
1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3006655, IEEE
Transactions on Parallel and Distributed Systems

1

Towards Unaligned Writes Optimization in Cloud
Storage with High-performance SSDs

Jiwu Shu, Fellow, IEEE, Fei Li, Siyang Li, and Youyou Lu

Abstract—NVMe SSDs provide extremely high performance and have been widely deployed in distributed object storage systems in
data centers. However, we observe that there are still severe performance degradation and write amplification under the unaligned
writes scenario with high-performance SSDs. In this paper, we identify that the RMW sequence which is used to handle the unaligned
writes incurs severe overhead in the data path. Besides, unaligned writes incur additional metadata management overhead in the block
map table. To address these problems, we propose an object-based device system named NVStore to optimize the unaligned writes in
cloud storage with NVMe SSDs. NVStore provides a Flexible Cache Management to reduce the RMW operations while supporting lazy
page sync and ensuring data consistency. To optimize the metadata management, NVStore proposes a KV Affinity Metadata
Management which co-designs the block map and key-value store to provides a flattened and decoupled metadata management.
Evaluations show that NVStore provides at most 6.11× bandwidth of BlueStore in the cluster. Besides, NVStore can reduce at most
94.7% of the write traffic from metadata under unaligned writes compared to BlueStore and achieves smaller data write traffic which is
about 50% of BlueStore and 65.7% of FileStore.

Index Terms—Distributed System, object storage, unaligned writes, solid state drives

F

1 INTRODUCTION

In recent years, large-scale data centers host a large number
of applications that serve several million users. To meet this
requirement, the scale-out storage architecture, distributed
object storage, has been widely used in modern storage
systems and becomes the underlying storage layer. In the
supercomputing center, the well-known cluster file systems
(e.g., GPFS [1] and Lustre [2]) use object storage to store both
data and metadata. In the cloud platform, Amazon Simple
Storage Service (S3) and Microsoft Azure [3] use object
storage to support various applications. The hybrid storage
system, Ceph [4], also uses object storage to construct vari-
ous storage systems. Therefore, improving the performance
of object storage is extremely salient for improving data
center access efficiency.

Because the object storage system is on the underlying
layer and supports various systems, its I/O characteristics
are rich and varied. The object-based storage devices (OSDs)
not only deal with aligned I/Os from specific applications
but also tend to handle more unaligned I/Os from small file
accesses. In OFSS [5], Lu et al. collect the write statistics of
iBench [6] (iPhoto, iPages) and LASR [7] (LASR-1, LASR-
2, LASR-3) and find that nearly 50% to 90% of writes are
unaligned.

In the hard disk drive (HDD) ear, unaligned I/Os always
decrease storage system performance because of incurring
extra small and random I/O requests [8] which are un-
friendly to the HDD’s mechanical properties. With the grow-
ing requirements in I/O performance, Non-Volatile Memory
Express (NVMe) based Solid State Drives (SSDs), which can

• Jiwu Shu, Fei Li, Siyang Li and Youyou Lu are with
the Tsinghua University, Beijing 100084, China. Email:
{shujw@,lf17@mails.,lisiyang@,luyouyou@}tsinghua.edu.cn.

Unaligned Aligned

B
a
n
d
w
i
d
t
h

(
M
B
/
s
)

0

500

1000

1500

2000

CephFS Lustre GlusterFS

Fig. 1. Comparison of the performance of different distributed file sys-
tems (3× nodes with 6× Intel 750) in aligned I/Os and unaligned I/Os.
The aligned I/O cases are tested by iozone’s 4KB aligned write.
The unaligned I/O cases are tested by filebench’s fileserver which
limited the page size with 4KB in average.

archive high throughput, low latency, and good random
access performance [9], are involved in the object storage
system. However, the storage system which equips with the
newest SSDs also faces the unaligned write (UW) [8] prob-
lem. Although NVMe SSDs could achieve high performance
in aligned I/O evaluations (e.g., benchmarks like fio [10],
iozone [11], database [9], [12] and tier [13]), there are
still severe performance degradation in the unaligned I/O
tests (e.g., filebench [14], log system, cloud file system,
mail server). Figure 1 shows that the bandwidths tested in
CephFS [4], Lustre and GlusterFS [15] with aligned I/Os is
about 4∼5× of those with unaligned I/Os. Previous works
focus on optimizing the unaligned I/O performance for
specified applications (e.g., database [12], client cache [16],
and log system [17], [18]). However, in the cloud scenario,
the underlying object storage are serving an exceedingly
broad class of applications. It is considerable to address the
unaligned write problem in the object-based storage device
(OSD) system level.

Authorized licensed use limited to: University of New South Wales. Downloaded on July 12,2020 at 05:48:07 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3006655, IEEE
Transactions on Parallel and Distributed Systems

2

We propose NVStore, an OSD system which provides
excellent performance in unaligned writes with NVMe-
based SSDs. Our designs are based on the observation that
some self-caching applications (e.g., database) will send I/O
requests directly to the storage system bypassing the page
cache layer which will buffer and merge the I/O requests. In
this manner, the unaligned writes from applications should
be handled by the application cache and the storage system.
Based on this, we are able to make a more flexible cache
design according to application characteristics.

Our major contributions are as follows:
• We develop an OSD system, NVStore, to fully exploit

the high-performance SSDs under unaligned writes
while prolonging the lifetime of SSDs.

• In NVStore, we propose a Flexible Cache Management
mechanism to reduce the write amplification and un-
necessary I/O requests from unaligned writes while
ensuring the data consistency. Moreover, we provide
a Key-Value (KV) Affinity Metadata Management mecha-
nism to optimize the KV store performance and reduce
the overhead from metadata.

• Our system can reduce the write amplification from
both metadata and data compared with the filesystem-
based OSD system, FileStore [19] and the state-of-art
OSD system, BlueStore [20]. The results show that
NVStore reduces at most 94.7% of the write traffic
from metadata under unaligned writes compared to
BlueStore and achieves smaller data write traffic which
is about 50% of BlueStore and 65.7% of FileStore.

• Our system could significantly promote the unaligned
write performance in both benchmark tests and real
workload tests. The results show that NVStore achieves
1.11∼3.00× bandwidth of BlueStore, 1.05∼1.75× band-
width of FileStore in benchmark tests and 2.03∼6.11×
bandwidth of BlueStore, 1.99∼3.06× bandwidth of File-
Store in real workload tests.

We organize the rest of this paper as follows. Section 2
introduces the definition and types of unaligned writes, and
then analyses the overhead incurred by unaligned writes
in the data path and block map table. Section 3 describes
the designs and implementation of NVStore, including the
Flexible Cache Management and KV Affinity Metadata Manage-
ment, and then discusses the compatibility and limitations.
Section 4 shows the evaluations of NVStore. Section 5 gives
the related works. Section 6 concludes the paper.

2 MOTIVATION

2.1 Types of Unaligned Writes

As block devices, both traditional HDDs or SSDs and
NVMe-based SSDs defines a minimal I/O unit, called sector,
which is 512 bytes or larger according to the device model.
The devices do not support partial sector read or write in the
block I/O interface. Since there are limits to the number of
device addresses, that an operating system (OS) can address.
Modern OS uses block as the minimal data unit. A block
could be a sector or several sectors. When OS sends requests
to the device, it specifies the block offset, number of blocks
and points to data buffer. However, an application may
make write requests with address or size not aligned to the

block size (bsize) thus engendering the unaligned write
problem.

TABLE 1
Types of user writes

o mod b 6= 0 o mod b+ l < b (o+ l) mod b 6= 0 Type

0 0 0 aligned
1 0 0 within block
1 0 1 cross blocks
0 0 1 within block
- 1 - within block

The OS storage systems (e.g., Ext4 [21], F2FS [22], Blue-
Store, FileStore and so on.) always divide a write buffer into
aligned parts and unaligned parts. Table 1 shows different
types of writes. For a user requests, o is the byte-aligned
offset, l is the byte-aligned write length, b is bsize. When
the location of the unaligned part is only in the header or
tail of the write buffer (i.e, either o mod b or (o + l) mod b
is not equal to zero), we call it as unaligned write within
block. When the locations of the unaligned part are on both
sides of the buffer (i.e., both o mod b or (o + l) mod b are
not equal to zero), we call it as unaligned write cross blocks.
In addition, if the header and tail are in the same block and
the size of a write buffer is less than the block size (i.e., o
mod b + l < b), it is also treated as unaligned write within
block.

2.2 Overhead in Data Path

To deal with the unaligned application write requests, OS
performs the read-modify-write (RMW) sequence. Firstly,
blocks which is written partially are read. Then, the data
read is merged into the write buffer. At last, the partially
written blocks will be updated with the merged data. In
this process, OS transforms the unaligned write into aligned
write at the cost of extra operations. Figure 2 shows the data
path in unaligned writes. The first case is the unaligned
write within block, a single-block RMW operation is per-
formed. The second case is the unaligned write cross blocks.
In this case, a two-block RMW operation is performed.
What’s more, the RMW sequence should be performed only
step-by-step.

NVMe Device NVMe Device

Within block Cross blocks

Fig. 2. Data path of unaligned writes in RMW sequence.

The situation is more complicated in SSDs. The basic unit
of read/write in flash based SSDs is flash page, which is
about 4KB or 8KB according to the flash media architecture.
A flash page should be erased before it is written again. If
the OS storage system adopts a small bsize, such as 512
bytes, an aligned write in the OS may lead to an unaligned
write inside the SSDs. In this case, an unaligned write in
the OS may incur RMW operation both in the OS layer and
the SSD device layer. For this reason, some flash-based file

Authorized licensed use limited to: University of New South Wales. Downloaded on July 12,2020 at 05:48:07 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3006655, IEEE
Transactions on Parallel and Distributed Systems

3

systems prefer to set the bsize to the size of a flash page.
However, the RMW still degrades the SSDs performance
and reduces the flash lifetime. On one hand, a single-block
RMW incurs one block read and one block write. Therefore,
the unaligned write incurs extra I/O requests. Besides, the
mixed read/write pattern in RWM further decreases the
NVMe device’s write performance. On the other hand, the
merge operations transfer the small size data (several bytes)
to a relatively large block (4 or 8 kilobytes), this leads to
write amplification in SSDs thus reducing the flash lifetime.

So, there is still a large headroom to exploit the perfor-
mance of NVMe-based SSD by reducing the RMW operation
in the data path.

2.3 Overhead in Block Map Table
2.3.1 Traditional File System
In a file system, files are divided into data blocks. The inode
is used to store the metadata or directory of a file, and
the block map table is used to index the device blocks.
To support the big size file (i.e., Gigabytes to Terabytes),
common file systems use two types of map tables to address
the file blocks, the indirect block map (IM) [23] and the
extent tree (ET) [21] as in Figure 3. In IM, the inode points
to the first few data blocks, often call direct blocks. For big
files, the inode also points to an indirect block, which points
to disk blocks. If it is still not enough to store the file, the
inode will point to a double indirect block, which points
to some indirect blocks, which point to disk blocks. In ET,
it uses Extent, which contains a block offset and number
of blocks, to describe several consecutive blocks. For small
files, the inode will points to the Extents directly. For big
files, the Extents are organized using B+ tree [21]. These
two methods are widely used in file systems (Ext3 [24], F2FS
and XFS [25] use IM, while Ext4 and Btrfs [26] use ET).

…

4 8 12

… …

…

…

0 16 24

… …

Indirect Block Map Extent Tree

Disk Blocks

Direct block

Indirect block

 Double indirect block

Index node

leaf node …

Disk Blocks

Fig. 3. Types of Index Tables

For the IM mechanism, when a file data is updated, its
direct blocks or indirect blocks should be updated. Then,
the index structures such as inode, inode map are also
updated recursively. This is called wandering tree problem
or update-to-root problem. Since the RMW operation will
rewrite the unmodified data in a partially written page,
unaligned writes incur additional metadata updates and
aggravate the wandering tree problem. Although F2FS [22]
solves this problem by introducing NAT (Node Address
Table) mechanism, it also requires an in-place-update opera-
tion which is unfriendly to flash media and requires further
I/O remapping operations in FTL layer.

For the ET mechanism, an aligned write only add or
change one item of ET’s leaf node. An unaligned write
divides an I/O into the aligned part and unaligned part,
thus inserting two (within block) or three (cross blocks)
items into leaf nodes. For the ET mechanism, the more
fragment items which are inserted into the leaf node, the
more split operations will occur in the leaf node. The split
operation leads to tow leaf nodes’ reorganization and index
table updating, and these involve additional three metadata
pages rewritten.

The methods mentioned above are lack of optimizations
for the unaligned writes, and thus, increase the write ampli-
fication and decrease the write performance.

2.3.2 Key-value Based Metadata Management

Nid Onode Shard
MAP

Offset,bytes
Offset,bytes

Offset,bytes
…

Nid:offset Info Extent Map Blob Map

Nid:offset Info Extent Map Blob Map

Nid:offset Info Extent Map Blob Map

…

8 Bytes 16-256 Bytes

16 Bytes 56-4096 Bytes

Fig. 4. BlueStore’s Block Map in Key-value Store. The gray block is the
key and the white block is value

To migrate the write amplification problem from updat-
ing metadata block in the file system, some file systems
(e.g., TableFS [27], IndexFS [28] and BatchFS [29]) and
object storage device (e.g., BlueStore) use key-value (KV)
store to store the metadata. Most of the KV store in these
systems are organized in log-structured merge (LSM) tree
structure, the data are stored as write-ahead-log (WAL)
which sequentially write data into the storage device to fully
utilize the available device bandwidth. However, the write
amplification problem caused by unaligned writes remains.

Figure 4 shows the example of the block map in the KV
store of BlueStore. BlueStore uses the block map to store the
extent tree structure. Shard Map is used to store the index
node of extent tree. Each object in BlueStore is stored as a
KV pair, which uses Nid as the key and uses the object node
metadata (onode) and all the index nodes (Shard Map) as
the value. For each sub-index entry, Nid and offset in
Shard Map is used to retrieve the Extent Map and Blob
Map. Extent Map is used to store the leaf node of the extent
tree. Blob Map stores the mapping of logical address to
physical address. In this manner, the metadata update only
requires KV operations rather than page-level data syncing
as in filesystems. However, a small change to a leaf node
still requires updating a whole KV pair. For an unaligned
write operation, BlueStore will modify one or two KV pairs.
It means each write operation will write additional 56-8192
bytes data in the KV store.

In this paper, our goal is to reduce the write amplification
and extra I/O requests from unaligned writes. We propose
an object-based storage device (OSD) system, NVStore, to

Authorized licensed use limited to: University of New South Wales. Downloaded on July 12,2020 at 05:48:07 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3006655, IEEE
Transactions on Parallel and Distributed Systems

4

provide excellent data access performance in unaligned
writes for the distributed object storage system.

3 DESIGN AND IMPLEMENTATION

3.1 Architecture
NVStore is an OSD system, and it could be used in the
existing object storage system, Ceph, to improve the un-
aligned write performance for high-performance SSD while
extending the lifetime of flash media. Figure 5 presents the
overall architecture of NVStore and the differences from the
current OSD systems(e.g., FileStore and BlueStore).

Since NVStore is at the lowest layer of Ceph, it receives
all the data from the the upper system (e.g., the virtual
machine I/O from the virtual block layer, the application
I/O from the distributed file system or the application I/O
from the object store service) through remote direct memory
access (RDMA) or TCP/IP.

NVStore functions based on two types of storage sys-
tems, the KV store and NVMe-based raw device. The meta-
data in NVStore is entirely stored in KV store and the data is
stored both in KV store and raw NVMe SSD device. NVStore
reuses BlueStore’s user-space file system, BlueFS [20], and
the key-value store, RocksDB [30]. Instead of using Extent
tree to store the block map as in BlueStore, NVStore
provides a KV affinity metadata organization mechanism
to reduce the write amplification from unaligned writes.
What’s more, unlike BlueStore which only uses KV store
to record the index tables, NVStore uses a flexible cache
mechanism which cooperates with KV store to accelerate
the unaligned write performance while reducing write am-
plification and ensuring the data consistency. Compared
with FileStore which delegates the block map and cache
management to the local filesystem (e.g., Ext4, XFS), both
NVStore and BlueStore use user-space metadata and cache
management and directly send the final I/O requests to
kernel’s AIO block driver [31] or Intel’s SPDK [32].

Besides, NVStore is compatible with existing systems
and provides the same interfaces to Ceph’s Rados [20] layer.

3.2 Flexible Cache Management
Instead of using kernel’s page cache (e.g., FileStore) or user-
space LRU (Least Recently Used) or FIFO (First In First

Out) cache (e.g., BlueStore), NVStore proposes a flexible
cache management mechanism to optimize the unaligned
I/O by introducing the fragment page. Figure 6 shows
the architecture of the Flexible Cache Management. NVStore
proposes three types of pages and transforms these pages
under different I/O operations. Besides, to enforce the data
consistency, NVStore uses the KV store to store data from
unaligned writes.

3.2.1 Fine-grained Page Types

The three types of pages are the fragment page (FP), the
clean page (CP) and the dirty page (DP). In NVStore, all
types of pages use FIFO or LRU algorithm when cache
replacement is required. The clean page is read-only, and
it will update when aligned write and page read happens.
The dirty page is modified page, and it will be synced to
the disk when page replacing or system reloading happens.
Unlike the above-mentioned pages, the FP is organized as
a list table. Each FP contains an ordered list of items which
each records the page offset, data length and the data of an
unaligned write item. In FP, the latest unaligned write item
is always inserted to the end of the list. Figure 6 and Ta-
ble 2 show the page transformation in different operations,
Figure 7 shows the fragment page merge process, we will
discuss these processes in the following sections.

TABLE 2
Page Transformation

OP Hit DP Hit FP Hit CP Miss

AW CP CP 7 CP
UW 7 7 DP FP
Read 7 DP 7 CP
Sync CP CP 7 7

7 means no transformation happens. AW and UW means aligned
write and unaligned write operation.

3.2.2 RMW less I/O Operation

When data writes come, the traditional page cache mech-
anism will write data to the memory cache and syncs
the cache using background threads. In this manner, those
unsynchronized data pages become dirty pages. In contrast,

Object Storage Client
(Rados) Virtual Block Distributed File System

Object
Service

VM VM VM … APP APP APP …

NVMe Device

BlueFS
AIO/
SPDK

RocksDB

NVMe Device

Journal

Filesystem(ext4,xfs,…)

Page CacheIM/ET

File Structure
Object

NVMe Device

BlueFS
AIO/SPDK

RocksDB

Extent
Tree

Metadata

LRU/
FIFO
Cache

Deffered
I/O

KV
Affinity
Metadata

Flexible
Cache

FileStore BlueStore NVStore

RDMA or TCP/IP

Fig. 5. The Architecture of FileStore, BlueStore and NVStore

Authorized licensed use limited to: University of New South Wales. Downloaded on July 12,2020 at 05:48:07 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3006655, IEEE
Transactions on Parallel and Distributed Systems

5

NVMe Devices

BlueFS

IO Request

KV
Store

Cache

Clean Page
(CP)

Fragment Page
(FP)

Dirty Page
(DP)

Aligned
Write

 Read

Aligned
Write

Unaligned
Write

Aligned
Write

Unaligned
Write

Fig. 6. The Flexible Cache Management

NVStore would not directly create dirty pages thus reducing
the frequency of page replacement and data sync operations.

In NVStore, if an unaligned write is missed in the cache,
it creates a FP and then adds the unaligned write item to
the FP’s list table. If an unaligned write is in CP, it will
merge the unaligned data with CP and transform CP to DP.
If an unaligned write is in DP, it will merge the unaligned
write item to the existing DP. If an unaligned write is in
FP, it will add an unaligned item to the end of a FP’s list
table. By using these methods, an unaligned write will not
perform the RMW sequence and only need to write data to
the cache. For aligned data, NVStore will write data to the
page. Meanwhile, NVStore will directly write data to the
NVMe SSD device by using kernel’s AIO or Intel’s SPDK. If
the aligned write hit in the CP, it will update the CP itself.
If the aligned write hit in the FP or DP, it will transform the
FP or DP to CP. If the aligned write is missed in the cache, it
will add a new page to the CP. Besides, if a read operation
hits in a FP, it will read the page data from the NVMe device
and merge it with the FP data while transferring FP to DP.

Fragment Page

offset Data

Offset Data

offset Data
… Read

Page

Dirty
Page

Merge

Aligned
Page

Clean
Page

Merge

Fig. 7. Fragment Page Merging Process

3.2.3 Data Consistency

NVStore ensures the data consistency for both aligned
writes and unaligned writes. For aligned writes, it uses
AIO or SPDK and copy-on-write to ensure that all data
will be persisted to the back-end NVMe SSD device. This is
similar to BlueFS, which also adopts copy-on-write for write
requests. For unaligned writes, NVStore uses the KV store to
record the unaligned data before data syncing. As Figure 8a
shows, NVStore defines the KV format of the unaligned
write item. It uses the object’s uuid, the offset of the
page, the order of the unaligned item as the key and uses
the offset inner a page, called inoff and the data itself

as the value. This is similar to FileStore, which records all
write requests in a journal file before performing the write
operations. When the system crash happens, FileStore will
scan the journal file for data recovery, and NVStore will use
the data from KV store to recover and reorganize the DP and
FP. In this way, NVStore guarantees the data consistency in
the object storage level as BlueStore and FileStore do.

3.2.4 Lazy Page Sync
In NVStore, all the pages can be discarded without being
synced because of the guarantee of data consistency. But
NVStore still perform additional page replacement mecha-
nism to avoid excessive data fragmentation from unaligned
writes in KV store.

The DP and FP collection procedure will be executed by
a background thread when the system I/O is idle. In the
DP collection procedure, NVStore will sync the DP data to
the disk, and then discard the fragment data of this page
in KV store through the prefix operation in RocksDB thus
reducing the KV space. When a DP is synced to the disk, it
will be transformed to a CP. In the FP collection procedure,
NVStore will read the page data from the NVMe device and
merge it with the FP, and the FP will be transformed to DP.
Then, NVStore performs DP collection as mentioned above.

3.2.5 Benefits
In NVStore, each unaligned write only needs to write one
key-value pair to the KV store. The read, merge operations
in RMW sequence are required only when the page is read
by the client. This mechanism reduces the frequency of
performing the RMW sequence for some applications which
make unaligned write requests, and thus, reduces the mixed
read/write operations and write amplifications caused by
the RMW sequence. Moreover, since the KV store is used
to record the unaligned write, NVStore could accelerate
the unaligned write performance by reducing page sync
operations while ensuring the data consistency.

3.3 KV Affinity Metadata Management
Metadata is used to manage and index the data in the stor-
age system, and most storage systems have their accesses
been dominated by metadata operations. In recent years,
many storage systems choose to store metadata in the KV
store. KV stores are more gifted in efficiently managing the
small fragment data than file systems, for they aggregate
small fragment data into aligned blocks with special data
structures (e.g., LSM tree or B+ tree), which are more
friendly to both HDD and SSD. However, as illustrated
in section 2.3, the key-value based metadata management
will face write amplification problem, and it becomes more
inefficiency when dealing with unaligned writes. So, in the
OSD level, it is challenging to organize the metadata and
efficiently store it in the KV store. NVStore aims at handling
unaligned write problem and improving the efficiency of
metadata management with two techniques (i.e., Flattened
Block Map and Decoupled Object Metadata).

NVStore provides the same object interfaces as FileStore
and BlueStore. For Ceph’s OSD system, there are two types
of metadata which must be supported, onode and block
map. The onode is similar to the file’s inode and contains

Authorized licensed use limited to: University of New South Wales. Downloaded on July 12,2020 at 05:48:07 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3006655, IEEE
Transactions on Parallel and Distributed Systems

6

the basic types of metadata (e.g., size, flags, order,
. . .). The block map (i.e., Extent Map) contains the extent
information. Both FileStore, BlueStore and NVStore use key-
value store to store above-mentioned two types of metadata.
In addition, because BlueStore and NVStore organize the
object in user-space thus extra block map metadata (i.e.,
Blob Map) is required.

Unlike BlueStore which uses traditional Extent map
and KV store to organize and store the block map, NVStore
uses a Flattened Block Map which is affinity to KV store and
aims at promoting the access performance while reducing
the write amplification from metadata. Besides, to support
the Flattened Block Map, NVStore proposes the Decoupled
Object Metadata mechanism to decouple the relationship
between onode and block map, and this further reduces
the write amplification from metadata.

3.3.1 Flattened Block Map
NVStore designs the Flattened Block Map in terms of the
following observations:

1) The object size is always small (i.e., MB level) in current
distributed object storage systems. Data with big size
will be divided into multiple small objects, and the
object size is configurable (i.e., the default object size
in Ceph is set as 4MB). Therefore, the traditional IM
and ET structures, which support large file (i.e., GB
to TB level), are unnecessary in current object storage
architectures.

2) The unaligned writes will lead to small block map
updates. One unaligned write requires extra one or two
blocks (less than 4KB) being updated. Moreover, the
current block map mechanisms (i.e., IM and ET) need to
update 1 to 3 metadata blocks for a block update oper-
ation. The state-of-art systems (e.g., TableFS, BlueStore)
propose to use KV store to manage metadata, and thus,
reduce the write amplification from metadata updates.
However, the modification in value field which only
updates a small part of the value requires to update the
whole KV pair, this also incurs write amplification.

uuid:offset csum:paddr:on
16 Bytes 18 Bytes

Block Map KV pair Format

uuid:offset:order inoff:data
16 Bytes <4096 Bytes

Fragment Data KV pair Format

(a) Metadata Type of Flattened Block Map

Fragment data

0:0

0:2

0:4

0x010

0x014

0x019

0x77

10x98

0x44

0

0
0:4:1 23 data
0:4:2 56 data
0:4:3 45 data

Device Space
Flat Block Map

(b) Example of Flattened Block Map

Fig. 8. Flattened Block Map. The gray block is the key field, the white
block is the value field.

NVStore proposes the Flattened Block Map mechanism
to reduce the write amplification from current KV based

block map mechanism. Figure 8a shows the structure of the
Flattened Block Map. NVStore stores objects in unit of NVMe
SSD’s block size (4KB or 8KB) and indexes each block using
the unique object id (uuid, 8bytes) and the block offset
(offset, 8bytes) as the key. In the value field, NVStore
records three items, the checksum (csum, 4bytes), the
physical address (paddr, 8bytes) and the fragment data
confirmation flag (on, 1byte).

Besides, NVStore also designs a fragment data structure
to store the unaligned data in the KV store. Figure 8a shows
the KV pair format of the fragment data. The key field
contains three items, the uuid, offset and the order of the
fragment write (order, 1 byte). The value field contains
two items, the offset of the data inside a block (inoff,
2bytes) and the fragment data (less than a block size).

Figure 8b shows an instance of the flattened block map.
For aligned write, it directly writes data to the device.
Similar to the existing file systems, NVStore uses the bitmap
to allocate the device space. The paddr directly points to
the physical zone. The on flag is set to zero to indicate it as
an aligned block. For an unaligned write in a block, NVStore
will record its block map in the KV store and sets the on flag
with one when first writing this block. NVStore will record
the fragment data in the KV store as well as its writing order
in this block. When read operation comes, if the on flag is
zero, we could retrieve the data from the raw SSD device, if
the on flag is one, we could retrieve the FP in KV store and
recover the whole data page.

In this way, an unaligned write only requires 1 or 2
metadata updates when the unaligned write first happens
within a block or cross two blocks. Moreover, we only need
to update the on flag when updating the metadata, and this
only requires a value updating with 18 bytes in the KV store.
However, in BlueStore, it requires a value updating with 56-
4096 bytes in the KV store. The follow-on unaligned writes
to the same block will not affect the flattened block map and
only insert data to the fragment data zone until an aligned
write comes or NVStore execute the data sync operation. In
the data sync operation, NVStore will modify the on flag to
zero and then discard the fragment data through the prefix
operation in RocksDB.

In conclusion, the Flattened Block Map mechanism co-
designs the metadata structure and the KV store. Compared
with the solution of storing a tree structure (i.e., ET) or
a multi-level index table (i.e., IM) in KV store, NVStore
provides a flattened structure which is more efficient in
metadata operation for unaligned writes and reduces the
write amplification from metadata.

3.3.2 Decoupled Object Metadata
Decoupling the metadata is a widely used optimization
method in the metadata management (e.g., IndexFS, Lo-
coFS [33]). We also proposes a Decoupled Object Metadata
mechanism in NVStore.

Similar to the BlueStore which decouples metadata into
different parts (i.e., onode, Shard Map, Extent Map,
Blob Map), NVStore further decouples the relationship be-
tween onode and the block map structures. Figure 9 shows
the extra three types of metadata in NVStore in addition
to the above-mentioned flattened block map. In BlueStore,
onode and Shard Map are stored in the same KV pair and

Authorized licensed use limited to: University of New South Wales. Downloaded on July 12,2020 at 05:48:07 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3006655, IEEE
Transactions on Parallel and Distributed Systems

7

onode will record the address of the Shard Map as well
as some basic object metadata (i.e., data size, block size
and so on). So, the metadata structures in BlueStore are
highly dependent on each other, an object update operation
may need to modify all the metadata structures. In terms
of this, NVStore stores onode and the flattened block map
structures separately, and the onode only stores the basic
object metadata. In this manner, NVStore does not have to
make any changes to the onode when updating the data
of an object. Only those object operations which affect the
basic metadata in onode, like append and truncate oper-
ations, will update the onode. What’s more, the KV pair
size of onode in NVStore is much shorter than BlueStore,
this accelerates the metadata operations while reducing the
write amplification from onode updates. To be compatible
with Ceph, we keep the omap structure.

Since the whole flattened block map can be retrieved
via the prefix search operation and then the object meta-
information in onode can be recovered, NVStore would
not sync the onode metadata when executing append or
truncate operations. This mechanism further reduces the
write amplification from the metadata sync operations.

uuid

uuid:omap_key omap_value

object_id uuid

size:flags:order:bsize:…

1-255 Bytes 8 Bytes

8 Bytes 56 Bytes

16 Bytes 1-255 Bytes

Name

Onode

Omap

Fig. 9. Metadata of NVStore.

3.3.3 Metadata Cache
Besides optimizing the metadata layout, we introduce a
metadata cache to accelerate the metadata accesses. For a
touch operation, the name map and onode will be up-
dated. For a write operation, the onode and Flattened
Block Map will be updated. Besides, the remove, clone,
read operations will also update or access different meta-
data items. We observe that name map is frequently read
by all types of operations, but only updated by touch and
remove operations, which happens occasionally during the
lifetime of an object. Moreover, onode which stores the basic
metadata of objects will be accessed and updated frequently
by most operations.

In terms of these observations, NVStore introduces a
metadata cache as Figure 10 shows. NVStore only caches
the name map and onode in memory and use a back-
ground thread to synchronize the name map when creating
or removing objects and to synchronize the onode when
receiving a flush operation or a soft time-interruption. Al-
though the index tables in Flattened Block Map are
also frequently accessed by write and read operations,
NVStore will not cache them in the metadata cache. In
NVStore, the index tables are stored in the B+ tree based KV
storage. One object contains multiple index table items with
a similar prefix in keys, and they tend to be stored adjacently
in the B+ tree data structure, thus providing advantageous
locality. Such designs can accelerate the performance of

Metadata Cache

KV Store

BlueFS

Name Map
Cache

Onode
Cache

Omap Flattened
Block Map

write

touch

remove

clone

Name
Map Onode

NVMe-based SSD

Fig. 10. Metadata Cache

read or write operations because B+ tree based KV store
will cache the adjacent items into memory beforehand. Es-
pecially, NVStore ensures the atomicity of multiple updates
in one metadata operation with the transactional interface
provided by the KV store.

Unlike BlueStore which caches all the metadata struc-
tures indiscriminately, NVStore caches different metadata
based on their access patterns. In this way, NVStore avoids
the overhead of duplicate data caches in KV store cache
and the metadata cache. What’s more, the metadata cache
chooses to cache the metadata which is not frequently modi-
fied but accessed frequently, and thus, reduces the frequency
of metadata synchronization and improve the efficiency of
querying the metadata items.

3.4 Compatibility

Although NVStore uses a different metadata structure and
co-designs the metadata management and KV store, it could
also be compatible with the advanced function of Ceph (e.g.,
checksum and clone).

3.4.1 Checksum

BlueStore chooses to calculate the checksum of the whole
object data block and store the whole checksum data into
the extent tree. In contrast, NVStore proposes to calculate
the checksum for each data page and store the checksum
in csum as Figure 8 shows. For unaligned data, NVStore
will not calculate its checksum until it is synced to the
block device. In this manner, when user makes a small write
request to an object, NVStore only needs to recalculate the
checksum of a small data block and update a small KV
pair. However, BlueStore needs to re-insert the whole extent
block thus degrading the KV performance.

3.4.2 Clone

NVStore also supports the block-level share and clone op-
erations. The on flag in Figure 8 can be used to defined
a shared block when the value of on is greater than one.
For other object which share with the block, the csum
and paddr filed will be filled with the uuid and offset
of the shared object. In NVStore, a fragment block could
not be shared until data sync operations. Compared with
BlueStore, the clone mechanism is simpler and needs no
additional structures.

Authorized licensed use limited to: University of New South Wales. Downloaded on July 12,2020 at 05:48:07 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3006655, IEEE
Transactions on Parallel and Distributed Systems

8

3.5 Limitation

3.5.1 Large Write

NVStore is designed to improve the performance of un-
aligned write and could also promote the small write ef-
ficiency. However, these mechanisms incur high metadata
overhead when executing large write. For a large write (i.e.,
64KB-1MB), NVStore will insert 16 to 256 key-value pairs
to the KV store for the NVMe SSD with 4KB block size
thus involving 200 bytes to 6400 bytes metadata updates.
However, BlueStore only updates 56 to 4096 bytes metadata.
Fortunately, because the inserted items are sequential and
the data size is quite large, the batch operation in RocksDB
can write these data to a continuous block thus compensat-
ing for the performance loss of large write from metadata
updates in NVStore.

3.5.2 Compress

The designs of NVStore are inefficient to the compress func-
tion because the size of a compressed block is unpredictable.
The I/O path and metadata structure of NVStore is suitable
for the character of NVMe SSDs and tries to write aligned
pages to the device. The compress process may transform
the uncompressed aligned data to unaligned data, and the
small data updates will affect the final compressed output
in a great extent. In NVStore, it will lead to excessive data
fragment and bloat the KV store thus degrade the overall
write performance.

3.5.3 Garbage Collection

In NVStore, the KV store records the data of unaligned
writes (i.e. Fragment data in Figure 8b). If the unaligned
writes to the same page are not synced, the records in the
KV store are responsible for the data consistency of this
page. As mentioned in Section 3.2.4, to avoid excessive
data fragmentation in the KV store, NVStore can sync the
cache pages in a lazy style. Meanwhile, NVStore performs
garbage collection, in which the corresponding unaligned
write items of those synced pages in the KV store will be
deleted. For example, When a cache page (DP or FP), which
is indexed by uuid:offset, is synced, NVStore will delete
all Fragment Data KV pairs with the prefix uuid:offset
in the key field.

4 EVALUATION

In this section, we compare NVStore with the traditional file
system based OSDs (i.e., Ceph’s FileStore), the state-of-art
OSDs (i.e., Ceph’s BlueStore) and other distributed file sys-
tems (i.e., Lustre, Gluster). Also, we compare NVStore with
the NVStore-cache which only contains the Flexible Cache
Management and the NVStore-meta which only contains the
KV Affinity Metadata Management. Firstly, We evaluate the
write amplification optimization of NVStore (section 4.2) in
both metadata and data. Secondly, we evaluate the single
OSD performance of NVStore with variable write I/O sizes
(section 4.3). We then evaluate the clustering performance
of NVStore (section 4.4). Finally, we evaluate the influence
of some significant factors, such as I/O depth and aligned
writes, on NVStore (section 4.5).

4.1 Experimental Setup
4.1.1 Hardware Configuration
Our experiments are deployed respectively on a local envi-
ronment and a cluster environment (shown in table 3). The
cluster consists of 5 SuperMicro servers with CentOS 7.3
and CentOS 7.3 (Lustre version) installed, each of which has
384GB DDR4 memory and two Intel Xeon 24-cores CPUs.
The server in both local and cluster environments have
2×Intel 750 SSDs. Moreover, all the servers in the cluster
are interconnected with Mellanox SX1012 Switch (56Gb/s
InfiniBand) to better exploit the SSD’s performance.

TABLE 3
The Hardware Configuration

Server Name SuperMicro
of Machines 5

CPU Intel Xeon 24 cores 2.5GHz × 2
Memroy DDR4 384G
Storage Intel 750 × 2

Network Mellanox SX1012 Switch
CX353A ConnectX-3 FDR HCA

4.1.2 Software Configuration
Table 4 lists the configurations of each experiment, including
the number of machines, the benchmark tools, the compared
storage systems, the object size, the write I/O size, the
total write size and running time. Our evaluations use
Ceph luminous [34], the latest version from Github, Lustre
2.11 and GlusterFS 3.14 as the storage system. To demon-
strate our design clearly, we provide three self-modified
micro-benchmark tools, Object Bench (OB, modified from
ObjectBench), Rados Bench(RB, modified from FileBench)
and Cluster Bench (CB, modified from FileBench). OB sup-
ports evaluating Ceph’s Object Store (i.e., BlueStore, File-
Store and NVStore) on write amplification and performance
with different write patterns (i.e., append write, random
write and overwrite), variant object size and write I/O
size. Since FileBench is a useful benchmark to generate the
simulated real workload with unaligned writes, we develop
RB and CB to allow running FileBench’s workload on Rodos
and support multiple clients. Therefore, we could evaluate
the unaligned write performance in both single node and
cluster environments. Besides, to demonstrate the impaction
of aligned writes on NVStore, we employ iozone (a bench-
mark supports multiple clients and generate aligned writes)
to evaluate the performance of common distributed file
systems (i.e., CephFS, Lustre and GlusterFS).

To exploit the full performance of Ceph with FileStore,
BlueStore and NVStore. We employ two SSDs to avoid the
impact of mixed I/Os. For FileStore, one NVMe SSD is used
as the journal disk formatted with Ext4 or XFS and the other
is used as the data disk. For BlueStore and NVStore, one
NVMe SSD is used to store both KV data and WAL data
and the other is used as the data disk.

4.2 Write Amplification
In this section, we evaluate the write amplification from
metadata and data respectively. We use OB to generate
workload and use Ceph’s PerfCounter [35] to collect the
results.

Authorized licensed use limited to: University of New South Wales. Downloaded on July 12,2020 at 05:48:07 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3006655, IEEE
Transactions on Parallel and Distributed Systems

9

TABLE 4
Software Configuration

Experiments Fig. 11 Fig. 12 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18
of machines 1 1 1 1 5 1 5
Benchmarks OB1 OB1 OB1 RB2 CB3 OB1 IOzone
Object Size - - 4MB 4MB 4MB 4MB 4MB

Align 3 7 7 7 7 3 3
Write I/O Size - 2KB 2KB - - - -

Total Write Size 16GB 16GB 16GB - - 16GB -
Running Time - - - 600s 600s - -

Storage Systems Ceph Luminous, GlusterFS 3.14, Lustre 2.11
1 An object storage benchmark modified from ObjectBench. This tools can generate

different fixed size of workload from indicated offset.
2 A modified filebench which could run on Ceph’s Rados Layer. This tools can generate

the same workload as filebench.
3 A modified filebench which could support multiple clients. This tools can generate

the same workload as filebench.

4.2.1 Metadata write traffic in aligned writes
We first evaluate the benefits of the flattened block map in
aligned writes. Since the overhead of extent tree is associ-
ated with the size of the object, and BlueStore uses the KV
based extent tree to map the block, we evaluate NVStore
and BlueStore under variant object size from 4MB (default
size) to 256MB. In each experiment, we use OB to generate
16GB aligned append writes with the average write I/O
size ranging from 4KB to 512KB. We collect the size of
metadata write traffic from BlueStore (onode and block
map) and NVStore (onode and Flattened Block Map)
using PerfCounter.

BlueStore-256M
BlueStore-64M
BlueStore-16M

BlueStore-4M
NVStore

W
r
i
t
e

S
i
z
e

(
B
y
t
e
s
)

Write I/O Size (KB)

0

1G

2G

3G

4 8 16 32 64 128 256 512

Fig. 11. Metadata write traffic under aligned writes. The write traffic of
each workload is 16GB. BlueStore-256M means the object size is 256MB
in the test with BlueStore. Others are in a similar way. The object size
in NVStore is 4MB.

Figure 11 shows the total write size of metadata in each
object store. Because the total write size of metadata in
NVStore is independent of object size, we only show the
result of 4MB object size in this figure. We could make the
following observations:

• NVStore achieves the lowest metadata write traffic and
the most stable metadata overhead in aligned writes
under different write sizes. When the write size is
4KB, the metadata write traffic of BlueStore is about
1.5 to 8× compared with NVStore as the object size
increases. When the write size is large (i.e., 256KB and
512KB), NVStore also achieves smaller metadata write
traffic compared to BlueStore. This is because the total
metadata update size in NVStore has no relationship
with the object size, and it only concerns with the total
data write size. In NVStore, the metadata write traffic

of NVStore is about 1.9% of the total data write traffic.
In this perspective, NVStore is suitable for small writes.

• The object size and write I/O size have egregious
impact on the KV based extent tree structure. Since each
append write will add items to the extent map and
modified the index item in onode. As the object size
increases and the write I/O size decreases, the size of
mapping structures will increase, the leaf nodes of ex-
tent tree will also split and reorganize more frequently.
This causes significant write amplification.

4.2.2 Metadata write traffic in unaligned writes

In this section, we evaluate the benefit of flattened block
map in unaligned writes. We compare the metadata write
traffic under unaligned write in NVStore with BlueStore
in cross blocks and within block situations. We use OB to
generate these workloads. The total data write traffic in
each evaluation is also 16GB. For within block, we generate
append write with 2KB write size, and each append write
is with offset = 0. For cross blocks, we generate append
write with 4KB and offset = 2048. We also collect the
write traffic of metadata from BlueStore (onode and block
map) and NVStore (onode and Flattened Block Map)
using PerfCounter.

Cross Blocks-BlueStore
Within Block-BlueStore
Within Block-NVStore
Cross Blocks-NVStore

W
r
i
t
e

S
i
z
e

(
B
y
t
e
s
)

Object Size (Bytes)

0

2G

4G

6G

8G

256M 64M 16M 4M

Fig. 12. Metadata write traffic under unaligned writes. The write traffic
of each workload is 16GB. Within Block-NVStore means the test of
within block unaligned writes in NVStore. Others are in a similar way.

Figure 12 shows the total write size of metadata in
BlueStore and NVStore under different object size. Figure 13
shows the extra write traffic to the KV store. The extra data
write size is computed by the total metadata table file sizes

Authorized licensed use limited to: University of New South Wales. Downloaded on July 12,2020 at 05:48:07 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3006655, IEEE
Transactions on Parallel and Distributed Systems

10

Cross Blocks-BlueStore
Within Block-BlueStore
Within Block-NVStore
Cross Blocks-NVStore

W
r
i
t
e

S
i
z
e

(
B
y
t
e
s
)

Object Size (Bytes)

0

500M

1.0G

1.5G

2.0G

2.5G

256M 64M 16M 4M

Fig. 13. Extra Write traffic in RocksDB under unaligned writes. The
write traffic of each workload is 16GB. Within Block-NVStore means
the test of within block unaligned writes in NVStore. Others are in a
similar way.

in the KV store subtracted from the total metadata write size
in Figure 12. We could make the following observations:

• NVStore achieves the lowest write traffic of metadata
and the most stable metadata overhead in unaligned
writes under different write sizes. For within block, the
metadata write traffic in BlueStore is about 2.5 to 10×
of NVStore as the object size increases. For cross blocks,
the metadata write traffic in BlueStore is about 4 to 19×
of NVStore. This proves that NVStore can significantly
reduce the write traffic of metadata in unaligned writes,
especially when objects are large.

• The write amplification from the KV based extent tree
structure becomes more severe under unaligned writes.
Unaligned writes will lead to more leaf nodes com-
pared with aligned writes thus incurring more node
split and merging operations. Therefore, it leads to
severe write amplification and significantly degrades
the write performance.

• NVStore also achieves the lowest write traffic to the
KV store. Firstly, NVStore writes less metadata than
BlueStore with the design of the Flattened Block Map.
Besides, the value size of the metadata KV pair in NVS-
tore is smaller than BlueStore, so the write amplification
from the compaction of RocksDB in NVStore is quite
smaller than BlueStore. Both NVStore and BlueStore use
write-ahead-log (WAL) in the KV store. Since NVStore
writes less metadata to the KV store, the WAL write
traffic in NVStore is smaller than BlueStore. To simplify
the write traffic collecting process, the WAL write traffic
is not included in Figure 13.

4.2.3 Data write traffic in unaligned writes

In this section, we evaluate the write traffic of data un-
der unaligned writes with different write patterns (append
write and overwrite) in NVStore, FileStore and BlueStore.
We use OB to generate these workloads. The total data write
traffic in each evaluation is 16GB. The unaligned writes are
with 2KB write size and offset = 0. We evaluate NVStore-
Sync mode and NVStore-Unsync mode of NVStore respec-
tively. In the NVStore-Sync mode, the unaligned writes will
be synced to . In the NVStore-Unsync mode, the lazy page
sync mechanism is applied. We collect the write traffic of
data (including the metadata) from BlueStore and NVStore
using PerfCounter, from FileStore using blktrace [36].

FileStore BlueStore NVStore-Sync NVStore-Unsync

To
ta

l W
rit

e
(G

B)

0

20

40

60

Append Overwrite

Fig. 14. Data write traffic under unaligned writes. For BlueStore and
NVStore-Sync, the results are collected from the KV stores and the data
disk. For NVStore-Unsync, it is only from the KV Store. For FileStore, it
is collected from the data disk and the journal disk. The write traffic of
each workload is 16GB. The object size is 4MB.

Figure 14 shows the total write size in FileStore, Blue-
Store and NVStore. In this section, we calculate BlueStore
and NVStore’s WAL write traffic as the workload traffic
(16GB). We could make the following observations:

• NVStore-Unsync achieves the smallest write traffic, and
it is about 50% of BlueStore and 65.7% of FileStore. In
NVStore, we write the unaligned data to the KV store
and use the KV store to guarantee the data consistency
rather than performing RMW operations. In the KV
store, the unaligned data is firstly appended to the
write-ahead-log and then persisted to the back-end
devices as aligned data. The KV store overhead is quite
smaller than the RMW operations. Because the WAL
syncing is off the critical path of writes, and the KV
store writes data to disk in big batches.

• BlueStore achieves the largest write traffic in this evalu-
ation. For BlueStore, small data (less than 64KB) is also
written to the KV store first, and then the data will be
written back to data disk using RMW operations. In
this way, a 2KB write is processed as a 2KB KV pair
write, a 2KB WAL record write, and a 4KB final write
in RMW. So the write traffic is almost 4× of the data
size. In the NVStore-Sync mode, NVStore merges the
unaligned data in the KV store and write the merged
data back to the data disk. This reduces the overhead of
RMW operations in BlueStore.

• FileStore achieves smaller data write traffic than Blue-
Store. FileStore uses a logging mechanism, a 2KB data
write is processed as a 2KB batched journal append-
write and a 4KB final write in RMW. So the write traffic
is almost 3× of the data size. Since blktrace can only
record all I/O operations, the metadata write traffic is
included in the results.

In summary, NVStore can effectively reduce the write
amplification from unaligned writes, and writes less than
the existing system when no real-time unaligned data syn-
chronization is performed. When the synchronization is
introduced, its write traffic is about the same as the Blue-
Store. However, NVStore does not require real-time data
synchronization, this gives NVStore the advantages over
BlueStore in write performance. Besides, NVStore achieves
the lightest write traffic in aligned small writes.

4.3 Local Performance
In this section, we evaluate the single-node performance
of NVStore, FileStore (based on Ext4) and BlueStore under

Authorized licensed use limited to: University of New South Wales. Downloaded on July 12,2020 at 05:48:07 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3006655, IEEE
Transactions on Parallel and Distributed Systems

11

unaligned writes. To demonstrate the performance improve-
ment brought by different optimizations, we evaluate three
versions (i.e., NVStore-Cache, NVStore-Meta, NVStore-All)
of NVStore. NVStore-Cache only adopts the Flexible Cache
Management mechanism to optimize the cache management.
NVStore-Meta only adopts the KV Affinity Metadata Man-
agement mechanism to optimize the metadata management.
NVStore-All is the fully-functioned version with all the
optimizations. The modified Filebench (RB) which could
run on Ceph’s Rados layer is used for our evaluations. We
deploy Ceph on a single node, and runs RB on it to collect
the performance evaluation under different block sizes.

BlueStore
FileStore
NVStore-Cache
NVStore-Meta
NVStore-All

N
or

m
al

iz
ed

 W
rit

e
Pe

rfo
rm

an
ce

Write I/O Size (KB)

0.4

0.6

0.8

1.0

4 8 16 32 64 128 256 512

Fig. 15. Local performance. Each test runs 600s. The object size is 4MB.

Figure 15 shows the single node write throughput
(MB/s) of BlueStore, FileStore and NVStore as the write
I/O size increases from 4KB to 512KB. NVStore-All achieves
the highest write performance in all evaluations. The write
throughput of NVStore-All is about 1.11 to 3.00× of Blue-
Store and 1.05 to 1.75× of FileStore under different write
I/O sizes. NVStore-Cache outperforms all the other systems
except NVStore-All. In most cases, the write performance
of all the systems increases as the block size increases, and
the write performance of NVStore-Meta is between FileStore
and BlueStore. When the write size reaches 512KB, the
write performance of FileStore decreases and is lower than
both NVStore-Meta and BlueStore. From this evaluation,
we could conclude that NVStore could effectively improve
the performance of unaligned writes, and the cache opti-
mizations play a key role in it. This is because NVStore
reduces the extra I/O overhead from unaligned writes and
reduces the write traffic without data sync operations. More-
over, the metadata optimizations further promote the write
performance of NVStore. In this evaluation, we use 4MB
objects, the write amplification in BlueStore and NVStore
is similar. Compared with BlueStore, NVStore-Meta still
achieves at most 20% performance improvement in 4KB
write size. Since FileStore adopts the asynchronous write
method and returns when data is written to the log, so the
write performance is better than BlueStore in most cases.

4.4 Cluster Performance

In this section, we evaluate the cluster performance of
NVStore, FileStore and BlueStore under unaligned writes.
Since the CephFS and Rados Block Devices (RBD) in Ceph
adopt a page based data management, the unaligned writes
could not be perceived by the underlying OSDs. To this
end, we use the modified Filebench (CB) which could

run on Ceph’s Rados interfaces to evaluate the unaligned
writes performance under a 5-node cluster. We use CB to
generate unaligned write patterns based on real workloads
(i.e., appendfile, logfile, mail server, cloud server), and then
evaluate the cluster bandwidth in FileStore, BlueStore and
NVStore (NVStore-Cache, NVStore-Meta and NVStore-All).

FileStore
BlueStore
NVStore-Meta

NVStore-Cache
NVStore-All

B
a
n
d
w
i
d
t
h

(
B
y
t
e
s
/
s
)

0

1G

2G

Distributed Workload

Append Log Mail Cloud

Fig. 16. Real workload performance in Cloud.

As in Figure 16, we could observe that NVStore-All
achieves the highest bandwidth under all the scenarios, it
is about 2.03 to 6.11× of BlueStore and 1.99 to 3.06× of
FileStore. This is because of the small and random writes in
these workloads. Appendfile, logfile, and mail server work-
loads tend to generate more small writes, this has a great
impact on the performance of BlueStore. FileStore has better
performance than BlueStore due to its logging mechanism
which shields the effects of unaligned writes. NVStore can
greatly improve the unaligned writes performance because
it uses an optimized cache mechanism.

In summary, NVStore can greatly improve the un-
aligned writes performance in real distributed applications.
It should be noted that since the client of the distributed file
system currently adopts a page-based client cache manage-
ment mechanism, NVStore cannot be directly used for the
existing distributed file system.

4.5 Overhead Evaluation

4.5.1 Sensitive to I/O Depth

I/O depth is the number of the on-the-fly I/O requests.
It greatly affects the performance of storage systems, espe-
cially for direct I/O. To understand NVStore’s sensitivity to
the I/O depth, we evaluate Ceph with NVStore, BlueStore
and FileStore using two I/O depth settings, 100 and 1000.

FileStore-100
FileStore-1000
BlueStore-100
BlueStore-1000
NVStore-100
NVStore-1000

W
r
i
t
e

P
e
r
f
o
r
m
a
n
c
e

(
M
B
/
s
)

Aligned Buffer Size (Bytes)

0

200

400

600

800

512 2K 8K 64K

Fig. 17. Sensitivity to I/O Depth. The write traffic of each workload is
16GB. The object size is 4MB. NVStore-100 means testing NVStore with
the I/O depth 100. Others are in a similar way.

Authorized licensed use limited to: University of New South Wales. Downloaded on July 12,2020 at 05:48:07 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3006655, IEEE
Transactions on Parallel and Distributed Systems

12

Figure 17 shows Ceph’s bandwidth when using NV-
Store, BlueStore and FileStore with different I/O depth
settings. We could make the following observations:

• I/O depth has a higher impact on direct I/O (like
in NVStore and BlueStore) than buffered I/O (like in
FileStore), because buffering mitigates the impact from
I/O depths. With different I/O depths, Ceph-FileStore
maintains similar performance, with a maximum dif-
ference of 21%. In contrast, NVStore has a maximum
difference of 60%, and BlueStore has a maximum dif-
ference of 200%.

• NVStore is less sensitive to the I/O depth than Blue-
Store. When the write size is less than a block size,
BlueStore has greater bandwidth difference between
different I/O depths. One possible reason is that when
the number of on-the-fly requests is limited, the SSD
bandwidth can not be saturated. Since NVStore use the
KV store to store the unaligned writes, the unaligned
write performance is not affected by the I/O depth, but
by the performance of the KV store.

As such, we conclude that I/O depth has an impact on
storage systems which use direct I/Os. With better data
layout, this impact can be reduced as in NVStore.

4.5.2 Aligned Write Performance
In this section, we use iozone to evaluate the overall system
performance of NVStore under aligned writes. The com-
pared systems are Lustre and CephFS, which are configured
with 1×metadata servers (mdt in Lustre and mds in Ceph),
5×OSD servers (ost in Lustre and osd in Ceph) and
5×clients.

Figure 18 shows the write bandwidth of the two evalu-
ated file systems with different write I/O sizes and different
backend storage systems. With 4KB write I/O size, NVStore
shows the highest write bandwidth, and is 1.6× of CephFS-
XFS, 1.5× of Lustre and 2.64× of CephFS-BlueStore. This is
because NVStore directly write aligned data to the disk and
update the metadata with finer granularity. Moreover, NVS-
tore performs better than any other system except Ceph-XFS
when the write I/O size is below 64KB. Since Ceph-XFS is
based on FileStore and returns when data is written to the
log, and these log writes is aligned sequential writes which
have a large advantage when the write granularity is small.
Due to the poor performance of the Flattened Block Map for
large writes, the performance of large writes in NVStore is
not as good as the existing distributed file system, but the
performance gap is not obvious, which is 5% worse than
BlueStore and 10% worse than Lustre.

5 RELATED WORK

Handling Unaligned Accesses. The unaligned I/O patterns of
computational science has long been considered as one of
the challenges at leadership scale [37]. Campello et al. [38]
reveal the causes of unaligned access: the mismatch in
data access granularities (bytes accessed by the application,
and pages accessed from storage by the operating system).
Client-based Caching can reduce the throughput loss caused
by frequent small and unaligned I/Os [39], [40], [41]. Settle-
myer B. [39] conducts a study of client-based caching for
parallel I/O and proposes progressive page caching that

Gluster
Lustre
CephFS-Xfs

CephFS-BlueStore
CephFS-NVStore

W
rit

e
Pe

rfo
rm

an
ce

 (M
B/

s)

Aligned Write I/O Size (KB)

1500

2000

2500

4 8 16 32 64 128 256 512

Fig. 18. Performance evaluation with varied write I/O sizes under aligned
writes.

represents cache data using dynamic data structures rather
than fixed-size pages of file data. With emerging high-speed
storage devices (e.g. SSD, NVRAM, PCM), the burst buffer
is considered as a promising solution for the I/O intensive
workloads on the HPC systems [42], [43], [44], [45], [46].
BurstFS [47] is an SSD-based distributed file system to be
used as burst buffer for scientific applications. NVFS [42]
adopts a NVM-based burst buffer for running Spark jobs on
top of parallel file systems. To optimize the process blocking
during page fetch when writing to non-cached file data,
Campello et al. [38] decouple the writing of data to a page
from its presence in memory by buffering page updates else-
where in OS memory. iBridge [8] proposes to utilize SSDs
to compromise the weakness of hard-disk-based servers in
serving small fragment requests. TokuFS [48] uses Fractal
Tree indexes for microdata write workloads which features
creating and destroying many small files, performing small
unaligned writes within large files and updating metadata.
Unlike these works, NVStore focuses on the unaligned
write problems both from the OS and NVMe SSD device
perspectives.

Flash based File Systems. Flash based SSDs are adopted
widely in the last decade. The unique characteristics in SSDs
compared to hard disk drives calls for disruptive changes
in file systems to exploit its potentials. Direct File System
(DFS) [49] simplifies the data allocation in file systems by
leveraging the data allocation functions in flash translation
layer (FTL). The removed redundancy leads to better per-
formance. Object-based Flash Storage System (OFSS) [50]
proposes to manage flash memory directly via software
(this architecture is later called open-channel SSD), and
re-designs an object-based file system in a software(SW)-
hardware(HW) co-designed way. Due to the tight SW/HW
co-design, write amplification in the file system is signifi-
cantly reduced, thereby improving flash endurance. Cheng
Ji et al. [51] propose an empirical study of filesystem frag-
mentation problems and provide two pilot solutions to
enhance file defragmentation. ReconFS [52] redesigns the di-
rectory tree in a reconstructable way to reduce the metadata
write overhead by leveraging the asymmetric read/write
features of flash. ParaFS [53] further exploits the internal
parallelism of flash based SSDs by co-designing functions
that corresponding to both FTL and file system layers.
Comparatively, F2FS [54] is more conservative and has gone
into the Linux kernel. F2FS also optimizes the layout for the
flash features. While a myriad of efforts have been made

Authorized licensed use limited to: University of New South Wales. Downloaded on July 12,2020 at 05:48:07 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3006655, IEEE
Transactions on Parallel and Distributed Systems

13

to local file systems, which could improve storage nodes’
performance of distributed file systems, optimizations to
distributed file systems have not well studied for high-
performance SSDs. NVStore is towards this direction.

Kernel Bypassing. Since recent network and storage hard-
ware provides extremely high performance, software over-
head is no longer a negligible part [55], [56]. For high speed
networking, user-level networking stack is intensively re-
searched to reduce data copies along the TCP/IP stack [57].
Similarly, RDMA (Remote Direct Memory Access) bypasses
the operating systems and supports zero-copy network-
ing [58]. For high performance non-volatile memory, storage
system software takes similar ways. Moneta-D [55] designs
a user-space storage system by transparently bypassing the
operating system. Recent persistent memory file systems,
including BPFS [59], SCMFS [60], PMFS [61], HiNFS [62],
and Nova [63], read or write files in a direct access (DAX)
way. The DAX is also supported in the Linux community
to support persistent memory [64]. Even flash memory is
slower than non-volatile main memories, the high-end SSDs
support hundreds of thousands of IOPS (i.e., input/output
operations per second). To exploit the hardware benefits,
Intel proposes the SPDK (storage performance develop kit)
which is designed in user-space and uses polling to reduce
the latency of accessing NVMe devices. SSDFA [65] is a
user-space file system that manages a number of low-cost
commodity SSDs to achieve a million IOPS for data accesses.
BlueStore [66] direct performance I/O operations to SSDs by
bypassing the Linux kernel to explore the SSD performance.
Differently, our proposed NVStore is designed for high-end
SSDs. NVStore uses direct and buffered I/O in a combina-
tive way to take both advantages.

Key-Value based Metadata Management. Key-value store
shows high performance for small data writes, and thus
is regarded as a promising way to store metadata.
TableFS [67] and Ceph’s BlueStore respectively use LevelDB
and RocksDB to store both metadata and the small files.
IndexFS [68] and BatchFS [29] use LevelDB [69] to store
the metadata of distributed file system, and achieves linear
metadata scalability of batch file accesses. In addition to
metadata management using key-value stores, some re-
search works also try to manage data in a key-value access
way. KVFS [70] is one of the file systems which manages
files in a key-value way using VT-tree. GlobleFS [71] and
Ceph’s Kstore use LevelDB to store both data and metadata.
Our proposed NVStore manages metadata and store the
unaligned writes in the key-value store. For the key-value
inefficiency problem, WiscKey [72] has pointed out that co-
locating values with keys leads to inefficient organization
of keys, which results in slow reads. HashKV [73] uses
hash-based data grouping, which deterministically maps
values to storage space so as to make both updates and
GC efficient. Chen et al. [74] identify that the existing fixed-
sized management strategies of flash-based devices would
potentially result in low storage space utilization and pro-
pose a KV flash translation layer design to improve storage
space utilization as well as the performance of the KV SSDs.
These optimizations could also be adopted by NVStore.

6 CONCLUSION

To optimize the unaligned writes in cloud storage with
high-performance SSDs, we propose an OSD systems called
NVStore. For the overhead incurred by unaligned writes in
data path, we designs a Flexible Cache Management mech-
anism. By introducing the fragment page and redesigning
the cache management, we reduce the RMW operations,
and accelerate the unaligned write performance by reducing
page sync operations while ensuring the data consistency.
For the overhead incurred by unaligned write in the block
map table, we propose a KV Affinity Metadata Management
mechanism. We co-designs the block map and key-value
store to provide a flattened block map and a decoupled
object metadata management. In this manner, NVStore pro-
motes the access performance while reducing the write
amplification from metadata. Evaluations demonstrates the
effectiveness of NVStore in improving the performance of
unaligned writes and reducing the write amplification both
from metadata and data under unaligned writes. Besides,
NVStore is compatible with the advanced function of Ceph.

ACKNOWLEDGMENTS

This work is supported by National Key Research & De-
velopment Program of China (Grant No. 2018YFB1003301),
the National Natural Science Foundation of China (Grant
No. 61772300, 61832011), and Research and Development
Plan in Key Field of Guangdong Province (Grant No.
2018B010109002) and is partially supported by SenseTime
Research Fund for Young Scholars. Siyang Li is the corre-
sponding author.

REFERENCES

[1] F. B. Schmuck and R. L. Haskin, “GPFS: A Shared-Disk File System
for Large Computing Clusters.” in FAST, vol. 2, no. 19, 2002.

[2] P. J. Braam and others, “The Lustre storage architecture,” 2004.
[3] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,

S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas,
C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali,
R. Abbasi, A. Agarwal, M. Fahim, M. Ikram, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. Mcnett, S. Sankaran,
K. Manivannan, L. Rigas, others, J. Haridas, C. Uddaraju,
H. Khatri, A. Edwards, V. Bedekar, S. Mainali, R. Abbasi,
A. Agarwal, M. Fahim, M. Ikram, D. Bhardwaj, S. Dayanand,
A. Adusumilli, M. Mcnett, S. Sankaran, K. Manivannan, L. Rigas,
and others, “Windows Azure Storage : A Highly Available Cloud
Storage Service with Strong Consistency,” in Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles,
vol. 20, ACM. ACM, 2011, pp. 143–157. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2043571

[4] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L.
Miller, “Dynamic metadata management for petabyte-scale
file systems,” in Proceedings of the 2004 ACM/IEEE
conference on Supercomputing. IEEE Computer Society, 2004,
p. 4. [Online]. Available: https://pdfs.semanticscholar.org/bd2d/
e7db1009211e56e1aa1ff91c53782c1e468a.pdf

[5] Y. Lu, J. Shu, and W. Zheng, “Extending the lifetime of flash-based
storage through reducing write amplification from file systems,”
in Presented as part of the 11th USENIX Conference on File and Storage
Technologies (FAST 13), 2013, pp. 257–270.

[6] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau, “A file is not a file: understanding the
i/o behavior of apple desktop applications,” ACM Transactions on
Computer Systems (TOCS), vol. 30, no. 3, p. 10, 2012.

[7] “Lasr system call io trace.” [Online]. Available: http://iotta.snia.
org/tracetypes/1

Authorized licensed use limited to: University of New South Wales. Downloaded on July 12,2020 at 05:48:07 UTC from IEEE Xplore. Restrictions apply.

http://dl.acm.org/citation.cfm?id=2043571
https://pdfs.semanticscholar.org/bd2d/e7db1009211e56e1aa1ff91c53782c1e468a.pdf
https://pdfs.semanticscholar.org/bd2d/e7db1009211e56e1aa1ff91c53782c1e468a.pdf
http://iotta.snia.org/tracetypes/1
http://iotta.snia.org/tracetypes/1

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3006655, IEEE
Transactions on Parallel and Distributed Systems

14

[8] X. Zhang, K. Liu, K. Davis, and S. Jiang, “iBridge: Improving
unaligned parallel file access with solid-state drives,” in Parallel
& Distributed Processing (IPDPS), 2013 IEEE 27th International Sym-
posium on. IEEE, 2013, pp. 381–392.

[9] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz,
A. Shayesteh, and V. Balakrishnan, “Performance analysis of
NVMe SSDs and their implication on real world databases,”
Proceedings of the 8th ACM International Systems and Storage
Conference on - SYSTOR ’15, pp. 1–11, 2015. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2757667.2757684

[10] AXBOE, “fio-flexible I/O tester,” 2014. [Online]. Available:
http://freecode.com/projects/fio

[11] W. D. Norcott and D. Capps, “Iozone filesystem benchmark,” 2003.
[12] J. Bhimani, J. Yang, Z. Yang, N. Mi, Q. Xu, M. Awasthi, R. Pan-

durangan, and V. Balakrishnan, “Understanding performance of
I/O intensive containerized applications for NVMe SSDs,” in
IPCCC’16, 2016, pp. 1–8.

[13] Z. Yang, M. Hoseinzadeh, A. Andrews, C. Mayers, D. T. Evans,
R. T. Bolt, J. Bhimani, N. Mi, and S. Swanson, “AutoTiering:
Automatic Data Placement Manager in Multi-Tier All-Flash Dat-
acenter,” in 36th IEEE International Performance Computing and
Communications Conference. IEEE, 2017.

[14] R. McDougall and J. Mauro, “FileBench,”
http://www.nfsv4bat.org/Documents/nasconf/2004/filebench.pdf, 2005.

[15] A. Davies and A. Orsaria, “Scale out with glusterfs,”
Linux J., vol. 2013, no. 235, Nov. 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2555789.2555790

[16] D. Kim, H. Kim, and J. Huh, “vCache: Providing a transparent
view of the LLC in virtualized environments,” IEEE Computer
Architecture Letters, vol. 13, no. 2, pp. 109–112, 2014.

[17] M. Balakrishnan, D. Malkhi, J. D. Davis, V. Prabhakaran, M. Wei,
and T. Wobber, “CORFU: A Distributed Shared Log,” ACM
Transactions on Computer Systems, vol. 31, no. 4, pp. 1–24, 2013.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2535930%
5Cnhttp://dl.acm.org/citation.cfm?doid=2542150.2535930

[18] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran,
M. Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck, “Tango :
Distributed Data Structures over a Shared Log,” Sosp ’13, pp.
325–340, 2013. [Online]. Available: http://www.cs.cornell.edu/
∼taozou/sosp13/tangososp.pdf

[19] “FILESTORE CONFIG REFERENCE,” 2016. [Online]. Avail-
able: https://docs.ceph.com/docs/master/rados/configuration/
filestore-config-ref/

[20] A. Samuels, “Ceph – High per-
formance without High Costs.” [Online].
Available: https://www.flashmemorysummit.com/English/
Collaterals/Proceedings/2016/20160810 K21 Samuels.pdf

[21] M. Cao, S. Bhattacharya, and T. Ts’o, “Ext4: The Next Generation
of Ext2/3 Filesystem.” in LSF, 2007.

[22] L. Changman, S. Dongho, H. JooYoung, and C. Sangyeun, “F2FS:
A New File System Designed for Flash Storage in Mobile,” 13th
USENIX Conference on File and Storage Technologies - FAST’15, pp.
273–286, 2015.

[23] A. K. K.V, M. Cao, J. R. Santos, and Andreas Dilger, “Ext4 block
and inode allocator improvements,” in Proceedings of the Linux
Symposium, vol. 1, 2008, pp. 263–273.

[24] T. S. C, “Ext3, journaling filesystem,” pp. 24–29, 2000.
[25] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto,

and G. Peck, “Scalability in the xfs file system,” in Proceedings of
the 1996 Annual Conference on USENIX Annual Technical Conference,
ser. ATEC ’96. Berkeley, CA, USA: USENIX Association, 1996,
pp. 1–1. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1268299.1268300

[26] O. Rodeh, J. Bacik, and C. Mason, “Btrfs: The linux b-tree filesys-
tem,” ACM Transactions on Storage (TOS), vol. 9, 08 2013.

[27] K. Ren and G. Gibson, “TABLEFS: Embedding a NoSQL
database inside the local file system,” APMRC, 2012 Digest,
2012. [Online]. Available: http://www.mendeley.com/research/
tablefs-embedding-nosql-database-inside-local-file-system

[28] L. Xiao, K. Ren, Q. Zheng, and G. A. Gibson, ShardFS
vs. IndexFS: Replication vs. Caching Strategies for Distributed
Metadata Management in Cloud Storage Systems. ACM, 2015,
vol. 153593. [Online]. Available: http://dl.acm.org/citation.cfm?
doid=2806777.2806844

[29] Q. Zheng, K. Ren, and G. Gibson, BatchFS: Scaling the file system
control plane with client-funded metadata servers. IEEE Press, 2014.

[30] “Facebook RocksDB.” [Online]. Available: http://rocksdb.org/

[31] A. Hutton, S. J. Donovan, G. Huizenga, S. Bhattacharya, S. D.
Pratt, B. Pulavarty, and J. Morgan, “Asynchronous I / O Support
in Linux 2 . 5,” 2003.

[32] “SPDK: Storage Performance Development Kit.” [Online].
Available: http://www.spdk.io

[33] S. Li, Y. Lu, J. Shu, Y. Hu, and T. Li, “Locofs: A loosely-
coupled metadata service for distributed file systems,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. New
York, NY, USA: ACM, 2017, pp. 4:1–4:12. [Online]. Available:
http://doi.acm.org/10.1145/3126908.3126928

[34] “Ceph - a scalable distributed storage system.” [Online].
Available: https://github.com/ceph/ceph

[35] “PERF COUNTERS,” 2016. [Online]. Available: https://docs.
ceph.com/docs/master/dev/perf counters/

[36] A. D. B. Jens Axboe and N. Scott, “blktrace(8) - Linux man page,”
2006. [Online]. Available: https://linux.die.net/man/8/blktrace

[37] S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock,
“I/O performance challenges at leadership scale,” Proceedings of
the Conference on High Performance Computing Networking, Storage
and Analysis, SC ’09, 2009.

[38] D. Campello, H. Lopez, R. Koller, R. Rangaswami, and L. Useche,
“Non-blocking writes to files,” in 13th USENIX Conference on File
and Storage Technologies FAST 15), 2015, pp. 151–165.

[39] B. Settlemyer, “A study of client-based caching for parallel i/o,”
2009.

[40] W.-k. Liao, K. Coloma, A. Choudhary, L. Ward, E. Russell, and
S. Tideman, “Collective caching: Application-aware client-side file
caching,” in HPDC-14. Proceedings. 14th IEEE International Sympo-
sium on High Performance Distributed Computing, 2005. IEEE, 2005,
pp. 81–90.

[41] X. Ma, J. Lee, and M. Winslett, “High-level buffering for hiding
periodic output cost in scientific simulations,” IEEE Transactions
on Parallel and Distributed Systems, vol. 17, no. 3, pp. 193–204, 2006.

[42] N. S. Islam, M. Wasi-Ur-Rahman, X. Lu, and D. K. Panda, “High
performance design for HDFS with byte-addressability of NVM
and RDMA,” Proceedings of the International Conference on Super-
computing, 2016.

[43] T. Wang, S. Oral, M. Pritchard, B. Wang, and W. Yu,
“TRIO: Burst buffer based I/O orchestration,” Proceedings
- IEEE International Conference on Cluster Computing, ICCC,
2015. [Online]. Available: http://www.mendeley.com/research/
trio-burst-buffer-based-io-orchestration

[44] T. Wang, S. Oral, Y. Wang, B. Settlemyer, S. Atchley, and W. Yu,
“BurstMem: A high-performance burst buffer system for scientific
applications,” pp. 71–79, 2015.

[45] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski,
J. Nunez, M. Polte, and M. Wingate, “PLFS: A checkpoint filesys-
tem for parallel applications,” Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, SC ’09,
2009.

[46] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider,
A. Crume, and C. Maltzahn, “On the role of burst buffers in
leadership-class storage systems,” IEEE Symposium on Mass Storage
Systems and Technologies, 2012.

[47] T. Wang, K. Mohror, A. Moody, W. Yu, and K. Sato, “Burstfs: A
distributed burst buffer file system for scientific applications,”
in The International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), 2015.

[48] J. Esmet, M. A. Bender, M. Farach-Colton, and B. C. Kuszmaul,
“The tokufs streaming file system.” in HotStorage, 2012.

[49] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn, “DFS: A file
system for virtualized flash storage,” ACM Transactions on Storage
(TOS), 2010.

[50] Y. Lu, J. Shu, W. Zheng, and others, “Extending the lifetime of
flash-based storage through reducing write amplification from file
systems.” in Proceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST’13), vol. 13, 2013.

[51] C. Ji, L.-P. Chang, L. Shi, C. Wu, Q. Li, and C. J. Xue, “An
empirical study of file-system fragmentation in mobile storage
systems,” in 8th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 16). Denver, CO: USENIX Association, Jun.
2016. [Online]. Available: https://www.usenix.org/conference/
hotstorage16/workshop-program/presentation/ji

[52] Y. Lu, J. Shu, and W. Wang, “ReconFS: A reconstructable file sys-
tem on flash storage,” in Proceedings of the 12th USENIX Conference
on File and Storage Technologies (FAST 14), 2014, pp. 75–88.

Authorized licensed use limited to: University of New South Wales. Downloaded on July 12,2020 at 05:48:07 UTC from IEEE Xplore. Restrictions apply.

http://dl.acm.org/citation.cfm?doid=2757667.2757684
http://freecode.com/projects/fio
http://dl.acm.org/citation.cfm?id=2555789.2555790
http://dl.acm.org/citation.cfm?id=2535930%5Cnhttp://dl.acm.org/citation.cfm?doid=2542150.2535930
http://dl.acm.org/citation.cfm?id=2535930%5Cnhttp://dl.acm.org/citation.cfm?doid=2542150.2535930
http://www.cs.cornell.edu/~taozou/sosp13/tangososp.pdf
http://www.cs.cornell.edu/~taozou/sosp13/tangososp.pdf
https://docs.ceph.com/docs/master/rados/configuration/filestore-config-ref/
https://docs.ceph.com/docs/master/rados/configuration/filestore-config-ref/
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2016/20160810_K21_Samuels.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2016/20160810_K21_Samuels.pdf
http://dl.acm.org/citation.cfm?id=1268299.1268300
http://dl.acm.org/citation.cfm?id=1268299.1268300
http://www.mendeley.com/research/tablefs-embedding-nosql-database-inside-local-file-system
http://www.mendeley.com/research/tablefs-embedding-nosql-database-inside-local-file-system
http://dl.acm.org/citation.cfm?doid=2806777.2806844
http://dl.acm.org/citation.cfm?doid=2806777.2806844
http://rocksdb.org/
http://www.spdk.io
http://doi.acm.org/10.1145/3126908.3126928
https://github.com/ceph/ceph
https://docs.ceph.com/docs/master/dev/perf_counters/
https://docs.ceph.com/docs/master/dev/perf_counters/
https://linux.die.net/man/8/blktrace
http://www.mendeley.com/research/trio-burst-buffer-based-io-orchestration
http://www.mendeley.com/research/trio-burst-buffer-based-io-orchestration
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/ji
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/ji

1045-9219 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2020.3006655, IEEE
Transactions on Parallel and Distributed Systems

15

[53] J. Zhang, J. Shu, Y. Lu, J. Shu, and Y. Lu, “ParaFS : A Log-
Structured File System to Exploit the Internal Parallelism of Flash
Devices,” USENIX Annual Technical Conference, 2016.

[54] C. Lee, D. Sim, J. Y. Hwang, and S. Cho, “F2FS - A New
File System for Flash Storage.” FAST, 2015. [Online]. Available:
http://dblp.org/rec/conf/fast/LeeSHC15

[55] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn,
and S. Swanson, “Providing safe, user space access to fast,
solid state disks,” Proceedings of the seventeenth international
conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’12), p. 387, 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2150976.2151017

[56] Y. Lu, J. Shu, Y. Chen, and T. Li, “Octopus: an {RDMA}-enabled
distributed persistent memory file system,” in 2017 USENIX An-
nual Technical Conference (USENIX ATC 17). USENIX Association,
2017, pp. 773–785.

[57] E. Jeong, S. Woo, M. A. Jamshed, H. Jeong, S. Ihm, D. Han,
and K. Park, “mTCP: a Highly Scalable User-level TCP Stack for
Multicore Systems.” in USENIX Symposium on Networked Systems
Design and Implementation (NSDI’14), 2014.

[58] R. Recio, P. Culley, D. Garcia, J. Hilland, and B. Metzler, “An
RDMA protocol specification,” IETF Internet-draft draft-ietf-rddp-
rdmap-03. txt (work in progress), Tech. Rep., 2005.

[59] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger,
and D. Coetzee, “Better I/O through byte-addressable, persistent
memory,” in Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles (SOSP’09). ACM, 2009.

[60] X. Wu and A. L. Reddy, “SCMFS: a file system for storage class
memory,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM,
2011, p. 39.

[61] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson, “System software for persistent mem-
ory,” in Proceedings of the Ninth European Conference on Computer
Systems (Eurosys’14). ACM, 2014.

[62] J. Ou, J. Shu, and Y. Lu, “A high performance file system
for non-volatile main memory,” in Proceedings of the Eleventh
European Conference on Computer Systems - EuroSys ’16, 2016, pp.
1–16. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
2901318.2901324

[63] J. Xu and S. Swanson, “NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories.” in FAST, 2016, pp.
323–338.

[64] M. Wilcox, “DAX: Page cache bypass for filesystems on memory
storage,” Oct, vol. 24, p. 4, 2014.

[65] D. Zheng, R. Burns, and A. S. Szalay, “Toward Millions of
File System IOPS on Low-Cost, Commodity Hardware.” Sc,
p. 69, 2013. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2503210.2503225

[66] S. Weil, “BLUESTORE: A NEW STORAGE BACK-
END FOR CEPH – ONE YEAR IN.” [Online].
Available: http://events.linuxfoundation.org/sites/events/files/
slides/20170323%20bluestore.pdf

[67] Ren, K, Gibson, G, K. Ren, G. A. Gibson, Ren, K, Gibson,
G, K. Ren, and G. A. Gibson, “TABLEFS: Enhancing Metadata
Efficiency in the Local File System,” Proceedings of the 2013
USENIX Annual Technical Conference (USENIX ATC 13), pp.
145–156, 2013. [Online]. Available: https://www.usenix.org/
conference/atc13/technical-sessions/presentation/ren

[68] K. Ren, Q. Zheng, S. Patil, and G. Gibson, “IndexFS: Scaling
File System Metadata Performance with Stateless Caching and
Bulk Insertion,” in International Conference for High Performance
Computing, Networking, Storage and Analysis, SC, vol. 2015-Janua,
no. January. IEEE, 2014, pp. 237–248. [Online]. Available:
http://ieeexplore.ieee.org/document/7013007/

[69] “LevelDB, A fast and lightweight key/value database library
by Google.” [Online]. Available: https://code.google.com/p/
leveldb/

[70] P. Shetty, R. Spillane, and R. Malpani, “Building Workload-
Independent Storage with VT-Trees,” in Proceedings of the 11th
USENIX Conference on File and Storage Technologies (FAST 13).
USENIX, 2013, pp. 17–30. [Online]. Available: https://www.
usenix.org/system/files/conference/fast13/fast13-final165 0.pdf

[71] L. Pacheco, R. Halalai, V. Schiavoni, F. Pedone, E. Rivière, and
P. Felber, “GlobalFS: A Strongly Consistent Multi-site File System,”
Proceedings of the IEEE Symposium on Reliable Distributed Systems,
pp. 147–156, 2016.

[72] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“WiscKey: separating keys from values in SSD-conscious storage,”
in 14th USENIX Conference on File and Storage Technologies (FAST
16), 2016, pp. 133–148.

[73] Y. Li, H. H. Chan, P. Lee, and Y. Xu, “Enabling efficient updates
in kv storage via hashing: Design and performance evaluation,”
ACM Transactions on Storage, vol. 15, pp. 1–29, 08 2019.

[74] Y. Chen, M. Yang, Y. Chang, T. Chen, H. Wei, and W. Shih, “Co-
optimizing storage space utilization and performance for key-
value solid state drives,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 38, no. 1, pp. 29–42,
Jan 2019.

Jiwu Shu Jiwu Shu received the PhD degree
in computer science from Nanjing University in
1998, and finished the postdoctoral position re-
search at Tsinghua University in 2000. Since
then, he has been teaching at Tsinghua Univer-
sity, and is currently a professor in the Depart-
ment of Computer Science and Technology, Ts-
inghua University. His current research interests
include network storage systems, nonvolatile
memory-based storage systems, storage secu-
rity and reliability, and parallel and distributed

computing. He is a fellow member of the IEEE.

Fei Li is a Master student of the Department of
Computer Science and Technology at Tsinghua
University. He obtained his B.S. degree from
Tsinghua University in Computer Science and
Technology in 2015. His research interest is the
flash based storage system. One of his research
work is published at the top-tier conference DAC
in 2019.

Siyang Li is a Ph.D student of State Key Lab-
oratory of Mathematical Engineering and Ad-
vanced Computing and visiting Ph.D student of
Tsinghua University. Siyang’s research interest
is distributed storage system. Siyang received a
B.S. degree and M.S. degree from National Uni-
versity of Defence and Technology in 2012 and
2015. His research works have been published
at a number of top-tier conferences and Journal
including SC and TPDS etc.

Youyou Lu is an assistant professor in the De-
partment of Computer Science and Technology
at Tsinghua university. He obtained his B.S. de-
gree from Nanjing University in 2009 and his
Ph.D degree from Tsinghua University in 2015,
both in Computer Science. His current research
interests include file and storage systems span-
ning from architectural to system levels. His re-
search works have been published at a number
of top-tier conferences including FAST, USENIX
ATC, EuroSys, SC, MSST, ICCD etc. His re-

search won the Best Paper Award at NVMSA 2014 and was selected
into the Best Papers at MSST 2015. He was elected in the Young
Elite Scientists Sponsorship Program by CAST (China Association for
Science and Technology) in 2015, and received the CCF Outstanding
Doctoral Dissertation Award in 2016.

Authorized licensed use limited to: University of New South Wales. Downloaded on July 12,2020 at 05:48:07 UTC from IEEE Xplore. Restrictions apply.

http://dblp.org/rec/conf/fast/LeeSHC15
http://dl.acm.org/citation.cfm?doid=2150976.2151017
http://dl.acm.org/citation.cfm?doid=2901318.2901324
http://dl.acm.org/citation.cfm?doid=2901318.2901324
http://dl.acm.org/citation.cfm?id=2503210.2503225
http://dl.acm.org/citation.cfm?id=2503210.2503225
http://events.linuxfoundation.org/sites/events/files/slides/20170323%20bluestore.pdf
http://events.linuxfoundation.org/sites/events/files/slides/20170323%20bluestore.pdf
https://www.usenix.org/conference/atc13/technical-sessions/presentation/ren
https://www.usenix.org/conference/atc13/technical-sessions/presentation/ren
http://ieeexplore.ieee.org/document/7013007/
https://code.google.com/p/leveldb/
https://code.google.com/p/leveldb/
https://www.usenix.org/system/files/conference/fast13/fast13-final165_0.pdf
https://www.usenix.org/system/files/conference/fast13/fast13-final165_0.pdf

