

Towards "Dark" Social Networking Services

ICSI, 27. 3. 2013 Thorsten Strufe

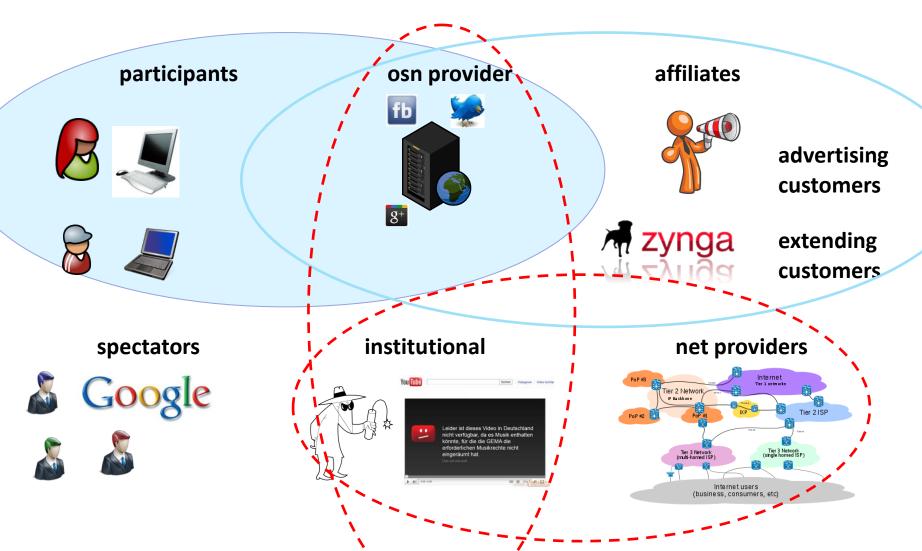
Joint work with Stefanie Roos,

Andreas Höfer, Benjamin Schiller, Antonio Cutillo

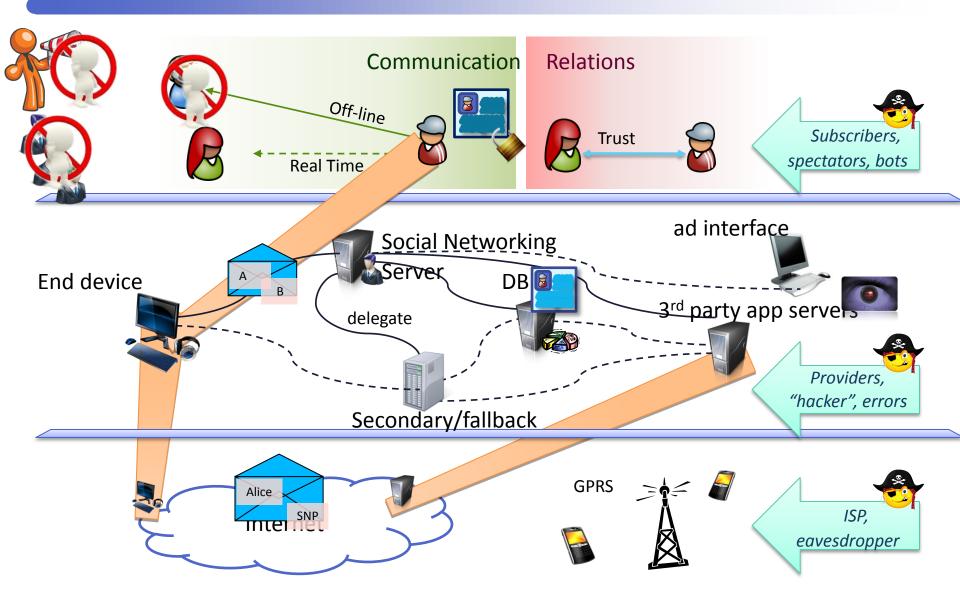
The P2P Group – What we are trying to do

- Aim: Private and fair services (communication) for everybody.
- Topics
 - Privacy preserving social networking
 - Robust and resistant means of communication
- Tools: distribution of data, processing, and control
 - Measurements
 - Analysis and modelling
 - Protocol design and simulation
 - Prototyping and measurements
- Scopes
 - Short term: Immediate remedies
 - Longer term: Paving the way
 - Vision: bullet-proof privacy/resistance

Why "dark" social networking services?

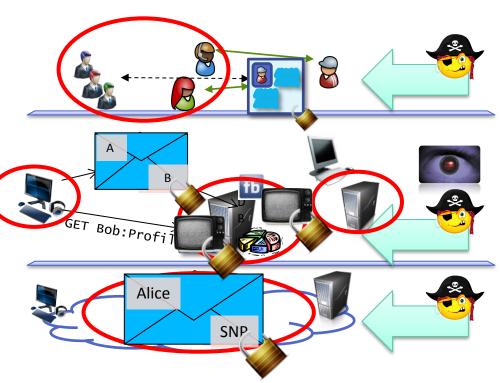

- Corporations and governments suppress individuals in plenty of ways
- Network effects, quasi monopolies, and perfect observability aggravate this situation with digital markets
 - Individuals are incapable of understanding/checking what happens with their data
 - Using and *losing data* to selected systems is *not a free choice* anymore
 - Corporations/governments abuse their power for discrimination, commercialization, and enforcing terms of use
- Comprehensive identity concealment required for freedom of speech
- Way to publish information without fear of retribution necessary
- Requires a system that enables individuals to
 - Communicate anonymously/under pseudonyms
 - Publish information reliably, and anonymously
 - Conceal their participation to untrusted parties (anybody)

Today's means of communication



Stakeholders in Communication Services

Model and Potential Adversaries



Solution Classes

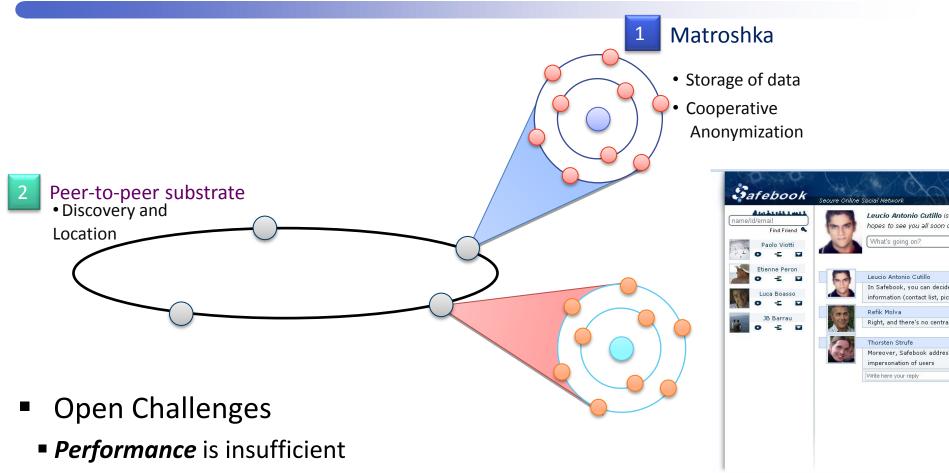
- Trust "everybody"
- Suspect Network
 - Transport Layer Security
- Suspect subscribers, public
 - Trust provider (& affiliates)
 - Apply OSN Access Control
- Suspect affiliates/browser
 - Access abuse, unsolicited msg
 - Web security, Sandboxing..

- Suspect provider & affiliates
 - Aim: Content confidentiality
 - Crypto Schemes (Scramble, NOYB)

Solution Classes – ctd.

- Suspect provider and affiliates
 - Objective: anonymity, behavioral privacy
 - Decentralization
 - Distribute data and control

Safebook – Privacy through Decentralization


- Centralized service identified as vulnerability
- Safebook: Secure Social Networking through decentralization
 - Remove centralized instance
 - Distribute storage and control
 - Decentralization requires: controlled access, trust, availability, discovery
 - Friends in social networking services trust each other in the real world
 - Leverage existing "social trust" to encourage cooperation
 - Data replication at trusted nodes to facilitate availability
 - Suspect all other service providers: encrypt everything (PKC)

Safebook

- Availability questionable (correlated churn)
- Concealed participation impossible

Social Overlays ("Darknets")

- Decentralized OSN don't achieve what we want...
- Stricter requirements
 - Anonymity/ Pseudonymity (sender and receiver)
 - Hidden participation (no 3rd party disclosure: hidden "friendships")
 - Efficient discovery and interactive communication
- Concepts
 - Connectivity constraints: mutual trust in RL
 - Overlay reflects social trust graph, topology is fixed
 - Information containment: source rewriting, mixing
 - Addressing and routing
 - Iog / polylog expected routing length required
 - Structured overlays: (1) choose ID, (2) choose neighbors
 - (2) is restricted .. adapt (1)

A **network embedding** on an undirected graph G = (V, E) is a function $ID: V \rightarrow M$

to a metric space M equipped with a distance

 $d: M \times M \to \mathbb{R} + .$

For a node $u \in V$, ID(u) is the identifier of u.

Greedy embeddings

guarantee greedy routing success (for every distinct node pair *s*,*t*: *s* is connected to or has a neighbor that is closer to *t*).

Goal:

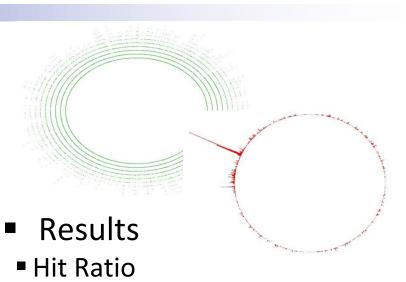
find a decentralized algorithm that approximates a greedy network embedding

The Dark Freenet

- Only deployed (used) darknet
- Assumptions:
 - Social graphs are small world, power law
 - Kleinberg
- Approach:
 - Find embedding of nodes into Kleinberg-like topology (namespace: [0,1))
 - Simulated annealing to approximate lattice with additional long-range neighbor L_u for each node u: $P(L_u = v) \propto \frac{1}{d(u,v)^d}$
 - Periodic random sampling of node pairs
 - Comparison of neighborhoods: $c(u, v) = \frac{\prod_{i \in N(u)} d(ID(u), ID(i)) \prod_{i \in N(v)} d(ID(v), ID(j))}{\prod_{i \in N(u)} d(ID(v), ID(i)) \prod_{i \in N(v)} d(ID(u), ID(j))}$
 - ID swap with probability: min{1,c(u,v)}
 - Embedding not greedy, adapted routing (DDFS)

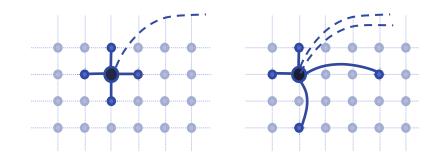
Embedding: Attacking Freenet

- Vulnerabilities: Unattested
 - Request period, source of random walk, TTL
 - ID, neighborhood (arbitrarily bad)
- Ad-hoc attacks:
 - Randomize (all IDs constantly)
 - Pretend having random ID, distant neighbors
 - Contract (all to target ID)
 - Pretend having target ID, distant neighbors


- Simulate 10k users 1% adversaries **Results:** Hit Ratio single adversary Attack Type Immediate Attack after attack convergence R Н R Н Randomize 24% 21% 32% 22% 22% Contract 27% 32% 31% No adversary: 60%
- random embedding: 21%

Embedding: A Defense – LMC

- Aim: minimize influence of adversaries:
 - Initiating/faking swap requests
 - Impact of neighborhood
- Adapt own ID based on trusted neighbors only
 - Node v selects new ID at random
 - New ID accepted with probability min{1,c(v)}
- Adversary: only fake own ID
- Reduces diversity, yields slow collaps

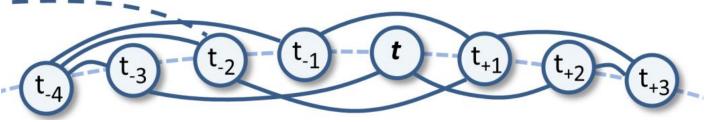


Attack Type	Immediate attack		Attack after convergence	
	R	Н	R	Н
Randomize	59%	59%	62%	62%
Contract	60%	57%	60%	59%

No adversary: 60% random embedding: 21%

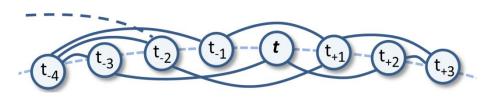
Routing: Extending Kleinberg's Model

- Observe: Perfect lattice not achieved
- Extend Kleinberg:
 - Max. distance to closest neighbor ≠ 1
 - Multitude of long range neighbors



- K'(n,d,C,L)
 - *n^d* nodes in d dimensional lattice
 - $C \in \mathbb{N}$: max distance to any node's closest neighbor
 - L: distribution of long-range links

Routing: Freenet not polylog

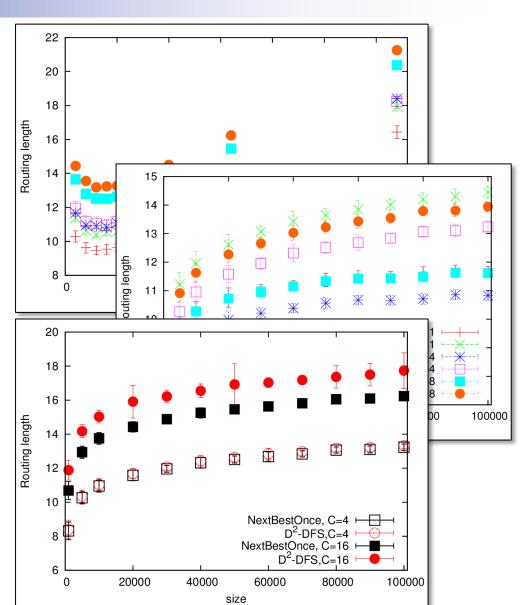

- Routing: Distance-directed depth first search
 - Forward to neighbor closest to t that has not received the message before
 - Backtrack when no neighbor left
 - "On backtrack": next closest neighbor
- "Try best node that has not received the message before..."

- Proof idea (C>2, bounded L):
 - Adverse scenario: local routing unsuccessful, long range link taken
 - 2. Success only on backtrack or other long-range link
 - 3. P_1 linear, P_2 in polylog steps negligible
- Result:
 - E(R(s,t)) bounded by log^p n

Routing: Achieve polylog – NBO

- Rationale: stick to C-neighborhood of t
- Idea:
 - Revisit nodes until all neighbors closer to t visited
 - (Signal exhausted nodes in Bloom Filter)

- Proof idea:
 - R₁, get "close"
 - R₂, get within C-neighborhood
 - R₃, get to t
- R₁, R₂: polylog, halve distances in each step
- R₃: message not passed to long distance node
 - (Proof rather technical cf. paper)
- Result:
 - $E(R(s,t) = O(max\{log^{\alpha-1} n log log n, C^2 log^{\alpha-1} n\})$

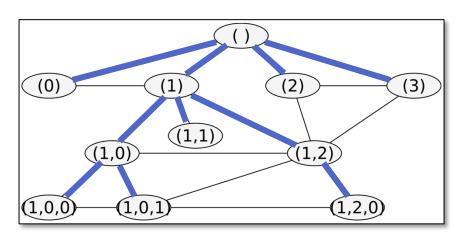

Asymptotic results.. Check with Simulations

- "Are we nearly there?"
- G ∈ K' (n ∈ {1k, 1mio}, C =[1..10,16,32])

Graph-Theoretic Network Analyzer

- R^{DDFS}(s,t), R^{NBO}(s,t)
- 30 runs each

We're not. :-)

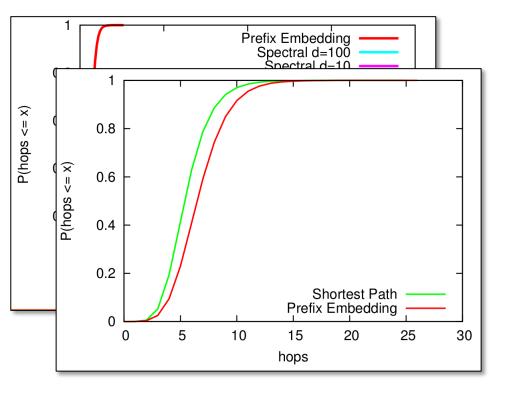


Embedding Revisited: Trees

- Large C yields too long paths
- Recall: greedy embedding
- Highly connected graphs cannot be greedily embedded, but:
- *Trees* can:
 - Hyperbolic space
 - High dim. euclid. space
 - Max-norm space (Herzen '11)

A tree embedding

- 1. Find spanning tree
- 2. Enumerate children


- d(s, t) := |s| + |t| 2|(matchingprefix(s, t)|
- (|.|: length of coordinate)

Preliminary Results

- TE achieves greedy embedding
- PGP-WoT; DDFS, Greedy

- Issues:
 - Content Addressing
 - Vulnerabilities:
 - Spanning Tree, embedding
 - "Friendship" disclosure
- Advantages:
 - Fast enough

Outlook

Need for private communication is evident.

- Social Overlays represent one solution class
 - Approximate embedding w. adapted routing
 - Better privacy, low performance
 - Greedy embeddings of spanning trees
 - High performance, lower privacy
- Towards Dark Social Networking Services

there's a long road ahead of us

