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Abstract
We present VeRA, a system for verifying the range analysis
pass in browser just-in-time (JIT) compilers. Browser devel-
opers write range analysis routines in a subset of C++, and
verification developers write infrastructure to verify custom
analysis properties. Then, VeRA automatically verifies the
range analysis routines, which browser developers can in-
tegrate directly into the JIT. We use VeRA to translate and
verify Firefox range analysis routines, and it detects a new,
confirmed bug that has existed in the browser for six years.

CCS Concepts: • Security and privacy → Browser se-
curity; • Software and its engineering → Just-in-time
compilers; Software verification and validation;Domain
specific languages.
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1 Introduction
On May 30, 2019, employees of the cryptocurrency startup
Coinbase were targeted by a phishing campaign that lured
them to visit a Web page hosting attack code [88]. This code
exploited previously unknown bugs in Firefox to take over
the victim’s machine; the first bug arose from incorrect type
deduction in the just-in-time (JIT) compiler component of
Firefox’s JavaScript engine [15].
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Earlier this year, Google’s Threat Analysis Group identi-
fied websites, apparently aimed at people “born in a certain
geographic region” and “part of a certain ethnic group,” that
would install a malicious spyware implant on any iPhone
used to visit them. Two bugs exploited in this campaign,
according to analysis by Google’s Project Zero [41, 68], were
in the JIT component of Safari’s JavaScript engine [5, 34].

The JavaScript JITs shipped in modern browsers are ma-
ture, sophisticated systems developed by compilers experts.
Yet bugs in JIT compilers have emerged in recent months
as the single largest threat to Web platform security, and the
most dangerous attack surface of Web-connected devices.

Unlike other compilers, browser JITs are exposed to adver-
sarial program input. Remote attackers can craft JavaScript
that will trigger JIT compiler bugs and break out of the sand-
box on victim users’ machines. These attacks are possible in
spite of the fact that JavaScript is a memory-safe language,
because its safety and isolation guarantees only apply if they
are correctly maintained by JIT compilation.

This is easier said than done. Consider JavaScript arrays,
which are maps from index positions to values. These maps
can be “sparse,” in the sense that indices can be missing in
the middle. Any out-of-bounds accesses must be checked
to return the special value undefined. Furthermore, values
stored in an array can be of any type, so array elements must
be tagged or boxed. In a naïve implementation, numerical
kernel performance would be unacceptably slow.

JavaScript JITs speculatively optimize accesses to dense
arrays and to arrays whose elements are all the same type,
with bailouts to a slow path should the array shape change.
And they perform range analysis on values that could be used
as array indices to facilitate bounds-check elimination. When
range analysis confirms that the array indices are guaranteed
to be within a given range, the JIT compiler generates code
that allocates the array sequentially in memory and allows
sequential access without any bounds checks.

These optimizations are crucial—but also risky. Failing to
bail out of the speculative fast path when an array’s shape
changes leads to type confusion; incorrectly eliminating a
bounds check allows out-of-bounds memory accesses. Both
bug types can be exploited for arbitrary code execution [63].

The implications of JavaScript JIT bugs for security were
recognized as early as 2011 [103]; attackers have turned to JIT
bugs as other avenues for browser exploitation become more
rare and more difficult to exploit (see, e.g., [121]). Since late
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2017, industrial security researchers have uncovered a dozen
or more bugs in the JIT compilers shipping with Chrome (e.g.,
[19, 22, 23]), Firefox (e.g., [3, 15, 18, 20]), Safari (e.g., [5, 16,
17, 21, 34]), and Edge (e.g., [12–14]). They have documented
JIT compiler internals and developed generic techniques
for exploiting JIT compiler bugs for code execution in blog
posts [43, 59, 60, 101, 105, 110, 117, 124], in industrial security
conference presentations [58, 64, 67, 77, 104, 115], and in
industrial journals such as Phrack [69]. And, as we noted
above, JIT bugs are being weaponized against real users.

In short, the status quo is untenable. The JIT’s adversarial
setting means even obscure bugs that no normal program
would ever hit become exploitable attack vectors. To secure
the Web, it is necessary to build and deploy JIT compilers
free of security bugs.

In this paper, we explore, for the first time, the possibility
of using compiler verification to secure browser JavaScript
JIT compilers. Verification proves that the compiler is correct
using formal methods that consider all possible corner cases.

There is, of course, much prior work on compiler verifi-
cation (§8). But JavaScript JITs are a new and challenging
domain for verification. JavaScript is an unusual language
with complicated semantics; the ARMv8.3-A architecture re-
vision even adds an instruction, FJCVTZS, to support floating-
point conversion with JavaScript semantics [1]. And because
browser JITs are supposed to improve the perceived runtime
performance of Web programs, compilation time is a cost. A
JIT that is verified but slow will not be acceptable.

As a first step in this direction, we build a system, VeRA,
for expressing and verifying JavaScript JIT range analyses.
VeRA supports a subset of C++ for expressing range analysis
routines, and a Satisfiability Modulo Theories [36] (SMT)-
based verification tool that proves the correctness of these
analyses with respect to JavaScript semantics. Browser devel-
opers can write their range analysis code using VeRA C++,
prove it correct, and incorporate the verified code directly
into their browser.

Compared to prior work in compiler verification, VeRA
distinguishes itself by handling the details of a realistic range
analysis: we use VeRA to express and verify the range anal-
ysis used in practice by the Firefox browser. This requires
handling many challenges: complicated corner cases of Java-
Script semantics; complex dataflow facts whose semantics
are often disjunctive predicates; and complex propagation
rules for those dataflow facts. Our verification uncovered a
new Firefox range analysis bug and confirmed an old bug
from a previous version of the browser. We also find that our
verified routines work correctly in Firefox—they pass all 140
thousand Firefox JIT tests—and perform comparably to the
original routines in both micro and macro benchmarks.

2 Overview
This section gives an overview of range analysis in JIT com-
pilers and the ramifications of range analysis bugs. Then, it
walks through using VeRA to verify a piece of the Firefox
JIT’s range analysis logic.

2.1 Range Analysis in JITs
Range analysis is a dataflow analysis that compilers use to
deduce the range—typically upper and lower bounds—of
values at different points in program execution. These range
deductions, or value constraints, are then used by different
optimization passes to generate efficient code. For example,
Firefox’s dead code elimination (DCE) pass eliminates blocks
guarded by contradictory constraints [6]:
if (x > 0)

if (x < 0) /* ... dead code... */

It also eliminates redundant checks—in the redundant check
elimination (RCE) pass—when it can prove that values are
within a certain range [8]:
var uintArray = new Uint8Array(...); // buffer

function foo(value) {
if (value >= 0) { // always true; redundant check

return value;
} else { /* ... dead code ... */ }

}

for(let i = 0; i < uintArray.length; i++) {
foo(uintArray[idx]); // call foo with unsigned value

}

Here, the comparison in foo is always true—uintArray can
only contain unsigned integers—and thus can be eliminated
(along with the else branch).

More significantly, Firefox relies on range analysis to move
and eliminate internal JavaScript array bounds checks [7].
Since JavaScript is a memory safe language, the compiler
inserts bounds checks around every array access. For in-
stance, in the example above, the array indexing operation
uintArray[idx] internally performs a bounds check, which
returns undefined if the access is out of bounds, i.e., when
idx < 0 or when idx >= uintArray.length. In practice,
this incurs overhead—real applications make heavy use of
arrays—and JITs aggressively try to eliminate bounds checks.
In the example above, for instance, Firefox can prove that the
array accesses are in-bounds and eliminate all the internal
bounds checks.

2.2 From Range Analysis Bugs to Browser Exploits
Bugs in the range analysis code can, at best, manifest as ap-
plication correctness errors—and at worst as memory safety
vulnerabilities. For example, an incorrect range deduction
can cause the JIT to eliminate a bounds check, which can in
turn allow an attacker to read and write beyond JavaScript
array bounds and hijack the control flow of the browser
renderer process (e.g., using JIT-ROP techniques [84, 109]).
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class Range : public TempObject {
int32_t lower_;
int32_t upper_;
bool hasInt32LowerBound_;
bool hasInt32UpperBound_;
// possibly not a whole number
FractionalPartFlag canHaveFractionalPart_;
// possibly negative zero
NegativeZeroFlag canBeNegativeZero_;
// the maximum exponent needed to represent the number
// 0-1023, 1024 indicates inf, 65536 indicates NaN or inf
uint16_t exp_;

}
Figure 1. Parts of Firefox’s range object

Range* Range::rsh(TempAllocator& alloc, const Range* lhs,

int32_t c) {↪→

MOZ_ASSERT(lhs->isInt32());
int32_t shift = c & 0x1f;
return Range::NewInt32Range(alloc, lhs->lower() >> shift,
lhs->upper() >> shift);

}

Figure 2. Firefox’s range analysis logic for the right shift
operator.

range rsh(range& lhs, int32_t c) {
int32_t shift = c & 0x1f;
return newInt32Range(lhs.lower >> shift,
lhs.upper >> shift);

}

Figure 3. Simplified VeRA implementation of the right shift
operator.

Until recently, TurboFan—the JIT compiler component of
Chrome’s V8 JavaScript engine—used to deduce that indexOf,
when applied to a string, would return an integer in the range
[−1, String::kMaxLength−1], where String::kMaxLength
is the longest allowed V8 JavaScript string (228 − 16 charac-
ters). Unfortunately, the actual V8 implementation of indexOf
can return String::kMaxLength—one more than the range
analysis deduced. As the following example (from the origi-
nal bug report [22]) shows, this bug allowed attacker-supplied
JavaScript to create a variable i that TurboFan deduced to be
0, but actually held an arbitrary value (in this case, 100, 000):

var i = 'A'.repeat(2**28 - 16).indexOf("", 2**28);
i += 16; // real value: i = 2**28, optimizer: i = 2**28-1
i >>= 28; // real value: i = 1, optimizer: i = 0
i *= 100000; // real value: i = 100000, optimizer: i = 0

Since TurboFan thought i was zero, it would eliminate all
bounds checks on i—so attackers could use i as an index
into any array in order to access that array out-of-bounds.

2.3 Why Range Analysis is Hard to Get Right
The indexOf example is not the only case of an exploitable
browser vulnerability introduced by a buggy JavaScript range
analysis. Similar bugs have been a problem in practice for

all major browsers. This is because JavaScript range analysis
is hard to get right.

First, it requires reasoning about double-precision floating
point numbers. To do so correctly and efficiently, browsers
can’t just implement ranges as lower-bound and upper-bound
pairs; instead, their range objects are necessarily compli-
cated structures. Figure 1 shows Firefox’s range object, which
keeps track of, among other things, integer bounds, special
values, and whether the range includes non-integrals. Not
only is the data structure itself complex, but there are also
subtle invariants that it must maintain.

Second, tracking special floating-point values like NaN,
Infinity, -Infinity, and −0.0 is error-prone. For example, until
recently, Turbofan’s range analysis incorrectly deduced that
Math.expm1, the JavaScript builtin used to compute ex − 1,
must either return a number value or NaN—it didn’t account
for floating point negative zero. The browser’s implemen-
tation of Math.expm1, applied to −0.0, correctly returned
−0.0 [23, 119]—a mismatch that again allowed an attacker
to hijack the browser renderer’s control flow.

A constellation of other factors make writing range analy-
sis routines even harder. For example, JITs internally distin-
guish 32-bit integer values from double-precision floats. This
is crucial for performance.1 But this also means that the range
analysis must correctly determine whether an output can be
within the range of possible 32-bit numbers—for the Firefox
range object, whether the fields hasInt32LowerBound and
hasInt32UpperBound should be set. As another example,
since JIT speed directly affects users’ experience, the range
analysis must be fast—it must run just in time—and usefully
precise—it must produce information useful enough to assist
other optimization passes (e.g., DCE, RCE, and bounds-check
elimination (BCE)). To this end, JIT developers implement
range analysis in low-level languages like C++ and eschew
verbose, readable code for fast, terse code. They also ex-
plore the trade-offs between speed and precision: Firefox,
for example, tracks integer ranges precisely—by tracking
lower bounds and upper bounds—but approximates wider
floating-point ranges by only tracking exponents (in addition
to tracking special values).

2.4 Using VeRA to Express Range Analysis
VeRA is a subset of C++ for writing verified range analysis
routines. If browser developers write their analysis logic in
VeRA C++, they can compile it into automatic correctness
proofs for custom properties. We ported twenty-two Firefox
routines to VeRA C++; Figure 2 shows Firefox’s implemen-
tation of range analysis for the right shift operator, while
Figure 3 shows the VeRA version. To calculate the range of
possible output values for >>, it masks constant c with 31,
per JavaScript semantics [57]. Then, it shifts the left-hand

1This makes it possible for the JIT to efficiently compile array lookups into
a direct memory accesses (as opposed to lookups in a hash map) [111]
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operand’s lower and upper bound by the masked constant.
If rsh is given an lhs range of [10,100] and a c constant of
2, it will return a range of [2, 25].

2.5 Using VeRA to Verify Range Analysis
VeRA also provides an internal DSL for expressing the seman-
tic meaning of each computed fact. Given a range analysis
dataflow fact R, its semantic meaning is a predicate ⟦R⟧ over
values. For expository purposes, the following is a simplified
semantic meaning for ranges over 32-bit integers:

⟦R⟧(v) ≜ R.lower ≤ v ≤ R.upper

The actual semantic meaning we use in practice (described
in Section 5) is far more complicated since it includes floating
point numbers, special values, and implementation-specific
Firefox invariants.

Once the semantic meaning of range facts is defined, the
verification condition can be described as follows. We show
the case for a binary operator op, but a similar approach can
be used for other kinds of operators. We use opra to denote
the range analysis flow function for op (where “ra” stands
for “range analysis”). This flow function, implemented in a
subset of C++, takes two range objects and returns a resulting
range object. Finally, we use opjs to denote the JavaScript
semantics of op.

The verification condition for op is defined as follows
(where ranges R1, R2, and JavaScript values v1, v2, are uni-
versally quantified):

⟦R1⟧(v1) ∧ ⟦R2⟧(v1) ⇒ ⟦opra(R1,R2)⟧(opjs(v1,v2))

This condition states that the flow function for op “preserves”
the semantic meaning of range facts: if the semantic meaning
of the incoming range facts holds on certain incoming values
to the operator, then the semantic meaning of the output
range fact will hold on the value produced by the JavaScript
semantics of the operator on those values.

Let’s apply this definition to the rsh flow function from
Figure 3. In this case op is >> ; opra is rsh ; and opjs is >>js.
While >> is a binary operator, the version of the operator
described in Figure 3 is the one where the second parameter
is a constant, and so we only need to consider range inputs
for the first parameter. As result, we have the following
verification condition (where range R and JavaScript values
v , n are universally quantified):

⟦R⟧(v) ⇒ ⟦rsh(R,n)⟧(v >>js n)

Once a verification developer specifies the predicate ⟦R⟧,
VeRA automatically proves it (using an SMT solver) for each
range analysis function. The browser developer need only
write the flow functions using a familiar subset of C++; Fig-
ure 3 is an example of such a flow function. The above is
intended to give a sense for how verification works in VeRA,
but the details are described in Section 5.

Feature Syntax

Declarations

Classes class MyClass {}
Variables/Fields uint32_t x = 4;
Functions/Methods uint32_t f() {}

Statements

If/Else if (expr) {} else {}
Assignment a = b;
Void Call func(a, b);
Return return foo;

Expressions

Casting (uint16_t) expr
Member Access s->m;
Function Calls func(a,b)
Numeric Literals 1234, 0xffff, 47.0
Comparison ==, !=, >=, >, <=, <
Binary Ops +, -, *, /, &, |, ˆ, >>, <<
Unary Ops ˜, !, -

Figure 4. C++ constructs that VeRA supports

3 VeRA C++
In this section, we describe the programming language that
browser developers use to implement range analysis flow
functions in VeRA. This language is called VeRA C++, and
is a subset of C++. As shown in Figure 4, various standard
C++ features are not included in VeRA C++, the most no-
table of which may be loops (including recursion). Loop-
ing would make the verification much more complicated,
because it would require determining loop invariants. In
practice, though, omitting looping constructs does not affect
VeRA C++’s expressiveness, since flow functions for realistic
range analysis don’t rely on loops; for example, none of Fire-
fox’s analysis functions use loops. Note that even though
there is no looping allowed inside a flow function, iteration
does occur in the dataflow analysis algorithm that finds a
solution to the flow functions: indeed, that algorithm applies
flow functions repeatedly until reaching a fixed point.

To allow programmers to describe the data structures for
their range analysis, VeRA supports C++ classes. For example,
the VeRA C++ code in Figure 3 uses a range class, which is a
modified version of the Range class from the Firefox codebase
(Figure 1). Finally, since VeRA C++ is a subset of C++, all
VeRA C++ range analyses can be directly incorporated into
the Firefox codebase once they are automatically verified.

4 Translating VeRA C++ to SMT
Before we describe verification conditions (Section 5), we
show how to translate VeRA C++ programs to SMT. We
describe the challenges with C++ to SMT translation, and
then describe how we address theses challenges; Section 7
explains why we choose this particular approach.
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Feature Operations

Cast (type)
Conditional Ternary ? :
C++ Comparison ==, !=, >=, >, <=, <
C++ Binary Ops +, -, *, /, &, |, ˆ, >>, <<
C++ Unary Ops ˜, !, -

Figure 5. VeRA IR operations

4.1 Challenges in Compiling C++ to SMT
One challenge in compiling C++ to SMT is that the theories
defined in SMT solvers [37] provide clients with low-level
operators like logical right shift, bitwise and, and assignment;
they do not provide high-level C++ control-flow constructs
like branches and functions. Instead, the compiler must build
these constructs out of lower-level SMT primitives.

The next challenge when translating C++ to SMT is that
the semantics of SMT types and operators are different from
their C++ counterparts. For example, translating the C++
right-shift operator directly to the raw SMT right-shift oper-
ator would be incorrect because it does not take into account
the subtle interaction of sign bits and the difference between
logical and arithmetic shifts. Furthermore, VeRA verifica-
tion uses the theory of fixed-sized bit-vectors, and bitvectors
do not come with a notion of sign; instead, for each oper-
ator (e.g., C++’s less-than operator), VeRA must choose a
corresponding SMT operator (e.g., signed or unsigned com-
parison) depending on the C++ typing context. Some C++
operators work on both integer and floating point types (e.g.,
+), but this is not the case in SMT. Thus, VeRA must also
choose which version of the operator (e.g., floating-point or
bitvector addition) to select based on the operator’s input
types.

One final challenge is that the C++ standard includes un-
defined behavior—instruction and operand combinations
whose behavior is explicitly not prescribed by the standard [29].
For example, the compiler is allowed to replace undefined
“x / 0” with anything. In contrast, the functions defined
by the theory of bit-vectors are total functions, i.e. there is
a well-defined result for all inputs, and they are free from
side effects. Thus, a translation from C++ to SMT should not
accidentally ascribe SMT’s well-definedness to C++.

4.2 Overcoming Challenges with an IR
Because of the differences between C++ and SMT, we create
an Intermediate Representation (IR) that sits between the
two languages. The compilation from C++ to IR takes care
of rewriting control flow constructs like branches, function
calls, and return values. The translation from IR to SMT
takes care of the gap in semantics between the languages’
operators and types.

The IR consists of assignment statements in SSA form.
The right-hand side of each assignment is an expression
tree. Each node in the tree is labeled by an IR operator, and

has child nodes that represent the operator’s parameters.
Figure 5 outlines the operators in the IR.

CompilingC++ to IR. We compile VeRA C++ into control-
flow-free IR using a series of transformations. The trans-
formations must eliminate if statements, return statements,
function calls, and method calls, and must alter variable as-
signments to satisfy SSA (which the IR expects).

The transformation to SSA is standard. To handle control
flow, VeRA re-writes if statements into straight-line code
using predicated execution. For example,

if (c) { x = 1; } else { x = 2; }

becomes:
x_1 = c ? 1 : x_0; x_2 = !c ? 2 : x_1;

VeRA handles function calls using inlining, which works
well because VeRA C++ disallows recursion. Thus, each call
to a function gets its own set of assignments; calling “foo(1);
foo(2);” will generate two separate, versioned copies of
foo. The rewrites for method calls, return values, nested
conditionals, and returns from within conditionals are all
similar to the above translations.

Compiling IR to SMT. Compiling the IR to SMT requires
some additional information to be stored in the IR. In partic-
ular, each IR node will include the following three pieces of
information (in addition to an operator and children):

1. The SMT term generated for this IR node
2. The C++ type of this node (e.g., int32 or double),

which is used to generate the correct version of SMT
operations

3. An “undef” bit, which indicates whether the node is
the result of an operation with undefined behavior. For
example, in the statement x = 4 << -1, x’s undef bit
would be set since a left-shift by a negative value is
undefined.

This information, computed during the translation from IR
to SMT, is critical for generating SMT terms that faithfully
replicate the C++ semantics of the original VeRA C++ code.

We compile IR to SMT as follows. First, we translate assign-
ment nodes into equality, which is seamless because the IR
is already in SSA form. Second, we translate the expression
tree that appears on the right-hand side of each assignment
using a bottom-up traversal that simultaneously computes
the SMT term, the C++ type, and the “undef” bit (the three
pieces of information described above).

As an example, consider a comparison operator. If either
argument is unsigned, the compiler generates an unsigned
SMT comparison; otherwise, it generates a signed one.

As another example, consider an IR left-shift a << b. If a
is unsigned, the generated SMT term is the logical left-shift
of a by b; the result type is unsigned; and the undef bit is
equal to undef(a) ∨ undef(b) ∨ isNegative(b).

If a is signed, the generated SMT term is again the logical
left-shift of a by b, and the result type is unsigned. However,
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the “undef” bit is more complicated, because C++ 14 dictates
that a << b has undefined behavior if the shift operation
discards any bits of a that were set. To detect discarded bits
in the 32-bit case, we perform the shift in 64-bits ((int64)a
<< (int64)b), and then check if any of the high 32 bits of
the result are set. If so, some bit was shifted off the end of a,
and the operation has undefined behavior. As a result, the
“undef” bit is equal to: undef(a)∨undef(b)∨isNegative(b)∨
(a <<64 b)[63 : 32] , 032.

5 Verification
In this section, we describe how VeRA proves range analyses
correct; dataflow analysis “correctness” means that the facts
concluded by the analysis are correct with respect to the
semantics of the program. For range analysis: if the analysis
concludes that a certain variable is in a range, the analysis is
correct if the variable is actually within that range accord-
ing to the program’s semantics. Note that we only consider
correctness of range analysis facts, not their precision.

People typically prove dataflow analyses correct through
abstract interpretation [53]. In abstract interpretation, we
start by setting up a connection between computed dataflow
facts and the semantics of the program. In our setting, we
do so by defining, for each range fact R that is computed
about a variable, a semantic meaning—a predicate ⟦R⟧ over
runtime values. This predicate establishes the connection
between the computed dataflow facts and the semantics of
the program: we say that a range fact R on a variable x is
correct at a program point if, for all possible values v that x
can take at runtime, we have ⟦R⟧(v).

The goal of our verification is to establish that the im-
plemented range analysis is correct, meaning that when the
dataflow analysis algorithm terminates, all facts it has com-
puted are correct. In abstract interpretation, this is achieved
by proving local preservation conditions on all flow functions.
These conditions can be shown to imply that the entire range
dataflow analysis is correct [53]. It is these local preservation
conditions that we ask an SMT solver to prove.

Recall that we use opra to denote the range analysis flow
function for an operator op (which for simplicity we assume
to be a binary operator). Recall also that we use opjs to denote
the JavaScript semantics of op. As mentioned in Section 2,
we define the local preservation condition for an operator op
as:

⟦R1⟧(v1) ∧ ⟦R2⟧(v1) ⇒ ⟦opra(R1,R2)⟧(opjs(v1,v2))

This condition states that the flow function for op “preserves”
the semantic meaning of range facts: if the incoming range
facts are correct, then the propagated range fact is correct.

In this section, we first define the semantic meaning ⟦R⟧ of
a given range fact R. Then, we discuss how VeRA translates
opjs to SMT (since Section 4 explains translation of opra), and
talk about how proofs work in practice.

inRange(R, v) ≜

R.exp < e_INF =⇒ ¬isInf(v) (R1)
∧R.exp , e_INF_OR_NAN =⇒ ¬isNaN(v) (R2)
∧¬R.canBeNegZero =⇒ v , −0.0 (R3)
∧¬R.canHaveFraction =⇒ round(v) = v (R4)
∧R.hasInt32LowerBound =⇒ (isNaN(v) ∨ v ≥ R.lower) (R5)
∧R.hasInt32UpperBound =⇒ (isNaN(v) ∨ v ≤ R.upper) (R6)
∧R.exp ≥ expOf(v) (R7)

Figure 6. The definition of the predicate inRange(R,v) that
states whether a floating-point number v is in range R.

wellFormed(R) ≜

R.lower ≥ JS_INT_MIN ∧ R.lower ≤ JS_INT_MAX (W1)
∧R.upper ≥ JS_INT_MIN ∧ R.upper ≤ JS_INT_MAX (W1)
∧¬R.hasInt32LowerBound =⇒ R.lower = JS_INT_MIN (W2)
∧¬R.hasInt32UpperBound =⇒ R.upper = JS_INT_MAX (W2)
∧R.canBeNegZero =⇒ contains(0, R)
∧(R.exp = e_INF ∨ R.exp = e_INF_OR_NAN ∨ R.exp ≤ 1023) (W3)
∧(R.hasInt32LowerBound ∧ R.hasInt32UpperBound)

=⇒ R.exp = expOf(max( |R.lower |, |R.upper |))

∧R.hasInt32LowerBound =⇒ R.exp ≥ expOf(R.lower) (W4)
∧R.hasInt32UpperBound =⇒ R.exp ≥ expOf(R.upper) (W4)

Figure 7. Well-formedness for a Firefox range.

5.1 Semantic Meaning of Predicate Facts
We split the semantic meaning ⟦R⟧ of a range fact R into two
parts: (1) a predicate that connects R to values and (2) a well-
formedness invariant expressed solely on R. In particular:

⟦R⟧(v) ≜ inRange(R,v) ∧ wellFormed(R)

The inRange predicate connects the range fact to values from
JavaScript semantics. The wellFormed predicate is more
unique: it isn’t about a connection to semantic values, but in-
stead about implementation-specific Firefox invariants that
are necessary for proving the flow functions correct. We
explain each piece of ⟦R⟧ in turn below.

The inRange predicate. Figure 6 shows the inRange pred-
icate, which we derived from Firefox code and comments.
An important point here is that this predicate is unusually
complex—far more complex than any of the semantic mean-
ings used in prior automated verification efforts for program
analyses [82]. A typical meaning for a range analysis fact in
prior work is:

inRange(R,v) ≜ R.lower ≤ v ≤ R.upper

This predicate is simpler than our inRange because inRange
must handle the complexities of realistic range analysis for
JavaScript (§2), i.e., tracking floating point numbers, since
all JavaScript values are double-precision floats.
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Given a range fact R and a JavaScript value v , the predi-
cate inRange(R,v) is true iff the following conditions hold.
First, if the exponent field of R is less than a special Fire-
fox value, e_INF, v must not be infinite. Similarly, if R’s
exponent is less than the special value e_INF_OR_NAN, v
must not be NaN. If R’s canBeNegativeZero flag is not
set, v should not be -0.0; if R’s canHaveFractionalPart
flag is not set, v should be a whole number. Finally, if R
has a lower bound (hasInt32LowerBound flag), v should
be greater than or equal to that lower bound (lower). The
hasInt32LowerBound flag indicates whether a range con-
tains numbers that are smaller than thirty-two bit integers;
it allows Firefox to internally use integers to represent Java-
Script numbers when possible.

The wellFormed predicate. Figure 7 shows the wellFormed
predicate, which is unusual because it does not relate the
range fact to semantic values. Instead, it simply imposes
constraints on the range fact itself; it is an invariant that
Firefox flow functions depend on to be correct. We derived
this invariant from a set of long comments and a handful of
invariant-checking functions in the Firefox codebase.

All range facts should have canBeNegativeZero set only
when zero is contained within their range2, where contains
is defined as follows for range R and value v :

contains(R,v) ≜ v ≥ R.lower ∧v ≤ R.upper

Furthermore, exponents should either be in the range 0 to
1023, or should have the special value e_INF (1024) for infin-
ity, or the special value e_INF_OR_NAN (65535) for NaN or
infinity. In addition, the exponent should also be consistent
with the lower and upper bound, if they exist.

Now, we walk through an example showing how Firefox
routines break when invariants are violated, focusing on
the invariant relating hasInt32LowerBound with R.lower
and hasInt32UpperBound with R.upper. The Firefox im-
plementation of range analysis requires that if a range’s
hasInt32LowerBound is unset, then its lower field equals
JS_INT_MIN; similarly, if its hasInt32UpperBound is unset,
its upper field equals JS_INT_MAX. Consider the following
Firefox range analysis code for max, which calculates the
new lower field and the new hasInt32LowerBound flag in
the returned range fact:
int32_t newLower = max(lhs->lower, rhs->lower)
bool newHasLower = lhs->hasInt32LowerBound ||

rhs->hasInt32LowerBound↪→

Now consider two input ranges to the max function, R1 and
R2, and assume the output range is R3. If the Firefox invari-
ant doesn’t hold, we can have ¬r1.hasInt32LowerBound
and R1.lower = 1000, and R2.hasInt32LowerBound and
R2.lower = −1000. This means that the above code will
set R3.hasInt32LowerBound to true, and R3.lower to 1000
2This is only an invariant on optimized ranges; unoptimized may have set
flags even if their ranges don’t contain zero.

(since the result lower bound is the maximum of the input
lower bounds).

Now consider two JavaScript values v1 in R1 and v2 in R2
(meaning that inRange(R1,v1) and inRange(R2,v2) are both
true). Let v1 be −∞ (since ¬R1.hasInt32LowerBound) and
v2 be -1000. Then, JavaScript semantics says that maxjs(v1,v2)
is -1000, but -1000 is well below R3’s lower bound of 1000.

However, once we add the wellFormed invariant, this
problem is fixed: when hasInt32LowerBound is not set, lower
must be JS_INT_MIN, so R1.lower cannot be 1000. Now
that R3’s lower bound is JS_INT_MIN instead of 1000, it cor-
rectly captures maxjs(v1,v2) by including -1000. This example
shows that max’s range analysis relies on the invariant that
lower is JS_INT_MIN when hasInt32LowerBound is not set.

OtherVerificationConditions. We prove two additional
properties of the Firefox range analysis: we prove the cor-
rectness of the functions for combining range facts—union
and intersection—which the JIT uses within its larger range
analysis loop. We will use union and intersection to refer
to Firefox’s union and intersection functions for range facts.
Conceptually, given two range facts R1 and R2, we want
to show that union(R1,R2) is an overapproximation3 of the
mathematical union operation ∪ on the semantic values con-
tained in R1 and the semantic values contained in R2. We
achieve this as follows. Given two well-formed ranges R1
and R2, we let R3 = union(R1,R2). Then we want to show
that for all JavaScript values v , we have:

inRange(R1,v) ∨ inRange(R2,v) =⇒ inRange(R3,v)
Similarly, for intersection we let R3 = intersect(R1,R2),
and prove that:

inRange(R1,v) ∧ inRange(R2,v) =⇒ inRange(R3,v).

5.2 Using VeRA to Express Predicates
VeRA exposes an internal verification domain-specific lan-
guage (DSL) embedded in Haskell. Verification developers
use the language to express verification infrastructure, in-
cluding verification conditions and the semantic meaning
of range facts. The DSL exposes a number of JavaScript
operators—i.e., implementations of opjs—against which to
verify range analysis functions. If verification developers
wish to verify new operations, it is straightforward to ex-
pose new JavaScript routines in the VeRA internal DSL. To
express predicates and verification conditions, the DSL also
exposes SMT directives. They allow verification developers
to make assumptions, call the SMT solver, and push and pop
new incremental solver contexts.

In practice, proving the conjunction of wellFormed and
inRange for each operator is suboptimal: if any component
of either predicate does not finish, the entire verification

3And it is necessarily an overapproximation given how Firefox’s range
analysis object is implemented: consider a union of two ranges, one that
can include fractions and one that can’t.
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proof does not finish. As a result, we prove individual condi-
tions within each predicate separately; Section 6 describes
each condition that we prove and the time the proof takes
to finish (or not). Mechanically, to prove a given predicate
part, we query an SMT solver with its negation—e.g., we
check whether the operation can produce any values outside
of the computed range. If the formula is unsatisfiable, there
are no such values and the range analysis routine is safe. If
the formula is satisfiable, the model provided by the solver
is a concrete counterexample that captures that input ranges
and values for which the range analysis routine is unsafe.

6 Implementation and Evaluation
We implement VeRA—both the compiler for VeRA C++ and
the internal verification language—in 1384 lines of Haskell.
Since the implementation details of the compiler are stan-
dard, we only describe the details relevant to answering our
evaluation questions. All our source code and data sets are
available at https://vera.programming.systems.

We evaluate VeRA by asking six questions:

Q1 Can VeRA prove Firefox range analysis routines correct?
Q2 Can VeRA proofs catch real correctness bugs?
Q3 Are the VeRA proofs correct?
Q4 Do the verified routines work correctly in Firefox?
Q5 How do the verified routines perform in Firefox?
Q6 How hard is it to integrate verified routines into Firefox?

To answer these questions, we port 21 top-level Firefox range
analysis flow functions to VeRA C++, try to prove their cor-
rectness, and then re-integrate them into the browser. We
are able to: prove 137 separate facts about these routines;
identify a new Firefox analysis bug; and correctly detect an
old analysis bug. A version of Firefox that uses our verified
routines still performs comparably to standard Firefox, and
it still passes all (147,322) Firefox JavaScript tests.

6.1 Proofs
We choose to verify 19 Firefox flow functions because they
are the complete set of Firefox Range-type flow functions
for JavaScript operators; we discuss this further in Section 7
(e.g., as a result, we don’t check division). In addition, we
verify the union and intersect functions, which are not
JavaScript operators but instead Firefox-internal functions
that combine two different Range objects; this brings the total
number of routines we attempt to verify to 21. Verification
of both union and intersect times out, but VeRA finds a
bug in our port of an older, broken version of intersect [9].
Finally, we port 25 helper functions called by each verified
function—i.e., every function except the optimize function
(§7). Figure 8 summarizes our results.

All operators followed by asterisks in the table (e.g., rsh)
are only valid for 32-bit ranges.4 Thus, for each bitwise opera-
tor, we only prove (1) the simple predicate from Section 2 and
(2) the absence of undefined behavior in the result range’s
upper and lower bounds. We don’t worry about wellFormed
for these operations, either; none of them alter the floating-
point-specific fields of the range.

For floating-point operators (e.g., add), we separately prove
each condition in the inRange predicate and the wellFormed
predicate with two exceptions: since we do not call optimize
on our result ranges, we only verify the wellFormed con-
ditions that apply to non-optimized ranges (i.e., our output
ranges are correct but may not have the tightest possible
bounds). Figure 8 goes into more detail about which columns
correspond to which conditions in Figure 6 and Figure 7.

Multiple proofs fail: ceil and broken intersect are both
real bugs, while ursh and ursh’ require extra invariants on
the input ranges. We don’t amend them because their failure
is actually an interesting manifestation of a comment above
both functions [26]:
// ursh's left operand is uint32, not int32, but for range
// analysis we currently approximate it as int32. We assume
// here that the range has already been adjusted...

In other words, over all possible inputs, ursh is not correct.
Our proof code, i.e., the code that automatically verifies

each part of both the inRange and wellFormed predicates,
amounts to 804 lines of Haskell. We run all proofs on a virtual
machine (QEMU-KVM, Linux 5.3.11) running Arch Linux
with 16 GB of memory and 4 vCPUs. The processor is an
AMD Ryzen Threadripper 2950X 16-Core with a base clock
rate of 3.5GHz. We use the Z3 SMT solver (4.8.6), which we
call with custom Haskell bindings that extend the haskell-z3
library [30], using a 20-minute timeout.

Canwe prove Firefox range analysis routines correct?
We successfully prove or refute 137 conditions out of a pos-
sible 159, for a success rate of ≈86%; the shortest proofs
complete in under a second, while the longest takes ≈ten
minutes. The results suggest that R5.double, R6.double,
and W4 are particularly challenging to verify. R5.double
andR6.double are more challenging than their integer coun-
terparts because they involve reasoning about floating-point
values, which is generally more expensive. W4 is challeng-
ing because it involves proving a relationship between two
properties of the range, both of which may be modified by
the range analysis. Finally, R1 and W3 of Math.ceil may
timeout because they involve bounding the size of an ex-
ponent, since Math.ceil involves extracting the exponent
from the absolute value of the range bounds.

There is hope, however. Though VeRA does not verify con-
ditions for certain routines (e.g., correctness of intersect),

4This is an internal Firefox invariant: each one of these functions starts
with an assertion that its operands ranges only include 32-bit numbers.

https://vera.programming.systems
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Operation R1 R2 R3 R4 R5.i32 R5.double R6.i32 R6.double R7 W1 W2 W3 W4 Undef

add 15 2 5 386 2 ∞ 2 ∞ 21 2 1 2 80 1
sub 13 2 11 445 8 ∞ 5 ∞ 14 2 2 2 78 1
and∗ - - - - 2 - 1 - - - - - - 1
or∗ - - - - 2 - 2 - - - - - - 1
xor∗ - - - - 2 - 2 - - - - - - 1
not∗ - - - - 2 - 1 - - - - - - 1
mul 92 65 22 362 ∞ ∞ ∞ ∞ 94 4 4 4 ∞ 11
lsh∗ - - - - 1 - 1 - - - - - - 1
rsh∗ - - - - 1 - 1 - - - - - - 1
ursh∗ - - - - X - X - - - - - - 1
lsh’∗ - - - - 1 - 1 - - - - - - 1
rsh’∗ - - - - 1 - 1 - - - - - - 1
ursh’∗ - - - - X - X - - - - - - 1
abs 1 1 1 5 1 ∞ 1 224 1 1 1 4 ∞ 1
min 2 20 2 2 5 224 2 ∞ 3 2 1 2 ∞ 1
max 3 17 2 2 15 ∞ 2 ∞ 4 3 2 12 ∞ 1
floor 4 2 1 5 1 146 1 9 54 1 1 5 ∞ 1
ceil ∞ 1 X 8 1 5 1 9 266 1 1 ∞ ∞ 1
sign 1 1 1 1 1 2 1 2 1 1 1 1 2 1

Figure 8. The time it takes, in seconds, for VeRA to verify predicates the predicate from Section 5. R1-7 correspond to the
lines in the inRange predicate, while W1-4 correspond to line groups one through four in wellFormed. Broadly, R1 makes
sure the routine handles infinities correctly, R2 NaNs, R3 -0.0, R4 fractions, R5s lower bounds (over both 32-bit integer and
double values), and R6s upper bounds. W1 ensures missing upper and lower bounds imply a minimum or maximum value for
lower and upper; W2 ensures lower and upper are always valid JavaScript 32-bit numbers; W3 ensures the range’s exponent
is valid, and W4 ensures the exponent is consistent with the upper and lower bound. Finally, Undef shows the time it takes to
verify that the range computations for upper and lower are free of undefined behavior. ∞indicates timeout, while X indicates
verification failure.

it is able to catch multiple bugs in broken versions of unveri-
fied routines. For example, as we discuss later in this section,
we port an older, broken version of intersect to VeRA C++.
VeRA is able to detect the bug in this version in 173 seconds,
even though the proof for the current version of intersect
never finishes. VeRA also catches a number of errors that
we introduced while copying code over from Firefox; as we
improved VeRA, it went from being a custom DSL to a subset
of C++, so porting was not always as easy as copy-pasting
browser code. For example, we switched an upper and lower
bound in sub, which caused it to fail the floating-point lower
bounds check—even though this check never verifies in the
fixed version of sub. VeRA caught one other porting error
in sub (use of the field canBeNegativeZero instead of the
function canBeZero), and at least two more in mul (switched
lhs and rhs, and use of canBeFiniteNonNegative in place
of canBeFiniteNegative).

A new Firefox bug. VeRA found a bug in Firefox’s range
analysis for the Math.ceil operator [4], which rounds its
input up to the nearest integer (e.g., the ceiling of 2.5 is
three). The bug, which follows, has existed since the routine’s
introduction six years ago [2]:
Range* Range::ceil(TempAllocator& alloc, const Range* op) {

Range* copy = new (alloc) Range(*op);
if (copy->hasInt32Bounds())

copy->max_exponent_ =

copy->exponentImpliedByInt32Bounds();↪→

else if (copy->max_exponent_ < MaxFiniteExponent)
copy->max_exponent_++;

copy->canHaveFractionalPart_ = ExcludesFractionalParts;
copy->assertInvariants();
return copy;

}

The routine looks straightforward. Given an input range, it
adjusts the range’s exponent upwards by one—to account for
upward rounding—and unsets the canHaveFractionalPart
flag—since the result is always a whole number.

The problem lies in what ceil doesn’t do: it never adjusts
the input range’s canBeNegativeZero flag. JavaScript se-
mantics, though, dictate that Math.ceil(x) = -0 when x is
between zero and negative one. Therefore, given a range with
lower and upper bound [-1, 0] and an unset canBeNegativeZero
flag, ceil will not correctly set the flag.

VeRA identifies the error after about three seconds, and
provides the following (shortened) counterexample:

result_range_canBeNegativeZero : 0
start_range_canBeNegativeZero : 0
start_range_lower : -128
start_range_upper : 0
start : -1.166614929399505e-301
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It finds a start value, start, within the start_range of [-
128, 0] with the canBeNegativeZero flag unset. It notes that
ceil of start is result, -0, but that the result range does
not have the canBeNegativeZero flag set.

After confirming the bug with Mozilla engineers, we tried
to patch the bug and use VeRA to verify the patch. VeRA
rejected our first attempt—it was wrong—but approved the
next one [4]:
copy->canBeNegativeZero_ = ((copy->lower_ > 0) ||

(copy->upper_ <= -1))↪→

? copy->canBeNegativeZero_
: IncludesNegativeZero;

Now, the function sets the canBeNegativeZero flag to be
true when the resulting range can be includes values between
negative one and zero.

Anold Firefox bug. To test VeRA further, we port a buggy
version of Firefox’s intersect operator, which takes the in-
tersection of two ranges [10]. The buggy operator deduces
that the intersection of two ranges r1 ∩ r2 = ∅ if the up-
per bound of r1 doesn’t overlap with the lower bound of r2.
This behavior is correct—unless both ranges contain NaN, in
which case the result range should include NaN, too. VeRA
identifies the error after 173 seconds, and provides a counter
example showing an element in the two input ranges (NaN)
that was not included in the output range.

Are VeRA proofs correct? Verifiers can be as broken as
the code they are intended to verify. To guard against this
possibility, we use Haskell’s QuickCheck [52] to automati-
cally random-test the semantics of (1) the operators in the
VeRA IR and (2) the JavaScript operators that VeRA uses
for verification.5 For each JavaScript operator, we generate
JavaScript code that performs the operations, evaluates it
with Node.js, and compares the result against that produced
by our SMT model. We use Node.js (version 10.1.0) because
it uses the Chrome V8 JavaScript engine and is thus likely to
have different bugs from Firefox (and thus VeRA). Our C++
operator tests are similar; we use Clang version 9.0.0. This
checking proved useful—e.g., QuickCheck found a bug in
our implementation of the C++ floating-point abs operator.
For further assurance, we also cross-checked our JavaScript
semantics against KJS [96].

6.2 Verified Routines in the Browser
We integrate our verified range analysis into Firefox 72.0a1
(commit 10c8c9240d). Our versions of the Firefox range analy-
sis functions amount to 621 lines of C++ code. In this section,
we describe the effort it took to retrofit Firefox and measure
the performance of our modified browser when compared
with vanilla, unmodified Firefox.

5We use QuickCheck 2.13.2 on GHC 8.6.5 and configure it to test each
operator on different types (e.g., integers of varying widths) 1,000 times.

How hard is it to integrate VeRA code into Firefox?
We retrofit Firefox in two steps. First, we extend Firefox’s
Range class with a verifedRange field—pointing our veri-
fied object—and modify the class setters and getters to for-
ward all accesses to the corresponding verifiedRange fields.
For example, we rewrite,
Range* Range::abs(TempAllocator& alloc, const Range* op) {
int32_t l = op->lower_;
int32_t u = op->upper_;
...

}

to:
Range* Range::abs(TempAllocator& alloc, const Range* op) {
int32_t l = op->verifiedRange.lower;
int32_t u = op->verifiedRange.upper;
...

}

Then, we replace individual function bodies with calls to our
verified functions. For example, we rewrite abs to:
Range* Range::abs(TempAllocator& alloc, const Range* op) {
auto vRange = verified::abs(op->verifiedRange);
return Range::fromVerifiedRange(alloc, vRange);

}

Our porting effort was surprisingly low: two engineers—
neither of whom is a Firefox core developer—integrated our
VeRA C++ routines into Firefox over the course of two days.
We think this effort can be reduced even further: both steps
are mechanical and can be automated to only require human
intervention when tests fail.

Do the verified routines work correctly? To test our
ports, we run all of Firefox’s JavaScript suites (using their
mach build tool): the 7,364 JIT tests, 394 JSAPI tests (which
use the Range interface directly), and 139,564 general Java-
Script tests. Though VeRA passes all of Firefox’s tests now,
it failed some tests along the way.

After altering Firefox to call VeRA routines whenever
applicable, all but three of the JIT tests passed; one timed out
and two failed. This was because one of our ported functions
did not initialize every field of the range object; the function
was only called by a range analysis routine for a bitwise
operator, so to verify it, we did not need to set the floating-
point-specific range fields. We also failed two of the JSAPI
tests, both due to typos in our porting of intersect and
sign functions. The VeRA verification actually caught the
sign bug, but due to a miscommunication within the team,
the fix didn’t make it into Firefox immediately. The bug in
intersect caused it to over-approximate the possibility of
negative zeroes—but our verification specifically allows over-
approximation by design (§5).6 Once we fixed these bugs,
all JIT and JSAPI tests passed, and when we ran the other
139,564 Firefox JavaScript tests, all of those passed, too.

6Range combinations in Firefox are necessarily over-approximations.
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Figure 9. Page load latency of popular and unpopular web-
sites.

How do the verified routines perform? We evaluate the
performance impact of VeRA on JavaScript execution and
end-to-end page latency. We run all the performance bench-
marks on an Intel 8 core (i7-6700K machine with a base clock
rate of 4.0GHz) machine running Arch Linux with 64 GB of
memory. We compare our browser against a vanilla, unmod-
ified Firefox, and find the impact of VeRA to be on par. This
is not surprising: our C++ code is very similar to Firefox’s
original range analysis code.

To measure the performance of VeRA on JavaScript ex-
ecution, we run the JetStream 2 benchmarking suite [32],
created by the WebKit team. This benchmark subsumes the
now-deprecated SunSpider [33] benchmarking suite.7 Jet-
Stream 2 consists of 64 benchmarking tests that measure
representative JavaScript and WebAssembly workloads for
both start-up times, code execution, and “smoothness”.8 Each
test reports a score, corresponding to how well the browser
performed. We present the JetStream 2 results, as run on
2019-11-22, in Appendix A of [48]; the overall performance
of our modified Firefox is on-par with unmodified Firefox—
our browser scored 75.688 while vanilla Firefox scored 77.206.
JetStream 2 computes this score by “taking the geometric
mean over each individual benchmark’s score”. Our mean
and median scores are within 3.2% and 8.5%, respectively. The
maximum difference in scores is in 52%, in the string-unpack-
code-SP benchmark which stresses string manipulation. We
think the big differences are largely due to noise; running
the string-unpack-code-SP benchmark outside the browser
(1,000 iterations in the js shell) we only observed a 0.48%
difference.

We measure the impact of our verified code on end-to-
end page latency by browsing a representative sample of

7We did, however, run the SunSpider benchmarks and report the results in
Appendix B of [48]. It reported no meaningful performance difference.
8The WebAssembly pipeline in Firefox actually uses the JavaScript pipeline
and thus VeRA in the verified browser.

both popular and unpopular websites. In particular, we use
the list of 11 sites curated by the Chrome team in their re-
cent Chrome sandboxing work [102]. For each site, we use
Mozilla’s Talos benchmarking tool to measure the time it
takes to render a page (i.e., the time to first paint [28]), tak-
ing the median of 50 runs (after a 5 run warm-up). Figure 9
presents our measurements. The median and average laten-
cies of browsing these sites with our browser are within 5%
of vanilla Firefox. The biggest slowdown is on reddit.com
(18%), while the biggest speedup is on economist.com (-9%);
like [102], we attribute these bigger difference to the inher-
ently noise introduced by media content and the network.
Overall, these results are encouraging: VeRA does not impose
overheads that are prohibitive to its adoption.

7 Discussion, Limitations and Future Work
Why not existing proof tools? We started out building

a DSL for range analysis verification, and ended up build-
ing a compiler from both C++ and an internal verification
language to SMT. There are many existing tools that can
translate programming languages into SMT [49, 100], and
they primarily operate on an existing compiler IR (e.g., LLVM
IR) instead of defining their own IR. Verifying JavaScript JIT
optimization passes at the LLVM IR level is something to
strive for in the future, but using a small language is an eas-
ier start; to our knowledge, no LLVM-IR-level tool supports
JavaScript semantics, some don’t support C++ reliably [24],
and the ones that do can get lost in complex class object
hierarchies—in IR, series of pointer offset calculations—and
as a consequence struggle to verify anything at all. Further-
more, using these tools requires integrating them with (very
complicated) browser build systems. We, on the other hand,
don’t provide any guarantees about the final machine code.

What we don’t verify. We only verify range analysis rou-
tines for Firefox. Chrome’s range analysis pass is tied to its
type inference pass—different ranges correspond to differ-
ent types (e.g., 32-bit integers have a bound). We consider
extending VeRA to other browsers future work.

Within Firefox, the range analysis functions that we verify
all return the basic Firefox Range object type. These func-
tions contain local range analysis logic, and are called dur-
ing the range analysis computation for different MIR nodes,
Firefox’s middle-level intermediate representation of Java-
Script programs. For example, the computeRange method
for the MCeil node (representing Math.ceil) simply wraps
Range::ceil and thus reaps the benefits of our verification
effort. Many MIR nodes, however, do not correspond to a
JavaScript-level constructs (e..g, MSpectreMaskIndex is used
to represent a masked array index) and we thus do not verify
them. We also do not verify the range analysis algorithm
itself nor Firefox’s use of ranges in code generation or other
optimization passes (e.g., DCE or BCE). These are natural
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extensions to our work. Similarly, since other JIT compo-
nents (e.g., type inference) have been a source of security
vulnerabilities, we hope to address them as future work (e.g.,
by building on JIT type inference foundations [71, 73]).

8 Related Work
VeRA lies at the intersection of work on compiler verification,
JIT compilation, and browser security.

Verifying optimizations using SMT. Various prior sys-
tems have used DSLs combined with SMT solvers to express
and verify compiler optimization correctness: for example,
Cobalt [81], Rhodium [82], PEC [80] and Alive [86]. These
systems mostly focus on proving correctness of transfor-
mations, e.g., scalar optimizations in Cobalt and Rhodium,
control flow rewrites in PEC, and peephole optimizations in
Alive. There has been much less work on using DSLs and
SMT solvers to prove the correctness of analyses, with the
notable exception of the Rhodium system [82]. While con-
ceptually the techniques in VeRA are similar to Rhodium’s
techniques for analysis correctness, the analyses in Rhodium
are relatively simple, with the semantic predicate of facts of-
ten containing a single term. In contrast, VeRA demonstrates
how to use DSLs and SMT solvers to verify the correctness of
analyses in a realistic setting: our work handles all the corner
cases of Firefox’s range analysis, which in turn includes a
semantic predicate for the range facts with 16 cases.

Another difference between our work and prior work is
the type of constructs we support (in VeRA C++). Alive sup-
ports pointers and arrays (with static, known sizes), while
VeRA does not support either construct—but neither sys-
tem handles loops, since neither peephole optimizations nor
range analysis computations typically require them.

Compiler and analysis verification in a proof assis-
tant. Another approach to general compiler verification is
foundational verification. In foundational verification, the
programmer writes the compiler in a Proof Assistant, and
then uses the proof assistant to interactively prove that the
compiler is correct. Examples of foundationally verified com-
pilers include CompCert [83], CompCertTSO [116], Com-
positional CompCert [112], and CakeML [79]. Examples of
semantic IR frameworks include the Vellvm system [122],
which provides a formal semantics for LLVM IR that others
can use to verify IR optimizations/transformations.

In addition to entire compilers or IR frameworks, there
has also been work on specific analyses and optimizations
that are foundationally verified. For example, Versaco [76]
is a foundationally verified static analyzer for CompCert;
developers can use it to write their own analyses that prove
properties of analyzed programs. For specific optimizations,
Zhao et al. use Vellvm to verify a version of LLVM’s mem2reg
transformation, which changes memory references to reg-
ister references [25, 123]. Mullen et al. use the Coq proof

assistant to verify peephole optimizations for the CompCert
verified C compiler [83, 90]. Finally, Tatlock et al. extend
CompCert with a DSL for expressing optimizations [114]—
combining the DSL approach with foundational verification.

Because proofs in foundational verification are performed
in full detail, foundational verification provides the strongest
possible correctness guarantees. However, these proofs often
require a significant amount of expert human guidance, mak-
ing them very difficult to complete. In contrast, VeRA allows
browser developers to express their analysis in a subset of
C++, and then provides automated verification to the devel-
oper without any additional effort or verification knowledge.

Verification of JIT compilation. There has also been
work specifically on verifying correctness of JIT compil-
ers, including work on verifying a non-optimizing JIT com-
piler [91], and work on defining correctness criteria for trace-
based JIT compilation [72]. There is also ongoing work on
verifying a JIT in Coq [38], which includes support for some
optimizations, though it is not clear which ones; similarly,
there is ongoing work on verifying a JIT using symbolic
execution [107]. None of this work focuses on the specific
challenge that we are addressing, namely verifying the com-
plex analyses that drive optimizations in browser JITs.

Translation validation. Another approach to compiler
correctness is translation validation [92, 98, 106]: each time
the compiler runs, a validator tries to prove that the trans-
formed code behaves the same as the original code. While
translation validation can find compiler bugs, it does not
guarantee the absence of bugs, as VeRA attempts to. For
translation validation to guarantee the absence of bugs, it
would have to do validation on production runs, which in-
curs compilation overhead—not ideal for a JIT.

Recent work by Taneja et. al. goes further by proposing
an algorithm for sound and maximally precise dataflow facts
like integer ranges (similar to this work) and known bits,
among others [113]. For a given code fragment, they (1)
use their algorithm (implemented with an SMT solver) to
compute dataflow facts about that fragment and (2) compare
those facts to the ones LLVM has computed. This technique
has identified several precision errors in LLVM’s analyses,
and adapting it to help developers design tighter ranges is
interesting future work.

Verification and floating point numbers. Other sys-
tems also handle the challenge of verifying floating-point
code. Recently, Boldo et al. formalize IEEE-754 semantics in
Coq in order to extend CompCert to support programs that
use floating-point numbers [47]. More similar to VeRA, Ic-
ing [39], which builds on the verified ML compiler CakeML [79],
is a language for writing “fast-math” optimizations. Multiple
projects also extend the Alive system to support peephole
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optimizations related to floating point numbers [89, 94]. Re-
cently, Becker et al. use the Daisy tool [54] to verify opti-
mizations to floating-point computations—in programs, not
in compilers—that the Herbie [95] tool generates [40].

Testing compilers. Beyond verification, there are other
approaches to compiler correctness. One is automatic testing,
or “fuzzing,” which finds bugs but does not guarantee the
absence of errors. For example, the CSmith tool automat-
ically generates useful—well-formed, undefined-behavior-
free—inputs for testing C compilers [120]. Dewey et al. present
a system for fuzzing the Rust compiler’s type checker [56].
Finally, there are fuzzers specific to JavaScript interpreters:
Fuzzilli [65, 66], and CodeAlchemist [74]. Fuzzilli has been
remarkably effective at finding bugs in JavaScript engines;
its bug showcase lists two dozen security issues [11].

Verified JavaScript semantics. There has been a signif-
icant effort to formalize (parts of) the JavaScript language.
Most of these efforts start with a simple core language and
extend it with unwieldy JavaScript features (e.g., eval, prop-
erty descriptors, and with) [61, 70, 87, 99]. The JSCert Java-
Script subset was even mechanized in Coq, from where they
extracted a verified correct interpreter [45, 46, 62]. KJS [96]
provides a complete JavaScript semantics in the K frame-
work. Though we cross-check our semantics against KJS and
JSCert’s (where possible), this work is complimentary: they
focus on verifying JavaScript semantics, we focus on the JITs
that should preserve these semantics.

Verification in the browser. A verified browser kernel,
Quark [75], demonstrates that verification is possible in the
browser setting. Though we’re a long way from a verified
Firefox, browsers are interested in verified software. For
example, both Firefox and Chrome incorporated verified
cryptographic primitives into their TLS stacks [27, 125].

Safer browser JITs. Another approach to JIT safety is to
limit the damage of bugs, not prevent them. NaClJIT sand-
boxes both the JIT compiler and the code it produces [31].
RockJIT applies a control-flow integrity policy to the JIT
compiler and the code it produces [93]. NoJITSu prevents
code-reuse and data-only attacks [97]. Browser vendors have
also modified their JITs to reduce the effectiveness of JIT
spraying [85], a technique that allows attackers to intro-
duce bytes of their choice into pages marked executable in
browser memory [44].

Large, real-world verification. Finally, beyond what we
have discussed so far, there are many other large, real-world
verification efforts. The Astrée static analyzer has verified
safety properties of Airbus software [55]; the miTLS project
provides verified reference implementations of TLS 1.0, 1.1,
and 1.2 [42]; Barbosa et. al. [35] give an overview of verifica-
tion efforts for crypto code, including discussion of an ongo-
ing effort to formally verify the TLS 1.3 protocol. seL4 [78]

is a verified operating systems kernel; and various recent
efforts have proved properties of systems software like file
systems [50, 51, 108] and in-kernel interpreters [118].

9 Conclusion
This paper presents VeRA, a system for verifying the range
analysis pass in browser JITs. VeRA allows browser develop-
ers to write range analysis routines directly in the browser
(in a subset of C++) and provides a DSL that verification
developers can use to encode verification properties (e.g.,
range analysis invariants). VeRA automatically verifies these
properties using SMT.

We use VeRA to encode a semantics for Firefox’s range
analysis, and then port 22 Firefox analysis routines to VeRA
C++ in order to verify them. The ported version of the
browser performs on-par with the original. Moreover, VeRA
detects a bug that has existed in the browser for six years—
and verifies the Firefox patch we wrote to fix the bug.
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