
Towards Integrating SysML and AUTOSAR Modeling
via Bidirectional Model Synchronization

Holger Giese, Stephan Hildebrandt and Stefan Neumann
[first name].[last name]@hpi.uni-potsdam.de

Hasso Plattner Institute for Software Systems Engineering
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

Abstract: During the overall development of complex engineering systems different modeling
notations are employed. In the domain of automotive systems, for example, SysML models are
employed quite early to capture the requirements and basic structuring of the whole system,
while AUTOSAR models are employed later to describe the concrete software architecture.
Each model helps to address the specific design issue with appropriate notations and at a
suitable level of abstraction. However, when we step forward from SysML to the software design
with AUTOSAR, the engineers have to ensure that all decisions captured in the SysML model
are correctly transferred to the AUTOSAR model. Even worse, when changes occur later on
either in the AUTOSAR or SysML model, today the consistency has to be reestablished in
a cumbersome manual step. Otherwise the resulting inconsistency can result in failures when
integrating the different system parts as captured by the SysML model. In this paper, we present
how techniques for the model-driven development domain such as meta-models, consistency
rules, and bidirectional model transformations can be employed to automate this task. The
concept is exemplified by an experiment done within an industrial project.

1 Introduction
The development of complex engineering systems involves different modeling notations from
different disciplines. Taking the domain of automotive systems as an example, SysML (System
Modeling Language) [Sys08] models are employed quite early to capture the requirements and
basic structuring of the whole system and AUTOSAR (Automotive Open System ARchitecture)1

models are used later in the development process to describe the concrete software architecture
and its deployment. Using these different model helps to address each specific design issue with
an appropriate notation and at a suitable level of abstraction.

When going from the system design with SysML to the software design stage with AUTOSAR,
today, the engineers have to ensure manually that all decisions captured in the SysML model
are correctly transferred to the AUTOSAR model. When changes occur later on either in the
AUTOSAR or SysML model, the situation is even worse: The consistency has to be reestablished
in a cumbersome manual step that inspects both models and transfers all detected changes.
Otherwise, the integration of the different system parts as captured by the SysML model and
refined in the AUTOSAR model may fail.

Model-Driven Engineering and model transformation are a promising direction to approach this
problem (cf. [Win07]). Models are used to describe the system under development from different
viewpoints and on different levels of abstraction. The use of different kinds of models leads to the
problem of keeping those models consistent to each other. At this point, model transformation
systems play a central role.

Triple graph grammars (TGGs) are a formalism to declaratively describe correspondence relation-
ships between two types of models. They were introduced in [Sch94]. A TGG based transforma-
tion system can perform model transformations using this declarative transformation specification.

1http://www.autosar.org

-name : string

ComponentPortConnector

-ports

*

-component

11

-ports

2
{self.name.length < 20}

Figure 1: A simple meta model to describe components, ports and connectors

In several context different variants of TGGs have been employed for model synchronization such
as the integration of SysML models with Modelica simulation models [JPB08], keeping models
from the domain of chemical engineering consistent [BHLW07] and transformations from SDL
models to UML models and vice versa [BGN+04].

This paper reports about a project with industry in which we investigated how the SysML tool
TOPCASED and the AUTOSAR tool SystemDesk can be integrated. We use techniques from
the model-driven development domain such as meta-models, consistency rules and bidirec-
tional model transformation resp. model synchronization to automate the integration task. The
model transformation permits to automatically derive initial AUTOSAR models from SysML mod-
els and to reestablish consistency between both models in case of changes in one of them. More
specifically, our model synchronization approach [GW09] based on triple graph grammars (TGG)
[Sch94] has been employed to synchronize both models such that changes within one of them
are automatically transferred to the other one.

The automatic synchronization of models not only reduces the costs and time required for the
transition from the SysML to the AUTOSAR model. It also reduces the cost and time to reestablish
consistency in case of changes in either model. In addition, the automated synchronization is less
error prone than manual labor employed today and enables to employ iterative and more flexible
development processes as the costs for iterations or changes are dramatically reduced.

The structure of the paper is as follows: The employed concepts from MDE are outlined in Sec-
tion 2. The considered modeling notations SysML and AUTOSAR are introduced in Section 3
and the model synchronization between both are presented in Section 4. The approach and its
support for model synchronization are presented in Section 5 before we discuss its suitability for
several typical usage scenarios, such as the initial transfer of information or change propagation,
in Section 6. The paper closes with a final conclusion and an outlook on planned future work.

2 Model-Driven Engineering
At the core of the Model-Driven Engineering (MDE) approach, models build the basis for the
development of systems. Different kinds of models are used to describe the system under devel-
opment from different viewpoints and on different levels of abstraction. While these models are
all related to each other, they need to be kept in sync after modifications. For this purpose, model
transformation and synchronization systems can be used that create a new target model from an
existing source model (transformation) or modify an existing target model to make it consistent to
a source model (model synchronization). More details on model transformation will be presented
later in Section 4.

2.1 Meta Models

In MDE, general purpose modeling languages as well as Domain-Specific Languages (DSLs) are
commonly used to describe problems specific to the domain where the system is to be deployed.
Such languages can be textual or visual languages. Commonly, meta models are used to de-
scribe the abstract syntax of such languages. A meta model defines all the elements that can
be used in a valid model, as well as the relationships between them. Figure 1 shows a simple
meta model for the description of components, ports and connectors. Figure 2 shows an example
instance model in abstract and concrete syntax. The abstract syntax shows all elements of the
model as objects in an object diagram. The concrete syntax uses a specific graphical notation.

name : string = c2

: Component

: Port: Connector: Port

name : string = c1

: Component

(a) Abstract Syntax (b) Concrete Syntax

Figure 2: An example model conform to the meta model in Figure 1

2.2 Constraints on Models

Usually, UML Class Diagrams are used to describe the structure of a meta model. However, there
are some properties that cannot be expressed using class diagrams but which must be fulfilled by
valid instances of a meta model. An example is a constraint on the value an attribute may take.
For this purpose, the Object Constraint Language (OCL) can be used to express such additional
constraints. In Figure 1, an OCL constraint is used to describe, that the name of a component
must be shorter than twenty characters. These constraints can be evaluated on instances of the
meta model to check if these are indeed valid instances.

2.3 Profiles and Stereotypes

Instead of using meta models to define a modeling language, the UML can be adapted by profiles
and stereotypes. Stereotypes can be used to add new attributes to existing UML elements. They
can also define constraints that must be fulfilled by instances of the stereotyped meta elements.
A profile contains a set of stereotypes and can be applied to a UML model. The following chapter
explains the use of stereotypes for SysML models.

3 Modeling
There exist several suitable modeling languages and notations for the development of complex
systems (e. g., for embedded automotive systems), which focus on different aspects or views.
In this paper, we have a look into two different languages that are used within a particular de-
velopment thread going from the system engineering (including requirements as well as the HW
and SW structure) down to software engineering. The application domain considered here is
the development of automotive embedded systems. SysML is used to analyze and design the
overall system architecture and the AUTOSAR framework is used to specify the SW architecture
in more detail. AUTOSAR is a DSL, which focuses on the development of Electronic Control Sys-
tems. This is only one aspect of the overall system engineering process supported by the SysML
modeling language.

3.1 SysML

A widely-used language for system engineering is SysML (System Modeling Language), which
is currently available in version 1.1 (see [Sys08]). SysML supports the desing and analysis of
complex systems including HW, SW, processes and more. SysML reuses a subset of the UML
and adds some additional parts (e. g., the Requirement- and Parametric-Diagram) to facilitate
the engineering process by providing several improvements compared to the UML concerning
system engineering. The UML itself tends to be more software centric while the topic of SysML
is clearly set to the analysis and design of complex systems (not only SW).

In SysML, system blocks are used to specify the structure of the system2. For this purpose the
UML element Class is extended by the stereotype block. A block describes a logical or physical
part of the system (e.g., SW or HW). Multiple of these blocks can be used for representing the
structure of a system. An example for the additional capabilities of SysML is the possibility to
model the flow of objects between different system elements (which are specified in form of

2A block describes a part of the structure of a interconnected system.

Figure 3: Extract of the SysML metamodel

Figure 4: Application example of an SysML model created in Topcased

SysML blocks) by the usage of flow ports. A flow port is a stereotype for the UML element
Port and allows the modeling of an object flow between SysML blocks. For the specification of
objects and data, which flow over a flow port the stereotype flow specification is applied to the
UML element Interface in SysML. The SysML meta model describing blocks, flow ports and flow
specifications is shown in Figure 3.

When analyzing and designing automotive systems, the HW/SW-structure can be described us-
ing SysML blocks, ports (e. g., flow ports) and appropriate interfaces (e. g., flow specifications).
In this paper, we use a simplified version of the structural constituents taken from an applica-
tion example of an engine-fuel control system consisting of actuators and sensors for the throttle
position and the control software. The control software evaluates the sensor values, computes
appropriate throttle position values and sends them to the actuator of the throttle.

The system structure including HW and SW parts is modeled using the tool TOPCASED3 and
the resulting SysML model of the engine fuel control system is shown in Figure 4. The example
consists of six different types of blocks, three of them represent hardware parts like the engine,
a HW actuator and a HW sensor for setting and measuring the throttle position of the engine.
The HW sensor (HWSensor8Bit) is connected to a SW block (ASWCSensor), which reads in
data from the HW (e. g., by using driver functionality) and sends these measured values to a SW
block, which realizes the control functionality (ASWCThrottleControl) and computes an output
signal. This output signal is send to a SW block (HWActuator), which realizes the access to the
HW actuator, which is represented through the block HWActuator8Bit. The HWActuator interacts
with the representation of the physical engine.

When such a system is designed several restrictions have to be considered concerning the used
HW sensor blocks in combination with the software blocks. A typical restriction is that a connector
could only connect ports, which implement the same interface. In the shown example, e.g.,
the flow ports of the blocks ASWCSensor and HWSensor8Bit over which these two blocks are
connected, have to implement the same interface. Such a constraint can be expressed in form of
the following OCL constraint for the type connector:

3http://www.topcased.org/

contex t Connector inv :
s e l f . end−> f o r A l l (e : s e l f . end−>get (0) . r o l e . type == e . r o l e . type)

Only three of the blocks (ASWCThrottleControl, ASWCSensor and ASWCActuator) described
above are relevant for the SW architecture. We use stereotypes to be able to identify the definition
and the usage of SW blocks like described in Section 2. In our implementation, stereotypes are
defined for identifying, e.g., the definition of SW blocks (atomicSoftwareComponent) as well as
for the usage of the defined SW blocks (componentPrototype) like shown in Figure 4. In the
following section, we show how these constituents can be represented in a DSL, which focuses
on the development of automotive software systems.

3.2 AUTOSAR

AUTOSAR (Automotive Open System ARchitecture) is a framework for the development of com-
plex electronic automotive systems. The purpose of AUTOSAR is to improve the development
process for ECUs (Electronic Control Units) and whole systems by defining standards for the sys-
tem and software architecture. The AUTOSAR standard4 defines a meta model, which describes
a DSL for the development of automotive embedded systems. This meta model is described
in [AUT07] in form of an UML profile. We use a stand-alone meta model for AUTOSAR, which is
realized accordingly.

As defined by the AUTOSAR meta model the software architecture is build of Components (e. g.,
AtomicSoftwareComponents (ASWC)). These ASWC are derived from the type ComponentType
and can communicate using two different categories of ports, required and provided ports (rep-
resented through RPortPrototype and PPortPrototype). Both types are derived from the same
abstract class PortPrototype. An RPortPrototype only uses data or events, which are provided
by other ports of type PPortPrototype. A port of type RPortPrototype or PPortPrototype can im-
plement an interface of type PortInterface. This PortInterface is refined by ClientServerInterface
and SenderReceiverInterface. The AUTOSAR meta model for SWCs and for the different types
of ports is shown in Figure 5.

The SW blocks (ASWCSensor, ASWCActuator and ASWCThrottleControl) defined within the
SysML model described above can also be specified within an AUTOSAR model. The blocks
shown in Figure 4 can also be described using ASWCs, ports and interfaces, which are defined
within the extract of the AUTOSAR meta model shown in Figure 5. Figure 6 shows the same
SWCs modeled with the tool SystemDesk5

In case of the SysML example, the SW blocks, ports and connectors can be described directly
within such an AUTOSAR model in form of ASWCs. In case of the blocks describing HW, such
a mapping is currently not realized in our system. Therefore, the blocks, ports and connectors
concerning HW in the SysML model do not exist in the AUTOSAR model. Also the connectors,
which exist in the SysML model between the ports of a SW block and a HW block are not trans-
formed to AUTOSAR. In the next project phases, also these HW constituents will be considered.
The AUTOSAR model described in this specific case is a subset of the elements existing within
the SysML model. One possibility to derive the AUTOSAR model shown in Figure 6 from the
SysML model is to manually transfer the relevant parts. Such a manual activity is expensive and
error-prone. Furthermore, to manually keep both models consistent when changes occur is even
more difficult. Another possibility is to use techniques, which allow to automatically derive one
model from another or even to synchronize two existing models. Subsequently we describe a
technique, which supports model transformation as well as model synchronization.

4 Model Synchronization
Model transformation systems can be used to transform one model into another model using
a set of transformation rules. These rules are defined on the meta models of the source and

4Information can be found at: http://www.autosar.org
5http://www.dspace.com/ww/en/pub/home/products/sw/system architecture software/systemdesk.cfm

Figure 5: Extract of the AUTOSAR meta model

Figure 6: AUTOSAR model derived from the SysML model

target models of the transformation. They describe, what pattern of target model elements has
to be created if the source model contains a certain element pattern. The model transformation
system analyzes the source model and creates a target model according to the transformation
rules. Examples of model transformation systems are ATL[JABK08], VIATRA[CHM+02] and sys-
tems based on Triple Graph Grammars[GW09] (TGG), as well as the QVT standard[OMG], which
describes a language for expressing model transformation rules but does not provide an imple-
mentation.

p1 : PackageSYSML : CorrPackage p2 : ARPackage

name : string = aswc.name

«atomicSoftwareComponentType»

block : Block
: CorrASWC

name : string = block.name

aswc : AtomicSoftwareComponentType

++
++

++

++

++

++

++

Source

Model

Correspondence

Model

Target

Model

Figure 7: TGG rule for the transformation of a block to an atomic software component

Besides meta models also graph grammars can be used to describe a language. A graph gram-
mar contains a set of graph grammar rules and a start graph, which defines the basic elements
that must be contained in a model. The rules of a graph grammar consist of a Left-Hand-Side
(LHS) and a Right-Hand-Side (RHS). The LHS defines the context, in which the rule can be ap-
plied, i.e. the elements that must already exist in the model. If the LHS of the rule can be matched
to existing elements, these elements are replaced by the elements of the RHS. If the elements
of the LHS are also part of the RHS, they are usually left untouched. Elements that occur only
on the RHS are added to the model, elements that occur only on the LHS are deleted. Using a
graph grammar, a model can be built by applying the rules successively, starting with the start
graph.

Triple Graph Grammars combine three conventional graph grammars to describe the correspon-
dence relationships between elements of two types of models. Two graph grammars describe the
two models and a third grammar describes a correspondence model. Figure 7 shows a TGG rule
for the transformation of a SysML block to an ASWC in AUTOSAR. This illustration also combines
the LHS and RHS of the rule. The black elements belong to the LHS and the RHS of the rule.
The elements marked with ++ (and printed green) belong only to the RHS and are created when
the rule is applied. Rules that delete elements are not used in the context of model transformation
with TGGs (cf. [Sch94]). The correspondence model is used to explicitly store correspondence

relationships between corresponding source and target elements. It allows to quickly find the
target model elements corresponding to a given source model element.

Furthermore, TGGs allow bidirectional model transformations. The target model can be created
from a source model (forward transformation) and vice versa (backward transformation). Besides
model transformation, where a new target model is created, model synchronization is also sup-
ported. This means, that an existing target model is modified to make it consistent with a source
model again. Modifications made to the target model are now retained and not overwritten6.
Another advantage of synchronization is, that it can be performed much faster than a complete
model transformation, especially if the models are large and only small modifications have to be
synchronized.

The TGG rules are declarative and cannot be executed right away. Instead, operational transfor-
mation rules are derived for the forward and backward transformation. These operational rules
are executed by a transformation engine to perform the model transformation. More information
can be found in [GW09].

5 Architecture
In the industrial project, an architecture has been established, which integrates the tools TOP-
CASED and SystemDesk using the Eclipse platform. The tools are incorporated within the
Eclipse platform in a way that both types of models (SysML and AUTOSAR models) exist in
form of an EMF representation. Based on this EMF representation, the transformation and syn-
chronization techniques described in Section 4 are realized. Subsequently, we describe this
architecture in more detail.

5.1 Overall Architecture

Figure 8: Overall system architecture

Figure 8 shows the overall architecture of the system. The core is the model transformation sys-
tem, which implements the transformation and synchronization functionality. For this purpose,
the transformation system needs to have access to the existing AUTOSAR and SysML models in
EMF representation. In our architecture, this is possible in two different ways, in a file-based man-
ner by reading and writing XML files, or alternatively by accessing the models directly in the mod-
eling tools’ memories. TOPCASED already uses EMF as its underlying modeling infrastructure
and access to these EMF models from the transformation system can be realized without great
effort. Accessing SystemDesk’s models is more difficult because the technology gap between
Eclipse/EMF and SystemDesk must be bridged. For this purpose, we developed a dedicated

6Unless they collide with changes in the source model. In this case, the changes of the target model are overwritten.

adapter, that reads an AUTOSAR model in EMF representation and writes it to SystemDesk, and
vice versa. While the transformation system creates and modifies an AUTOSAR model (e.g.,
by a transformation or synchronization) in EMF representation, the SystemDesk Adapter takes
care of reading and writing the model to and from SystemDesk. The model transformation and
synchronization functionality is realized within the transformation system, which has access to
the EMF models.

5.2 SystemDesk Adapter

SystemDesk provides an API, which is implemented in form of a Component Object Model (COM)
and allows to access objects within SystemDesk from any COM-compatible application. Using
this API also the AUTOSAR models within SystemDesk can be read and written. Based on the
provided API, we have implemented an adapter, which is able to translate the model elements
of the AUTOSAR Model in SystemDesk to EMF conformant model elements and vice versa.
This adapter is used in our overall architecture to realize the bridge between SystemDesk and
Eclipse/EMF like shown in Figure 8. In our current implementation, the adapter only partially
supports the update and synchronization of AUTOSAR models in SystemDesk due to technical
challenges. In the next version, we will implement the use of Unique Identifiers (UIDs), which are
provided by the tool SystemDesk to fully support the update and synchronization of AUTOSAR
models in SystemDesk.

5.3 Rules

The core transformation system of our architecture uses TGG rules like described in section 4 to
realize the transformation and synchronization of SysML and AUTOSAR models. An example is
the rule shown in Figure 7. This TGG rule transforms a SysML Block with the appropriate stereo-
type (atomicSoftwareComponentType) to an AUTOSAR ASWC. Such rules for the transformation
and synchronization of the defined ports, interfaces and other constituents described in the meta
model cutouts for SysML and AUTOSAR shown in Section 3 (and for the opposite direction) are
also used within the transformation system.

6 Usage Scenarios
The described architecture supports several scenarios where, e.g., an initial AUTOSAR model is
derived from an existing SysML model.

Additionally, the described architecture allows the synchronization of existing models by updat-
ing only changed model elements in the target model, without overwriting the whole model each
time changes occur. Such a synchronization can be executed in both directions. Following, we
describe different usage scenarios, in which the shown architecture allows an enhanced devel-
opment process using model transformation and synchronization techniques.

6.1 Transformation from SysML to AUTOSAR

After the SysML model has been constructed, it needs to be transformed into an AUTOSAR
model to get from the system design to an initial model for the software design. Design decisions
concerning the software, which were defined in the SysML model have to be taken over to the
AUTOSAR model. With the presented system such an initial AUTOSAR model can be automat-
ically derived by a forward transformation. The automatic transformation is much faster than a
manual transformation and there is less risk of introducing errors into the AUTOSAR model. A
transformation in the other direction is also possible (backward transformation).

Figure 9: Screenshot of the OCL validation dialog in TOPCASED

6.2 Repeated Forward Synchronization from SysML to AUTOSAR

After the AUTOSAR model has been derived from the SysML model, modifications can still be
made to the SysML model. These modifications have to be transferred to the AUTOSAR model,
too. While the AUTOSAR model already exists, a complete retransformation is unnecessary.
Therefore, only the modifications are synchronized. Furthermore, the AUTOSAR model might
also have been modified, e.g., by changing the type of the IO port of the ASWC ASWCSensor
shown in Figure 6. A complete retransformation would discard these modifications. Basically, our
system supports such a synchronization. But due to restrictions of the current implementation of
the adapter (compare Section 5) the models in SystemDesk are always overwritten. In the future,
we will extend the adapter to allow the modification of the existing SystemDesk model.

6.3 Backward Synchronization from AUTOSAR to SysML

However, modifications may also be made to the AUTOSAR model in order to adjust the structure
during refinement of the software architecture, e.g., to reuse an already existing component.
Therefore, modifications also have to be propagated back to the SysML model. While most model
transformation approaches are only permit unidirectional transformations, TGGs are bidirectional.
So most changes are preserved in the SysML model.

How such a propagation of changes within the shown architecture using bidirectional transfor-
mation techniques supports the development process is demonstrated by the following scenario.
When the type of the IO port of the ASWC ASCWSensor from Figure 6 is changed within the
AUTOSAR model the TGG rules are triggered within the transformation system and the corre-
sponding SysML IO port shown in Figure 4 is updated accordingly without overwriting the whole
SysML model. When the SysML model is updated, the OCL constraint described in Section 3.1
is violated and an error message is automatically generated in TOPCASED (see Figure 9) that a
SysML connector is connected to ports, which have a different type.

6.4 Iterative and Flexible Processes

The usage scenarios outlined in sections 6.1, 6.2 and 6.3 demonstrate that our approach can
handle changes occurring in either model in any order. Therefore, the approach enables not only
a strict sequential ordering, where first the SysML model is specified and thereafter the AUTOSAR
model is derived from it (section 6.1). It also allows, that changes in the SysML model are
propagated to the already existing AUTOSAR model (section 6.2) and that necessary changes
in the AUTOSAR model are also accordingly adjusted in the SysML model (see 6.3). Therefore,
instead of a rigid sequential process, also iterative and more flexible processes can be supported.
Parallel development in the different phases is supported, changes in the different models can be
synchronized and potential conflicts can be detected. Later changes of the AUTOSAR model will
be reflected back to the SysML model after a synchronization. Such changes in an AUTOSAR
model can lead to the violation of constraints existing in SysML model like described beforehand.

7 Conclusion & Future Work
SysML models employed early on and AUTOSAR models employed later in the process can
be kept consistent using presented approach thanks to the use of model synchronization tech-
niques. It has been outlined, that usage scenarios are feasible when employing our approach,
and that additional flexibility concerning the process and in particular iterative development can
be achieved.

As future work, we plan to further extend the coverage and also address other development
artifacts. We also want to investigate how multiple models connected via model synchronization
can be efficiently managed.

Acknowledgement

We thank the dSPACE GmbH for their support to develop the presented results and Oliver Nigge-
mann, Joachim Stroop, Dirk Stichling and Petra Nawratil for their support in setting up and running
the project.

References

[AUT07] AUTOSAR. UML Profile for AUTOSAR, January 2007. AUTOSAR GbR.

[BGN+04] Sven Burmester, Holger Giese, Jörg Niere, Matthias Tichy, Jörg P. Wadsack, Robert Wagner,
Lothar Wendehals, and Albert Zündorf. Tool Integration at the Meta-Model Level within the
FUJABA Tool Suite. International Journal on Software Tools for Technology Transfer (STTT),
6(3):203–218, August 2004.

[BHLW07] Simon M. Becker, Sebastian Herold, Sebastian Lohmann, and Bernhard Westfechtel. A graph-
based algorithm for consistency maintenance in incremental and interactive integration tools.
Software and System Modeling, 6(3):287–315, 2007.

[CHM+02] György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap, András Pataricza, and Daniel
Varró. VIATRA: Visual Automated Transformations for Formal Verification and Validation of UML
Models. In Julian Richardson, Wolfgang Emmerich, and Dave Wile, editors, Proc. ASE 2002:
17th IEEE International Conference on Automated Software Engineering, pages 267–270, Ed-
inburgh, UK, 23 September 2002. IEEE Press.

[GW09] Holger Giese and Robert Wagner. From model transformation to incremental bidirectional model
synchronization. Software and Systems Modeling, 8(1), 1 February 2009.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A model transformation
tool. Science of Computer Programming, 72(1-2):31–39, 2008.

[JPB08] T. Johnson, C. Paredis, and R. Burkhart. Integrating Models and Simulations of Continuous
Dynamics into SysML. 2008.

[OMG] OMG. MOF QVT Final Adopted Specification, OMG Document ptc/05-11-01.
http://www.omg.org/.

[Sch94] Andy Schürr. Specification of Graph Translators with Triple Graph Grammars. In Proc. of the
20th International Workshop on Graph-Theoretic Concepts in Computer Science, Herrschin,
Germany, 1994. Spinger Verlag.

[Sys08] Systems Modeling Language v. 1.1, November 2008.

[Win07] Hans Windpassinger. Modellierungssprache für die Kfz-Software Entwicklung. Elektronik Praxis,
2007. http://www.elektronikpraxis.vogel.de/themen /embeddedsoftwareengineering/analyseen-
twurf/articles/95528/.

