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Game-playing (AlphaGo, DOTA, King of Glory)
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Today’s Talk

Goal: A few steps towards theoretical understanding of
Optimization and Generalization in Deep Learning.
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Theoretical Challenges: Two Major Hurdles

1 Optimization

Non-convex and non-smooth with exponentially many critical
points.

2 Statistical

Successful Deep Networks are huge with more parameters than
samples (overparametrization).

Two Challenges are Intertwined

Learning = Optimization Error + Statistical Error.
But Optimization and Statistics Cannot Be Decoupled.

The choice of optimization algorithm affects the statistical
performance (generalization error).

Improving statistical performance (e.g. using regularizers,
dropout . . . ) changes the algorithm dynamics and landscape.
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Non-convexity

Practical observation: Gradient methods find high quality
solutions.

Theoretical Side: Even finding a local minimum is NP-hard!

Follow the Gradient Principle: No known convergence results
for even back-propagation to stationary points!

Question

1 Why is (stochastic) gradient descent (GD) successful? Or is it
just “alchemy”?
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Setting

(Sub)-Gradient Descent

Gradient Descent algorithm:

xk+1 = xk − αk∂f(xk).

Non-smoothness

Deep Learning Loss Functions are not smooth! (e.g. ReLU,
max-pooling, batch-norm)
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Non-smooth Non-convex Optimization

Theorem (Davis, Drusvyatskiy, Kakade, and Lee)

Let xk be the iterates of the stochastic sub-gradient method.
Assume that f is locally Lipschitz, then every limit point x∗ is
critical:

0 ∈ ∂f(x∗).

Previously, convergence of sub-gradient method to stationary
points is only known for weakly-convex functions
(f(x) + λ

2 ‖x‖
2 convex ). (1− ReLU(x))2 is not weakly

convex.

Convergence rate is polynomial in
√
d
ε4
, to ε-subgradient for a

smoothing SGD variant.
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Can subgradients be efficiently computed?

Automatic Differentiation a.k.a Backpropagation

Automatic Differentiation uses the chain rule with dynamic
programming to compute gradients in time 5x of function
evaluation.

However, there is no chain rule for subgradients!

x = σ(x)− σ(−x),

TensorFlow/Pytorch will give the wrong answer.

Theorem (Kakade and Lee 2018)

There is a chain rule for subgradients. Using this chain rule with
randomization, Automatic Differentiation can compute a
subgradient in time 6x of function evaluation.
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Theorem (Lee et al., COLT 2016)

Let f : Rn → R be a twice continuously differentiable function
with the strict saddle property, then gradient descent with a
random initialization converges to a local minimizer or negative
infinity.

Theorem applies for many optimization algorithms including
coordinate descent, mirror descent, manifold gradient descent,
and ADMM (Lee et al. 2017 and Hong et al. 2018)

Stochastic optimization with injected isotropic noise finds
local minimizers in polynomial time (Pemantle 1992; Ge et al.
2015, Jin et al. 2017)
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Why are local minimizers interesting?

All local minimizers are global and SGD/GD find the global min:

1 Overparametrized Networks with Quadratic Activation
(Du-Lee 2018)

2 ReLU networks via landscape design (GLM18)

3 Matrix Completion (GLM16, GJZ17,. . . )

4 Rank k approximation (Baldi-Hornik 89)

5 Matrix Sensing (BNS16)

6 Phase Retrieval (SQW16)

7 Orthogonal Tensor Decomposition (AGHKT12,GHJY15)

8 Dictionary Learning (SQW15)

9 Max-cut via Burer Monteiro (BBV16, Montanari 16)
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Landscape Design

Designing the Landscape

Goal: Design the Loss Function so that gradient decent finds good
solutions (e.g. no spurious local minimizers)a.

aJanzamin-Anandkumar, Ge-Lee-Ma , Du-Lee

Figure: Illustration: SGD succeeds on the right loss function, but fails on
the left in finding global minima.
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Practical Landscape Design - Overparametrization

Iterations ×104

1 2 3 4 5

O
bj

ec
tiv

e 
V

al
ue

0

0.1

0.2

0.3

0.4

0.5

(a) Original Landscape

0.5 1 1.5 2 2.5 3

Iterations 10
4

0

0.1

0.2

0.3

0.4

0.5

O
b

je
c
ti
v
e

 V
a

lu
e

(b) Overparametrized Landscape

Figure: Data is generated from network with k0 = 50 neurons.
Overparametrized network has k = 100 neurons1.

Without some modification of the loss, SGD will get trapped.
1Experiment was suggested by Livni et al. 2014
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Practical Landscape Design: Overparametrization

Conventional Wisdom on Overparametrization

If SGD is not finding a low training error solution, then fit a more
expressive model until the training error is near zero.

Problem

How much over-parametrization do we need to efficiently optimize
+ generalize?

Adding parameters increases computational and memory cost.

Too many parameters may lead to overfitting (???).
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How much Overparametrization to Optimize?

Motivating Question

How much overparametrization ensures success of SGD?

Empirically p� n is necessary, where p is the number of
parameters.

Very unrigorous calculations suggest p = constant× n suffices
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Interlude: Residual Networks

Deep Feedforward Networks

x(0) = input data

x(l) = σ(Wlx
(l−1))

f(x) = a>x(L)

Empirically, it is difficult to train deep feedforward networks so
Residual Networks were proposed:

Residual Networks (He et al.)

ResNet of width m and depth L:

x(0) = input data

x(l) = x(l−1) + σ(Wlx
(l−1))

f(x) = a>x(L)
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Gradient Descent Finds Global Minima

Theorem (Du-Lee-Li-Wang-Zhai)

Consider a width m and depth L residual network with a smooth
ReLU activation σ (or any differentiable activation). Assume that
m = O(n4L2), then gradient descent converges to a global
minimizer with train loss 0.

Same conclusion for ReLU, SGD, and variety of losses (hinge,
logistic) if m = O(n30L30) (see Allen-Zhu-Li-Song and Zou et
al.)
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Intuition (Two-Layer Net)

Two layer net: f(x) =
∑m

r=1 arσ(w>r x).

How much do parameters need to move?

Assume a0
r = ± 1√

m
, w0

r ∼ N(0, I), and ‖x‖ = 1.

Let wr = w0
r + δr. Crucial Lemma: δr = O( 1√

m
) moves the

prediction by O(1).

As the network gets wider, then each parameter moves less,
and there is a global minimizer near the random
initialization.
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Remarks

Gradient Descent converges to global minimizers of the train
loss when networks are sufficiently overparametrized.

Current bound requires n4L2 and in practice n is sufficient.

No longer true if the weights are regularized.

The best generalization bound one can prove using this
technique matches a kernel method2 (Arora et al., Jacot et
al., Chizat-Bach, Allen-Zhu et al.).

2includes low-degree polynomials and activations with power series
coefficients that decay geometrically.
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Classification: Setup

1 Training data (xi, yi) with label y ∈ {−1, 1}.
2 Classifier is sign(f(W ;x)), where f is a neural net with

parameters W .

3 Margin γ̄ = mini yif(W ;x).

4 We assume networks are overparametrized and can separate
the data.
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Generalization via Margin Theory

Margin Theory

Normalized margin γ(W ) = mini yif( W
‖W‖2

, xi). When γ is large,

the network predicts the correct label with high confidence.

Large margin guarantees generalization bounds (Bartlett et
al., Neyshabur et al., Golowich et al.)

Pr(yf(W ;x) < 0) .
R(W )

γ̄
.

Large margin

Do we obtain large margin classifiers in Deep Learning?

Jason Lee



Generalization via Margin Theory

Margin Theory

Normalized margin γ(W ) = mini yif( W
‖W‖2

, xi). When γ is large,

the network predicts the correct label with high confidence.

Large margin guarantees generalization bounds (Bartlett et
al., Neyshabur et al., Golowich et al.)

Pr(yf(W ;x) < 0) .
R(W )

γ̄
.

Large margin

Do we obtain large margin classifiers in Deep Learning?

Jason Lee



Regularized Loss

Neural networks are train via minimizing the regularized
cross-entropy loss:

`(f(W ;x)) + λ‖W‖.

Theorem (Wei-Lee-Liu-Ma 2018 )

Let f be a positive homogeneous network and
γ? = max‖W‖≤1 mini∈[n] yif(W ;xi) be the optimal normalized
margin.

Minimizing cross-entropy loss is max-margin: γ(Wλ)→ γ?.

The optimal margin is an increasing function of network size.

Choosing a small but fixed λ leads to approximate
max-margin.

When f(x) = 〈w, x〉 reduces to the result of Rosset, Zhu, and
Hastie.

Jason Lee
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Proof Sketch

Imagine λ is very small, so that yif(W ;xi) is very large.

Lλ(W ) =
∑
i

log(1 + exp(−yif(W ;xi))) + λ‖W‖

≈
∑
i

exp(−yif(W ;xi)) + λ‖W‖

≈ max
i∈[n]

exp(−yif(W ;xi)) + λ‖W‖

≈ exp(−γ(W )) + λ‖W‖.

Thus among solutions with the same norm, we will obtain a
solution with γ(W ) largest.
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Margin Generalization Bounds

Does large margin lead to parameter-independent generalization in
Neural Networks?

Parameter-independent Generalization Bounds (Neyshabur et al.)

Let f(W ;x) = W2σ(W1x).

Pr
(
yf(W ;x) < 0

)
.

1

γ
√
n
.

Completely independent of the number of parameters.
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Margin Generalization Bounds II

Deep Feedforward Network (Golowich, Rakhlin and Shamir)

Let f(W ;x) = WLσ(WL−1 . . .W2σ(W1x).

Pr
(
yf(W ;x) < 0

)
.
√
L

∏L
j=1 ‖Wj‖F
γ̄
√
n

and γ̄ is un-normalized margin.

∏L
j=1 ‖Wj‖F

γ̄ = γ is the normalized margin.∏L
j=1 ‖Wj‖F = 1

LL/2 ‖vec(W1, . . . ,WL)‖L2 = 1
LL/2 ‖W‖L2 at a

minimizer.

`2-regularizer guarantees a “size-independent” bound.
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Does GD Minimize Regularized Loss?

Training Loss

Let f(x;W ) =
∑m

r=1 arσ(〈wr, x〉) with σ = ReLU.

min
W

∑
i

`(f(xi;W ), yi) +
λ

2

m∑
r=1

(
a2
r + ‖wr‖22

)
.

1 Imagine the network is infinitely wide m→∞, and we run
gradient descent.

2 The density ρ = 1
m

∑m
j=1 δ(aj ,wj) is updated according to a

Wasserstein flow induced by gradient descent.
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Theorem (Very Informal, see arXiv )

For a two-layer network that is infinitely wide (or exp(d) wide),
gradient descent with noise converges to a global minimum of the
regularized training loss in number of iterations T . d2

ε4
.

Overparametrization helps gradient descent find solutions of
low train loss3

Noise is crucial to minimize the regularized loss. The noise is
not on the parameters w, but on the density ρ.

3see also Chizat-Bach, Mei-Montanari-Nguyen
Jason Lee



Better Result for Quadratic Activation

Corollary

Let σ(z) = z2. If m ≥
√
n, then SGD finds a global minimum of

the regularized loss.
Furthermore if y

∑m0
j=1 ajσ(w>j x) ≥ 1. Then for n & dm0

2

ε2
, SGD

finds a solution
Lte(Wt) . ε.

The sample complexity is independent of m, the number of
neurons.
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Experiment

Figure: Credit: Neyshabur et al. See also Zhang et al.

p� n, no regularization, no early stopping, and yet we do not
overfit.

In fact, test error decreases even after the train error is zero.

Weight decay helps a little bit (< 2%), but generalization is
already good without any regularization.
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Experiment

Figure: Credit: Neyshabur et al. See also Zhang et al.

Problem

Why does SGD (with no regularization) not overfit?
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Implicit Regularization in Homogeneous Networks

Theorem

Let fi(W ) , f(W ;xi) be the prediction of a differentiable
homogeneous network on datapoint xi. Gradient Descent
convergesa to a first-order optimal point of the non-linear SVM:

min ‖W‖2
st yifi(W ) ≥ 1.

GD is implicitly regularizing `2-norm of parameters.

aTechnical assumptions on limits existing is needed.

Open Problem

Under what assumptions will GD converge to a global max-margin?
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Implicit Regularization in Homogeneous Networks

1 Quadractic Activation Network4: p(W ) = WW T leads to an
implicit nuclear norm regularizer, and thus a preference for
networks with a small number of neurons

2 Linear Network5: p(W ) = WL . . .W1 leads to an Schatten
quasi-norm regularizer ‖p(W )‖2/L

3 Linear Convolutional Network: Sparsity regularizer ‖ · ‖2/L in
the Fourier domain.

4 Feedforward Network: Size-independent complexity bound6

4see also Gunasekar et al. 2017, Li et al. 2017
5see also Ji-Telgarsky
6Golowich-Rakhlin-Shamir
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Summary

Conclusion and Future Work

1 Overparametrization: Designs the landscape to make gradient
methods succeed.

Current theoretical results are off by an order of magnitude in
the necessary size.

2 Generalization is possible in the over-parametrized regime.

Explicit Regularization: Leads to large margin classifiers, and
low statistical complexity.
Implicit Regularization: The choice of algorithm and
parametrization constrain the effective complexity of the
chosen model.

3 We understand only very simple models and settings.

Deep Learning is used in a black-box fashion in many
downstream tasks (e.g. as a function approximator)
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Questions?

Thank You.
Questions?
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