
1

Towards Lightweight Digital Library Integration
Nkechi Nnadi and Michael Bieber

Information Systems Department
College of Computing Sciences

New Jersey Institute of Technology
University Heights, Newark, NJ 07102, USA
bieber@oak.njit.edu - nn5@njit.edu

http ://is.njit.edu/dlsi/

ABSTRACT
The Digital Library Integration Infrastructure (DLII) provides a systematic lightweight approach for
integrating digital library collections and services.  Digital library systems generally require minimal or no
changes to their code.  Users see a totally integrated environment.  They use their digital library system
just as before.   But in addition, they see extra link anchors.  Selecting one generates a list of links to
relevant metainformation (structural, content-based and knowledge-sharing relationships, and metadata).
DLII generates the vast majority of supplemental link anchors and metainformation links automatically
through the use of relationship rules.  This paper presents the concept of metainformation, describes the
DLII infrastructure and architecture, and explains how systems can integrate into the infrastructure.
This research’s primary contribution is providing a relatively straightforward, sustainable infrastructure
for integrating digital library collections and services.

KEYWORDS
digital library integration, metainformation, service integration, automatic link generation, National
Science Digital Library

1. INTRODUCTION
The Digital Library Integration Infrastructure (DLII) provides lightweight digital library integration
through automated linking.   DLII supplements collections by linking them automatically to relevant
services and related collections.  DLII supplements services by automatically giving relevant objects in
collections (and other services) direct access to these services.  Users see a totally integrated
environment, using their system just as before.   However, they will see additional link anchors, and
when clicking on one, DLII will present a list of supplemental links.  DLII will filter and rank order this
set of generated links to user preferences and tasks.  DLII provides a systematic approach for integrating
digital library systems (and by extension, any other information system with a Web interface).  Our
approach is “lightweight” or “non-intrusive” and relatively “uncoupled” because integration requires
little or no changes to a system’s source code, and collections and services can still operate
independently of DLII after integration (Barrett et al. 1996).

Following are some examples of integration by linking.  Multiple collections could be “virtually”
integrated when a concept described in one (some) is linked to further explanations, examples, and
teaching resources for that concept in and other collections.  As an example of service integration, any
collection could share a guided tour service enabling users to create a guided tour over elements in that
collection.  Services can execute over multiple collections; the guided tour could include documents from



2

several collections.  Services also can apply over other services.  For example, one could create a guided
tour leading users through the steps of a peer review process, and then annotate it.

Analysts also can take advantage of DLII to connect information and services in new ways within a
single collection or service virtually, with very low effort using relationship rules (described in §3.3.2).

A major longer-term research goal is providing a comprehensive structure for providing users with
comprehensive metainformation (Catanio et al. 2004).  Metainformation includes the structural relationships
(links to related collections and services), content-based relationships, knowledge-sharing relationships,
and metadata around an element of interest.  Combined, the metainformation goes a long way towards
establishing the full semantics for (the meaning of and context around) a system’s elements.

Digital library systems should find several benefits to integrating through DLII:

•  DLII virtually enlarges the size of a collection and the "feature set" or services that a system
(metainformation requester) provides through links to related information and relevant services that
external systems (metainformation providers) provide.

• DLII brings more users to a system (metainformation provider) because it has related information or
relevant services.

• Users also become aware of other systems (metainformation providers) through seeing links to them
within other systems.  Similarly, DLII causes users to be aware of the kinds of information and
services that are available, because of these links.

•  DLII streamlines individual systems by providing direct access through links among a single
system’s information and functions, sparing the user from navigating through a possible series of
menus.

• DLII’s lightweight approach is cheaper in time and resources than other integration approaches, with
minimal or no changes to a system’s documents or code.

Figure 1 illustrates the current DLII research prototype, integrating several two digital library systems:
NASA’s National Space Science Data Center (NSSDC) Master Catalog [http://nssdc.gsfc.nasa.gov/] and the
Nanoport AI Summarizer, a document summarizing system developed at the University of Arizona (Chau

et al. 2002).  Users make queries into the space science database from a query form.  The NSSDC
“wrapper” (see §3.3.1) parses the query result, identifying NSSDC documents and launch date elements.
DLII added supplemental anchors on the document for these elements (indicated by the circled "i" in the
2nd and 3rd columns).  The second column contains NSSDC document identifiers.  The third column
contains launch dates.  The user clicked on one of these anchors.  DLII then inferred the list of links
shown from its base of relationship rules for the kind of element selected.  When the user clicks on the
document identifier "CHALNGR," DLII generates a list of two links for document identifiers (for
elements of type “document”).  The first will prompt the NSSDC system to display this document.
The second will prompt DLII to pass the CHALNGR document to the external AI Summarizer system.
Clicking on (an element of type) launch date generates a separate list of links to services relevant to that
kind of element.



3

Figure 1: A screenshot of our current DLII prototype, integrating two independent digital library
systems: NASA’s National Space Science Data Center (NSSDC) Master Catalog and the

Nanoport AI Document Summarizer from the University of Arizona.

In addition to NASA’s National Space Science Data Center (NSSDC) and the Nanoport AI Summarizer,
we currently have three preliminary, partial integrations of digital library systems within the National
Science Digital Library [http://www.nsdl.org].   These include the AskNSDL “ask an expert” service  (Silverstein

2003), the Atmospheric Visualization Collection (Klaus et al. 2002) and the Earth Science Picture of the Day
system (Ruzek et al. 2002).  

We begin in §2 by further explaining the notion of metainformation.  In§3 we present our general
approach to integrating systems and DLII’s integration infrastructure.  §4 reviews the literature in
systems and digital library integration, as well as linking engines.  We conclude in §5 by discussion our
plans for future research, our contributions and a vision of fully integrated digital library systems.  We
note that the focus of this paper is on digital library integration, and as such we shall not detail DLII’s
use of lexical analysis and collaborative filtering, even though this research does make contributions in
each of these areas.  Lexical analysis is used to for finding content-based relationships (see §2.2).
Collaborative filitering customizes (prunes and rank orders) the list of links presented to users [Im &
Hars 2001, Zhang & Im 2002].



4

2. METAINFORMATION
The notion of metainformation expands on what people typically consider metadata.  Whereas metadata
often describes characteristics of an element of interest, surrounding relationships often point to other
entities or documents, as well as to functions (services) that can be executed over aspects of that
element.  Metainformation includes structural relationships, content-based relationships, user-declared
knowledge-sharing relationships, and metadata around an element of interest [Galnares 2001].  

2.1 Structural Relationships
Structural relationships apply to an entire class of elements in an information domain.  Structural
relationships are inherent to the design or “structure” of the system.  A database entity-relationship
diagram, for example, contains structural links. The sets of links shown in Figure 1 represent structural
relationships that apply to any document.  Clicking on any launch date would generate a different set of
links specific to that kind of element.

Structural links can connect the equivalent element, such as the same author or subject.  They also can
connect related elements (such as teaching materials on a particular subject or documents with a common
author) or characteristics of an element (such as an author’s address and background).  The connected
elements can be in the same or different systems. Thus a user may follow a link from an element in a
specific system to the related element another in a completely different system.  

Structural links often can be thought of as services.  Often the destination system will need to execute a
command (e.g., a query) to retrieve, calculate or otherwise generate the destination element.  This
command will be associated with the link’s relationship rule and executed if the user selects that link (see
§3.3.2).

2.2 Content-based Relationships
Content-based relationships also contribute to understanding the context around an element of interest.
While equally important, they are not necessarily fixed in the structure of the related systems.  Instead
they are based on the display content.  For textual content, content-based relationships typically are
found using one or more of the many lexical analysis techniques ranging from simple keyword search to
cluster analysis.  In §3.4 we briefly describe the approach that DLII currently uses, but many others are
possible.

For multimedia content, much research is underway to automatically identify enough of the non-textual
content to determine relationships.  When alternate text tags provide metadata (such as the keywords on
a photograph) or other identifying markup is available, then content-based relationships can be inferred
for these surrogate representations.

Ontologies (McGuiness et al. 2002; Fensel et al. 2002), such as those being developed as part of the Semantic Web,
could be used to generate structural relationships among key terms, found either through content-based
or structural analysis.  Part of understanding the context of an element could be to see how it fits within
a web of related terms.  A system supporting ontologies could easily be integrated within the DLII
architecture and add such links to the list that DLII generates.  The ontologies also can be used in a more
traditional way to find related terms for expanding keyword search and other content-based approaches.



5

2.3 Knowledge-sharing Relationships
Knowledge-sharing relationships can be provided by authors within digital library systems.  But they
especially encourage users within the digital library’s community to interact with each other and
participate within the digital library, thus promoting the ideal from the hypermedia research community
of the “reader as author” (Burton et al. 1995; Conklin 1987; Cotkin 1996; Miller 1995; Nielsen 1995).

Knowledge-sharing services allow people to create new kinds of metainformation that help customize
the digital library for themselves and for others, conveying some knowledge they have about an element
of interest.  These can simply be personal annotations by users to themselves as a reminder or organizing
device.  Alternatively, they can be devices for sharing knowledge with others.  (Each feature can have
access permissions specified, e.g., for being created, modified, deleted, linked to, and commented upon
by an individual, work group or the general public.)  Knowledge-sharing features include user-declared
links, metadata, comments, discussions, bookmarks (favorites), overview maps, trails and guided tours,
among others (Bieber et al. 2002).

As part of our future research, we shall be incorporating existing knowledge-sharing services within
DLII, as well as developing our own.  We also shall incorporate appropriate access permissions.

2.4 Metadata
Metadata is quite an active research topic in its own right, and mostly beyond the scope of this paper.
Using metadata rules (see §3.3.2), DLII will allow any system to provide metadata for elements within
another system.

In some of our earlier prototypes we experimented with displaying the metadata in a separate frame
from the frame containing structural, content-based and knowledge-sharing links.  When the user clicked
on an element’s link anchor, we would display the metadata for that element as well as generate a list of
links to related items and services.  However, we often found it difficult to decide whether to represent
some information, such as an element’s description or an annotation as metadata or a supplementary
link.  Our future research includes both determining the best way to display metadata and deciding what
should be displayed as metadata and what should be displayed as a structural relationship.

3. INTEGRATION APPROACH AND ARCHITECTURE
In this section we describe the general steps for integrating a system with the DLII infrastructure, and
present an overview of our architecture.  

3.1 Identifying Metainformation
System developers may wish to start by determining the kinds of metainformation their systems can
provide.  We have been developing a software engineering technique for analyzing an information domain
and determining the relationships and metadata within it.  Relationship Analysis is a systematic and
rigorous elicitation technique to discover the relationship structure of the problem domain (Yoo and Bieber

2000; Yoo et al. 2004).

One begins by identifying the elements of interest for which one wants to provide structural
relationships and metadata.  For existing systems, one can look at screen shots to identify the elements
of interest that a user might want to request metainformation about.  When designing a new system, one
can identify elements of interest (entities) from the use cases, a standard part of a formal systems



6

analysis.   For each element of interest, one asks a domain expert a series of questions to elicit
characteristics about it and the relationships around it.   

Relationship Analysis fills a major gap in today’s software engineering techniques—the lack of a
rigorous and comprehensive process to explicitly capture the relationship structure of the problem
domain.  Whereas other analysis techniques lightly address the relationship discovery process,
Relationship Analysis provides the only systematic, domain-independent analysis technique focusing
exclusively on a domain’s relationship structure.  Further description of Relationship Analysis lies
outside the scope of this paper.

Figure 2: DLII High-
level Architectural

Overview.  DLII
comprises the

shaded area.  The
dashed paths

indicate that once
integrated, digital

library systems can
share features

through DLII links
automatically.  The
digital libraries also
continue to operate

independently of the DLII.  §3.4 describes the DLII components further.

3.2. Integration Steps
Metainformation requesters send their display screens (documents, service interaction forms and results,
or anything else to be displayed on the user’s Web browser) for DLII to supplement the elements of
interest with link anchors (akin to the “i” icon in Figure 1).  DLII deploys a wrapper specific to that
system to parse the display screens and identify any elements of interest contained in each.  Later, when
a user clicks on one of the supplemental link anchors, its underlying link sends a message to DLII to
generate a customized list of relevant links to documents and services for the corresponding structural,
content-based and knowledge-sharing relationships and metadata.  These links will send the appropriate
URL or commands to the corresponding metainformation provider systems to produce this
metainformation.

The same system can be both a metainformation requestor and provider.

To integrate a digital library system that will request metainformation, an analyst must write a wrapper
and register it with DLII.

To integrate a digital library system that will provide metainformation, an analyst must register
structural, knowledge-sharing and metadata relationship rules.  Metainformation providers should also
register any glossaries or thesauri that DLII’s lexical analysis system can use to identify content-based
relationships.

User’s Web
Browser

AskNSDL
Wrapper

AVC
Wrapper

NSSDC
Wrapper

Collection
Wrapper ( i)

Service
Wrapper (j)

AskNSDL AVC NSSDC Collection ( i) Service (j)

DLII Relationship
Engine

DLII Broker

DLII Desktop
Digital Library

Integration
Infrastructure

Engine DLII Lexical
Analysis



7

3.3 DLII Components and Architecture
Figure 2 presents a high-level architecture for DLII.  We describe the major aspects that metainformation
requesters and providers provide in this section, and the rest of the architecture in the section that
follows.

3.3.1 Wrappers
The wrapper’s main task is to parse the display screens that appear on the user’s Web browser to
identify the elements of interest that DLII will superimpose with link anchors.  First, wrappers parse
the display based on an understanding of the structure of its content.  Second, DLII’s lexical analysis
system will parse the display content using content-based analysis to identify additional elements of
interest.  If any type of metainformation is available for a particular element, DLII will generate a link
anchor for that element.

Coding a wrapper is potentially the hardest part of system integration.  If the collection or service has an
extensive application programming interface (API), then it usually is quite easy to parse a display screen
and detect the elements within it.  If the system provides adequate metadata in tags or other ways
(which is becoming increasingly prevalent with XML), parsing can take advantage of these and be
straightforward.  If screens follow a well-defined template or format, which is the case with many query
systems, then parsing also should be relatively easy.  Otherwise, if a document or screen’s content is
unstructured and without embedded metadata, then DLII may have to rely solely on lexical analysis to
identify elements of interest within it.  As long as the structure of its display screens do not change, the
wrapper will not have to change over time.  We describe wrappers further in §3.4.

3.3.2 Relationship Rules
Relationship rules capture the services that each system can provide for any kind of element.
Relationship rules specify the structural, knowledge-sharing and metadata relationships for recognized
element types within the system being integrated.  This defines the integration that occurs virtually along
the dashed paths in Figure 2.  When a user selects the link anchor over an element of interest, DLII
determines many of the links to related information and services in every other system from the
relationship rules that other system has declared.  (The rest of the links are determined by content-based
analysis.)

Relationship Analysis provides a systematic methodology for analyzing an information domain to
determine its structural relationships and metadata.  Integrators then can write relationship rules for each
type of relationship or metadata found during the analysis.

Structural Relationship Rules
Each structural relationship rule represents a single relationship for a single element class.  As elements
can have many relationships, each element class can have several relationship rules.  Each element
instance triggers the same set of relationship rules, assuming conditions are satisfied for each.  For
example, in Figure 1, the relationship rule underlying the second link would include the following
parameters:

a) the element type (in this case “document”)

b) the link display label (“Summarize document in 3 sentences”)



8

c) any relationship metadata (as opposed to element metadata, which has its own rules; relationship
metadata describes the relationship or link and could include a link behavioral type (e.g., “query” or
“computational”), semantic relationship type (e.g., “detail”), keywords, etc., which are useful for
filtering links, and so forth) (Oinas-Kukkonen 1998)

d) the destination target application system (the “Nanoport AI Summarizer”)

e) the exact command(s) to send to the destination system
(“http://nano.bpa.arizona.edu/nanoport/Summarizer.jsp?url=X&length=3” where X is the document
URL)

f) any relevant conditions for including this relationship (including the user types and tasks that would
find this useful, level of expertise required, access restrictions, and so forth)

To emphasize the core idea behind relationship rules: because they operate at the “class” or “kind of
element” level, each relationship rule works for every element of that class or kind.  This means that the
rule just described applies to any “document” displayed by any digital library collection or service.

In our current DLII implementation, relationship rules are stored in an XML database.  A recent research
project called xlinkit [http://www.xlinkit.com] is the only system we know doing something similar.  They express
relationship rules in first-order logic, which we actually did in an early prototype [Bieber & Kimbrough 1992, 1994],
but have not yet re-implemented, instead concentrating on other functionality.  In future versions of
DLII we hope to go back to this more flexible and powerful format, and will consider using xlinkit within
an extended version.

Metadata Rules
Most element metadata is structural, i.e., the same parameters exist for each instance of an element class.
The goal behind metadata rules is to represent all kinds of structural metadata for an element class,
especially when parameters for the same element can be gathered from different systems.

For example, in Figure 1, one hypothetical metadata rule that could underlie the document element would
include the following parameters:

a) the element type (in this example, “document”)

b) the metadatum display type (“author”)

c) any metadata about this metadatum (semantic type (“name”), keywords, etc., for this metadatum
itself)

d) the system providing this metadatum (the NSSDC’s metadata repository)

e) the exact command(s) to send to this metadata provider

f) any relevant conditions for including this metadatum (including the user types and tasks that would
find this useful, level of expertise required, access restrictions, and so forth)

Knowledge-sharing Relationship Rules
Knowledge-sharing services can be provided through relationship rules.  Whenever the user selects an
element of interest, or a span of new text, the appropriate functionalities could be added.



9

The following hypothetical relationship rule could underlie a hypothetical “view comments” service link.
It would be valid for every type of element, including documents.  A condition check would confirm
whether any comments already exist for this element, in which case it would be included in the list of
links.

a) the element type (“generic_element”)

b) the link display label (concatenate(“view comments on this”, element_type))

c) any relationship metadata (behavioral type = “command”, semantic type = “annotation”)

d) the destination system (“NSDL Core Annotation Service”)

e) the exact command to send to the destination system (e.g., display_annotations(element_ID))

f) any relevant conditions for including this function (check_condition(“NSDL Core Annotation
Service”, existence_check(“annotations”, element_ID)) = true)

3.4 DLII Architecture
DLII is a loosely coupled system, where various components communicate with each other via messages
that conform to a well-defined standardized internal protocol. This approach allows new components to
be developed and added without affecting existing components and functionality.

Figure 2 shows an overview of the DLII architecture.  The core DLII “engine” consists of four primary
components:

•  The Desktop translates the displayable portion of DLII’s internal messages, from the standard
internal XML format to a format that can be displayed to a user via a Web browser (or other kind of
user interface) and vice versa.

• The Broker enables the communication between the DLII engine modules. All DLII messages pass
through the Broker, which then redirects them to the appropriate component.

•  The Relationship Engine maps the system data and relationships to links at run-time. The
Relationship Engine maintains a repository of relationship and metadata rules. When a screen is being
sent to the DLII Desktop for display, the Relationship Engine retrieves all relevant rules for each
element in that screen.  The Desktop then converts the elements to link anchors and the relationships
to links.

• The Lexical Analysis engine is based on Wu’s Noun Phrase Extractor [Wu et al. 2003].  It identifies key
phrases, which it then compares to those in the registered thesauri and glossaries.  Links to and/or
within the thesauri’ and glossaries’ entries are added to the list of links that the Relationship Engine
generates for that key phrase’s element.  (In future research, we shall incorporate other forms of
content analysis for non-textual elements.)  As lexical analysis is not a focus of this paper, we shall
not describe it further.

DLII’s goal is to supplement the output of digital library systems with link anchors and lists of links for
each anchor, all with minimal or no changes.  DLII will serve any Web-based system that has
implemented an appropriate wrapper.



10

In addition to parsing its output screens to identify and mark the elements of interest, the wrapper also
manages the communication between DLII and a digital library collection or service, translates the user
requests from DLII’s internal format to a format the system can process, receives the output from the
system and converts it to the DLII format.

A key characteristic of many elements of interest is that their identifiers are not the same as their display
content.  For example, a document or book may have a title that most people use, but several underlying
services will match information and operations to its internal document identifier or ISBN.  It is the job
of the wrapper to parse displays and return the internal identifiers that services would use for elements
of interest.

We next describe the information flow within DLII for a digital library collection.  Many collections have
a well-defined document format, and thus we can write a wrapper to identify their structural elements.
Alternatively, within the wrapper we could specify a template for each publication source within the
collection (newspaper, journal, conference, etc.) that has its own consistent layout.  Then if we know the
source, we can then apply its predefined template.

Information flows through DLII as follows.  Assume the user asked a digital library collection to display
a document.  The collection’s retrieval function will pass the document to its wrapper.  The collection’s
wrapper parses the document to identify possible elements of interest.   First, the wrapper does a
structural analysis; in the case of a research article, it can easily identify the title, author, publication,
sections, figures, etc.  If the article included XML markup, further elements could be identified easily.
Second, the wrapper uses a unified glossary of terms from participating collections and services to find
key phrases associated with the glossary entries.  The wrapper forms an XML message in DLII’s
internal format containing the document and all elements identified, along with their object types, which
it passes to DLII.  DLII’s Relationship Engine adds link anchors for each element to a copy of the
document, which is then passed to the user’s Web browser for display.  When the user selects any of
these DLII anchors, the Relationship Engine uses the relationship rules to generate a filtered list of links,
which it passes back to the Web browser.  When the user selects one of these links, the appropriate set
of commands associated with its relationship rule is passed to the associated collection or service.  (For
the second link in Figure 2, the DLII Relationship Engine would use the relationship rule presented
earlier to generate a query to the Nanoport AI Summarizer.)

4. RELATED RESEARCH
In this section we present related research concerning systems integration, as well as digital library
integration and linking engines.

4.1 Systems Integration
In order to provide value to a user, systems often need to share application data or services.  System
Integration (SI) enables the cooperation of multiple software modules.  It encompasses a host of
activities that are aimed at accessing data and programming logic in an environment characterized by
distributed heterogeneous systems.  The goal of SI is to utilize various autonomous systems in concert
so that they support the achievement of a common goal, by providing an integrated set of data and
services [Barrett 1996].  It is often difficult to successfully carry out systems integration with systems that
were developed independently with no thought to future integration  [Nilsonn, 1990].  In what follows, we



11

contrast DLII’s lightweight integration approach to some common middleware architectures for systems
integration.

Many systems are not designed to provide open and easy access to their data or functionality.  This is
often the problem faced when systems to be integrated belong to different autonomous organizations, as
is the case with some digital libraries.  Intra-organizational integration provides an opportunity to
enforce some degree of standardization or compliance to the systems that must be integrated.  However,
integration architectures for inter-organizational systems are not able to impose such constraints and
therefore must rely on a mechanism that allows systems to cooperate without the need for compliance
with a rigid set of standards or protocols.  This is why loosely coupled or lightweight systems
integration approaches in distributed, heterogeneous, and independent collections of systems like the
digital libraries are needed to provide ubiquitous information to users.

The technology that provides integration between systems is often referred to as middleware.
Integration technology is the mechanism that allows communication and the transfer of data among
systems.  It also allows one system to initiate actions on another system. This is the “technical” aspect
of system integration that focuses on the applications and protocols utilized to enable communication
between systems [Nilsonn et al. 1990].   Middleware solutions provide standard programming interfaces and
protocols that mask the complexity of networks and lower level protocols [Bernstein, 2000]. The various
types of middleware include transactional, message-oriented, procedural, and object-component or object
broker middleware [Emmerich 2000].

Transactional middleware applies the concepts of transactions from databases.  DLII does not provide
support for transactions, as it is unnecessary at this point in integrating digital libraries.

Message oriented middleware enables clients and servers to communicate using messages and message
queues.  The client sends a message, which includes the service parameters, to the server component by
inserting it into a message queue.  The server responds to the client request with a reply-message
containing the result of the service execution [Emmerich, 2000, Cummings, 2002]. Message systems rely on an
asynchronous communication mode, which is not appropriate for timely information on the World Wide
Web.   In DLII, on the other hand, service invocation and fulfillment is handled by relying on the HTTP
request/response model.  When a client makes a request, DLII is responsible for routing it to the
appropriate service and returning the results of that service to the requester.  (However, DLII in some
ways is similar to the Java Messaging Service (JMS) publish and subscribe mechanism.)

Procedural middleware utilizes remote procedure calls (RPC).  RPC requires a rigid architecture where
the client system (metainformation requester) is tightly coupled to the service provider because of the
need to hard-code the provider’s server interface.  When the server interface changes, the client system
must also change and implement the new interface definition.  In DLII the client is unaware of which
server fulfils its request.  Instead it simply registers to receive services that operate on an element of
interest.   The service provider’s wrapper is the component responsible for handling changes to the
server’s system.  If the service provider changes its interface then the wrapper must be adapted to
communicate in a new manner with the target system.  However, all these modifications are transparent
to the client who may still invoke a service by clicking on a link.



12

In the object and component architecture or object broker architectures, services advertise themselves in
the service registry.  Clients query the registry for service details and interact with the service using
those details. This approach does not provide support for relationships between information items or
objects (i.e., elements of interest).  Instead it focuses on matchmaking between client and servers based
on the functional interfaces described in the service registry.  In contrast, the DLII approach is organized
around structural and object relationships between elements of interest. The equivalent of service
description registry in DLII is the relationship rules repository and this specifies the services that are
available for various element types rather than the description of parameters to be sent and methods to
be initialized.  When a service is requested, the wrapper responsible for invoking the service is activated.
This eliminates the need to exchange interface descriptions between client and server.  Instead the DLII
integration mechanism handles the complexity of this interaction.

4.2 Digital Library Integration and Linking Engines
Very little research appears to exist concerning digital library integration, which is quite different from
content interoperability.  Similarly, few “engines” exist for the automatic generation of link anchors and
links.

SDLIP
SDLIP (Simple Digital Library Interoperability Protocol) acts as search middleware for digital libraries.
It provides a means for applications to access data from information sources easily.  It handles the
transport of queries and results, as well as negotiation of parameters for searches.  A client may interact
directly with an information source using SDLIP if that information source provides SDLIP access.
Otherwise, the client utilizing SDLIP interacts with a proxy that communicates with the information
source in its native protocol or API, and the proxy then performs the required translation and conversion
between client and information source [Paepcke et al. 2000].

In contrast, DLII does not implement or specify any protocol that requires compliance by clients and
service providers (or their proxies).  Client applications communicate with DLII through HTTP by
clicking on a link to a service or data.  DLII routes the client's request to the wrapper that communicates
with the service.  The wrapper is then responsible for communicating with the provider using its native
protocols and APIs, and converting the results of the interaction in a format the client can understand
(typically HTML or XML).

SFX
SFX (Van de Sompel 1999a,b,c; Van de Sompel & Beit-Arie 2001a,b) is one of the only approaches we have found that are
similar to DLII.  Both SFX and DLII can generate a set of context-sensitive links.  SFX operates
primarily within citation environments.  When the user clicks on an SFX-button (anchor) inserted by a
citation, SFX looks up destination collections that contain the cited resource from a set of registered
collections.  SFX uses the OpenURL protocol to record metadata parameters for citations (Van de Sompel et al.

2000).  While primarily used with traditional on-line library resources, SFX’s approach could relatively
easily be generalized to include links to other kinds of services and collections, and its developers are
beginning to explore this (Van de Sompel & Beit-Arie 2001b).

Collections and services can automatically insert SFX-buttons into citation lists.  It seems that they
primarily generate these anchors at the same time they generate query results from a search.  In contrast,



13

DLII’s approach requires few or no changes to the collection or service.  The collection or service passes
pages to DLII for further processing.  Wrappers identify elements to link and DLII automatically inserts
anchors over these elements.  (Nothing precludes applications from post-processing documents as DLII
does to include SFX-buttons; we just have found no published evidence that any do this yet.)

DLII also could integrate SFX as a citation service, with an SFX wrapper passing information to and
from SFX in OpenURL format.

LinkFinder and LinkFinder Plus [Samuels 2001] are link server products similar to SFX.

Other Linking Approaches
A few commercial products have appeared which generate anchors and links, such as NBC-Interactive's
now defunct QuickClick [http://www.quickclick.com] and Microsoft's discontinued Smart Tags. QuickClick finds
its links in two ways. First, it has a list of predefined keywords that it recognizes and a set of relevant
links for each, such as company names.  Second, it finds relevant links through a standard keyword
search.  Smart Tags [Kaminski 2001] similarly is content-based, utilizing a predefined set of words it
recognizes or  words that match a particular expression such as the format for legal citations.  It provides
not only links to sites on the Web, but also the ability to be customized to invoke services on
applications.  However, the Smart Tag recognizer is embedded in the user's Web browser.  Both
concepts is much less powerful than what we propose.  In addition, unlike Smart Tags we provide an
independent layer, separate from both the client's browser and the system providing information or
services.

DLII also differs from most hypermedia linking engines (Anderson 1997, Carr et al. 1998, Davis et al. 1992, Grønbæk & Trigg

1999), which rely on user-declared manual linking or keyword search.

A few hypermedia engines execute independently of an application with minimal modifications to it, and
provide the application’s users with hypermedia support. Few approaches provide transparent
hypermedia integration as DLII.  Notable projects include Microcosm’s Universal Viewer (Davis et al. 1994),
Freckles (Kacmar 1993, 1995), the Distributed Link Service (Carr 1995) and the OO-Navigator (Garrido and Rossi 1996; Rossi

et al. 1996))))))00.

Microcosm's Universal Viewer and Freckles seamlessly support an application’s other functionality but
provide only manual linking. OO-Navigator comes the closest to our approach, providing a seamless
hypermedia support for computational systems that execute within a single Smalltalk environment (Garrido

and Rossi 1996). This approach meets our goal of supplementing Smalltalk applications with hypermedia
support without altering them. Our approach applies to any Web-based service or collection.

Lastly we note that several Web sites automate linking for database applications.  For example,
electronic shopping applications will fill a template such as a catalog page, adding specific links for
whichever product appears there.  Several digital library query engines similarly add links to query
results returned from a database.  DLII provides a generalized approach that will function beyond
database applications.  Also, anchors within Web applications tend to have a single link, while anchors
within DLII-enhanced systems typically produce a list of relevant links, each representing a different
relationship on the anchor's element of interest.



14

5. FUTURE RESEARCH ISSUES
In the course of this research we anticipate resolving several issues.  These include:

- User Interface Studies: We shall conduct user interface studies to determine the best ways to display
metadata, as well as link anchors, links and lists of links to metainformation

- Where to store service data: If a service has been designed for a particular collection, can it now store
service data (e.g., comments and peer reviews) for other collections?  If not, the wrapper may have to
store data for the external ones.

- Service customization: Some services may need customization to serve new audiences.  Several digital
library services, such as annotations and guided tours, would work over most collections and services
(Harnad,1996,1999).  Other services need to be customized to particular communities.  One example is peer
review.   Different communities require different numbers of reviewers, use different methods for
assigning reviewers, handle the evaluation of reviewer comments differently, etc.  These also may
vary depending on the element type, such as a teaching resource versus a journal article.  Therefore,
any general peer review service (Harnad,1997) would have to accommodate all of these differences.  This
leads to the opportunity in our future research to develop a general approach to developing
customizable services.

- Dynamic Service Support: Some services may be designed to work over static documents in a
collection.  They now may have the opportunity to serve collections or services where documents
are generated in response to a user request, such as placing a comment over a list of documents
returned by a search query.  When this query result is regenerated at a later time, we should be able
to locate the comment over the same element(s).  Zhang [2004] discusses such “dynamic” service
features further.

- Service Combination: We hope to explore creating new services from existing ones.  For example, we
could string together the summarizer service with a standard Web language translation service to
create a new “summarize in my language” service.  Selecting a text passage would first have DLII
direct the Nanoport AI Summarizer to summarize it, and then the translation service to translate the
summary.

6. CONCLUSION
DLII research makes several contributions:

• an architecture for lightweight integration of digital library systems through linking

• a systematic approach to integrating digital library collections and services, with other appropriate
collections and services

• applying the concept of metainformation to digital libraries for specifying the structural, content-
based and knowledge-sharing relationships (as well as metadata) around elements of interest

This research provides a new means for making digital library services interoperable.  Developers should
consider designing their collections and services in a way that makes them available to a broad
community:  



15

• Developers should program them in a way that makes it easy to write DLII wrappers.  (In many
cases this simply means providing a large amount of metadata in their documents and screens, which
already is a trend.)  

• Developers should make services easy to customize.

• Developers should check whether existing external services satisfy their requirements and can be used
(possibly customized and potentially through DLII), thus sparing time and expense.

DLII should facilitate a virtual restructuring of digital libraries into broad “federated” digital library
spaces constructed from numerous interrelationships.  Elements will reside within a rich context of
metainformation that help users understand and work with them.  This provides a ripe environment for
organizations and individual people to develop small, specialized collections and services, which
automatically become part of the federated space and accessible to those they can benefit.  DLII extends
the boundaries of how we think about and interact with digital libraries.

ACKNOWLEDGMENTS
We wish to thank Hsinchun Chen and Byron Marshall at the University of Arizona; Gail Hodge, Janet
Ormes and Walt Truszkowski at NASA’s Goddard Space Flight Center; Chris Klaus at the Argonne
National Labs; Ken Anderson at the University of Colorado at Boulder; Martin Ruzek at the
Universities Space Research Association; and Joanne Silverstein, Jeff Rubin and Mark Frantz at the
University of Syracuse and Internet Consulting Services, Inc. for their assistance in integrating their
systems with DLII.  Anirban Bhaumik of OuterForce Systems helped design and implement the DLII
architecture.  We gratefully appreciate partial funding support for this research by the United Parcel
Service, NJIT, and the National Science Foundation under grants IIS-0135531 and DUE-0226075.

REFERENCES
Anderson, K.  (1997). Integrating Open Hypermedia Systems with the World Wide Web. Hypertext'97
Proceedings, ACM Press, New York, NY, 157-166.

Barrett, D.J., et al. (1996). A Framework for Event-Based Software Integration, ACM Transactions on
Software Engineering and Methodology, 5(4).

Bernstein, P.A., Middleware: A model for distributed systems services, Communications of the ACM,
February 1996, 39(2).

Bieber, Michael, Douglas Engelbart, Richard Furuta, Starr Roxanne Hiltz, John Noll, Jenny Preece,
Edward Stohr, Murray Turoff and Bartel Van De Walle.  (2002). Towards Virtual Community
Knowledge Evolution," Journal of Management Information Systems 18(4), 11-36.

Bieber, Michael and Steven O. Kimbrough (1992), On Generalizing the Concept of Hypertext,
Management Information Systems Quarterly, 16(1), 77-93.

Bieber, Michael and Steven O. Kimbrough (1994), On the Logic of Generalized Hypertext, Decision
Support Systems 11, North Holland, 241-257.

Burton, John K., D. Michael Moore and Glen A. Holmes (1995). Hypermedia Concepts and Research:
An Overview. Computers in Human Behavior 11: 345-369.



16

Carr, L. A.; De Roure, D., Hall, W., Hiil, G. (1995). The Distributed Link Service: A Tool for Publishers,
Authors and Readers. Proceedings of the 4th International World Wide Web Conference, Boston,
Massachusetts, December 11-14, 1995.

Carr, L. A.; Hall, W.; Hitchcock, S. (1998). Link Services or Link Agents?, Proceedings of ACM
Hypertext '98, Pittsburgh PA, 113-122.

Catanio, Joseph, Nkechi Nnadi, Li Zhang, Michael Bieber and Roberto Galnares, "Ubiquitous
Metainformation and the ‘What You Want When You Want It’ Principle," forthcoming in the Journal of
Digital Information, 2004.

Chau, Michael, H. Chen, Jialun Qin, Yilu Zhou, Yi Qin, Wai-Ki Sung, Daniel McDonald, "Comparison
of Two Approaches to Building a Vertical Search Tool: A Case Study in the Nanotechnology Domain,"
Proceedings of the Second ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL'02), Portland,
Oregon, July 14-18, 2002.

Conklin, Jeff (1987). Hypertext: a Survey and Introduction, IEEE Computer 20(9), 17-41.

Cotkin, George (1996). 'Hyping the Text': Hypertext, Postmodernism and the Historian. American
Studies 37: 103-116.

Cummings, F., Enterprise integration : an architecture for enterprise application and systems integration,
New York : John Wiley & Sons, c2002.

Davis, H., W. Hall, I. Heath, G. Hill, and R. Wilkins. (1992). Towards an integrated information
environment with open hypermedia systems, Proceedings of the ACM Conference on Hypertext
(Milan, Nov. 1992) 181-190.

Davis, H., S. Knight and W. Hall (1994). Light Hypermedia Link Services: A Study of Third Party
Application Integration,”  Proceedings of the Fifth ACM Conference on Hypermedia Technologies,
Edinburgh, Scotland, September 1994, 41-50.

Emmerich, W., Software Engineering and Middleware: A Roadmap, May 2000, Proceedings of the
conference on the future of software engineering.

Fensel, D., Van Harmelen, F., Horrocks, I., McGuinness, D., Patel-Schneider, P., OIL: An Ontology
Infrastructure of the Semantic Web, IEEE Intelligent Systems, Vol.  16(2), 2002

Galnares, R. (2001). Augmenting Applications with Hypermedia Functionality and Metainformation.
Ph.D. Thesis, New Jersey Institute of Technology, Newark, NJ 07102.

Garrido, A.; Rossi, G. (1996). A framework for extending object-oriented applications with hypermedia
functionality, The New Review of Hypermedia and Multimedia 2, 25-41.

Grønbæk, K. and R. Trigg (1999). From Web to Workplace: Designing Open Hypermedia Systems,
MIT Press.

Harnad, Stevan.  "Free at Last: The Future of Peer-Reviewed Journals."  D-Lib Magazine 5 (December
1999).  http://www.dlib.org/dlib/december99/12harnad.html



17

Harnad, Stevan.  "Implementing Peer Review on the Net: Scientific Quality Control in Scholarly
Electronic Journals."  In Scholarly Publishing: The Electronic Frontier, ed. Robin P. Peek and Gregory B.
Newby, 103-118. Cambridge, MA: The MIT Press, 1996.

Harnad, Stevan "Learned Inquiry and the Net: The Role of Peer Review, Peer Commentary and
Copyright."  Antiquity 71 (December 1997): 1042-1048.

Im, Il and Alexander Hars, "Finding information just for you - Knowledge reuse using collaborative
filtering systems," ICIS Conference, December 2001, New Orleans.

Kacmar, C. (1993). Supporting hypermedia services in the user interface, Hypermedia 5(2), 85-101.

Kacmar, C. (1995). A process approach for providing hypermedia services to existing, non-hypermedia
applications, Electronic Publishing: Organization, Dissemination, and Distribution 8(1), 31-48.

Kaminski, C., Much Ado about Smart Tags,
[on-line] http://alistapart.com/articles/smarttags/, July 2001.

Klaus, C.M., K. Andrew, G.G. Mace, “Atmospheric Visualization Collection: Developments in the
NSDL”, Journal of Digital Information, May 2002.

McGuinness, D., Fikes, R., Hendler, J., Stein, L., DAML+OIL: An Ontology Language for the Semantic
Web, IEEE Intelligent Systems, Vol.  17(5), 2002.

Miller, J. Hillis. (1995).  The Ethics of Hypertext. Diacritics 25.3: 27-39.

Nielsen, Jakob. (1995). Multimedia and Hypertext: The Internet and Beyond. Boston: AP Professional.

Nilsson, E.G.; Nordhagen, E.K.; Oftedal, G. (1990). Aspects of Systems Integration, Proceedings of the
First International Conference on Systems Integration, 23-26 April 1990.

Oinas-Kukkonen, Harri (1998). What is in a link? Communications of the ACM. 7; 41(7): 98.

Paepcke, A., Brandriff, R., Janee, G., Larson, R., Ludaescher B., Melnik, S., Raghavan, S., Search
Middleware and the Simple Digital Library Interoperability Protocol, D-Lib Magazine, Vol 6(3), March
2000.

Rossi, G., A. Garrido and S. Carvalho (1996). Design Patterns for Object-Oriented Hypermedia
Applications. Book chapter in: Pattern Languages of Programs II. J. Vlissides, J. Coplien and N. Kerth,
eds. Addison- Wesley, 177-191.

Ruzek, M., J. Foster, D. Bowler, A. Kerr, "The Earth Science Picture of the Day (EPOD)" Eos Trans.
AGU, 81(48), Fall Meeting Supplement, F287, 2000.

Samuels, H. (2001). The State of Linking Today and Endeavors Linking Solutions- A White Paper.
[on-line] http://www.endinfosys.com/ENCompass/linkingwhitepapers.pdf

Silverstein, Joanne, May We Help You Find Something? AskNSDL!, Knowledge Quest on the Web,
American Library Association, January - February 2003. [on-line]
http://www.ala.org/Content/NavigationMenu/AASL/Publications_and_Journals/Knowledge_Quest/Back
_Issues_Archives/Volume_31/Ask_NDSL.htm



18

Van de Sompel, Herbert and Oren Beit-Arie (2001a). Open Linking in the Scholarly Information
Environment Using the OpenURL Framework, D-lib Magazine 7(3).

Van de Sompel, Herbert and Oren Beit-Arie (2001b). Generalizing the OpenURL Framework beyond
References to Scholarly Works: The Bison-Futé Model, D-lib Magazine 7(7/8).

Van de Sompel, Herbert and Patrick Hochstenbach (1999a). Reference Linking in a Hybrid Library
Environment, Part 1: Frameworks for Linking, D-lib Magazine 5(4).

Van de Sompel, Herbert and Patrick Hochstenbach (1999b). Reference Linking in a Hybrid Library
Environment, Part 2: SFX, a Generic Linking Solution, D-lib Magazine 5(4).

Van de Sompel, Herbert and Patrick Hochstenbach (1999c). Reference Linking in a Hybrid Library
Environment, Part 3: Generalizing the SFX solution in the SFX@Ghent & SFX@LANL experiment, D-
lib Magazine 5(10).

Van de Sompel, Herbert; Hochstenbach, Patrick and Beit-Arie, Oren (2000). OpenURL syntax
description. Technical Report. [on-line: http://www.sfxit.com/openurl/openurl.html]

Wu, Yi-Fang and Xin Chen: Extracting Features from Web Search Returned Hits for Hierarchical
Classification. Proceedings of the 2003 International Conference on Information and Knowledge
Engineering (IKE'03), June 23 - 26, 2003, Las Vegas, Nevada, USA, page 103-108.

Yoo, Joonhee and Michael Bieber, “A Relationship-based Analysis,” Hypertext 2000 Proceedings, San
Antonio, ACM Press, June 2000.

Yoo, Joonhee, Joseph Catanio, Ravi Paul and Michael Bieber (2004). Relationship Analysis in
Requirements Engineering, forthcoming in the Requirements Engineering Journal.

Zhang, Li (2004).  Just-in-Time Hypermedia.  Ph.D. Dissertation, New Jersey Institute of Technology,
forthcoming.

Zhang, Yi and Il Im, "Recommender Systems: A Framework and Research Issues," Americas Conference
on Information Systems, August 2002, Dallas.


