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Abstract—Recent developments made in the area of network-
specific reconfigurable hardware and associated description lan-
guage – namely the P4 language and its back-ends – promise
interesting features for rapid prototyping of packet processing
devices. Due to the need for high flexibility and increasing
trend towards softwarization, such solution is of interest for
the aeronautical industry where custom network protocols are
generally used.

Our contributions in this paper are two fold. First, an
analysis of the functionalities of P4 with respect to requirements
usually necessary for applications and network protocols in the
aeronautic industry is performed. In a second step, a perfor-
mance evaluation of three different platforms was done. Those
platforms represent three use-cases: an existing software-based
back-end using Intel DPDK, a hardware network accelerator
based on a network processor unit, and an FPGA-based platform.
Performance of those platforms are compared to existing state-of-
the-art hardware solutions used in by the aeronautical industry.

I. INTRODUCTION

In the last two decades, distributed embedded electronic
applications have become the norm in a large part of the
aeronautical industry. Those applications cover a large set of
functionalities with different requirements, ranging from flight
control with hard real-time and strict safety constraints, to
passenger entertainment with less stringent constraints. Due to
those constraints and safety aspects associated with aircrafts,
specific equipments are generally used in order to fulfill those
constraints. When such equipments are not available off-
the-shelves, costly and time consuming developments have
to be undertaken. This is especially true in the scope of
networking equipments, since standard off-the-shelves devices
for networking usually do not support aeronautical-specific
network protocols or safety-related functionalities.

A prevailing solution commonly used to address this issue
is to employ FPGAs (Field Programmable Gate Arrays) since
they offer high customizability with high performance at
moderate costs. The two main drawbacks of this approach
are that current developments using FPGAs require a high
level of expertise and long development times to produce
efficient and bug-free devices. We propose in this paper to
look at recent developments made in the area of network-
specific reconfigurable hardware and associated tools, namely
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P4 (Programming Protocol-independent Packet Processors),
recently proposed by Bosshart et al. in [1], and assess if they
are a fit for aeronautical applications.

Our main contribution in this paper is an analysis of those
new solutions in the scope of aeronautical applications in terms
of offered features and performance. We first investigate their
applicability from a functional point of view and identify miss-
ing features of the current approaches. We show that its high
flexibility in combination with simple building blocks enabling
a formal analysis make it an attractive platform for some
network protocols used in aeronautical use-cases. However,
some features such as controlling of egress packet scheduling
and methods for time-based or time-triggered protocols for
more advanced network protocols are undefined or vendor-
specific. In order to evaluate P4 in an aeronautical context,
we choose AFDX as a case-study and demonstrate that a
simplified AFDX switch can be implemented using P4.

In a second step, we do a performance analysis using mea-
surements on three different target hardware and investigate
if those new developments and platform are sufficient for
aeronautical applications from a performance point of view.
Our first target is a purely software-based solution using Intel’s
Data Plane Development Kit framework (DPDK) [2], which
is a set of libraries and drivers for fast packet processing in
the Linux userland. Our second target is based around the
Netronome Agilio CX platform, a hardware-based Network
Flow Processor (NFP) which is able to offload most packet
processing functionalities from the CPU. Our third target is
based on a FPGA (Field-Programmable Gate Array), where
packet processing is fully performed in hardware. Measure-
ments done using a network analyzer show that those platforms
are able to achieve packet processing latencies similar to those
of devices used by the aeronautical industry and a commercial-
of-the-shelf (COTS) Ethernet switch.

The rest of this paper is organized as follows. In Sec-
tion II we present similar research studies. We then introduce
in Section III the new advances made regarding network-
specific reconfigurable hardware and their associated tools.
In Section IV, we present its applicability to aeronautical
requirements, with a concrete application to existing aeronau-
tical network protocol and architectures. We do a performance
evaluation of a target hardware in Section V with results
regarding packet processing latency of frames and resource



utilization. Finally, Section VI concludes our work.

II. RELATED WORK

Approaches towards a top-down description of data-plane in
a high-level programming language have been proposed since
the late 1990s and early 2000nd. Kohler et al. proposed Click
in [3] which enables flexible packet processing in software,
but with the drawback of difficulty regarding compilation to
dedicated hardware.

More recently with the increasing use of FPGAs (Field
Programmable Gate Array) for packet processing, Brebner and
Jiang proposed the PX programming language in [4] with
a compiler targeting FPGAs. Dedicated hardware for packet
processing such as NPUs (Network Processor Unit) [5] or
RMT (Reconfigurable Match Table) [6] have also been pro-
posed. Song proposed POF (Protocol-Oblivious Forwarding)
in [7], which defines an Flow Instruction Set which is used
for processing packets.

Regarding purely software-based packet processing on com-
modity multi-core processors, various works have been per-
formed on the performance of such platforms. Dobrescu et al.
evaluated the predictability of such platform in [8]. They
evaluated how contention for shared hardware resources such
as caches can be taken into account for improving performance
predictability, an important aspect in case of safety critical
applications. More recently, Emmerich et al. benchmarked
various Linux-based software stacks for software-based packet
processing in [9] and identified various bottlenecks responsible
for poor performance.

On the proposition of more advanced networking stacks for
industrial applications, various work have been done in the
scope of Quality-of-Service and auto-configuration. Henneke
et al. provided a survey over the challenges and proposed
solutions on applying Software-Defined Networking (SDN)
paradigms to industrial networks in [10]. Various requirements
such as application-aware QoS, timing performance, monitor-
ing, security, reliability were reviewed, with the conclusion
that experience on applying SDN to existing industrial net-
works is still lacking. Heise et al. proposed to apply SDN
paradigms to avionic networks with real-time guarantees in
[11]. It was showed that deterministic network functionalities
similar to the one commonly found in real-time networks could
be achieved using SDN and OpenFlow. While those works
have shown the possible applicability of SDN to industrial
networks, a P4-based solution as presented in this paper might
be more tailored to embedded applications where simpler
functionalities are required.

III. A NEW APPROACH FOR PACKET PROCESSING DEVICES

A. Main promises of P4

In conjunction with the current trend towards softwarization
of functionalities in the field of communication networks with
the advent of Software Defined Networking and related tech-
nologies, a recent development called P4 [1] – Programming
Protocol-Independent Packet Processor – proposes a flexible

way to specify packet processing devices. The main promises
of the P4 programming language and toolchain are:

1) A simple specification of packet processing pipelines
using a high-level Domain Specific Language (DSL),
requiring no expert knowledge about the final hardware.
This DSL was specially designed to be expressive enough
for the various actions necessary in network protocols,
while restrictive enough to enable simple compilation
to dedicated target hardwares. Sample snippets of P4
descriptions for standard Ethernet and IPv4 routing are
given in Listings 1 and 2. The complete specification of
the P4 language is available on the P4 website [12, 13].

2) Compilation of specification for different hardware tar-
gets, ranging from FPGAs (Field Programmable Gate
Array) to NPUs (Network Processing Unit) to finally
purely software solutions targeting multi-core and many-
core processors, as presented later in Section V;

3) Reconfigurability in order to modify the behavior of
packet-processing devices in the field;

4) Possibility to test packet processing pipelines using well-
known network emulation tools such as mininet [14] and
ability to emulate complete network architectures.

This approach is also in line with model driven engineering,
where high level descriptions of systems are used in order to
formally verify various properties of systems.

Currently, two different P4 standards are evolving in paral-
lel: P414, which is the original P4 and subject of this paper,
and P416, a major redesign of the language with an object
oriented approach. If not stated otherwise, the text refers to
P414 only.

Listing 1: Example of Ethernet frame format definition in P4
header_type ethernet_t {
fields {
dstAddr : 48;
srcAddr : 48;
etherType : 16;

}
}

Listing 2: Example of IPv4 packet routing in P4
action route_ipv4(dst_port, dst_mac, src_mac, vid) {
modify_field(standard_metadata.egress_spec, dst_port);
modify_field(ethernet.dst_addr, dst_mac);
modify_field(ethernet.src_addr, src_mac);
modify_field(vlan_tag.vid, vid);
add_to_field(ipv4.ttl, -1);

}

B. Abstract forwarding model

P4 uses a generic packet processing pipeline as a basis
called abstract forwarding model. This model applied to a
switch is illustrated here in Figure 1. Packets are first parsed
according to customizable frame format definitions.

Based on the fields and associated values of the protocols,
so-called match+action tables are used in order to process
packets. Available actions include packet modification (chang-
ing field value, adding or removing headers), replication (for



broadcast or multicast), dropping packets or triggering of flow
control (namely update of action tables such as counters or
policers). Those match+action tables are conceptually similar
to the ones used in OpenFlow switches.

IV. APPLICABILITY FOR AERONAUTICAL APPLICATIONS

As illustrated in Section III, P4 promises various properties
which make it attractive for the aeronautical industry. We
investigate in this section the current features of P4 and their
applicability to aeronautical applications.

A. The good parts of P4

The main advantage of P4 is the decorrelation between the
behavior of a packet processing device and the hardware which
is used. It means that engineers are not tied to a specific set of
network protocols implemented by hardware vendors. This is
especially relevant in the aeronautical industry since the two
following constraints are usually present:

1) Specific network protocols only used by the aeronautical
industry are used (e.g. ARINC standards);

2) For safety reasons, devices must usually only implement
the required protocols and functionalities, meaning that
no additional features should be implemented or used.

Those two constraints usually prevent COTS devices to be
used since they may not support the required protocols, or
implement a larger set of protocols than the ones which are
required. With P4, the usability of COTS devices increases.

The second advantage of P4 is the simplicity and con-
straints put on the abstract forwarding model presented earlier
in Figure 1. Since P4 forbids dynamic memory allocation
and iterations with unknown counts – unlike more generic
programming languages such as C – formal derivations of
worst-case execution time and resource usage of a P4 program
are fairly straightforward. This means that per-packet latency,
memory footprint and maximum throughput of a packet-
processing pipeline can be determined at compile time. This
is again relevant in the aeronautical industry since constraints
on those cost factors are required in real-time applications.
In conjunction with FPGA based platforms for P4 such as
[15], deterministic processing may be achieved in hardware
components.

Finally, regarding the features supported by P4 in terms
of packet processing actions, it covers most of the use-
cases relevant for network protocols used by the aeronautical
industry. Missing features are listed in the next section.

B. Avenues for improvement

While P4 offers a lot of flexibility for expressing packet-
processing pipelines, some features are still missing for more
advanced uses needed in avionic applications.

Egress packet scheduling cannot be directly described by
P4. While there is some limited support for defining the
priority of a packet in case of targets supporting Strict Priority
Queuing (SPQ), more advanced schedulers such as Weighted
Fair Queuing [16] or Deficit Round Robing [17] are not
defined in P4. There are vendor-specific interfaces to control

the scheduling, such as described in Section V-A3. Neverthe-
less, in general, the description of more advanced Quality-of-
Service architectures which are envisioned for next-generation
aeronautical backbones such as the one presented in [18] is
limited with P4.

Since safety is an important aspect of aeronautical appli-
cations, specification and programing languages need to have
defined behavior. In the 2014 specification of P4 [12], some
aspects are incompletely specified, as for instance overflow of
integers, casting between different data types, exception han-
dling, and initial values of table entries and packet attributes.

Finally, time-based or time-triggered protocols cannot be
directly described using P4 since there are no primitives for
describing access to a clocking information. This drawback
prevents the implementation of time-synchronization proto-
cols for packet timestamping, or egress scheduling based
on time information. Such protocols and mechanisms need
to implemented around P4 in a target specific manner and
may eventually be interfaced, for example, by vendor-specific
metadata.

We note that the drawbacks listed here are with respect to
the 2014 specification of P4 [12], being the version which is
supported by the majority of platforms available at the time
of writing. A new version of the language has been published
under the name P416 [13], along with the Portable Switch Ar-
chitecture (PSA) [19] defining a set of standardized common
capabilities of network switches. Issues regarding undefined
behaviors have been addressed in P416. For functionalities
needing timing information, timestamps at ingress and egress
have been added in the Portable Switch Architecture with
a recommendation to use microsecond precision. The use-
cases targeted for this timing information are inband telemetry
for measuring queuing latencies, and checking of timeouts or
keep-alive in network protocols.

Due to the promises of P4 and its applicability to a large
variety of use-cases, improvements have been proposed in
the literature. For instance, a solution for the specification
of egress packet scheduling has been recently proposed by
Sivaraman et al. in [20]. Extensions of P4 switches with other
languages are also being investigated in order to simplify
the addition of functionalities to switches. For example, the
Domino programming language has recently been proposed
by Sivaraman et al. in [21].

C. Case-study: AFDX switching

In order to evaluate the applicability of P4 to aeronautical
use-cases, we propose to apply P4 to the case-study of Avion-
ics Full-Duplex Switched Ethernet (AFDX), an Ethernet-based
protocol for safety-critical applications standardized in ARINC
664 Part 7 [22].

An AFDX network is composed of end-systems and
switches as nodes. End-systems serve as source and destination
nodes in the network, over which applications may send data
according to bandwidth restrictions to avoid overloading. One
fundamental building block of AFDX is the notion of virtual
link (VL), which can be seen as rate-constrained network
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Figure 1: P4 Abstract Forwarding Model of a switch

tunnels. The parameters describing a VL are: the emitter
end-system of this VL, the list of receiving end-systems,
static routes between emitter and receivers, the Bandwidth
Allocation Gap (BAG), as well as minimum and maximum
frame length (smin and smax ). The BAG is defined as the
minimum time interval between the first bit of two consecutive
frames from the same VL.

We will focus in the rest of this section on the implemen-
tation of a simplified AFDX switch with P4. Switches must
ensure the following functionalities for each frame entering
the switch:

• Identification of the Virtual Link;
• Frame filtering and policing based on Virtual Link param-

eters: allowed input port, BAG and frame length limits;
• Forwarding of the frame to the correct output ports based

on the Virtual Link routing configuration.
Frames in AFDX are based on the standard Ethernet frame

format. An addressing schema is defined in ARINC 664
Part 7 (Section 3.2.5) in order to encode the Virtual Link
identification number in the last 16 bits of the destination MAC
address. Listing 3 represents how this identifier can be easily
extracted using P4.

Listing 3: Simplified AFDX frame header in P4
header_type afdx_t {
fields {
dstConst : 32;
dstVlinkID : 16;
srcAddr : 48;
etherType : 16;

}
}
header afdx_t afdx;

Switch configuration and routes in P4 are saved in so-called
tables. For our case-study, we define a table containing the
allowed input port of each Virtual Link and its output port, as
illustrated in Listing 4. Incoming packets with invalid Virtual
Link identifiers are dropped here.

Listing 4: AFDX forwarding table
table tbl_forward_virtual_link {
reads {
standard_metadata.ingress_port : exact;
afdx.dst_vlink_id : exact;

}
actions {
drop;
forward;

}
size : MAX_VIRTUAL_LINKS;

}

The P4 function ingress is called for each incoming
frame. Listing 5 describes a simplified ingress function for
AFDX with basic frame integrity checking (with respect to
the ARINC 664 requirements) application of the table from
Listing 4, and policing.

Listing 5: AFDX ingress function
control ingress {
integrity_check();
apply(tbl_forward_virtual_link);
traffic_policing();

}

Regarding policing of AFDX frames, a simple process based
on validating the BAG timing properties and minimum and
maximum frame sizes is described in the ARINC 664 Part
7 standard. While frame sizes validation is possible with P4,
filtering based on the time between frames is not (as mentioned
earlier in Section IV-B). Since from a functional point of view
the goal is to limit the bandwidth of each Virtual Link, the
standard policing mechanisms provided by P4 may be used
as an alternative. Those mechanisms are based on the use of
the two token buckets, as defined in RFC 2698 [23]. Those
meters can be easily created in P4, as illustrated in Listing 6.

Listing 6: Policing based on
meter vlink_bandwidth_bytes {
type : bytes;
direct : tbl_forward_virtual_link;
result : scheduling_metadata.color_bytes;

}

Finally, the last step is to forward frames to the correct
output ports. This is illustrated in Listing 7 with the use of
multicast by a vendor-specific mechanism.

Listing 7: forwarding
action forward(egress_ports) {
modify_field(standard_metadata.egress_spec,

EGRESS_SPEC_MULTICAST);
modify_field(intrinsic_metadata.egress_port_bitmap,

egress_ports);
}

We listed here only a subset of the functionalities needed
by an AFDX switch. More advanced features such as of oper-
ational modes, priority-based packet scheduling, and monitor-
ing functionalities based on SNMP can also be implemented
using P4.



V. PERFORMANCE EVALUATION

A. Presentation

We propose in this section to do a performance evaluation
of three different P4 targets: software-based, software-based
with hardware acceleration and FPGA-based platform.

1) Software based target: The first target is a purely
software based solution, which has been proposed by Laki
et al. in [24]. This target is based on the Intel Data Plane
Development Kit framework (DPDK) [2], which is a set of
libraries and drivers for fast packet processing in the Linux
userland. As illustrated in Figure 2, DPDK enables developers
to bypass the kernel and process frames directly in user-space.
Standard kernel overheads are avoided using DPDK, namely
system calls, context switching on blocking I/O, data copying
from kernel to user space or interrupt handling in kernel.
Benchmarks have shown that DPDK enables much faster
packet processing, as shown for example in [9]. Predictable
performance without the interference of the Linux scheduler
and other processes may be achieved by pinning the DPDK
process to dedicated CPU cores.

Network Controller

Network Driver

Application

Linux Kernel

Network Controller

Application
DPDK Libraries

User
Space

Kernel
Space

Network
Hardware

K
ernelBypass

Figure 2: Overview of the DPDK framework

A standard PC equipped with an Intel i7-2600 CPU2 with
4 physical cores and an Intel I340 T4 network card3 was
used here. This network card has 4 ports supporting 1 Gbit/s
Ethernet. Regarding software, Ubuntu 16.04 with the default
kernel, DPDK 16.04 and the software presented in [24]4 was
used. This software is compiler from P4 to a DPDK-based
application. Minor modifications to the code from [24] were
made to add profiling and remove some unnecessary overhead.

Such a platform might be interesting for functional testing
or in services with short life-cycles and no hard real-time guar-
antees needed. Typical services such as passenger connectivity
could fit these requirements, since on-board passenger devices
have a fast update rate, with changing needs and protocols.

Still, it should be kept in mind, that the performance
analysis of the software target was performed on a PC and
the results are not directly transferable to embedded platforms
with usually very limited resources (CPU processing power,
memory, caches, interface bandwidths). If to be used in field,

2Intel i7-2600: https://ark.intel.com/products/52213
3Intel I340 T4: https://ark.intel.com/products/49186
4P4@ELTE software from [24]: https://github.com/P4ELTE/p4c

an in-depth performance analysis has to be performed using
the specific hardware and software.

2) Network processor platform: The second target is based
around the Netronome Agilio CX SmartNIC [25], a hardware-
based Network Flow Processor (NFP) which is able to offload
the packet processing from the CPU. Those network cards are
based on the NFP-4xxx silicon, a many-core architecture with
72 programmable cores with 8 threads each, and 2GB DRAM
for lookup and state tables. A proprietary P4 compiler from
Netronome was used for the evaluation.

The cards which were used have two ports supporting
10 Gbit/s Ethernet. In order to provide comparable results with
the previous target with four ports, two cards were used. To
enable communication between the two cards, frames need
to be copied from one card to the other. A simple DPDK
program without any packet processing logic running on the
local CPU of the test platform was used for this purpose.
As illustrated in Figure 3a, frames coming from one NPU
(Network Processing Unit) are first processed on board, then
copied to the main memory for forwarding by the CPU, and
finally copied to the second NPU. In order to minimize the
latency jitter, all packets are always sent to the CPU, even if the
final destination is on the same NPU and could be forwarded
without CPU involvement.

While the Agilio CX SmartNIC requires a server platform
and as such is not suited for the integration into an embedded
environment, the NFP-4xxx silicon on which it is based, might
be. Therefore, to additionally evaluate the performance of
the chip, a second series of measurements was performed
without using the datapath through the CPU, assuming that
the performance of the SmartNIC in this setup is mainly
constrained by the NFP silicon. The packets were directly
forwarded back to back from one physical port to the other,
as illustrated in Figure 3b. To get comparable results, the
same P4 program was used in both cases with different table
configurations programming the destination of each packet.

Port 1

Port 3
Port 4

Port 2
CPU

NPU1

NPU2

(a) With CPU processing

Port 1

Port 3
Port 4

Port 2
CPU

NPU1

NPU2

(b) Without CPU processing

Figure 3: Data paths used in the network processor platform

3) Prototype FPGA based target: The FPGA target is based
on the Xilinx Zynq-7035 MPSoC [26]. It features a dual
core ARM Cortex-A9 processor system (PS) which is closely
coupled to a programmable logic (PL) based on the Kintex
architecture with 275k logic cells and, in our configuration,
eight high speed serial "GTX" transceivers, able to operate

https://ark.intel.com/products/52213
https://ark.intel.com/products/49186
https://github.com/P4ELTE/p4c


at up to 10.3125 GHz bit rate. Five of these transceivers are
used as 10GBASE-R Ethernet ports. The main part of the
firmware is an Ethernet switch with optional TSN (Time
Sensitive Networking) features. The switch is connected to
the external 10GBASE-R ports, as well as to internal virtual
network interface cards (VNIC) connected to the CPU (as
illustrated in Figure 4).

10GMAC 10GBASE-R

10GMAC 10GBASE-R

10GMAC 10GBASE-R

10GMAC 10GBASE-R

10GMAC 10GBASE-R

Virtual NIC

NIC Driver

Switch Driver
OS

User Space
Apps

P4/TSN
Switch

Dual ARMCPU

Xilinx Zynq-7035

Figure 4: Overview of the implemented Zynq firmware

The packet processing and forwarding is performed com-
pletely by the switch core within the PL without any in-
volvement of the PS, allowing maximum throughput and
minimum latency. The architecture of the switch itself is
outlined in Figure 5. The incoming Ethernet packets from
each port (external or internal) are queued to ingress buffers
from which they are multiplexed in a round-robin manner
to the central processing pipeline. There, the MAC header
information are extracted and looked up in hashed content
addressable memories (CAMs) to determine the destination
port(s) and queues. A demultiplexer distributes the packets to
the selected queues and seamlessly duplicates the packets for
multicasting. If the selected queues (implemented as dedicated
block RAMs) are full, the packets may be buffered in external
DDR3 memory.

Each port has 8 egress queues. The order in which the
non-empty queues are selected for transmission is determined
by a combination of strict priority [27, Sec 8.6.8.1], round
robin and the TSN algorithms CBS (Credit Based Shaper)
[27, Sec 8.6.8.2] and TAS (Time Aware Shaper) [28, Sec
8.6.8.4]. The parameters for the different algorithms are run
time configurable per queue. For the following measurements,
only one queue was used per port without any scheduling or
traffic shaping.

In the current implementation, the packet processing logic is
hardcoded in VHDL but is already prepared to be substituted
by P4 generated cores to enable fast and flexible modifications
to the behavior. For that, we are currently aiming at two
very promising approaches. Xilinx has included a P4 com-
piler into its SDNet Development Environment [29] which

translates the P4 description into an IP core which can be
integrated to the FPGA firmware. A drawback might be the
restriction to Xilinx FPGAs. The second approach comes from
Netcope Technologies which offers a P4 to VHDL compiler
[30] together with a suite of networking IP cores. In either
approach, the generated packet processing pipeline has a fixed
function completely described by the P4 program which is a
very important aspect with regard to safety assessment and
certification. Unfortunately, at the time of writing none of
the two approaches were ready for implementation into our
firmware.

It’s further to be noted, that the switch core was origi-
nally designed for a 1 Gbit/s switch and therefore currently
has a limited internal bandwidth of around 34 Gbit/s which
obviously is not sufficient to serve five 10 Gbit/s interfaces
at full line rate. It’s therefore possible for the ingress buffers
to overflow causing packets to be dropped at ingress before
processing and before assigning priorities.

B. Measurement setup
Our measurement setup is presented in Figure 6. Traffic was

generated by an Anritsu Network Analyzer MD1230B [31] on
four different Ethernet links, generating traffic for a utilization
from 0 % to 100 % (ie. up to 4 Gbit/s for the software based
platform, and 40 Gbit/s for the NPU and FPGA platforms).
This traffic is then processed and forwarded to the according
output ports on the target platform.

Regarding the P4 program which was used for making the
measurements, we used here a simple layer 2 Ethernet switch.
This P4 program parses the Ethernet header and decides which
output port(s) to use based on a learned or statically, run-time
configured MAC address table.

C. Framerate
Figure 7 presents the framerate achieved by the three

platforms for different packet sizes. Note that an ideal platform
would be able to forward 100 % of the workload for the
transmitted framerate presented in Figure 7. For packet sizes
of 64 B, the software-based platform reaches a bottleneck at
around 2.2 Mpps or 1.1 Gbit/s, meaning that it is only able to
process 28 % of the full workload of 4 Gbit/s.

In case of the network processor platform, the bottleneck is
reached at 8.7 Gbit/s with the CPU and 23 Gbit/s without CPU,
meaning it is able to process respectively 21.8 % and 57.5 %
of the full workload of 40 Gbit/s. The difference between the
two measurements is due to the direct forwarding of all packets
without any involvement of the CPU or main memory, which
is also the bottleneck for the software platform.

The FPGA platform is only able to process a maximum
of 5.6 Gbit/s with 64 B packet size. Using 1518 B packets,
the maximum throughput of 28 Gbit/s is closer to the internal
bandwidth limit of 34 Gbit/s. In addition to the internal band-
width, overhead in the processing pipeline (mainly waiting
states) limits the throughput of the FPGA target. Again, it’s
to be noted, that the switch in use was originally designed for
1 Gbit/s line rate only and further optimizations are necessary
for this configuration.
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D. Packet processing latency

Figure 8 presents the packet processing latency as a function
of the time between two frames (or framegap). We notice that
for framegaps larger than 1 µs the processing latency is of
24 µs for packet sizes of 1518 B for the software-based and
network processor platforms. Since both approaches require
copies of the frames from the network cards to the CPU,
similar latencies are expected. For framegaps smaller than 1 µs
the processing latency of the software-based platform increases
up to 1 ms depending on the packet size. The packet processing
is not able to keep up with the incoming rate and packets are
buffered leading to the increased latency. Once the buffers are
full, packets will be dropped, as already shown in Figure 7.

The network processor platform without CPU is able to bet-
ter cope with the more intensive traffic, which can be explained
by the fact that the processing is completely performed by the
NPU, without CPU involvement or the need to copy packets.

The FPGA-based platform produces the best latencies,
with values around 1.2 µs without buffering (i.e. for large
framegaps). Once the internal bandwidth limit is hit, packets
are buffered at ingress and eventually dropped. The latencies
up to 15.8 µs observed in this region of small framegaps
correspond to the capacity of the ingress buffers, which are
much smaller compared to the software/network processor
implementations and thus leading to smaller latencies in these
situations, but potentially more packet losses during short,
intense traffic bursts. However, in network systems with hard
real-time requirements, buffering of packets is unintended in

order to keep the worst-case latency short and predictable.
A comparison between the measured values on the three

platforms and previous work [11] done on an industrial AFDX
switch and an HP E3800 switch is presented in Table I. The
gap in processing latencies for software-based P4 platforms
compared to purely hardware-based ones still makes those
platforms attractive for use-cases where latency requirements
are less strict.

Switch Proc. latency

Rockwell Collins AFDX switch 5 µs
HP E3800 without OpenFlow 7.2 µs
HP E3800 with OpenFlow 7.7 µs
HP E3800 with software switching 613 µs (avg.)

(Section V-A1) P4 software switch with DPDK 24 µs
(Section V-A2) P4 switch with NPU and CPU 24 µs
(Section V-A2) P4 switch with NPU and w/o CPU 5.8 µs
(Section V-A3) Switch with FPGA platform 1.2 µs

Table I: Comparison of packet processing latency of the
evaluated P4 switch with numerical results from [11]

E. Profiling of software-based target

Software profiling was performed in order to better under-
stand the software-based platform from Section V-A1. Figure 9
presents the profiling of the P4 program using the operf5

statistical profiler for Linux. This tool enables us to evaluate
how much time is spent in each function of the P4 program and
the system. Note that only 2 cores of the CPU were used for
this measurement, explaining the maximum value of 200 %.
Three different function groups are presented in Figure 9:

• P4 primitives: Parser, Table and Actions, which is the
part taking the most resources (up to 70 %);

• DPDK primitives: Ethernet Driver, Ethernet Library and
Run Time Environment (RTE), which take relatively low
resources compared to the P4 primitives;

• Other functions: the C standard library (libc), Linux
kernel, and overhead.

5http://oprofile.sourceforge.net

http://oprofile.sourceforge.net
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Figure 7: Framerate processed by the P4 switch
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Figure 8: Packet processing latency as a function of the time between two frames

While in the tested setup the P4 program is able to almost
fully process the 4 Gbit/s of traffic as shown in Section V-C,
some work on reducing the P4 resources must be done in case
additional ports would be used.
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Figure 9: Profiling of the Linux computer with 64 B packet
sizes

VI. CONCLUSION

We investigated in this paper recent developments made
in the area of network-specific reconfigurable hardware and
associated description language, namely the P4 programing

language. This new development allows faster development
of customized packet processing devices such as Ethernet
switches or routers without the need for a deep knowledge
about the target hardware architecture.

We presented in this paper P4 and its functionalities. We
showed that its high flexibility in combination with simple
building block enabling a formal analysis make it an attractive
platform for some network protocols used in aeronautical use-
cases. While some features such as definition of advanced
egress packet scheduling and methods for time-based or time-
triggered protocols are still lacking for more advanced network
protocols, recent additions to the language in P416 and the
Portable Switch Architecture make it an attractive platform.
A case study of implementing AFDX was also performed
in order to demonstrate that aeronautical protocols may be
implemented using P4.

A performance evaluation of a simple P4 program was
carried out on three different platforms: purely software-
based target based on Intel DPDK, a hardware network ac-
celerator based on a Network Processor Unit, and a FPGA-
based platform. A comparison with an aeronautical and a
COTS switch showed that while hardware based platform
outperform software-based solutions on processing latencies,
the difference between software and hardware solutions would
be acceptable in some applications.

Since P4 is still under active development, with changes



adding incompatibility between its different version, it is not
yet ready for production use in aeronautical use-cases with
long lifetimes. Nevertheless, initiatives such as the Portable
Switch Architectures lead the way to standardized capabilities,
meaning more stability in the future. Such platform is of
high importance in the area of prototyping where functional
validation and some indication about performance evaluation
are necessary. Its simple cost model and associated formal
analysis also make it a good target for future certification of
packet processing devices.

Future work will include more in-depth studies of P4 and
its platforms, with possible evaluations and deployment in
services where frequent update is necessary, such as passenger
connectivity. Further, TSN techniques like stream reservation
and bandwidth allocation using the dedicated scheduling al-
gorithms in conjunction with P4 will be investigated. Another
area of interest would be examining methods, models and
associated tools for certification of such approaches.
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