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ABSTRACT: Video camera surveillance is becoming increasingly pervasive in both outdoor city 
environments and indoor complexes. Indeed, it is reckoned that a central Londoner is captured on well over 
300 videos on an average day. With the generation of this vast repository of visual data come the challenges 
of automated real-time detection of key events and retrieval of salient recorded information. The last 10 years 
has seen the development of a range of computerised technologies for automated surveillance. Technology of 
the authors for detecting objects left unattended in domains such as airports has resulted in successful 
commercialisation, worldwide sales and the winning of international awards. However, the need is now 
greater than ever for a surveillance system that is truly networked. Such a system will track individual people 
and vehicles through cluttered environments using hundreds of cameras. With this tracking information, the 
system will be able to detect a range of anomalous behaviours, such as the suspicious movement of a person, 
or the illegal manoeuvre of a vehicle. In this paper, we outline the state of the art in video surveillance and 
suggest that graph-based representations will prove valuable in taking surveillance to a truly networked level 
of operation. 

1 INTRODUCTION  

In recent years, automated visual surveillance has 
become a much-researched topic in computer vision, 
and with good reason. To quote New Scientist 
magazine: 

 
If the technology takes off it could put an end to a longstanding 
problem that has dogged CCTV almost from the beginning. It 
is simple: there are too many cameras and too few pairs of eyes 
to keep track of them. With more than a million CCTV 
cameras in the UK alone, they are becoming increasingly 
difficult to manage. 

New Scientist, 12 July 2003, p.4 
 

Surveillance cameras are cheap and ubiquitous, but 
the manpower required to supervise their output is 
expensive. Consequently the video from cameras is 
usually monitored sparingly or not at all. Indeed, 
video is most commonly used as an archive enabling 
referral back to an event, but only once an incident is 
known to have taken place. Even if adequate people 
are assigned to view a bank of monitors associated 
with video cameras, it is well known that human 
attention span and observancy decline rapidly over a 
short period. 

Rather than simply being used in a passive 
recording mode, surveillance systems are far more 

useful when in real time they are able to 
automatically detect key events and take action (for 
example, alert a human supervisor). Thus, a prime 
goal of automated visual surveillance is to obtain a 
live description of what is happening in a monitored 
area and take (or trigger) appropriate action. 

Examples of activities that a surveillance system 
might undertake are detections of a person: 

• Entering a particular area. 
• Removing an object. 
• Leaving a bag unattended. 
• Behaving violently or erratically. 
• Writing graffiti. 

Naturally, a system may alternatively oversee traffic 
activity (detecting illegal manoeuvres or parking) or 
the buildup of crowds (congestion), etc. 

Not always appreciated is that visual tasks people 
find straightforward can sometimes represent major 
challenges for the computer. The computational 
effort and complexity involved in simply 
“following” someone through an extended video 
sequence is enormous, and a truly robust and reliable 
tracker has yet to be developed. Compounding the 
problem is that surveillance cameras usually exhibit 
relatively low resolution, public areas under 
surveillance often have fluctuating and variable 
lighting conditions, people are frequently occluded 
by other people or structures, and people may 



temporarily leave a monitored area, etc. Each of 
these factors can add tremendous difficulty to the 
task. Nevertheless, major progress has been made in 
recent years towards the development of 
sophisticated automated surveillance systems, and 
some of this will be outlined below. 

Ubiquitous monitoring of public, workplace and 
other areas inevitably highlights privacy concerns. 
Explicit video surveillance legislation across the 
Australian states, specifying what may be monitored 
and how information may be used, is typically non-
existent or incomplete. Having said this, video-
surveillance privacy concerns appear to have 
subsided over the last ten years. In a recent survey 
concerning the London Transport system, users 
stated that their prime desire was for intensive video 
surveillance that would render their travels safer by 
detection of “individual delinquency” (Velastin et 
al., 2003). Typically, people are content to have a 
shopping precinct car park monitored if it means that 
cars and shoppers are less vulnerable to crime. 
Having said this, there is evidence that monitoring of 
troublesome street areas acts largely to move crime 
elsewhere. Further discussion of privacy concerns is 
beyond the scope of this paper.  

In the following sections, we consider the state of 
the art in video surveillance, the need for truly 
networked surveillance, and offer some suggestions 
as to how this might be achieved. Finally, some 
future prospects are discussed. Note that face 
recognition will not be discussed in this article as the 
subject is regarded as something of a separate, 
specialised field.  As it happens, though, face 
recognising systems have yet to attain a level of 
performance that would render them valuable in 
standard surveillance environments.  

2 STATE OF THE ART 

Key tasks in video surveillance are object detection, 
identification, tracking, and analysis of behaviour. 
We now discuss the state of the art in these and other 
areas before describing an example of a successful 
commercial video surveillance system.  

2.1 Detection and Identification 
The level of sophistication required of a system 

for detecting and possibly identifying objects in 
video sequences depends on the target application.  
For example, some simple problems can be solved 
merely by detecting that a moving object has entered 
a given space. Detecting congestion similarly 
requires only a basic description of each person, 
perhaps just enough to count the number of people 
present in an area.  Detection of delinquent 
behaviour, on the other hand, requires a much richer 
description of an individual, possibly including a 

history of their overall motion, limb movements and 
gaze direction.  Building up this history requires 
tracking, or following an individual through a video 
sequence. 

Various techniques have been advocated for 
detecting and tracking objects in video. Corner and 
edge features can be clustered together to form 
objects, and can then be tracked (Beardsley et al., 
1997) Alternatively “snake” contours can be used to 
detect an object outline which is then tracked across 
frames (Isard & Blake, 1998). Pixel or region based 
background subtraction techniques (reviews appear 
in Javed et al., 2002, McIvor et al., 2000) in which a 
model of foreground and/or background appearance 
is learnt have also been used, as have blob trackers 
and variations on optical flow 

Object identification is a classic computer vision 
problem that has been tackled in a variety of ways 
(one review appears in Pope, 1994). Surveillance 
footage usually has quite poor resolution, and 
objects of interest may span only a few pixels in 
each frame. This lack of information means that, 
generally, coarse colour histogram techniques are 
most applicable on a frame-by-frame basis (e.g. Raja 
et al., 1998). On the other hand, footage is available 
over a long period of time, which enables an 
informative model of motion to be constructed.  

For example, the VSAM system uses two 
identification algorithms, both of which require 
training. The first algorithm is a neural network that 
is trained on blob shape and area, and can 
discriminate individual humans, human groups, 
vehicles and clutter. The second is an LDA (Linear 
Discriminant Analysis) method performed on 11-
dimensional feature vectors that include blob 
position, width, height and image features within the 
blob. Both algorithms are reported to have 
approximately a 90% success rate, although LDA 
appears to be able to discriminate slightly more 
finely than the neural net (for instance, 
discriminating between cars and trucks) because it 
incorporates more features. Both classifiers operate 
on single frames, but results from previous frames 
are cached for smoothing. 

There is considerable military interest in the 
analysis of video surveillance; for example, see the 
DARPA Airborne Video Surveillance project1. 
Work done for this project includes the detection 
and classification of objects of interest, such as 
people and vehicles, based on the periodicity of their 
motion (Cutler & Davis, 2000). The system is 
reportedly able to differentiate bipedal (people), 
quadrapedal (dogs) and “other” objects from aerial 
footage. 

                                                 
1http://www.darpa.mil/SPO/programs/airbornevideosurveill

ance.htm 
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2.2 Tracking 
There is in general a tradeoff in object detection and 
tracking between primitives that are easy to detect, 
but difficult to track consistently (such as corner 
features), and those that are easier to track, but 
difficult to detect, such as higher level shape models 
(e.g. a 3D CAD model of the target). Surveillance 
generally demands that objects are tracked over long 
periods of time, and in varying conditions. This 
raises difficulties such as tracking in varying lighting 
conditions (possibly day and night), across a 
cluttered and dynamic background, and in the 
presence of shadows.  

Because tracking in surveillance video can be so 
demanding, an a priori model of the target (such as 
an articulated human body model, or a simple model 
of a car parameterised on width and height) is often 
used. For example, the W4 system (W4 being short 
for Who? When? Where? What?) is designed to 
track people using a combination of learned textural 
appearance models and contour tracking (Haritaoglu 
et al., 2004). The “cardboard model” of human 
shape is quite strong and can therefore be used to 
track people across cluttered backgrounds, through 
partial occlusion and in groups, and to detect 
whether a person has picked up an object. It is also 
important that trackers are able to adapt over time to 
varying conditions, for instance by including 
temporal decay or multi-modal feature distributions 
in their object model (Stauffer & Grimson, 2000). 

2.3 Behaviour analysis 
Object detection, tracking and classification, though 
unsolved problems in themselves, can be seen as 
precursors to the defining task of automated 
surveillance: the characterising of activity taking 
place in the scene, often called behaviour analysis. 
We now examine the most common applications of 
behaviour analysis, relating to human and traffic 
motion. 

2.3.1 Human motion analysis 
One of the most popular and demanding types of 
behaviour to analyse automatically is that of a 
human being (Aggarwal & Cai, 1999). A common 
approach to describing human motion is to use a 
state-based model, such as a Hidden Markov Model 
(HMM), to convert a series of motions into a 
description of activity. Such systems operate by 
training a HMM (or some variant thereon) to parse a 
stream of short-term tracked motions, analogous to 
the way speech recognition works by parsing a 
stream of phonemes. Each system has slightly 
different capabilities: for example, that of Oliver et 
al., 2000, is able to classify interactions between a 
pair of people, such as changing direction to 
approach one another, talking together, and parting, 

on a helpful background (chequerboard floor, fairly 
barren backdrop). The system of Ivanov & Bobick, 
2000, recognises simple human gestures (against a 
black backdrop), while an earlier system (Siskind & 
Morris, 1996) recognises simple actions (pick up, 
put down, push, pull, etc.), also based on a trained 
HMM. The detection of anomalous behaviour is 
addressed in Nair & Clark, 2002, for a security 
camera surveying an office corridor, to try to detect 
loitering or forced entry to an office. 

A different approach is taken by Wada & 
Matsuyama, 2000, who use a “hypothesise and test” 
algorithm to interpret and predict human behaviour 
in a pseudo-office environment (with white markers 
placed on a black floor). Hypotheses are generated 
from a classification network (similar to a HMM, 
but admitting multiple solutions) that is trained in 
the same environment in which it is used. 

A finite state machine can also be used to 
recognise a limited set of human behaviours (Ayers 
& Shah, 2001). This system relies on a great deal of 
prior knowledge about the layout of the office 
environment in which it is used, and the order in 
which actions can occur, which defines the structure 
of the state machine. It is less flexible than a Hidden 
Markov model, as all possible event transitions are 
explicitly modelled before any data is seen, but it 
requires no training. 

A challenging problem under consideration in the 
UK is the detection of individuals with suicidal 
intent on London underground platforms. There is 
evident motivation to avoid the human tragedy, and 
additionally the enormous financial cost associated 
with temporary rupture of a transport artery. 
Whether such detection is possible, however, is 
unclear. 

2.3.2 Traffic motion analysis 
Although the behaviour and motion of traffic in an 
urban area is quite different in nature to human 
behaviour, similar techniques apply to its analysis. 

Brand & Vettnaker, 2000, present a system that 
learns patterns of behaviour by training a HMM. 
Anomalous behaviour, such as a car driving in the 
wrong lane or turning left from the right hand lane, 
is then detected from a video camera mounted above 
an intersection. This system is also applied in an 
office environment to detect unusual behaviour 
(such as falling asleep, or standing at the window, 
apparently).  

The aforementioned Ivanov & Bobick system is 
demonstrated interpreting movement in a car park. 
The system can detect events such as a car entering 
or leaving the car park, a person entering or leaving 
the car park, a person being picked up or dropped 
off, or losing or finding a track. 

A system at the University of Reading is designed 
more specifically for the tracking and analysis of 
traffic from a static or vehicle mounted camera 



(Ferryman et al., 2000). It fits a 3D outline of each 
car to the video, tracks its position and velocity and 
predicts its likely future motion, raising an alarm 
when a collision is imminent. 

2.4 Query-based video retrieval 
An application receiving growing attention is query-
based video retrieval. Here the aim is to permit a 
user (e.g. security person) to ask questions of the 
system that require an automated search through 
recorded footage. Example queries might be: 

• Which vehicle last parked in this bay? 
• When did this person enter the airport? 
• Who last entered this area? 
• Who left this object here? 
• Who did this person last meet? 

Such a system evidently requires a means by which 
a user may select one of a legal set of query options, 
and query-specific information (e.g. an image 
subregion or a pointer to a person in a frame). The 
system should then trawl back through the recorded 
video in order to provide an appropriate answer.  

Processing a video backwards in time has much in 
common with the more usual forwards processing. 
Indeed, there is no reason why query systems cannot 
be used in relation to future events, and in a sense 
standard surveillance systems do just that (except 
that the vocabulary is usually limited).   

2.5 Pan-Tilt-Zoom cameras 
So far the description of previous work has largely 
assumed that cameras have fixed characteristics. 
Additional opportunities arise when using a Pan-
Tilt-Zoom (PTZ) camera for surveillance. Thus, for 
example, rather than just tracking an individual 
through a fixed FOV, it becomes possible to zoom in 
or out (so as to maintain, perhaps, an optimal-sized 
view of the face), and to rotate the camera to extend 
the effective FOV. Relatively little work has been 
done in the context of video surveillance, PTZ 
cameras having been studied most in the context of 
active vision in robotics. 

3 A SURVEILLANCE SUCCESS STORY 

In 1993 one of this paper’s authors (Brooks) was 
asked by a high-technology startup company to 
develop a solution to the surveillance problem of 
automatically detecting unattended packages (e.g. 
suitcases in airports). This was taken up as a project 
within the CRC for Sensor Signal and Information 
Processing. A pilot implementation was generated 
using new technology based on keeping statistical 
properties of small windows of the video frame. The 
statistics enable characterization of the scene’s 
background, even though it may never by visible in 

its entirety, possibly due to people constantly 
traversing the scene. The background image 
statistics are then recomputed and compared with the 
previous instance. A change in the background 
image statistics is associated with the entry of a new 
object into the scene that becomes stationary. For 
this reason, the system was termed a Background 
Change Detection method. 

A broad overview of the system was published 
without revealing commercially sensitive details 
(Gibbins et al., 1996) and a patent was established 
(Brooks et al., 2001). After failing to gain 
commercial take-up for several years, the start-up 
company iOmniscient Pty Ltd licensed the 
technology in 2001 and commissioned further 
development by the inventors. This large-scale effort 
was concerned with the drive for reduced false 
positives and the adding of new features. Thus for 
example, a facility for specifying depth-sensitive 
detection-size thresholds was introduced. 

In 2003, the resulting iOmniscient system won a 
federal and state governments award “Secrets of IT 
Innovation.” In May 2004, the system won the 
prestigious 2004 International Fire & Security 
Exhibition and Conference award for the “Best 
Product in Intelligent Surveillance.” Further 
international awards have since been won in 
Denmark, Taiwan and elsewhere.  

 

 
Figure 1. Detection trial of suspicious objects in Federal 
Parliament House 
 

Sales subsequently flowed, one of the first being 
to the Royal Ontario Art Gallery in Canada. There 
the system is used to protect paintings and other 
valuable artifacts in an efficient and cost effective 
manner, even though occlusions may be frequent. 
The system is now in use in airports and other major 
facilities and was recently chosen as a component of 
a comprehensive security facility for protecting the 
Sydney Harbour Bridge2. It has recently been on-

                                                 
2 See Australian Financial Review, 13 May 2005, p.3. 



licensed to the company 2020 Vision Systems in the 
UK, amongst others. 

The system owes its success in part to its 
possession of a valuable capability with a low rate of 
false positives and false negatives. Fig. 1 shows a 
frame from research footage in which two detections 
are highlighted. The system can be used in such 
diverse applications as detection of blocked road 
tunnels, computer theft from offices, graffiti, illegal 
parking, warehouse items that have not sold within a 
specified period, etc. 

4 FULLY NETWORKED SURVEILLANCE 

A common characteristic of most surveillance 
systems is that, although they may be implemented 
over a network of cameras, automated analysis is 
applied independently to each video stream. Thus, 
for example, the iOmniscient system described 
earlier analyses each video output in isolation. As it 
happens, this suffices for the applications in mind.  

There is a strong need, however, for surveillance 
systems that are truly networked in that inferences 
can be made on the basis of the cooperative, real-
time processing of multiple video streams generated 
simultaneously across the network. 

A complexity of this problem is that a person 
walking through such a network may be viewed at 
any given time by a single camera, two or more 
cameras, or no camera. Fig. 2 shows a (hypothetical) 
plan view of part of an airport-terminal complex 
with single entry and exit ports. A network of 9 
cameras is used to monitor the area. Shaded regions 
each depict a field of view (FOV) of a given camera. 
A person entering the terminal will obviously appear 
in camera 1 before camera 2. The unshaded area 
between the cameras indicates that the person will 
not be visible during the transition from one camera 
to the next. Cameras 3 and 4 have overlapping FOVs 
so that a person can be simultaneously visible in 
both cameras.  A further complexity is that a person 
may be simultaneously visible in cameras 5, 6 and 7.  

In Section 2.2, tracking was described in the 
context of a single camera (within-camera tracking). 
It was noted that progress has been rapid, but fully 
robust trackers have yet to be devised. Networked 
tracking refers to the problem of tracking an 
individual through a large network of cameras. Here 
the challenges are somewhat different and have 
received relatively little attention. A specific 
requirement might be as follows. A security person 
alerts the computer system to a given individual 
entering an airport and appearing in a particular 
camera’s FOV. The system should then maintain a 
permanent display of this person, insofar as is 
possible. This will require the system to highlight 
the individual in some way as he moves around a 
given FOV. However, on leaving a FOV, the system 

will need to resume tracking as soon as possible in a 
neighbouring FOV. Complicating this problem is the 
fact that the person may at times be outside of any of 
the network FOVs. 
 

 
Figure 2.  Camera fields of view within an airport com
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The above information is naturally associated with a 
graph-based representation. As an initial candidate 
representation, consider a graph with each node 
containing one of the labels 3L, 5R, etc. Here the 
interpretation is as follows. Reaching a node 3L will 
indicate that the left part of the FOV of camera 3 has 
either been entered or exited. Figure 3 shows the 
entry-exit (EE) graph for the airport. Note that this 
captures the fact that a person may pass through the 
FOVs of cameras 3 and 4 in two ways—either 
sequentially, or through the overlapping FOV 
region. Also, the EE graph makes it clear that a 3R 
to 4R to 4L transition is impossible. 

While this graph contains a significant amount of 
information, it needs careful interpretation, with a 
requirement that history information is maintained in 
order to infer the present state. For example, if 
during tracking we are situated in the graph at the 
6R node, we are unable to determine whether this 
corresponds to our object actually being visible by 
camera 6 without recourse to previous states. 
Another problem is that multiple instances of the 
same node may appear, which in general would 
appear to render impossible the learning of such 
graphs from observations.  

 
 
Figure 3. An entry-exit graph for the airport 
 

 
Figure 4. A visibility graph for the airport  
 

An alternative approach is to employ a visibility 
graph shown in Figure 4. In this case a node holds a 
list of cameras within which the tracked object is 
presently visible. A value of zero indicates that the 
object is invisible. A transition to a neighbouring 
node occurs when an object either ceases to be 

visible or becomes visible by a camera. Links are 
labelled either L or R, indicating on which side of a 
FOV the transition takes place. This representation 
has the advantage of being much more explicit in its 
information content. Each node in this graph 
corresponds to an area of airport floor partitioned 
according to camera visibility. Note that statistics 
concerning the time taken to undergo a transition 
also need to be recorded on the links. Likewise, links 
exiting a given node can record the relative 
probability of the neighbouring transitions as 
determined from extensive observations previously 
undertaken. As transition probabilities are not 
necessarily symmetric, two relative probabilities will 
need to be recorded for each link.  

Having acquired a graph-based structure capturing 
transition information, an effective tracking 
algorithm needs to be devised. One approach will be 
to incorporate full information into a Bayesian 
tracking formulation. Details will be left to a 
subsequent article. 

4.3 Networked behaviour analysis  
In a single camera FOV, behaviour analysis might 
involve detection of erratic or violent motion 
exhibited in a single video. Behaviour analysis 
across a network can involve detection of a range of 
other activities. Using network-tracking information, 
it becomes possible to determine whether an 
individual is moving through the domain in a 
standard manner. For example, in an airport, it may 
be important to isolate individuals that do not visit 
the check-in prior to passing through security 
barriers. Haphazard or backtracking paths might be 
highlighted.  Persons repeatedly trying to open 
locked doors or looking into office windows might 
be of interest in an office complex.  In a shopping 
centre, however, this behaviour may be of little 
interest, but groups of people repeatedly converging 
and splitting up might be tagged suspicious.  
Identifying these types of behaviours necessarily 
requires a networked approach to behaviour 
analysis. 

4.4 Query-based video retrieval 
As is the case for behaviour analysis there are 
certain video retrieval queries that are possible only 
in a networked video analysis system.  After it has 
been determined that something has been stolen, for 
instance, it may be possible to identify the person 
responsible, after the fact, within the video sequence 
generated by a single camera.  What networking 
adds to the system is the ability to see where else 
that person has been, what else they may have 
stolen, and where they are now. 



4.5 Pan-Tilt-Zoom in the network 
An interesting problem that has received some 
attention is the cooperative use of a multiple fixed 
cameras and a PTZ camera. Here, a large area may 
be monitored via several wide-angle low-cost 
cameras. In the event that they detect an object of 
interest, the PTZ camera can be used to obtain a 
relatively high quality, enlarged track of the object 
in question. 

4.6 Video surveillance platform 
The Video Surveillance and Analysis Group within 
the University of Adelaide has developed a 
networked surveillance platform which is currently 
monitoring internet cameras distributed across all 
areas of the campus.  The system provides an 
interface to security personnel both within the 
security office and at hand-held units which may be 
carried into the field.  The system also analyses the 
footage as it is generated by the cameras and 
archives segments which are identified as being of 
potential interest at a future date.  The advantages of 
having this system installed and monitoring a real 
camera network for the group's research efforts are 
manifold.  Current research into networked 
behaviour analysis and tracking is not only evaluated 
on real footage, but can also be tested by real users 
of the system. 

5 FUTURE CHALLENGES 

We conclude with some remarks concerning 
upcoming challenges in the areas of graph-based 
representations, scripting of videos and ubiquitous 
monitoring. 

5.1 Graph-based representations 
Rather than manually and tediously entering a graph 
representation for a specific surveillance application, 
it would be highly desirable to automatically acquire 
a representation of the camera network using 
connectivity data taken from individuals tracked 
through the network. This is something of a chicken 
and egg problem: we need a graph to aid tracking, 
but we need to do some tracking to build a graph. 
One solution would be to build the graph on the 
basis of tracking information gained (if and) when 
very few people traverse the environment, as 
appearance tracking can be effective. Even if we are 
able to do some accurate initial tracking, though, 
problems remain. If someone walks through the 
airport from the start to node 4 via 3,4 and back to 3 
via the unobserved region, how are we to correctly 
link the instances of visibility in 3 rather than 

forming a graph that is simply a linear list of visited 
nodes? One strategy may be to utilise some natural 
structural properties of the representation, as arises, 
for example, with the special form for neighbouring 
cameras that overlap (see the regular structures in 
the above graphs). Nevertheless, this remains a 
significant hurdle. 

Finally, how might we develop representations for 
more general situations in which objects may exit an 
FOV in a variety of ways (including, perhaps 
through a central area corresponding to a door)? The 
answer might lie in partitioning each FOV not into 
left and right regions but into regions based on 
visibility in other cameras. For each camera, this can 
be done by projecting the boundary of each 
overlapping FOV onto a common ground plane and 
then into the image of that camera (shown for 
camera 1 in Figure 5). This results in a set of lines 
denoting positions in the camera’s image where an 
object moving in the ground plane appears or 
disappears from another camera’s view. The position  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Camera 1 (unrelated to previous Figs) FOV divided 
according to co-visibility in 2, 3, 4 
 
of an object in the image relative to these lines 
determines which other cameras can see the object, 
as shown in Khan et al., 2003. Each time an object 
crosses one of these boundaries, its state in the 
visibility graph changes. Khan et al. propose a 
method for determining these boundary lines 
without requiring camera calibration; instead it is 
achieved by observing the appearances and 
disappearances of objects from multiple FOVs. In a 
similar vein, Lee et al., 2000, describe another 
method for tracking across overlapping FOVs that 
does not require camera calibration, provided all 
cameras can see a common ground plane. The 
algorithm works by aligning observed trajectories 
from each camera, assuming each trajectory is 
within the ground plane. In this way the cameras’ 
overlap and relative pose can be recovered. By 
acquiring these overlapping regions, these methods 
define the connectivity of the camera graph for 
overlapping cameras, which is an important step 
towards the automatic acquisition of the graph. 



 
Figure 6. Camera 1 FOV, with peripheral regions 
 

To extend these techniques to non-overlapping 
cameras, one possibility is to introduce a peripheral 
region surrounding each camera’s FOV (Figure 6). 
This region is divided by the same FOV boundaries 
defined within the camera’s FOV. If the object is 
still visible to at least one other camera when it is in 
this peripheral band, that region of the periphery is 
assigned the same label as the region in which it is 
seen in the other camera. If the object is not visible 
to any camera, it is assigned a unique label (0 in 
Figure 6). In most cases, this region will also border 
another camera. In the airport example, the invisible 
region to the left of camera 2 is the same as the 
region to the right of camera 3. An interesting 
problem will be to match these regions across 
cameras.  

5.2 Scripting of video for fast retrieval 
A concept at present in its infancy is the real-time 
scripting of incoming video. The intention here is to 
describe the activity in a video at a relatively high 
level, possibly in textual form. This might involve 
descriptions such as “red object slowly enters FOV 
from left and comes to halt at FOV centre”, or “two 
entities meet at FOV top right before exiting FOV 
together”. The aim of this scripting is to facilitate 
rapid search of the video as might be required in a 
query-based event detection system. Clearly, the 
textual description itself can then be searched, which 
in turn will link into the video. This has been termed 
the “Inverse Hollywood” problem in that it goes 
from video to script, rather than script to video. 
  Scripting opens up fascinating possibilities. For 
example, suppose that several thousand cameras 
monitor a city’s streets and that the associated 
videos are stored in digital repositories that are 
networked together. If a bank robber’s car is now 
viewed in one of the cameras, how might the escape 
path through the city be traced? The challenge is 
then to search at two levels: a meta-search is 
conducted whereby candidate repositories are 

selected, and a script search is undertaken with 
respect to an individual video. 

5.3 Ubiquitous monitoring 
The number of cameras required to completely 
monitor all but the smallest of spaces is surprisingly 
large.  This is due to the obvious fact that cameras 
cannot see around corners, but also because the 
sensor resolution is relatively low.  This means that 
people only tens of metres from the camera occupy 
so few pixels that any form of identification 
becomes very difficult. Increasing the number of 
cameras, however, requires processing that many 
more video streams.  This expansion can obviously 
only take place up to a limit.  New camera 
technologies are being developed which will 
dramatically increase the number of cameras that 
may be installed in a given area.  What has yet to be 
determined is how to process effectively the volume 
of video generated. 
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