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ABSTRACT
Packet scheduling in switches is not programmable; opera-
tors only choose among a handful of scheduling algorithms
implemented by the manufacturer. In contrast, other switch
functions such as packet parsing and header processing are
becoming programmable [10, 3, 6]. This paper presents a
programmable packet scheduler that allows operators to pro-
gram a variety of scheduling algorithms.

Our design exploits the insight that any scheduling algo-
rithm can be deconstructed into two decisions: in what order
packets depart and when they depart. The algorithms only
differ in how the order and departure times are computed.
We show how these decisions map to two well-understood
abstractions: priority and calendar queues [11]. Priority and
calendar queues can then be composed together to realize a
broad range of sophisticated scheduling algorithms. Further,
both abstractions can be realized using the same mechanism:
a programmable push-in first-out queue (PIFO) that allows
a packet to push itself into an arbitrary location in a queue
by programming a packet field. A PIFO is feasible in hard-
ware. Preliminary synthesis indicates that an unoptimized
hardware design meets timing at 1 GHz on a 16 nm technol-
ogy node and occupies only 5% additional die area relative
to existing merchant-silicon switching chips.
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1. INTRODUCTION
Historically, network switches have been fixed-function
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devices. They support a fixed set of protocols using a
hardwired packet-processing pipeline. New features re-
quire hardware redesign, which can take several years. Re-
cently, driven in part by Software-Defined Networking and
rapidly changing requirements in datacenter networks, a
new class of programmable switching architectures have
emerged. Programmable parsing [17] allows a switch to
handle new protocol formats. Switch architectures like In-
tel’s FlexPipe [3], Cavium’s Xpliant [6] and the Reconfig-
urable Match-Action Table architecture [10] provide a pro-
grammable switch pipeline, allowing an operator to flexibly
specify packet transformations.

However, one switch function remains hardwired: the
packet scheduler. The most common scheduling algorithm
is a simple First-In First-Out (FIFO) queue. Addition-
ally, some switches support strict priorities, deficit weighted
round robin (DWRR) [29], and traffic shaping across a small
number of queues. While the scheduler has configurable pa-
rameters (e.g., DWRR weights), its core algorithms cannot
be changed. For instance, it is impossible to implement a
new algorithm such as pFabric [7] on a switch today.

Programmable packet scheduling would be beneficial to
network operators in datacenters, enterprises, and service-
provider networks. Consider datacenter networks. Work-
loads here have diverse requirements. Some require low la-
tency for short flows [25, 7], others require flexible band-
width allocation across tenants or even flows [26, 21], while
others minimize completion time of flow aggregates [16, 12].
With programmable packet scheduling, operators could de-
ploy custom scheduling algorithms for specific application-
level objectives.

This paper introduces a design for a programmable packet
scheduler. The key innovation in our design is to reduce a
complex computation involving multiple queues and packets
to a simpler per-packet computation that can be run when-
ever a packet is enqueued. Our design uses the insight that
every scheduling algorithm makes two decisions (§2): the
order of packet departures from the switch and the time of
packet departures. Any work-conserving scheduling algo-
rithm (such as Weighted-Fair Queuing (WFQ) [15] or Short-
est Remaining Processing Time (SRPT) [28]) can be trans-
lated into a particular departure order (e.g., for SRPT, this is
the order determined by the remaining flow size). Similarly,
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non-work-conserving algorithms such as traffic shaping can
be realized by computing the departure time of each packet
and releasing each packet at its departure time.

We observe that in many scheduling algorithms, the packet
order or departure time can be determined at packet arrival
(enqueue). For example, Start-Time Fair Queuing [19] is an
implementation of WFQ that calculates a virtual start time
for each incoming packet and dequeues packets in order
of increasing virtual start time. Similarly, for traffic shap-
ing, the shaping rate determines the time of departure for
each packet. This naturally leads us to two basic abstrac-
tions (§2.1) that capture a variety of scheduling algorithms:
a priority queue that determines the packet departure order,
and a calendar queue [11] that decides the packet depar-
ture time. Further, calendar and priority queues can be com-
posed (§3) to realize sophisticated composite scheduling al-
gorithms such as hierarchical fair queuing, with and without
shaping.

To motivate a hardware design for priority and calendar
queues, we observe that both can be realized using a single
building block (§4): a push-in first-out queue (PIFO) that
supports insertions into a queue sorted according to a packet
field. An operator programs different scheduling algorithms
by changing how that number — the packet priority or depar-
ture time — is computed. The computation can occur either
in an earlier stage in the switch pipeline, a different switch,
or even at end hosts.

Conventional wisdom [29, 23] suggests that the sorting re-
quired to implement a PIFO in hardware is expensive; how-
ever, we find that modern transistor technology has reached a
point where maintaining a sorted queue with 10,000s of en-
tries is feasible and economical. We present a simple hard-
ware design for a PIFO (§5) that meets timing at 1 GHz
when synthesized on a 16 nm technology node and occupies
only 5% additional die area relative to a merchant-silicon
switching chip today. Overall, our results indicate that a pro-
grammable scheduler is well within reach, bringing to switch
scheduling the same flexibility that the rest of the switch
pipeline increasingly enjoys.

2. DECONSTRUCTING SCHEDULING
Our thesis is that any scheduling algorithm can be decon-

structed into two decisions: in what order and when should
packets leave the switch. Scheduling algorithms only dif-
fer in how the order and departure time are computed. Fur-
ther, in many cases, the order or departure time can be de-
termined when the packet is enqueued. To see why, we look
at three popular packet-scheduling algorithms: pFabric [7],
Weighted Fair Queuing (WFQ) [15] and traffic shaping [5].

pFabric
pFabric is a recent datacenter transport design that minimizes
average flow completion times by scheduling packets ac-
cording to their remaining flow size at each switch; i.e., it im-
plements the SRPT scheduling algorithm.1 For each packet,
1There are two variants of pFabric [7], with and without starvation

end hosts insert the remaining flow size as a packet field. At
each switch, packets are dequeued in ascending order of re-
maining flow size.

Weighted Fair Queuing
Weighted-Fair Queuing (WFQ) [15] provides weighted max-
min bandwidth allocation across flows sharing a link. Nu-
merous implementations of WFQ exist, including Start-Time
Fair Queuing [19] and Deficit Round Robin [29]. For con-
creteness, we consider Start-Time Fair Queuing (STFQ) .2

STFQ computes a virtual start time (p.start) for each
packet using the algorithm below.
On enqueue of packet p of flow f:
--------------------------------------------
if f in T

p.start = max(virtual_time, T[f].last_finish)
else
p.start = virtual_time

T[f].last_finish = p.start + p.length / f.weight

On dequeue of packet p:
---------------------------------
virtual_time = p.start

Here, last_finish is a state variable maintained for
each flow in table T that tracks the virtual finish time of its
latest packet, while virtual_time is a queue-wide state
variable updated on each dequeue. Packets are scheduled in
order of their virtual start time (p.start).

Traffic shaping
Besides packet order, some scheduling algorithms determine
the time at which packets depart from a queue. Traffic shap-
ing is a canonical example and is used to limit flows to a
desired rate. A shaper has two parameters: a shaping rate, r,
and a burst allowance, B. The standard implementation uses
a token bucket [5], which is incremented at rate r, subject to
a cap of B tokens. A packet is transmitted immediately if the
bucket has enough tokens when it is enqueued; otherwise, it
has to wait until sufficient tokens accumulate. Transmitted
packets decrement the token bucket by the packet size.

Alternatively, the transmission time of each packet can be
calculated on enqueue as follows:
tokens = min(tokens + r * (now - last_arrival), B)
if p.length <= tokens
p.send_time = now

else
p.send_time = now + (p.length - token_count) / r

tokens = tokens - p.length
last_arrival = now

Here, tokens and last_arrival are two state vari-
ables, initialized to B and an initial time respectively. While
a standard token bucket has only positive token counts,
tokens can fall below zero in the algorithm above. It is
easy to show that the transmission times calculated are still
identical to those of the standard token bucket.

2.1 Basic Abstractions for Packet Scheduling
prevention. We consider the one without starvation prevention.
2The original WFQ implementation [15] is similar to STFQ, but
uses a more complex virtual time calculation.



Algorithm Priority / departure time computation Computed by Abstraction
First-In First-Out Wall clock time at packet enqueue switch priority queue
Strict Priorities Packet’s TOS field end host priority queue
pFabric [7] (Shortest Remaining Processing Time) Remaining flow size for the packet’s flow end host priority queue
Least Attained Service Attained service for the packet’s flow end host priority queue
Earliest Deadline First Deadline for the packet’s flow end host priority queue
Start-Time Fair Queuing [19] Virtual Start Time for the packet’s flow switch priority queue

Least Slack-Time First [22, 24] Slack Time for each packet Initialized at end hosts,
decremented at switches

priority queue

Service-Curve Earliest Deadline-First scheduling [27] Deadline based on service curve switch priority queue
Token-Bucket Shaping [5] Time when there are enough tokens to transmit packet switch calendar queue
Stop and Go Queuing [18] Start time of the next frame switch calendar queue

Table 1: Scheduling algorithms expressible using priority queues and calendar queues.
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Packet Packet

Figure 1: HPFQ using priority queues. Blue arrows show
enqueue paths, red arrows show dequeue paths.

The above algorithms determine the order or time of de-
parture of a packet using a single number computed at en-
queue time. For pFabric, this number is inserted by an end
host. For WFQ, it is the virtual start time computed by the
switch. For token bucket shaping, it is the wall-clock de-
parture time. This motivates two natural abstractions: pri-
ority queues and calendar queues. Priority queues de-
termine packet order for work-conserving algorithms like
SRPT and WFQ, while calendar queues determine packet-
departure times for non-work-conserving algorithms like
shaping. These two abstractions with a programmable means
of assigning an arriving packet a priority or departure time
enable many scheduling algorithms (Table 1).

3. COMPOSITE SCHEDULING ALGO-
RITHMS

While the previous section discusses individual scheduling
algorithms, many practical scheduling algorithms compose
multiple scheduling disciplines together. We consider two
examples here, to show how such scheduling algorithms map
to a composition of priority queues and calendar queues.

3.1 Hierarchical packet-fair queuing
Hierarchical packet-fair queuing (HPFQ) [8] acts on a

class hierarchy represented as a tree (Figure 1). It first ap-
portions link capacity fairly between the classes under the
root of the tree. Then, within each class, it apportions link
capacity fairly between sub-classes. It continues recursively

WFQ

A B C (50% link rate
     token bucket) 

pFabric

WFQ Prio Q

Token Bucket
 Calendar Q

A/B

C

Packets from
 A or B

pFabric Prio Q

Packets from C

Figure 2: Combining hierarchies with shaping using pri-
ority and calendar queues. Blue arrows show enqueue
paths, red arrows show dequeue paths.

until it hits the leaf nodes of the class hierarchy.
HPFQ cannot be implemented using a single priority

queue, because — unlike the algorithms from §2 — the rel-
ative order of packet transmissions may change with future
packet arrivals (see [8], Section 2.2, for an example). How-
ever, with a modification to the semantics of a priority queue
to enqueue either a packet, or a reference to a different pri-
ority queue, HPFQ can be implemented as a hierarchy of
priority queues.

In the example of Figure 1, an arriving packet is enqueued
into either the Left or Right priority queue, depending on
the packet’s class. Next, a reference to the appropriate prior-
ity queue (Left or Right) is enqueued into the Root priority
queue. To dequeue, we start at the Root priority queue and
follow the reverse path, dequeuing references until we reach
a packet. This effectively implements fair queuing at every
level of the class hierarchy. The Root priority queue imple-
ments fair queuing across classes while the Left and Right
priority queues implement fair queuing across the leaf nodes.

3.2 Fair-queuing hierarchies with shaping
The next example combines hierarchical queuing with

traffic shaping. This algorithm is representative of schedul-
ing algorithms provided by many switches [2]. We consider
the algorithm described by the tree in Figure 2. Here, link
capacity is divided across three classes A, B, and C in the ra-
tio 4:1:2 using WFQ. We also require that C be token-bucket
limited to 50% of the link capacity, regardless of the traffic



offered by A and B. Further, when class C is serviced, we
schedule its packets using the pFabric [7] algorithm.

This policy can be expressed using calendar queues and
priority queues as follows. If there were no rate-limit on
class C’s packets, the implementation would be similar to
HPFQ: a “WFQ priority queue” would implement WFQ
across classes, and contain either packets from A or B, or
references to the “pFabric priority queue”. The pFabric pri-
ority queue would implement SRPT for class C. To rate-limit
class C, we interpose a token-bucket calendar queue on the
enqueue path from C to the WFQ priority queue. This en-
sures that the class C references are released to the WFQ
priority queue at the shaped rate.

3.3 Other examples
Several non-hierarchical scheduling algorithms can also

be realized by composing priority and calendar queues.
One example is the class of Rate-Controlled Service Disci-
plines [34], which includes many non-work-conserving al-
gorithms such as Jitter-EDD [31], Stop-and-Go [18], and
Rate-Controlled Static Priority Queue [33].

3.4 Rules of composition
We outline rules of composition that we gleaned from this

exercise. For future work, we plan to incorporate these rules
into a language for programming scheduling algorithms.

1. A priority queue is pulled by other priority queues and
external entities such as the link transmitter. A calendar
queue pushes into other calendar queues and priority
queues when the timestamp of the head packet arrives.

2. The root of the queuing system is always a priority
queue that is pulled by the link transmitter.

3. Elements within priority and calendar queues are either
packets or references to other priority queues.

4. There is only one copy of a packet present throughout
the queuing system.

5. A priority queue is recursively dequeued: A dequeue
from a priority queue that returns a priority queue ref-
erence, p, results in a dequeue from p recursively. This
process must terminate in the transmission of a packet.

6. The programmer can only specify the sequence of en-
queues into the system. The dequeue sequence is im-
plicit: it is a recursive dequeue starting from the root
priority queue.

4. THE PUSH-IN FIRST-OUT QUEUE
The previous sections show that packet scheduling can be

broken down into two abstractions: priority queues that de-
termine the order of packet departures and calendar queues
that determine the wall-clock time of packet departures. We
now show that both abstractions can be implemented using a
common building block in hardware.

A common, modular hardware building block has consid-
erable practical appeal: it can be implemented and optimized
once as an IP core [4], and then be repeatedly instantiated,

amortizing design effort. It allows the same piece of hard-
ware to be re-purposed into a priority queue or a calendar
queue, as required, without committing to a fixed number of
each up front. Further, as described in §3, a basic building
block with a clean interface allows us to programmatically
compose multiple priority and calendar queues to express
composite scheduling algorithms.

To design this block, we observe that internally both prior-
ity queue and calendar queue abstractions rely on the same
mechanism: a sorted queue of packets, where a specific
packet field is used to determine a packet’s order in the
queue. In the case of a priority queue, this is the packet’s
priority, while for a calendar queue, this is the packet’s de-
parture wall-clock time. In addition, for a calendar queue, we
need a small amount of additional logic that releases packets
based on the timestamp at the head of the queue. We call
such a queue a push-in first-out queue (PIFO) [13] to denote
the fact that packets can “push” themselves into any location,
but depart only from the head.

4.1 Programming the PIFO
The PIFO can be programmed by programming the com-

putation of the field that determines a packet’s location in
the PIFO (Column 2 in Table 1 lists several computations).
The logic of finding an appropriate location for the packet is
unchanged across scheduling algorithms. From the switch’s
perspective, fields determining packet locations in a PIFO
are of two types. They could be values available in the packet
header such as the TOS fields used for strict priorities or the
remaining flow size in pFabric [7]. Alternatively, they could
be values computed from persistent state maintained in the
switch such as the virtual start time for STFQ [19] and the
wall-clock departure time for the token-bucket algorithm or
Stop-And-Go Queuing [18]. In the first case, the end host
computes/programs the priority and the switch simply reads
it. In the second case, packet priorities can be computed us-
ing ALU operations on packet fields and persistent state.

Such ALU operations on packet fields and persistent state
are possible in programmable switch architectures such as
the Reconfigurable Match-Action Table (RMT) architec-
ture [10], Intel’s FlexPipe [3], and Cavium’s XPliant [6].
For instance, stateful computations like the code snippets for
STFQ and token-bucket shaping in section §2 can be imple-
mented using a match-action table: the match field matching
on a particular flow3 identifier, and the action performing
arithmetic to update the state. In practice, the complexity of
field computations implemented on a switch will be limited
because only a small number of operations can be performed
on each packet at line rate. However, we expect the compu-
tational capabilities of programmable switch pipelines to im-
prove with time. These improvements will also permit more
involved field computations for programmable scheduling.

3A flow can be any group of packets based on some setting of
header fields: e.g. a 5-tuple, or a source/destination address.
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Figure 3: PIFO hardware implementation

5. HARDWARE FEASIBILITY
The core operation within a PIFO is insertion into a sorted

queue. Hardware designs for sorted queues typically use
heaps [9, 20] and are the basis of hierarchical schedulers in
core routers. These heaps scale to large packet buffers ex-
ceeding 100 MBytes. However, these designs are hard to
develop and verify because they require deep pipelines and
intricate tree manipulations. As a result, they may not be fea-
sible for datacenter switches which must support very high
port densities and speeds at low cost.

Instead, we look at a simpler design that handles smaller
buffers, sufficient for single-chip switches used in most dat-
acenters. For instance, the Broadcom Trident [1] has a data
buffer of 12 MBytes—an order of magnitude less than a core
router. Targeting shallow-buffered chips dramatically sim-
plifies our design.

5.1 A PIFO in hardware
We implement a PIFO using two data structures (Fig-

ure 3): a bank of “mini-PIFOs” (maintained in SRAM), and a
content-associative memory (CAM) that maintains the min-
imum and maximum allowed priorities for each mini-PIFO.
An arriving packet’s priority is range searched, in parallel,
against all priority ranges in the CAM to determine the mini-
PIFO to enqueue into. The packet is then pushed into the
chosen mini-PIFO in the correct position. This is analogous
to the textbook bucket-sort algorithm [14].

Breaking up a large PIFO into a CAM and a bank of mini-
PIFOs is key to scalability. The CAM serves as an index
that points the packet to a small part of the PIFO kept in a
mini-PIFO. Inserting in sorted order into a small mini-PIFO
(around 100 entries) is then trivial: the arriving packet’s pri-
ority is compared to all entries in the mini-PIFO in paral-
lel to determine the exact location to insert into. This can
be done with one read-modify-write operation on the mini-
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Figure 4: Range-search CAM area for different widths

PIFO bank memory.
What about the area cost of the range CAM? We synthe-

sized an unoptimized 1024-entry range-search CAM with
16-bit priority numbers entirely in flip flops on a 16 nm tech-
nology node. The resulting circuit meets timing at 1 GHz
and occupies only 0.105mm2 (CAM sizes for different bit-
width priority numbers are given in Figure 4). For refer-
ence, 1 Mbit of SRAM consumes 0.149mm2 of area on a 16
nm technology node and the switch buffer has 96 Mbits of
SRAM. A 1024-entry CAM, combined with 128 elements in
each mini-PIFO can support 128K elements, which is more
than the maximum buffer size of 60000 packets, assuming a
12 MByte buffer and a cell size of 200 bytes.4

Handling full mini-PIFOs: When a mini-PIFO becomes
full, we split the mini-PIFO into two mini-PIFOs. This is
required to avoid overflowing a mini-PIFO on a subsequent
enqueue. When split, a full mini-PIFO with min and max
allowed priority of m and M respectively becomes two mini-
PIFOs: one with a range from m until the priority of the
middle element (64th) in the mini-PIFO, and the second with
a range from (middle element + 1) to M .

This split requires updating both the mini-PIFO banks and
the CAM. To update the mini-PIFO bank, a naive implemen-
tation would require two write ports for the SRAM so that
both the old and new mini-PIFOs can be written back after
a split. We avoid this by internally organizing mini-PIFOs
in two separate banks of physical memory. Each mini-PIFO
either starts from the left or the right physical bank. During
normal operation, if a mini-PIFO is read or written, we issue
two parallel reads or writes to the left and right banks.

When we split a mini-PIFO, we write back one half of the
mini-PIFO into the same row in the left bank (marking it left-
aligned) and update the count of elements in that mini-PIFO
to 64. We write back the other half of the mini-PIFO into a
different, empty row, but in the right bank (marking it right-
aligned). This reduces the memory requirement to exactly
one read, modify, write operation on each physical memory
bank, which is readily doable today.

Finally, we update the CAM by creating two new entries:
one from m to the middle element and another from (middle
element + 1) to M. For this, we endow the CAM with two

4A switch scheduler internally divides packets into smaller units
called cells for fine-grained buffer allocation and cut-through
switching. In the worst case, each packet contains only one cell.



Component Area in SRAM-equivalent Mbits
Common state
Data buffer 12 MB * 8 = 96 Mbits
Linked-list of free cells 60000 cells * 16 bits / cell = 0.96 Mbits
Baseline switch
FIFO head/tail in flip-flops 1024 queues * (16-bit head + 16-bit tail) * 16 =

0.5 Mbits
FIFO linked-list pointers 60000 packets * 16 bits / packet = 0.96 Mbits
PIFO switch
1024-entry CAM with 16 bit pri-
orities

0.7 Mbits (from synthesis results)

mini-PIFO bank 128 pkts * 1024 mini-PIFOs * (16-bit ID + 16-
bit priority) = 4 Mbits

Additional area of a PIFO switch 0.7 + 4.0 - 0.5 - 0.96 = 3.24 Mbits
Overhead relative to data buffer 3.24 / (96 + 0.96) = 3.3%
Overhead relative to switch chip 1.65%
Overhead for a 3-stage scheduler 5%

Table 2: Additional die area of a PIFO switch. We use a
conversion factor of 16 for SRAM bits per bit of flip-flops.

write ports, which is straight forward because the CAM is
built out of flip flops.

Memory fragmentation: The split causes memory frag-
mentation because we use more mini-PIFOs than absolutely
required. However, we can bound the worst-case memory
fragmentation. Since the split always divides the old mini-
PIFO into two equal halves, the worst-case fragmentation
is ∼2×. Hence, by designing the mini-PIFO bank to ac-
commodate twice the maximum size of the switch buffer in
packets, we can guarantee that there is always space in the
PIFO for an arriving packet.

Sharing hardware between multiple logical PIFOs: Our
discussion so far has assumed a single PIFO with a variable
number of mini-PIFOs assigned to it as the PIFO grows and
shrinks. In a shared-memory switch, PIFOs from different
output ports can share the same underlying CAM and mini-
PIFO structures. Our design accommodates this naturally,
by adding a logical PIFO ID qualifier to the CAM structure.
This adds little overhead: the PIFO ID only needs a few bits
of exact match — much cheaper than the range-search logic.

5.2 Overhead Analysis
We now analyze the additional die area of a PIFO switch

relative to a baseline switch with 12 MBytes of buffer, up
to 60K cells (assuming a cell size of 200 bytes), and 1024
FIFO queues. For ease of comparison, we express all area
numbers using an equivalent amount of SRAM. In the worst
case, the data buffer can hold up to 60K single-cell packets.
So, we assume a 16-bit packet/cell ID.5 Table 2 summarizes
our calculations: the additional overhead of a PIFO switch is
about 3.3% relative to the baseline switch buffer and queuing
structures. Buffering takes up 50% of the die area of a typical
chip, implying that the area overhead of a PIFO switch over
the baseline switch chip is about 1.65%.

As §3 shows, sophisticated scheduling algorithms require
composing multiple logical PIFOs. Logical PIFOs that do
not need to be simultaneously accessed, such as PIFOs at the
same level of a hierarchical scheduling algorithm (e.g., the
5The packet ID is the cell ID of its first cell.

Left and Right PIFOs in Figure 1) can share the same un-
derlying physical structures. However, logical PIFOs with
concurrent accesses (e.g., the Root and Left/Right PIFOs in
Figure 1) need separate structures. Our analysis shows that
3 PIFO stages would take about 5% (1.65 × 3) of the die
area. This would provide a very powerful scheduler, sup-
porting programmable 3-level hierarchies. By comparison,
today’s datacenter switches support a few simple scheduling
algorithms in up to 2 levels, across 8–64 queues.

6. RELATED WORK
Many scheduling algorithms [29, 28, 19, 15, 8, 22, 18,

7] have been proposed over the years. Yet, only a hand-
ful are deployed today. Even programmable switch archi-
tectures [10, 3, 6] currently treat packet scheduling as a
black box provided by the switch manufacturer. Our work
enables the practical realization of these and other as-yet-
undiscovered scheduling algorithms. Further, we achieve
programmability without the significant power, area, and
performance penalties of prior proposals [30] that require
fully reconfigurable FPGAs.

Priority and calendar queues are similar to rate regulators
and schedulers used in Rate-Controlled Service Disciplines
(RCSD) [34] to express a class of non-work-conserving
scheduling algorithms. We demonstrate that these two ab-
stractions can be composed (§3) more generally to realize
a wide range of scheduling algorithms, and that both can be
implemented using the PIFO building block (§4). We present
a hardware design for PIFOs (§5) that requires a sorted queue
of packets. Avoiding sorting in hardware was the impetus for
work on constant time approximations to fair queuing such
as DRR [29] and SFQ [23]. Our work shows that advances
in transistor technology warrant revisiting the premise that
sorting is impractical at line rate.

7. CONCLUSION
This paper shows that programmable packet scheduling

is within reach. Using a PIFO, it is possible to realize
programmable priority and calendar queues, which can be
stitched together to realize a wide variety of scheduling al-
gorithms. Preliminary synthesis (§5) indicates that a PIFO
can meet timing at 1 GHz on current technology nodes (16
nm) with minimal area overhead. We are currently imple-
menting PIFOs on the NetFPGA [32] platform to conduct
end-to-end experiments using PIFOs.
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