
collection for the analysis stage that must be conducted to
prepare the model for following iterations after the parallel
region. This step is necessary in the Spark implementation
because we cannot conduct in-place computations, but it is
not the case for the current implementation of Spark-DIY,
which shares the analysis kernel with the MPI implementa-
tion. The most remarkable result is, however, that the Spark
implementation fails to scale properly beyond 128 workers.
We tracked this issue to a series of structural bottlenecks in
the driver process that were related to I/O management of the
initial dataset and the final output. In addition, Spark does not
support stateful operations, which implies that data resulting

0

100

200

300

400

500

600

1 2 4 8 16 32 64 128 256 512

E
xe

cu
tio

n
tim

e
(s

)

Number of workers

MPI
Spark

Spark-DIY

(a) Execution time for one iteration.

0

100

200

300

400

500

600

1 2 4 8 16 32 64 128 256 512

E
xe

cu
tio

n
tim

e
(s

)

Number of workers

MPI
Spark

Spark-DIY

(b) Execution time for two iterations.

FIGURE 13: Evaluation results of EnKF-HGS on Spark-DIY
measured in execution time (in seconds) for one (a) and two
(b) iterations.

from the parallel region must be collected to conduct the
model update, creating a bottleneck that limits scalability
beyond 128 realizations.

As a consequence of the I/O and shared-memory manage-
ment capabilities of Spark-DIY, the Spark-DIY implementa-
tion is consistently competitive with MPI as the number of re-
alizations increases and achieves comparable scalability. The
reason for this is the key effect of statefulness in the overall
application: it not only improves performance by eliminating
overheads related to data being serialized and moved around
as the procedure advances but also eliminates the need for
collecting data to conduct the update of the model. These
memory regions allow the analysis kernels to conduct the
model update in-place, without involving the driver process
at all. Furthermore, initial input data can be read in parallel
and placed directly in the corresponding memory region,
eliminating the input data processing bottleneck.

Nonetheless, the detrimental effects of Spark task genera-
tion, scheduling, and management are visible when the num-
ber of workers becomes very high. For example, Spark-DIY
takes 16% more execution time than MPI for 512 workers,
which highlights the slim nature of the MPI environment.
We believe this is a reasonable tradeoff for the flexibility of
incorporating the elements of a whole new ecosystem into an

22 VOLUME 4, 2016

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

HPC application, and further optimizations might alleviate
this issue in future works.

IX. CONCLUSION
This paper has presented an architectural framework to facil-
itate the convergence of the HPC and big data worlds. This
framework enables the interoperability of established BDA
and HPC execution models and allows the users to create
and deploy hybrid applications including big data and HPC
components without forcing the users to rewrite one or the
other. This way, users can exploit the best tools in both worlds
into the same application.

The paper has also presented a generalist execution model
interoperability architecture for HPC-BDA applications rely-
ing on a formal definition of a generic unified distributed data
abstraction (UDDA) and its associated unified operational
model (UOM), which sets the foundation of a theoretical
frame for the analysis and definition of composite HPC-BDA
applications.

To show its feasibility, we have implemented Spark-DIY,
an instantiation of the former architecture based on Spark
and MPI execution platforms. We evaluated it in a real-
world use case from the hydrogeology domain enriched
with features enabled by our architecture. The evaluation
shows good performance and scalability for communication-
intensive operations in comparison with Spark and enables
the integration of elements from both the BDA and HPC
ecosystems for applications with diverse requirements.

Future work could enhance the architecture to support
heterogeneity, which would be beneficial for users relying
on these hardware elements for the scalability of their HPC
applications (e.g., image processing) or aiming to accelerate
specific portions of their BDA workloads (e.g. deep learn-
ing). Future advancements should also aim to reincorporate
some features that are desired by BDA users in production
environments yet are left behind by the architecture in its cur-
rent state, such as multitenancy, fault tolerance, and elasticity.
In addition, usability and productivity could be addressed
with formal studies by the BDA and HPC user communities.

Further real-world use cases could be built by using Spark-
DIY to incorporate the potential of higher-level libraries,
so that the HPC community can benefit from the myriad
libraries and platforms built on top of Spark without giving
away scalability. Spark’s ease of use is lacking in the HPC
software stack, and Spark-DIY provides HPC practitioners
of such characteristics that are commonplace in the BDA
world. Exemplars from the BDA side, such as HPDA or IoT
applications, would be particularly interesting. We will also
look for hybrid use cases that require Spark computation on
RDDs interleaved with HPC computation.

We will also conduct further experiments on the use case
we presented. In particular, we will experiment with other
computing platforms (HPC, cloud) to evaluate the porta-
bility, usability, and flexibility of our approach. This will
also require an analysis of the state of the system in terms
of disk and network usage. We will also evaluate different

configurations of Spark with multicore workers and compare
performance with Spark-DIY, which also supports multiple
blocks per MPI rank. Future work also includes keeping
Spark-DIY up to date with the latest versions of Spark
and DIY, for example, Spark’s recent move from RDDs to
DataFrames.

ACKNOWLEDGMENT
This work was partially funded by the Spanish Ministry
of Economy, Industry and Competitiveness under the grant
TIN2016-79637-P "toward Unification of HPC and Big Data
Paradigms"; the Spanish Ministry of Education under the
FPU15/00422 Training Program for Academic and Teaching
Staff Grant; the Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under Con-
tract DE-AC02-06CH11357; and by DOE with agreement
No. DE-DC000122495, program manager Laura Biven. Re-
sults presented in this paper were obtained by using the
Chameleon testbed supported by the National Science Foun-
dation.

REFERENCES
[1] J. Lavignon, D. Lecomber, I. Phillips, F. Subirada, F. Bodin, J. Gonnord,

S. Bassini, G. Tecchiolli, G. Lonsdale, A. Pflieger et al., “ETP4HPC
strategic research agenda achieving HPC leadership in Europe,” 2017.

[2] B. D. V. Association, “European big data value strategic research and
innovation agenda,” Big Data Value Association, Tech. Rep., October
2017.

[3] D. A. Reed and J. Dongarra, “Exascale computing and big data,” Com-
munications of the ACM, vol. 58, no. 7, pp. 56–68, 2015.

[4] M. Asch, T. Moore, R. Badia, M. Beck, P. Beckman, T. Bidot, F. Bodin,
F. Cappello, A. Choudhary, B. de Supinski et al., “Big data and extreme-
scale computing: Pathways to convergence-toward a shaping strategy for
a future software and data ecosystem for scientific inquiry,” The Inter-
national Journal of High Performance Computing Applications, vol. 32,
no. 4, pp. 435–479, 2018.

[5] BDVA-ETP4HPC, “The technology stacks of high performance comput-
ing and big data computing: What they can learn from each other,” Big
Data Value Association (BDVA) and European Technology Platform for
High-Performance Computing (ETP4HPC), Tech. Rep., November 2018.

[6] S. Caíno-Lores, J. Carretero, B. Nicolae, O. Yildiz, and T. Peterka,
“Spark-DIY: A Framework for Interoperable Spark Operations with
High Performance Block-Based Data Models,” in 2018 IEEE/ACM 5th
International Conference on Big Data Computing Applications and Tech-
nologies (BDCAT). IEEE, 2018, pp. 1–10.

[7] D. Laney, “3D data management: Controlling data volume, velocity and
variety,” META group research note, vol. 6, no. 70, p. 1, 2001.

[8] P. Zikopoulos, C. Eaton et al., Understanding big data: Analytics for
enterprise class hadoop and streaming data. McGraw-Hill Osborne
Media, 2011.

[9] P. Russom et al., “Big data analytics,” TDWI best practices report, fourth
quarter, vol. 19, no. 4, pp. 1–34, 2011.

[10] N. Marz and J. Warren, Big Data: Principles and best practices of scalable
real-time data systems. New York; Manning Publications Co., 2015.

[11] C.-W. Tsai, C.-F. Lai, H.-C. Chao, and A. V. Vasilakos, “Big data
analytics: a survey,” Journal of Big Data, vol. 2, no. 1, p. 21, Oct. 2015.
[Online]. Available: https://doi.org/10.1186/s40537-015-0030-3

[12] D. Talia, P. Trunfio, and F. Marozzo, Data analysis in the cloud: models,
techniques and applications. Elsevier, 2015.

[13] P. Mell and T. Grance, “Effectively and securely using the cloud comput-
ing paradigm,” NIST, Information Technology Laboratory, pp. 304–311,
2009.

[14] F. Zulkernine, P. Martin, Y. Zou, M. Bauer, F. Gwadry-Sridhar, and
A. Aboulnaga, “Towards Cloud-Based Analytics-as-a-Service (CLAaaS)
for Big Data Analytics in the Cloud,” in 2013 IEEE International
Congress on Big Data, June 2013, pp. 62–69.

VOLUME 4, 2016 23

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

[15] P. Raj, A. Raman, D. Nagaraj, and S. Duggirala, High-Performance Big-
Data Analytics: Computing Systems and Approaches. Springer, 2015.

[16] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P. Nolan,
“Computational solutions to large-scale data management and analysis,”
Nature Reviews Genetics, vol. 11, no. 9, pp. 647–657, Sep. 2010.
[Online]. Available: https://www.nature.com/articles/nrg2857

[17] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile
cloud computing: architecture, applications, and approaches,” Wireless
communications and mobile computing, vol. 13, no. 18, pp. 1587–1611,
2013.

[18] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646,
2016.

[19] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” ACM SIGCOMM Computer Com-
munication Review, vol. 45, no. 5, pp. 37–42, 2015.

[20] L. M. Vaquero and L. Rodero-Merino, “Finding your way in the fog: To-
wards a comprehensive definition of fog computing,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 5, pp. 27–32, 2014.

[21] B. Nicolae, P. Riteau, and K. Keahey, “Towards transparent throughput
elasticity for IaaS cloud storage: Exploring the benefits of adaptive
block-level caching,” International Journal of Distributed Systems and
Technologies (IJDST), vol. 6, no. 4, pp. 21–44, 2015.

[22] ——, “Bursting the Cloud Data Bubble: Towards Transparent Storage
Elasticity in IaaS Clouds,” in IPDPS ’14: Proc. 28th IEEE International
Parallel and Distributed Processing Symposium, Phoenix, USA, 2014,
pp. 135–144.

[23] J. Dean and S. Ghemawat, “MapReduce : simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[24] J. Fritsch and C. Walker, “The problem with data,” in Utility and Cloud
Computing (UCC), 2014 IEEE/ACM 7th International Conference on.
IEEE, 2014, pp. 708–713.

[25] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 29–43,
2003.

[26] T. White, Hadoop: The Definitive Guide: The Definitive Guide. O’Reilly
Media, 2009.

[27] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop dis-
tributed file system,” in Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium on, May 2010, pp. 1–10.

[28] F. J. Clemente-Castelló, B. Nicolae, R. Mayo, and J. C. Fernández,
“Performance model of MapReduce iterative applications for hybrid
cloud bursting,” IEEE Transactions on Parallel and Distributed Systems,
vol. 29, no. 8, pp. 1794–1807, 2018.

[29] H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker, “Map-reduce-
merge: simplified relational data processing on large clusters,” in Pro-
ceedings of the 2007 ACM SIGMOD international conference on Man-
agement of data. ACM, 2007, pp. 1029–1040.

[30] R. Tudoran, A. Costan, and G. Antoniu, “MapIterativeReduce: a frame-
work for reduction-intensive data processing on Azure clouds,” in Pro-
ceedings of third international workshop on MapReduce and its Applica-
tions Date. ACM, 2012, pp. 9–16.

[31] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, “Twister: a runtime for iterative MapReduce ,” in Proceedings
of the 19th ACM International Symposium on High Performance Dis-
tributed Computing. ACM, 2010, pp. 810–818.

[32] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: efficient
iterative data processing on large clusters,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 285–296, 2010.

[33] T. Gunarathne, B. Zhang, T.-L. Wu, and J. Qiu, “Scalable parallel
computing on clouds using Twister4Azure iterative MapReduce ,” Future
Generation Computer Systems, vol. 29, no. 4, pp. 1035–1048, 2013.

[34] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu,
and G. Fox, “Twister: A Runtime for Iterative MapReduce ,”
in Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, ser. HPDC ’10. New
York, NY, USA: ACM, 2010, pp. 810–818. [Online]. Available:
http://doi.acm.org/10.1145/1851476.1851593

[35] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10, Berkeley, CA, USA, 2010, pp. 10–10.

[36] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Proceed-
ings of the 9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 2012, pp. 2–2.

[37] X. Shi, M. Chen, L. He, X. Xie, L. Lu, H. Jin, Y. Chen, and S. Wu,
“Mammoth: Gearing Hadoop towards memory-intensive MapReduce
applications,” IEEE Transactions on Parallel and Distributed Systems,
vol. 26, no. 8, pp. 2300–2315, Aug 2015.

[38] I. Gog, J. Giceva, M. Schwarzkopf, K. Vaswani, D. Vytiniotis, G. Rama-
lingan, M. Costa, D. Murray, S. Hand, and M. Isard, “Broom: Sweeping
out garbage collection from big data systems,” Young, vol. 4, p. 8, 2015.

[39] A. J. Awan, M. Brorsson, V. Vlassov, and E. Ayguade, How Data Volume
Affects Spark Based Data Analytics on a Scale-up Server. Cham:
Springer International Publishing, 2016, pp. 81–92. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-29006-5_7

[40] L. Salucci, D. Bonetta, and W. Binder, “Lightweight multi-language
bindings for apache Spark,” in Proceedings of the 22Nd International
Conference on Euro-Par 2016: Parallel Processing - Volume 9833. New
York, NY, USA: Springer-Verlag New York, Inc., 2016, pp. 281–292.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-43659-3_21

[41] A. Singh, M. Mittal, and N. Kapoor, “Data processing framework using
apache and Spark technologies in big data,” in Big Data Processing Using
Spark in Cloud. Springer, 2019, pp. 107–122.

[42] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Graphx:
A resilient distributed graph system on Spark,” in First International
Workshop on Graph Data Management Experiences and Systems, ser.
GRADES ’13. New York, NY, USA: ACM, 2013, pp. 2:1–2:6.

[43] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark SQL: Relational
data processing in Spark,” in Proceedings of the 2015 ACM SIGMOD
international conference on management of data. ACM, 2015, pp. 1383–
1394.

[44] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin:
a not-so-foreign language for data processing,” in Proceedings of the
2008 ACM SIGMOD international conference on Management of data.
ACM, 2008, pp. 1099–1110.

[45] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony,
H. Liu, and R. Murthy, “Hive-a petabyte scale data warehouse using
hadoop,” in Data Engineering (ICDE), 2010 IEEE 26th International
Conference on. IEEE, 2010, pp. 996–1005.

[46] S. R. Mihaylov, Z. G. Ives, and S. Guha, “Rex: recursive, delta-based
data-centric computation,” Proceedings of the VLDB Endowment, vol. 5,
no. 11, pp. 1280–1291, 2012.

[47] C. Dobre and F. Xhafa, “Parallel programming paradigms and frame-
works in big data era,” International Journal of Parallel Programming,
vol. 42, no. 5, pp. 710–738, 2014.

[48] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and H. Ab-
basi, “Enabling in-situ execution of coupled scientific workflow on
multi-core platform,” in Parallel & Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International. IEEE, 2012, pp. 1352–1363.

[49] F. Zhang, Q. M. Malluhi, T. Elsayed, S. U. Khan, K. Li, and A. Y.
Zomaya, “Cloudflow: A data-aware programming model for cloud work-
flow applications on modern hpc systems,” Future Generation Computer
Systems, 2014.

[50] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: dis-
tributed data-parallel programs from sequential building blocks,” in ACM
SIGOPS Operating Systems Review, vol. 41, no. 3. ACM, 2007, pp. 59–
72.

[51] D. Warneke and O. Kao, “Nephele: efficient parallel data processing in
the cloud,” in Proceedings of the 2nd workshop on many-task computing
on grids and supercomputers. ACM, 2009, p. 8.

[52] A. Al-Badarneh, H. Najadat, M. Al-Soud, and R. Mosaid, “Phoenix: A
MapReduce implementation with new enhancements,” in 2016 7th Inter-
national Conference on Computer Science and Information Technology
(CSIT), July 2016, pp. 1–5.

[53] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin, S. Shenker,
and I. Stoica, “Shark: Fast data analysis using coarse-grained distributed
memory,” in Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, ser. SIGMOD ’12. New York,
NY, USA: ACM, 2012, pp. 689–692.

[54] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony,
H. Liu, P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a

24 VOLUME 4, 2016

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

MapReduce framework,” Proceedings of the VLDB Endowment, vol. 2,
no. 2, pp. 1626–1629, 2009.

[55] R. Power and J. Li, “Piccolo: Building fast, distributed programs with
partitioned tables.” in OSDI, vol. 10, 2010, pp. 1–14.

[56] A. Shinnar, D. Cunningham, V. Saraswat, and B. Herta, “M3R:
Increased performance for in-memory Hadoop jobs,” Proc. VLDB
Endow., vol. 5, no. 12, pp. 1736–1747, Aug. 2012. [Online]. Available:
http://dx.doi.org/10.14778/2367502.2367513

[57] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica, “Hyracks:
A flexible and extensible foundation for data-intensive computing,”
in Proceedings of the 2011 IEEE 27th International Conference
on Data Engineering, ser. ICDE ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 1151–1162. [Online]. Available:
http://dx.doi.org/10.1109/ICDE.2011.5767921

[58] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky,
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf, “Predata–
preparatory data analytics on peta-scale machines,” in 2010 IEEE Interna-
tional Symposium on Parallel & Distributed Processing (IPDPS). IEEE,
2010, pp. 1–12.

[59] A. J. Awan, V. Vlassov, M. Brorsson, and E. Ayguade, “Node architec-
ture implications for in-memory data analytics on scale-in clusters,” in
Proceedings of the 3rd IEEE/ACM International Conference on Big Data
Computing, Applications and Technologies. ACM, 2016, pp. 237–246.

[60] L. Hluchý, M. Bobák, H. Müller, M. Graziani, J. Maassen, H. Spreeuw,
M. Heikkurinen, J. Pancake-Steeg, S. Spahr, N. Otto vor dem
Gentschen Felde, M. Höb, J. Schmidt, A. S. Z. Belloum, R. Cushing,
P. Nowakowski, J. Meizner, K. Rycerz, B. Wilk, M. Bubak, O. Habala,
M. Šeleng, Š. Dlugolinský, V. Tran, and G. Nguyen, Heterogeneous
Exascale Computing, L. Kovács, T. Haidegger, and A. Szakál, Eds.
Cham: Springer International Publishing, 2020. [Online]. Available:
https://doi.org/10.1007/978-3-030-14350-3_5

[61] L. A. N. Laboratory, “Trinity project.” [Online]. Available: http:
//www.lanl.gov/projects/trinity/index.php/

[62] N. C. for Supercomputing Applications, “Bluewaters project.” [Online].
Available: http://www.ncsa.illinois.edu/BlueWaters/

[63] N. I. for Computational Sciences, “Kraken cray xt5 system.” [Online].
Available: http://www.nics.tennessee.edu/computing-resources/kraken/

[64] A. N. Laboratory, “Intrepid - blue gene/p solution.” [Online]. Available:
https://www.alcf.anl.gov/intrepid

[65] K. Yelick, S. Coghlan, B. Draney, R. S. Canon et al., “The magellan report
on cloud computing for science,” US Department of Energy, Washington
DC, USA, Tech. Rep, 2011.

[66] I. Raicu, I. T. Foster, and P. Beckman, “Making a case for distributed file
systems at exascale,” in Proceedings of the third international workshop
on Large-scale system and application performance. ACM, 2011, pp.
11–18.

[67] J. Lofstead and R. Ross, “Insights for exascale io apis from building a
petascale io api,” in SC’13: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis.
IEEE, 2013, pp. 1–12.

[68] D. Borthakur, “Hdfs architecture guide,” Hadoop Apache Project, p. 53,
2008.

[69] S. M. Strande, P. Cicotti, R. S. Sinkovits, W. S. Young, R. Wagner,
M. Tatineni, E. Hocks, A. Snavely, and M. Norman, “Gordon:
Design, performance, and experiences deploying and supporting a data
intensive supercomputer,” in Proceedings of the 1st Conference of the
Extreme Science and Engineering Discovery Environment: Bridging
from the eXtreme to the Campus and Beyond, ser. XSEDE ’12.
New York, NY, USA: ACM, 2012, pp. 3:1–3:8. [Online]. Available:
http://doi.acm.org/10.1145/2335755.2335789

[70] J. Shalf, S. Dosanjh, and J. Morrison, “Exascale computing technology
challenges,” in International Conference on High Performance Comput-
ing for Computational Science. Springer, 2010, pp. 1–25.

[71] M. P. I. Forum, “MPI: A message-passing interface standard, version
3.1,” June 2015. [Online]. Available: https://www.{MPI}-forum.org/
docs/{MPI}-3.1/{MPI}31-report-book.pdf

[72] T. Willhalm and N. Popovici, “Putting intel®threading building blocks
to work,” in Proceedings of the 1st International Workshop on Multicore
Software Engineering, ser. IWMSE ’08. New York, NY, USA: ACM,
2008, pp. 3–4. [Online]. Available: http://doi.acm.org/10.1145/1370082.
1370085

[73] C. Campbell and A. Miller, A Parallel Programming with Microsoft
Visual C++: Design Patterns for Decomposition and Coordination on

Multicore Architectures, 1st ed. Redmond, WA, USA: Microsoft Press,
2011.

[74] L. Dagum and R. Menon, “OpenMP: An industry-standard api for shared-
memory programming,” Computing in Science & Engineering, no. 1, pp.
46–55, 1998.

[75] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid MPI/OpenMP parallel
programming on clusters of multi-core smp nodes,” in 2009 17th Euromi-
cro International Conference on Parallel, Distributed and Network-based
Processing, Feb 2009, pp. 427–436.

[76] P. D. Mininni, D. Rosenberg, R. Reddy, and A. Pouquet, “A hybrid
MPI-OpenMP scheme for scalable parallel pseudospectral computations
for fluid turbulence,” Parallel Computing, vol. 37, no. 6, pp. 316 – 326,
2011. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167819111000512

[77] S. Dong and G. E. Karniadakis, “Dual-level parallelism for high-order
CFD methods,” Parallel Computing, vol. 30, no. 1, pp. 1 – 20,
2004. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S016781910300173X

[78] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems,” Computing in science
& engineering, vol. 12, no. 3, p. 66, 2010.

[79] D. Kirk et al., “Nvidia CUDA software and GPU parallel computing
architecture,” in ISMM, vol. 7, 2007, pp. 103–104.

[80] R. Farber, Parallel programming with OpenACC. Newnes, 2016.
[81] J. Guan, S. Yan, and J. Jin, “An OpenMP-CUDA implementation of

multilevel fast multipole algorithm for electromagnetic simulation on
multi-GPU computing systems,” IEEE Transactions on Antennas and
Propagation, vol. 61, no. 7, pp. 3607–3616, July 2013.

[82] P. Rakic, D. Milawinovic, Z. Zivanov, Z. Suvajdzin, M. Nikolic, and
M. Hajdukovic, “MPI-CUDA parallelization of a finite-strip program
for geometric nonlinear analysis: A hybrid approach,” Advances in
Engineering Software, vol. 42, no. 5, pp. 273 – 285, 2011, pARENG
2009. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0965997810001286

[83] S. J. Pennycook, S. D. Hammond, S. A. Jarvis, and G. R. Mudalige,
“Performance analysis of a hybrid MPI/CUDA implementation of the
naslu benchmark,” SIGMETRICS Perform. Eval. Rev., vol. 38, no. 4,
pp. 23–29, Mar. 2011. [Online]. Available: http://doi.acm.org/10.1145/
1964218.1964223

[84] M. U. Ashraf, F. A. Eassa, A. A. Albeshri, and A. Algarni, “Performance
and power efficient massive parallel computational model for HPC het-
erogeneous exascale systems,” IEEE Access, vol. 6, pp. 23 095–23 107,
2018.

[85] S. J. Plimpton and K. D. Devine, “MapReduce in MPI for large-scale
graph algorithms,” Parallel Comput., vol. 37, no. 9, pp. 610–632, Sep.
2011.

[86] Y. Wang, G. Agrawal, T. Bicer, and W. Jiang, “Smart: A MapReduce
-like framework for in-situ scientific analytics,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2015, p. 51.

[87] T. Gao, Y. Guo, B. Zhang, P. Cicotti, Y. Lu, P. Balaji, and M. Taufer,
“Mimir: Memory-efficient and scalable MapReduce for large supercom-
puting systems,” in 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), May 2017, pp. 1098–1108.

[88] Y. Guo, W. Bland, P. Balaji, and X. Zhou, “Fault tolerant MapReduce
-MPI for HPC clusters,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’15. New York, NY, USA: ACM, 2015, pp. 34:1–34:12.
[Online]. Available: http://doi.acm.org/10.1145/2807591.2807617

[89] F. Liang and X. Lu, “Accelerating iterative big data computing through
MPI,” Journal of Computer Science and Technology, vol. 30, no. 2, pp.
283–294, 2015.

[90] T. Peterka, R. Ross, A. Gyulassy, V. Pascucci, W. Kendall, H.-W. Shen,
T.-Y. Lee, and A. Chaudhuri, “Scalable parallel building blocks for
custom data analysis,” in 2011 IEEE Symposium on Large Data Analysis
and Visualization. IEEE, 2011, pp. 105–112.

[91] T. Peterka, D. Morozov, and C. Phillips, “High-performance computation
of distributed-memory parallel 3D Voronoi and Delaunay tessellation,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 2014, pp.
997–1007.

[92] M. Lu, Y. Liang, H. P. Huynh, Z. Ong, B. He, and R. S. M. Goh, “Mrphi:
An optimized MapReduce framework on intel xeon phi coprocessors,”

VOLUME 4, 2016 25

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

IEEE Transactions on Parallel and Distributed Systems, vol. 26, no. 11,
pp. 3066–3078, Nov 2015.

[93] F. J. Clemente-Castelló, B. Nicolae, R. Mayo, J. C. Fernández, and M. M.
Rafique, “On exploiting data locality for iterative MapReduce appli-
cations in hybrid clouds,” in BDCAT’16: 3rd IEEE/ACM International
Conference on Big Data Computing, Applications and Technologies,
Shanghai, China, 2016, pp. 118–122.

[94] IBM, “GPU Enabler for Spark,” 2017. [Online]. Available: https:
//github.com/IBMSparkGPU/GPUEnabler

[95] T. Bicer, D. Gürsoy, V. D. Andrade, R. Kettimuthu, W. Scullin,
F. D. Carlo, and I. T. Foster, “Trace: a high-throughput tomographic
reconstruction engine for large-scale datasets,” Advanced Structural and
Chemical Imaging, vol. 3, no. 1, p. 6, Jan 2017. [Online]. Available:
https://doi.org/10.1186/s40679-017-0040-7

[96] J. Fox, Y. Zou, and J. Qiu, “Software frameworks for deep learning at
scale,” Internal Indiana University Technical Report, 2016.

[97] E. Ghasemi and P. Chow, “Accelerating Apache Spark with fpgas,”
Concurrency and Computation: Practice and Experience, vol. 31, no. 2,
p. e4222, 2019.

[98] O. Segal, P. Colangelo, N. Nasiri, Z. Qian, and M. Margala, “Sparkcl:
A unified programming framework for accelerators on heterogeneous
clusters,” arXiv preprint arXiv:1505.01120, 2015.

[99] O. Segal, M. Margala, S. R. Chalamalasetti, and M. Wright, “High level
programming framework for fpgas in the data center,” in 2014 24th
International Conference on Field Programmable Logic and Applications
(FPL). IEEE, 2014, pp. 1–4.

[100] A. J. Awan, “Performance characterization and optimization of in-
memory data analytics on a scale-up server,” Ph.D. dissertation, KTH,
2017. [Online]. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:
diva-217910

[101] M. W. ur Rahman, X. Lu, N. S. Islam, R. Rajachandrasekar, and D. K.
Panda, “High-performance design of yarn MapReduce on modern HPC
clusters with lustre and RDMA,” in 2015 IEEE International Parallel and
Distributed Processing Symposium, May 2015, pp. 291–300.

[102] Y. Wang, R. Goldstone, W. Yu, and T. Wang, “Characterization and
optimization of memory-resident MapReduce on hpc systems,” in 2014
IEEE 28th International Parallel and Distributed Processing Symposium,
May 2014, pp. 799–808.

[103] C. Maltzahn, E. Molina-Estolano, A. Khurana, A. J. Nelson, S. A. Brandt,
and S. Weil, “Ceph as a scalable alternative to the Hadoop distributed file
system,” login: The USENIX Magazine, vol. 35, pp. 38–49, 2010.

[104] R. Ananthanarayanan, K. Gupta, P. Pandey, H. Pucha, P. Sarkar, M. Shah,
and R. Tewari, “Cloud analytics: Do we really need to reinvent the storage
stack?” in HotCloud, 2009.

[105] F. G. Carballeira, A. Calderón, J. Carretero, J. Fernández, and J. M. Pérez,
“The design of the expand parallel file system.” IJHPCA, vol. 17, no. 1,
pp. 21–37, 2003.

[106] P. Xuan, J. Denton, P. K. Srimani, R. Ge, and F. Luo, “Big data
analytics on traditional hpc infrastructure using two-level storage,” in
Proceedings of the 2015 International Workshop on Data-Intensive
Scalable Computing Systems, ser. DISCS ’15. New York, NY, USA:
ACM, 2015, pp. 4:1–4:8. [Online]. Available: http://doi.acm.org/10.
1145/2831244.2831253

[107] X. Lu, M. W. U. Rahman, N. Islam, D. Shankar, and D. K. Panda,
“Accelerating Spark with RDMA for big data processing: Early expe-
riences,” in 2014 IEEE 22nd Annual Symposium on High-Performance
Interconnects, Aug 2014, pp. 9–16.

[108] I. Lopez, “Idc talks convergence in high per-
formance data analysis, 2013,” URL: http://www.
datanami. com/2013/06/19/idc_talks_convergence_in_
high_performance_data_analysis/(visited on 02/14/2016), 2013.

[109] J. Ekanayake, S. Pallickara, and G. Fox, “MapReduce for data intensive
scientific analyses,” in eScience, 2008. eScience ’08. IEEE Fourth Inter-
national Conference on, Dec 2008, pp. 277–284.

[110] S. N. Srirama, P. Jakovits, and E. Vainikko, “Adapting scientific comput-
ing problems to clouds using MapReduce,” Future Generation Computer
Systems, vol. 28, no. 1, pp. 184 – 192, 2012.

[111] S. Seo, E. Yoon, J. Kim, S. Jin, J.-S. Kim, and S. Maeng, “Hama: An
efficient matrix computation with the MapReduce framework,” in Cloud
Computing Technology and Science (CloudCom), 2010 IEEE Second
International Conference on, Nov 2010, pp. 721–726.

[112] P. Xuan, Y. Zheng, S. Sarupria, and A. Apon, “SciFlow: A dataflow-
driven model architecture for scientific computing using Hadoop,” in Big
Data, 2013 IEEE International Conference on, Oct 2013, pp. 36–44.

[113] E. Dede, M. Govindaraju, D. Gunter, and L. Ramakrishnan, “Riding the
elephant: Managing ensembles with Hadoop,” in Proceedings of the 2011
ACM International Workshop on Many Task Computing on Grids and
Supercomputers, ser. MTAGS ’11. New York, NY, USA: ACM, 2011,
pp. 49–58.

[114] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, N. Buncic,
P. Canal, D. Casadei, O. Couet, V. Fine, L. Franco, G. Ganis, A. Gheata,
D. G. Maline, M. Goto, J. Iwaszkiewicz, A. Kreshuk, D. M. Segura,
R. Maunder, L. Moneta, A. Naumann, E. Offermann, V. Onuchin,
S. Panacek, F. Rademakers, P. Russo, and M. Tadel, “Root âĂŤ
a C++ framework for petabyte data storage, statistical analysis and
visualization,” Computer Physics Communications, vol. 180, no. 12, pp.
2499–2512, 2009. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0010465511000701

[115] S. Sehrish, G. Mackey, P. Shang, J. Wang, and J. Bent, “Supporting hpc
analytics applications with access patterns using data restructuring and
data-centric scheduling techniques in MapReduce,” IEEE Transactions
on Parallel and Distributed Systems, vol. 24, no. 1, pp. 158–169, Jan
2013.

[116] Z. Zhang, K. Barbary, F. A. Nothaft, E. Sparks, O. Zahn, M. J. Franklin,
D. A. Patterson, and S. Perlmutter, “Scientific computing meets big data
technology: An astronomy use case,” in Big Data (Big Data), 2015 IEEE
International Conference on, Oct 2015, pp. 918–927.

[117] Y. S. Nashed, D. J. Vine, T. Peterka, J. Deng, R. Ross, and C. Jacobsen,
“Parallel ptychographic reconstruction,” Optics express, vol. 22, no. 26,
pp. 32 082–32 097, 2014.

[118] A. Luckow, P. Mantha, and S. Jha, “Pilot-abstraction: A valid abstraction
for data-intensive applications on hpc, Hadoop and cloud infrastruc-
tures?” arXiv preprint arXiv:1501.05041, 2015.

[119] S. Sehrish, J. Kowalkowski, and M. Paterno, “Spark and HPC for high
energy physics data analyses,” in Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2017 IEEE International. IEEE,
2017, pp. 1048–1057.

[120] Z. Zhang, K. Barbary, F. A. Nothaft, E. Sparks, O. Zahn, M. J. Franklin,
D. A. Patterson, and S. Perlmutter, “Scientific computing meets big
data technology: An astronomy use case,” in 2015 IEEE International
Conference on Big Data (Big Data), Oct 2015, pp. 918–927.

[121] S. Sehrish, J. Kowalkowski, and M. Paterno, “Exploring the performance
of Spark for a scientific use case,” in Parallel and Distributed Processing
Symposium Workshops, 2016 IEEE International. IEEE, 2016, pp.
1653–1659.

[122] Z. Zhang, “Processing data-intensive work ows in the cloud,” 2012.
[123] K. Vahi, M. Rynge, G. Juve, R. Mayani, and E. Deelman, “Rethinking

data management for big data scientific workflows,” in Big Data, 2013
IEEE International Conference on, Oct 2013, pp. 27–35.

[124] V. Nuthula and N. R. Challa, “Cloudifying apps - a study of design and
architectural considerations for developing cloudenabled applications
with case study,” in Cloud Computing in Emerging Markets (CCEM),
2014 IEEE International Conference on, Oct 2014, pp. 1–7.

[125] S. N. Srirama and J. Viil, “Migrating scientific workflows to the cloud:
Through graph-partitioning, scheduling and peer-to-peer data sharing,”
in High Performance Computing and Communications, 2014 IEEE Intl
Conf on. IEEE, 2014, pp. 1105–1112.

[126] P. Matri, Y. Alforov, A. Brandon, M. Kuhn, P. Carns, and T. Ludwig,
“Could blobs fuel storage-based convergence between HPC and big
data?” in Cluster Computing (CLUSTER), 2017 IEEE International
Conference on. IEEE, 2017, pp. 81–86.

[127] P. Matri, Y. Alforov, ÃĄlvaro Brandon, M. S. PÃl’rez, A. Costan,
G. Antoniu, M. Kuhn, P. Carns, and T. Ludwig, “Mission possible: Unify
HPC and big data stacks towards application-defined blobs at the storage
layer,” Future Generation Computer Systems, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X17330583

[128] Y. Zhao, X. Fei, I. Raicu, and S. Lu, “Opportunities and challenges in
running scientific workflows on the cloud,” in Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC), 2011 International
Conference on, Oct 2011, pp. 455–462.

[129] G. Lin, B. Han, J. Yin, and I. Gorton, “Exploring cloud computing for
large-scale scientific applications,” in 2013 IEEE Ninth World Congress
on Services, June 2013, pp. 37–43.

[130] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The cost
of doing science on the cloud: The montage example,” in Proceedings
of the 2008 ACM/IEEE Conference on Supercomputing, ser. SC ’08.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 50:1–50:12.

26 VOLUME 4, 2016

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

[131] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman,
and J. Good, “On the use of cloud computing for scientific workflows,”
in eScience, 2008. eScience ’08. IEEE Fourth International Conference
on, Dec 2008, pp. 640–645.

[132] G. B. Berriman, E. Deelman, G. Juve, M. Rynge, and J.-S. Vöckler, “The
application of cloud computing to scientific workflows: a study of cost
and performance,” Philosophical Transactions of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, vol. 371,
no. 1983, 2012.

[133] T. Gunarathne, T.-L. Wu, J. Qiu, and G. Fox, “MapReduce in the clouds
for science,” in Cloud Computing Technology and Science (CloudCom),
2010 IEEE Second International Conference on, Nov 2010, pp. 565–572.

[134] C. Evangelinos and C. Hill, “Cloud computing for parallel scientific HPC
applications: Feasibility of running coupled atmosphere-ocean climate
models on Amazon’s EC2,” Ratio, vol. 2, no. 2.40, pp. 2–34, 2008.

[135] A. Gupta and D. Milojicic, “Evaluation of hpc applications on cloud,” in
2011 Sixth Open Cirrus Summit, Oct 2011, pp. 22–26.

[136] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. Berman, and
P. Maechling, “Scientific workflow applications on Amazon EC2,” in E-
Science Workshops, 2009 5th IEEE International Conference on, Dec
2009, pp. 59–66.

[137] Z. Hill and M. Humphrey, “A quantitative analysis of high performance
computing with Amazon’s EC2 infrastructure: The death of the local
cluster?” in Grid Computing, 2009 10th IEEE/ACM International Con-
ference on, Oct 2009, pp. 26–33.

[138] A. Iosup, S. Ostermann, M. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema, “Performance analysis of cloud computing services for many-
tasks scientific computing,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 22, no. 6, pp. 931–945, June 2011.

[139] G. D’Angelo, “Parallel and distributed simulation from many cores to the
public cloud,” in High Performance Computing and Simulation (HPCS),
2011 International Conference on, July 2011, pp. 14–23.

[140] D. Yu, J. Wang, B. Hu, J. Liu, X. Zhang, K. He, and L.-J. Zhang, “A
practical architecture of cloudification of legacy applications,” in Services
(services), 2011 ieee world congress on. IEEE, 2011, pp. 17–24.

[141] S. Srirama, V. Ivanistsev, P. Jakovits, and C. Willmore, “Direct migration
of scientific computing experiments to the cloud,” in High Performance
Computing and Simulation (HPCS), 2013 International Conference on,
July 2013, pp. 27–34.

[142] S. Caíno-Lores, A. Lapin, P. G. Kropf, and J. Carretero, “Lessons learned
from applying big data paradigms to large scale scientific workflows.” in
WORKS@ SC, 2016, pp. 54–58.

[143] G. M. Slota, S. Rajamanickam, and K. Madduri, “A case study of
complex graph analysis in distributed memory: Implementation and opti-
mization,” in 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), May 2016, pp. 293–302.

[144] G. C. Fox, J. Qiu, S. Kamburugamuve, S. Jha, and A. Luckow, “HPC-
ABDS high performance computing enhanced apache big data stack,” in
2015 15th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, May 2015, pp. 1057–1066.

[145] A. Gittens, A. Devarakonda, E. Racah, M. Ringenburg, L. Gerhardt,
J. Kottalam, J. Liu, K. Maschhoff, S. Canon, J. Chhugani, P. Sharma,
J. Yang, J. Demmel, J. Harrell, V. Krishnamurthy, M. W. Mahoney, and
Prabhat, “Matrix factorizations at scale: A comparison of scientific data
analytics in Spark and c+MPI using three case studies,” in 2016 IEEE
International Conference on Big Data (Big Data), Dec 2016, pp. 204–
213.

[146] M. Anderson, S. Smith, N. Sundaram, M. Capotă, Z. Zhao, S. Dulloor,
N. Satish, and T. L. Willke, “Bridging the gap between HPC and big data
frameworks,” Proceedings of the VLDB Endowment, vol. 10, no. 8, pp.
901–912, 2017.

[147] N. Malitsky, A. Chaudhary, S. Jourdain, M. Cowan, P. OLeary, M. Han-
well, and K. K. V. Dam, “Building near-real-time processing pipelines
with the Spark-MPI platform,” in 2017 New York Scientific Data Summit
(NYSDS), Aug 2017, pp. 1–8.

[148] A. Gittens, K. Rothauge, S. Wang, M. Mahoney, L. Gerhardt, Prabhat,
J. Kottalam, M. Ringenburg, and K. Maschhoff, “Accelerating large-
scale data analysis by offloading to high-performance computing libraries
using alchemist,” in SIGKDD’18: 24th ACM International Conference on
Knowledge Discovery and Data Mining, London, UK, 2018.

[149] ETP4HPC, “Strategic research agenda 2015 update,” European
Technology Platform for High-Performance Computing, Tech.
Rep., 2015. [Online]. Available: http://www.etp4hpc.eu/pujades/files/
ETP4HPC\%20SRA\%202\%20Single\%20Page.pdf

[150] “Transition to exascale computing (h2020-fethpc-2016-2017),” April
2017. [Online]. Available: http://ec.europa.eu/research/participants/
portal/desktop/en/opportunities/h2020/topics/fethpc-02-2017.html

[151] A. Bilas, T. Cortes, D. Talia, M. S. Perez, J. Garcia-Blas, P. Gonzalez-
FÃl’rez, A. Brinkmann, S. Anastasiadis, M. Muggeridge, C. Comito,
S. Narasimhamurthy, A. Queralt, and F. Isaila, “Data storage for big data
in the exascale era: Challenges and prospects,” University Carlos III of
Madrid, Tech. Rep., September 2015. [Online]. Available: https://www.
dropbox.com/s/ws58kxm26j3o20a/nesus_report_WG4_sep2015.pdf

[152] D. Morozov and T. Peterka, “Block-parallel data analysis with diy2,” in
2016 IEEE 6th Symposium on Large Data Analysis and Visualization
(LDAV), Oct 2016, pp. 29–36.

[153] K. Lu, H.-W. Shen, and T. Peterka, “Scalable computation of stream
surfaces on large scale vector fields,” in SC’14: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2014, pp. 1008–1019.

[154] Y. S. Nashed, D. J. Vine, T. Peterka, J. Deng, R. Ross, and C. Jacobsen,
“Parallel ptychographic reconstruction,” Optics express, vol. 22, no. 26,
pp. 32 082–32 097, 2014.

[155] C. Sewell, J. Meredith, K. Moreland, T. Peterka, D. DeMarle, L.-t. Lo,
J. Ahrens, R. Maynard, and B. Geveci, “The sdav software frameworks
for visualization and analysis on next-generation multi-core and many-
core architectures,” in 2012 SC Companion: High Performance Comput-
ing, Networking Storage and Analysis. IEEE, 2012, pp. 206–214.

[156] B. Nouanesengsy, T.-Y. Lee, K. Lu, H.-W. Shen, and T. Peterka, “Parallel
particle advection and ftle computation for time-varying flow fields,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE Computer Society
Press, 2012, p. 61.

[157] T. Peterka, R. Ross, B. Nouanesengsy, T.-Y. Lee, H.-W. Shen, W. Kendall,
and J. Huang, “A study of parallel particle tracing for steady-state
and time-varying flow fields,” in 2011 IEEE International Parallel &
Distributed Processing Symposium. IEEE, 2011, pp. 580–591.

[158] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and F. Cappello,
“Veloc: Towards high performance adaptive asynchronous checkpointing
at large scale,” in IPDPS’19: The 2019 IEEE International Parallel and
Distributed Processing Symposium, Rio de Janeiro, Brazil, 2019, pp.
911–920.

[159] D. Ceperley, G. Chester, and M. Kalos, “Monte carlo simulation of a
many-fermion study,” Physical Review B, vol. 16, no. 7, p. 3081, 1977.

[160] Z. Li and H. A. Scheraga, “Monte carlo-minimization approach to the
multiple-minima problem in protein folding,” Proceedings of the Na-
tional Academy of Sciences, vol. 84, no. 19, pp. 6611–6615, 1987.

[161] L. Wang and S. L. Jacques, “Monte carlo modeling of light transport
in multi-layered tissues in standard c,” The University of Texas, MD
Anderson Cancer Center, Houston, pp. 4–11, 1992.

[162] D. Perez, P. Rohlfshagen, and S. M. Lucas, “Monte-carlo tree search for
the physical travelling salesman problem,” in European Conference on
the Applications of Evolutionary Computation. Springer, 2012, pp. 255–
264.

[163] R. Therrien, R. McLaren, E. Sudicky, and S. Panday, “A Three-
dimensional Numerical Model Describing Fully-integrated Subsurface
and Surface Flow and Solute Transport,” 2010.

[164] G. Bauser, H.-J. Hendricks Franssen, S. Fritz, H.-P. Kaiser, U. Kuhlmann,
and W. Kinzelbach, “A comparison study of two different control criteria
for the real-time management of urban groundwater works,” Journal of
Environmental Management, vol. 105, pp. 21 – 29, 2012.

[165] M. P. McGuire, M. C. Roberge, and J. Lian, “Hydrocloud: A cloud-based
system for hydrologic data integration and analysis,” in Computing for
Geospatial Research and Application (COM. Geo), 2014 Fifth Interna-
tional Conference on. IEEE, 2014, pp. 9–16.

[166] A. Lapin, E. Schiller, P. Kropf, O. Schilling, P. Brunner, A. J. Kapic,
T. Braun, and S. Maffioletti, “Real-time environmental monitoring for
cloud-based hydrogeological modeling with hydrogeosphere,” in High
Performance Computing and Communications, 2014 IEEE Intl Conf on,
2014, pp. 959–965.

[167] K. Kondo, K. Terasaki, and T. Miyoshi, “Assimilating satellite radiances
without vertical localization using the local ensemble transform kalman
filter with up to 1280 ensemble members,” in EGU General Assembly
Conference Abstracts, vol. 19, 2017, p. 2170.

[168] M. Williams, P. A. Schwarz, B. E. Law, J. Irvine, and M. R. Kurpius, “An
improved analysis of forest carbon dynamics using data assimilation,”
Global change biology, vol. 11, no. 1, pp. 89–105, 2005.

VOLUME 4, 2016 27

S. Caíno-Lores et al.: toward High-Performance Computing and Big Data Analytics Convergence: The Case of Spark-DIY

[169] S. Caíno-Lores, A. Lapin, J. Carretero, and P. Kropf, “Applying big data
paradigms to a large scale scientific workflow: Lessons learned and future
directions,” Future Generation Computer Systems, 2018.

[170] A. Davidson and A. Or, “Optimizing shuffle performance in Spark,”
University of California, Berkeley-Department of Electrical Engineering
and Computer Sciences, Tech. Rep, 2013.

[171] B. Nicolae, C. H. A. Costa, C. Misale, K. Katrinis, and Y. Park, “Lever-
aging adaptive i/o to optimize collective data shuffling patterns for big
data analytics,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 6, pp. 1663–1674, June 2017.

[172] S. Caíno-Lores, A. Lapin, P. Kropf, and J. Carretero, “Methodological
approach to data-centric cloudification of scientific iterative workflows,”
in International Conference on Algorithms and Architectures for Parallel
Processing. Springer, 2016, pp. 469–482.

SILVINA CAÍNO-LORES is a teaching and re-
search assistant in the Computer Science De-
partment at the Carlos III University of Madrid
(Spain), where she obtained her Ph.D. in Com-
puter Science and Technology in 2019 under the
supervision of Prof. Jesús Carretero Pérez. Her
research interests include cloud computing, HPC
scientific computing, and data-centric computing.

JESÚS CARRETERO is a Full Professor of
Computer Architecture and Technology at Uni-
versidad Carlos III de Madrid (Spain), since
2002. His research activity is centered on high-
performance computing systems, large-scale dis-
tributed systems and real-time systems. He was
Action Chair of the IC1305 COST Action “Net-
work for Sustainable Ultrascale Computing Sys-
tems (NESUS)”, and he is also currently involved
in three other EU projects. Prof. Carretero is Asso-

ciated Editor of Future Generation Computing Systems journal. He has been
General chair of HPCC 2011, MUE 2012, ISPA 2016 and CCGRID 2017.
Prof. Carretero is a senior member of the IEEE Computer Society.

BOGDAN NICOLAE is a computer scientist at
Argonne National Laboratory and scientist at the
University of Chicago Consortium for Advanced
Scienceand Engineering (CASE). He specializes
in scalable storage, data management, and fault
tolerance for large-scale distributed systems, with
a focus on cloud computing and high-performance
architectures. He holds a Ph.D. from the Univer-
sity of Rennes 1, France and a Dipl. Eng. degree
from Politehnica University Bucharest, Romania.

He has (co)authored numerous papers in the areas of scalable I/O, storage
elasticity and virtualization, data and metadata decentralization and avail-
ability, multiversioning, checkpoint-restart, and live migration.

ORCUN YILDIZ is a postdoctoral researcher in
the Mathematics and Computer Science Division
at Argonne National Laboratory. He received his
Ph.D. degree in computer science from Ecole Nor-
male Superieure de Rennes (France) in Decem-
ber 2017. His research interests include scientific
workflows, big data processing, I/O management,
and high-performance computing.

TOM PETERKA is a computer scientist at Ar-
gonne National Laboratory, scientist at the Univer-
sity of Chicago Consortium for Advanced Science
and Engineering (CASE), adjunct assistant profes-
sor at the University of Illinois at Chicago, and
fellow of the Northwestern Argonne Institute for
Science and Engineering (NAISE). His research
interests are in large-scale parallel in situ analysis
of scientific data. Recipient of the 2017 DOE
early career award and three best paper awards,

Peterka has published in ACM SIGGRAPH, IEEE VR, IEEE TVCG, and
ACM/IEEE SC, among other top conferences and journals. Peterka received
his Ph.D. in computer science from the University of Illinois at Chicago
in 2007, and he currently works actively in several DOE- and NSF-funded
projects.

28 VOLUME 4, 2016

