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Tracking and coordination of multiple agents using sensor
networks: system design, algorithms and experiments

Songhwai Oh, Luca Schenato, Phoebus Chen, and Shankar Sastry

Abstract— This paper considers the problem of pursuit evasion
games (PEGs), where the objective of a group of pursuers is to
chase and capture a group of evaders in minimum time with the
aid of a sensor network. The main challenge in developing a real-
time control system using sensor networks is the inconsistency in
sensor measurements due to packet loss, communication delay,
and false detections. We address this challenge by developing
a real-time hierarchical control system, named LochNess, which
decouples the estimation of evader states from the control of
pursuers via multiple layers of data fusion. The multiple layers
of data fusion convert noisy, inconsistent, and bursty sensor
measurements into a consistent set of fused measurements. Three
novel algorithms are developed for LochNess: multi-sensor fusion,
hierarchical multi-target tracking, and multi-agent coordination
algorithms. The multi-sensor fusion algorithm converts corre-
lated sensor measurements into position estimates, the hierar-
chical multi-target tracking algorithm based on Markov chain
Monte Carlo data association (MCMCDA) tracks an unknown
number of targets, and the multi-agent coordination algorithm
coordinates pursuers to chase and capture evaders using robust
minimum-time control. The control system LochNess is evaluated
in simulation and successfully demonstrated using a large-scale
outdoor sensor network deployment.

Index Terms— Sensor networks, networked control systems,
pursuit evasion games, multi-target tracking, multi-agent coor-
dination, multi-sensor fusion

I. INTRODUCTION

Recently we have been witnessing dramatic advances in
micro-electromechanical sensors (MEMS), digital signal pro-
cessing (DSP) capabilities, computing, and low-power wireless
radios which are revolutionizing our ability to build massively
distributed, easily deployed, self-calibrating, disposable, wire-
less sensor networks [1, 2, 3]. Soon, the fabrication and com-
mercialization of inexpensive millimeter-scale autonomous
electromechanical devices containing a wide range of sensors,
including acoustic, vibration, acceleration, pressure, temper-
ature, humidity, magnetic, and biochemical sensors, will be
readily available [4]. These potentially mobile devices, called
“nodes”, are provided with their own power supply [5] and can
communicate with neighboring sensor nodes via low-power
wireless communication to form a wireless ad-hoc sensor
network with up to 100,000 nodes [6, 7]. Sensor networks
can offer access to an unprecedented quantity of information
about our environment, bringing about a revolution in the
amount of control an individual has over his environment. The
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ever-decreasing cost of hardware and steady improvements
in software will make sensor networks ubiquitous in many
aspects of our lives [8] such as building comfort control [9],
environmental monitoring [10], traffic control [11], manufac-
turing and plant automation [12], service robotics [13], and
surveillance systems [14, 15].

In particular, wireless sensor networks are useful in appli-
cations that require locating and tracking moving targets and
real-time dispatching of resources. Typical examples include
search-and-rescue operations, civil surveillance systems, in-
ventory systems for moving parts in a warehouse, and search-
and-capture missions in military scenarios. The analysis and
design of such applications are often reformulated within the
framework of pursuit evasion games (PEGs), a mathematical
abstraction which addresses the problem of controlling a
swarm of autonomous agents in the pursuit of one or more
evaders [16, 17]. The locations of moving targets (evaders)
are unknown and their detection is typically accomplished by
employing a network of cameras or by searching the area
using mobile vehicles (pursuers) with on-board high resolution
sensors. However, networks of cameras are rather expensive
and require complex image processing to properly fuse their
information. On the other hand, mobile pursuers with their
on-board cameras or ultrasonic sensors with a relatively small
detection range can provide only local observability over
the area of interest. Therefore, a time-consuming exploratory
phase is required [18, 19]. This constraint makes the task
of designing a cooperative pursuit algorithm harder because
partial observability results in suboptimal pursuit policies (see
Figure 1(a)). An inexpensive way to improve the overall
performance of a PEG is to use wireless ad-hoc sensor
networks [20]. With sensor networks, global observability of
the field and long-distance communication are possible (see
Figure 1(b)). Global pursuit policies can then be used to
efficiently find the optimal solution regardless of the level of
intelligence of the evaders. Also, with a sensor network, the
number of pursuers needed is a function exclusively of the
number of evaders and not the size of the field.

In this paper, we consider the problem of pursuit evasion
games (PEGs), where the objective of a group of pursuers is
to chase and capture a group of evaders in minimum time
with the aid of a sensor network. The evaders can either move
randomly to model moving vehicles in search-and-rescue and
traffic control applications, or can adopt evasive maneuvers to
model search-and-capture missions in military scenarios.

While sensor networks provide global observability, they
cannot provide high quality measurements in a timely manner
due to packet loss, communication delay, and false detections.
This has been the main challenge in developing a real-time
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Fig. 1. (a) Sensor visibility in PEGs without sensor network. (b) Sensor visibility in PEGs with sensor network. Dots correspond to sensor nodes, each
provided with a vehicle detection sensor. Courtesy of [20].

control system using sensor networks. In this paper, we address
this challenge by developing a real-time hierarchical control
system called LochNess (Large-scale “on-time” collaborative
heterogeneous Networked embedded systems). LochNess de-
couples the estimation of evader states from the control of
pursuers via multiple layers of data fusion. Although a sensor
network generates noisy, inconsistent, and bursty measure-
ments, the multiple layers of data fusion convert raw sensor
measurements into fused measurements in a compact and
consistent representation and forward the fused measurements
to the pursuers’ controllers in a timely manner.

The main contributions of this paper are (1) a real-time
hierarchical control system LochNess for tracking and coor-
dination using sensor networks; (2) a demonstration of the
system on a large-scale sensor network deployment; and (3)
three new algorithms developed for LochNess:

• A multi-sensor fusion algorithm that combines noisy and
inconsistent sensor measurements locally. The algorithm
produces coherent evader position reports and reduces the
communication load on the network.

• A multi-target tracking algorithm that tracks an unknown
number of targets (or evaders). The algorithm is a hi-
erarchical extension of the Markov chain Monte Carlo
data association (MCMCDA) [21] algorithm for sensor
networks to add scalability. MCMCDA is a true approxi-
mation scheme for the optimal Bayesian filter; i.e., when
run with unlimited resources, it converges to the Bayesian
solution [22]. MCMCDA is computationally efficient
and robust against measurement noise and inconsistency
(including packet loss and communication delay) [23].
In addition, MCMCDA operates with no or incomplete
classification information, making it suitable for sensor
networks. In fact, the performance of the algorithm can be
improved given additional measurements to help identify
the targets.

• A multi-agent coordination algorithm that assigns one
pursuer to one evader such that the estimated time to cap-
ture the last evader is minimized based on the estimates
computed by the multi-target tracking algorithm.

Our control system LochNess was successfully demon-
strated using a large-scale sensor network. The system cor-
rectly found the number of evaders and their tracks and
coordinated the pursuers to capture the evaders. Only a handful
of the tracking algorithms in the literature that are designed
for sensor networks have been demonstrated on a real sensor
network deployment. Of these demonstrations, the algorithms
are usually used to track a single target [14,24,25,26] or track
multiple targets using classification [15]. To our knowledge,
this paper presents the first demonstration of multi-target track-
ing using a sensor network without relying on classification.

The remainder of this paper is structured as follows. The
overall architecture of LochNess for a PEG using a sensor net-
work and formulations of multi-target tracking and multi-agent
coordination are described in Section III. The components
of LochNess are described in Section IV. The experimental
results from the sensor network deployment are given in
Section V.

II. RELATED WORK: TARGET TRACKING IN SENSOR
NETWORKS

One of the main applications of wireless ad-hoc sensor
networks is surveillance. However, considering the resource
constraints on each sensor node, the well known multi-target
tracking algorithms such as joint probabilistic data association
filter (JPDAF) [27] and multiple hypothesis tracker (MHT)
[28, 29] are not feasible for sensor networks due to their
exponential time and space complexities. As a result, many
new tracking algorithms have been developed recently.

Most of the algorithms developed for sensor networks are
designed for single-target tracking [30,15,14,24,25,31,26,32,
33,34,35,36] and some of these algorithms are applied to track
multiple targets using classification [30, 15, 36] or heuristics,
such as the nearest-neighbor filter (NNF1) [14]. A few algo-

1The NNF [27] processes the new measurements in some predefined order
and associates each with the target whose predicted position is closest, thereby
selecting a single association. Although effective under benign conditions,
the NNF gives order-dependent results and breaks down under more difficult
circumstances.
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rithms are designed for multi-target tracking [37,38,39] where
the complexity of the data association problem2 inherent to
multi-target tracking is avoided by classification [37, 39] or
heuristics [38]. When tracking targets of a similar type or
when reliable classification information is not available, the
classification-based tracking algorithm behaves as the NNF.
Considering the fact that the complexity of the data association
problem is NP-hard [41,42], a heuristic approach breaks down
under difficult circumstances. Furthermore, the measurement
inconsistencies common in sensor networks, such as false
alarms and missing measurements (due to missing detection or
packet loss), are not fully addressed in many algorithms. On
the contrary, the multi-target tracking algorithm developed in
this paper is based on a rigorous probabilistic model and based
on a true approximation scheme for the optimal Bayesian filter.

Tracking algorithms for sensor networks can be catego-
rized according to their computational structure: centralized
[15, 24, 33], hierarchical [34, 35], or distributed [30, 14, 25,
31, 26, 32, 36, 37, 38, 39]. However, since each sensor has
only local sensing capability and its measurements are noisy
and inconsistent, measurements from a single sensor and its
neighboring sensors are not sufficient to initiate, maintain,
disambiguate, and terminate tracks of multiple targets in the
presence of clutter; it requires measurements from distant
sensors. Considering the communication load and delay when
exchanging measurements between distant sensors, a com-
pletely distributed approach to solve the multi-target tracking
problem is not feasible for real-time applications. On the
other hand, a completely centralized approach is not robust
and scalable. In order to minimize the communication load
and delay while being robust and scalable, a hierarchical
architecture is considered in this paper.

III. PROBLEM FORMULATION AND CONTROL SYSTEM
ARCHITECTURE

In this paper, we consider the problem of pursuing multiple
evaders over a region of interest (or the surveillance region).
Evaders (or targets) arise at random in space and time, persist
for a random length of time, and then cease to exist. When
evaders appear, a group of pursuers is required to detect, chase
and capture the group of evaders in minimum time with the aid
of a sensor network. In order to solve this problem, we propose
a hierarchical real-time control system LochNess which is
shown in Figure 2. LochNess is composed of seven layers: the
sensor network, the multi-sensor fusion (MSF) module, the
multi-target tracking (MTT) modules, the multi-track fusion
(MTF) module, the multi-agent coordination (MAC) module,
the path planner module, and the path follower modules.

Sensors are spread over the surveillance region and form an
ad-hoc network. The sensor network detects moving objects
in the surveillance region and the MSF module converts the
sensor measurements into target position estimates (or reports)
using spatial correlation. This paper considers a hierarchical

2In multi-target tracking, the associations between measurements and
targets are not completely known. The data association problem is to work
out which measurements were generated by which targets; more precisely, we
require a partition of measurements such that each element of a partition is a
collection of measurements generated by a single target or clutter [40].

sensor network. In addition to regular sensor nodes (“Tier-1”
nodes), we assume the availability of “Tier-2” nodes which
have long-distance wireless links and more processing power.
We assume that each Tier-2 node can communicate with its
neighboring Tier-2 nodes. Examples of a Tier-2 node include
high-bandwidth sensor nodes such as iMote and BTnode
[43], gateway nodes such as Stargate, Intrinsyc Cerfcube, and
PC104 [43], and the Tier-2 nodes designed for our experiment
[44]. Each Tier-1 node is assigned to its nearest Tier-2 node
and the Tier-1 nodes are grouped by Tier-2 nodes. We call
the group of sensor nodes formed around a Tier-2 node a
“tracking group”. When a node detects a possible target, it
listens to its neighbors for their measurements and fuses the
measurements to forward to its Tier-2 node. Each Tier-2 node
receives the fused measurements from its tracking group and
the MTT module in each Tier-2 node estimates the number
of evaders, the positions and velocities of the evaders, and the
estimation error bounds. Each Tier-2 node communicates with
its neighboring Tier-2 nodes when a target moves away from
the region monitored by its tracking group. Lastly, the tracks
estimated by the Tier-2 nodes are combined hierarchically by
the MTF module at the base station.

The estimates computed by the MTF module are then used
by the MAC module to estimate the expected capture times of
all pursuer-evader pairs. Based on these estimates, the MAC
module assigns one pursuer to one evader by solving the bot-
tleneck assignment problem [45] such that the estimated time
to capture the last evader is minimized. Once the assignments
are determined, the path planner module computes a trajectory
for each pursuer to capture its assigned evader in the least
amount of time without colliding into other pursuers. Then,
the base station transmits each trajectory to the path following
controller of the corresponding pursuer. The path following
controller modifies the pursuer’s trajectory on the fly to avoid
any obstacles sensed by the pursuer’s on-board sensors. The
path planning and path follower modules can be implemented
using dynamic programming [46] or model predictive control
[47]. In the paper, we focus on MSF, MTT, MTF, and MAC
modules and they are described in Section IV. In the remainder
of this section, we describe the sensor network model and the
problem formulations of multi-target tracking and multi-agent
coordination.

A. Sensor Network and Sensor Models

In this section, we describe the sensing models — the
signal-strength and binary sensor models — and the sensor
network model considered in this paper. A signal-strength sen-
sor reports the range to a nearby target while a binary sensor
reports only a binary value indicating whether an object is
detected near the reporting sensor. The signal-strength sensor
model is used for the development and analysis of our system
while the binary sensor model is used in our experiments.
While the signal-strength sensors provide better accuracy,
our evaluation of the sensors developed for the experiments
showed that the variability in the signal strength of the sensor
reading prohibited extraction of ranging information. However,
we found that the sensors were still effective as binary sensors.
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Fig. 2. LochNess: a hierarchical real-time control system architecture using sensor networks for multi-target tracking and multi-agent coordination.

We also found that binary sensors were much less sensitive to
time synchronization errors than signal-strength sensors.

Let Ns be the number of sensor nodes, including both Tier-1
and Tier-2 nodes, deployed over the surveillance region R ⊂
R2. Let si ∈ R be the location of the i-th sensor node and
let S = {si : 1 ≤ i ≤ Ns}. Let Nss � Ns be the number of
Tier-2 nodes and let ss

j ∈ S be the position of the j-th Tier-2
node, for j = 1, . . . , Nss.

Signal-Strength Sensor Model
Let Rs ∈ R be the sensing range. If there is an object at
x ∈ R, a sensor can detect the presence of the object. Each
sensor records the sensor’s signal strength,

zi =
{ β

1+γ‖si−x‖α + ws
i, if ‖si − x‖ ≤ Rs

ws
i, if ‖si − x‖ > Rs,

(1)

where α, β and γ are constants specific to the sensor type,
and we assume that zi are normalized such that ws

i has
the standard Gaussian distribution. This signal-strength based
sensor model is a general model for many sensors available in
sensor networks, such as acoustic and magnetic sensors, and
has been used frequently [14, 25, 26, 39].

Binary Sensor Model
For each sensor i, let Ri be the sensing region of i. Ri can
have an arbitrary shape but we assume that it is known to the
system. Let zi ∈ {0, 1} be the detection made by sensor i,
such that sensor i reports zi = 1 if it detects a moving object
in Ri, and zi = 0 otherwise. Let pi be the detection probability
and qi be the false detection probability of sensor i.

Sensor Network Model
Let G = (S, E) be a communication graph such that (si, sj) ∈
E if and only if node i can communicate directly to node j.
Let g : {1, . . . , Ns} → {1, . . . , Nss} be the assignment of
each sensor to its nearest Tier-2 node such that g(i) = j if
‖si−ss

j‖ = mink=1,...,Nss ‖si−ss
k‖. For a node i, if g(i) = j,

the shortest path from si to ss
j in G is denoted by sp(i). In this

paper, we assume that the length of sp(i), i.e., the number of
communication links from node i to its Tier-2 node, is smaller
when the physical distance between node i and its Tier-2 node
is shorter. But if this is not the case, we can assign a node to
the Tier-2 node with the fewest communication links between
them.

Local sensor measurements are fused by the MSF module
described in Section IV-A. Let ẑi be a fused measurement
originated from node i. Node i transmits the fused mea-
surement ẑi to the Tier-2 node g(i) via the shortest path
sp(i). A transmission along an edge (si, sj) on the path
fails independently with probability pte and the message never
reaches the Tier-2 node. Transmission failures along an edge
(si, sj) may include failures from retransmissions from node
i to node j. We can consider transmission failure as another
form of a missing observation. If k is the number of hops
required to relay data from a sensor node to its Tier-2 node, the
probability of successful transmission decays exponentially as
k increases. To overcome this problem, we use k independent
paths to relay data if the reporting sensor node is k hops
away from its Tier-2 node. The probability of successful
communication pcs from the reporting node i to its Tier-2 node
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g(i) can be computed as pcs(pte, k) = 1 −
(
1− (1− pte)k

)k
,

where k = |sp(i)| and |sp(i)| denotes the cardinality of the
set sp(i).

We assume each node has the same probability pde of de-
laying a message. If di is the number of (additional) delays on
a message originating from the sensor i, then di is distributed
as

p(di = d) =
(
|sp(i)|+ d− 1

d

)
(1− pde)|sp(i)|(pde)d. (2)

We are modeling the number of (additional) delays by the
negative binomial distribution. A negative binomial random
variable represents the number of failures before reaching a
fixed number of successes from Bernoulli trials. In our case,
it is the number of delays before |sp(i)| successful delay-free
transmissions.

If the network is heavily loaded, the independence assump-
tions on transmission failure and communication delay may
not hold. However, the model is realistic under moderate
conditions and we have chosen it for its simplicity.

B. Multi-Target Tracking

The MTT and MTF modules of LochNess estimate the
number of targets, positions and velocities of targets, and esti-
mation error bounds. Since the number of targets is unknown
and time-varying, we need a general formulation of the multi-
target tracking problem. This section describes the multi-target
tracking problem and two possible solutions.

Let Ts ∈ Z+ be the duration of surveillance. Let K be the
number of targets that appear in the surveillance region R
during the surveillance period. Each target k moves in R for
some duration [tki , tkf ] ⊂ [1, Ts]. Notice that the exact values of
K and {tki , tkf } are unknown. Each target arises at a random
position in R at tki , moves independently around R until tkf ,
and disappears. At each time, an existing target persists with
probability 1 − pz and disappears with probability pz. The
number of targets arising at each time over R has a Poisson
distribution with a parameter λbV where λb is the birth rate
of new targets per unit time, per unit volume, and V is the
volume of R. The initial position of a new target is uniformly
distributed over R.

Let F k : Rnx → Rnx be the discrete-time dynamics of
the target k, where nx is the dimension of the state variable,
and let xk(t) ∈ Rnx be the state of the target k at time t for
t = 1, . . . , Ts. The target k moves according to

xk(t + 1) = F k(xk(t)) + wk(t), for t = tki , . . . , tkf − 1, (3)

where wk(t) ∈ Rnx are white noise processes. The white
noise process is included to model non-rectilinear motions
of targets. When a target is present, a noisy observation
(or measurement3) of the state of the target is measured
with a detection probability pd. Notice that, with probability
1 − pd, the target is not detected and we call this a missing
observation. There are also false alarms and the number of
false alarms has a Poisson distribution with a parameter λfV ,

3Note that the terms observation and measurement are used interchangeably
in this paper.

Fig. 3. (a) An example of observations Y (each circle represents an
observation and numbers represent observation times). (b) An example of
a partition ω of Y .

where λf is the false alarm rate per unit time, per unit volume.
Let n(t) be the number of observations at time t, including
both noisy observations and false alarms. Let yj(t) ∈ Rny

be the j-th observation at time t for j = 1, . . . , n(t), where
ny is the dimension of each observation vector. Each target
generates a unique observation at each sampling time if it is
detected. Let Hj : Rnx → Rny be the observation model.
Then the observations are generated as follows:

yj(t) =
{

Hj(xk(t)) + vj(t) if yj(t) is from xk(t)
uf(t) otherwise,

(4)
where vj(t) ∈ Rny are white noise processes and uf(t) ∼
Unif(R) is a random process for false alarms. We assume
that the targets are indistinguishable in this paper, but if ob-
servations include target type or attribute information, the state
variable can be extended to include target type information as
done in [48].

The main objective of the multi-target tracking problem is
to estimate K, {tki , tkf } and {xk(t) : tki ≤ t ≤ tkf }, for k =
1, . . . ,K, from noisy observations.

Let Y (t) = {yj(t) : j = 1, . . . , n(t)} be all measurements
at time t and Y = {Y (t) : 1 ≤ t ≤ Ts} be all measurements
from t = 1 to t = Ts. Let Ω be a collection of partitions of Y
such that, for ω ∈ Ω, ω = {τ0, τ1, . . . , τK}, where τ0 is a set
of false alarms and τk is a set of measurements from target
k for k = 1, . . . ,K. Note that ω is also known as a joint
association event in literature. More formally, ω is defined as
following.

1) ω = {τ0, τ1, . . . , τK};
2)

⋃K
k=0 τk = Y and τi ∩ τj = ∅ for i 6= j;

3) τ0 is a set of false alarms;
4) |τk∩Y (t)| ≤ 1 for k = 1, . . . ,K and t = 1, . . . , Ts; and
5) |τk| ≥ 2 for k = 1, . . . ,K.

An example of a partition is shown in Figure 3. Here, K is
the number of tracks for the given partition ω ∈ Ω. We call τk

a track when there is no confusion although the actual track
is the set of estimated states from the observations τk. This
is because we assume there is a deterministic function that
returns a set of estimated states given a set of observations.
A track is assumed to contain at least two observations since
we cannot distinguish a track with a single observation from a
false alarm, assuming λf > 0. For special cases in which pd =
1 or λf = 0, the definition of Ω can be adjusted accordingly.

Let ne(t− 1) be the number of targets at time t− 1, nz(t)
be the number of targets terminated at time t and nc(t) =
ne(t − 1) − nz(t) be the number of targets from time t − 1
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that have not terminated at time t. Let nb(t) be the number
of new targets at time t, nd(t) be the number of actual target
detections at time t and nu(t) = nc(t) + nb(t)− nd(t) be the
number of undetected targets. Finally, let nf(t) = n(t)−nd(t)
be the number of false alarms. Using the Bayes rule, it can be
shown that the posterior of ω is [22]:

P (ω|Y ) ∝ P (ω) · P (Y |ω)

∝
Ts∏

t=1

pnz(t)
z (1− pz)nc(t)p

nd(t)

d (1− pd)nu(t)

×
Ts∏

t=1

(λbV )nb(t)(λfV )nf(t) · P (Y |ω), (5)

where P (Y |ω) is the likelihood of observations Y given
ω, which can be computed based on the chosen dynamic
and measurement models4. For example, the computation of
P (Y |ω) for the linear dynamic and measurement models can
be found in [21].

There are two major approaches to solve the multi-target
tracking problem [22]: maximum a posteriori (MAP) and
Bayesian approaches. The MAP approach finds a partition of
observations such that P (ω|Y ) is maximized and estimates
the states of the targets based on this partition. A Bayesian
approach called minimum mean square error (MMSE) finds
an estimate which minimizes the expected square error. For
instance, E(xk(t)|Y ) is the MMSE estimate for the state
xk(t) of target k. However, when the number of targets is
not fixed, a unique labeling of each target is required to find
E(xk(t)|Y ) under the MMSE approach. In this paper, we take
the MAP approach to the multi-target tracking problem for its
convenience.

C. Agent Dynamics and Coordination Objective

In a situation where multiple pursuers and evaders are
present, several assignments are possible and some criteria
need to be chosen to optimize performance. In this work,
we focus on minimizing the time to capture all evaders.
However, other criteria might be possible, such as minimizing
the pursuer’s energy consumption while guaranteeing capture
of all evaders or maximizing the number of captured evaders
within a certain amount of time. Since the evaders’ motions
are not known, an exact time to capture a particular evader
is also not known. Therefore, we need to define a metric to
estimate the time to capture the evaders. Let us define the state
vector of a vehicle as x = [x1, x2, ẋ1, ẋ2]T , where (x1, x2)
and (ẋ1, ẋ2) are the position and the velocity components of
the vehicle along the x and y axes, respectively. We denote by
xp and xe the state of a pursuer and an evader, respectively.
We will use the following definition of time-to-capture:

Definition 3.1 (Time-to-capture): Let xe(t0) be the position
and velocity vector of an evader in a plane at time t0, and xp(t)

4Our formulation of (5) is similar to MHT [49] and the derivation of (5)
can be found in [50]. The parameters pz, pd, λb and λf have been widely
used in many multi-target tracking applications [27, 49]. Our experimental
and simulation experiences show that our tracking algorithm is not sensitive
to changes in these parameters in most cases. In fact, we used the same set
of parameters for all our experiments.

be the position and velocity vector of a pursuer at the current
time t ≥ t0. We define the (constant speed) time-to-capture as
the minimum time Tc necessary for the pursuer to reach the
evader with the same velocity, assuming that the evader will
keep moving at a constant velocity, i.e.,

Tc := min
[
T | xp(t + T ) = xe(t + T )

]
,

where xe
1,2(t + T ) = xe

1,2(t0) + (t + T − t0)ẋe
1,2(t0),

ẋe
1,2(t + T ) = ẋe

1,2(t0), and the pursuer moves according to
its dynamics.

This definition allows us to quantify the time-to-capture
in an unambiguous way. Although an evader can change
trajectories over time, it is a more accurate estimate than,
for example, some metric based on the distance between an
evader and a pursuer, since the time-to-capture incorporates
the dynamics of the pursuer.

Given Definition 3.1 and the constraints on the dynamics
of the pursuer, it is possible to calculate explicitly the time-
to-capture Tc, as well as the optimal trajectory xe∗(t) for the
pursuers as shown in Section IV-C.

We assume the following dynamics for both pursuers and
evaders:

x(t + δ) = Aδx(t) + Gδu(t) (6)
η(t) = x(t) + v(t) (7)

where δ is the sampling interval, u = [u1, u2]T is the control
input vector, η(t) is the estimated vehicle state provided by
the MTF module, v(t) is the estimation error, and

Aδ =


1 0 δ 0
0 1 0 δ
0 0 1 0
0 0 0 1

 Gδ =


δ2

2 0
0 δ2

2
δ 0
0 δ

 ,

which correspond to the discretization of the dynamics of a de-
coupled planar double integrator. Although this model appears
simplistic for modeling complex motions, it is widely used as
a first approximation in path-planning [51, 52, 53]. Moreover,
there exist methodologies to map such a simple dynamic
model into a more realistic model via consistent abstraction
as shown in [54, 55]. Finally, any possible mismatch between
this model and the true vehicle dynamics can be compensated
for by the path-follower controller implemented on the pursuer
[47].

The observation vector η = [η1, η2, η̇1, η̇2]T is interpreted
as a measurement, although in reality it is the output from the
MTF module shown in Figure 2. The estimation error vt =
[v1, v2, v̇1, v̇2]T can be modeled as a Gaussian noise with zero
mean and covariance Q or as an unknown but bounded error,
i.e., |v1| < V1, |v2| < V2, |v̇1| < V̇1, |v̇2| < V̇2, where V1, V2,
V̇1 and V̇2 are positive scalars that are possibly time-varying.
Both modeling approaches are useful for different reasons.
Using a Gaussian noise approximation allows a closed-form
optimal filter solution such as the well-known Kalman filter
[56]. On the other hand using the unknown but bounded error
model allows for the design of a robust controller such as the
robust minimum-time control of pursuers proposed in Section
IV-C.
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We also assume that the control input to a pursuer is
bounded, i.e.,

|up
1| ≤ Up, |up

2| ≤ Up (8)

where Up > 0. We consider two possible evader dynamics:

ue
1 ∼ N (0, qe), ue

2 ∼ N (0, qe) (random motion) (9)
|ue

1| ≤ Ue, |ue
2| ≤ Ue (evasive motion), (10)

where N (0, qe) is a Gaussian distribution with zero mean
and variance qe ∈ R+. Equation (9) is a standard model
for the unknown motion of vehicles, where the variation in a
velocity component is a discrete-time white noise acceleration
[57]. Equation (10) allows for evasive maneuvers but places
bounds on the maximum thrust. The multi-agent coordination
scheme proposed in Section IV-C is based on dynamics (10)
as pursuers choose their control actions to counteract the
best possible evasive maneuver of the evader being chased.
However, in our simulations and experiments, we test our
control architecture using the dynamics (9) for evaders where
we set qe = 2Ue.

Since the definition of the time-to-capture is related to
relative distance and velocity between the pursuer and the
evader, we consider the state space error ξ = xp − xe which
evolves according to the following error dynamics:

ξ(t + δ) = Aδξ(t) + Gδu
p(t)−Gδu

e(t)
ηξ(t) = ξ(t) + vξ(t) (11)

where the pursuer thrust up(t) is the only controllable input,
while the evader thrust ue(t) acts as a random or unknown
disturbance, and vξ(t) is the measurement error which takes
into account the uncertainties on the states of both the pursuer
and the evader. According to the definition above, an evader
is captured if and only if ξ(t) = 0, and the time-to-capture
Tc corresponds to the time necessary to drive ξ(t) to zero
assuming ue(t) = 0 for t ≥ t0. However, this assumption is
relaxed in Section IV-C.

According to the definition of time-to-capture above and the
error dynamics (11), given the positions and velocities of all
the pursuers and evaders, it is possible to compute the time-
to-capture matrix C = [cij ] ∈ RNp×Ne , where Np and Ne are
the total number of pursuers and evaders, respectively, and the
entry cij of the matrix C corresponds to the expected time-to-
capture between pursuer i and evader j. When coordinating
multiple pursuers to chase multiple evaders, it is necessary
to assign pursuers to evaders. Our objective is to select an
assignment that minimizes the expected time-to-capture of all
evaders, which correspond to the global worst case time-to-
capture. In this paper, we focus on a scenario with the same
number of pursuers and evaders, i.e., Np = Ne. When there
are more pursuers than evaders, then only a subset of all the
pursuers can be dispatched and the others are kept on alert
in case more evaders appear. Alternatively, more pursuers can
be assigned to a single evader. When there are more evaders
than pursuers, one approach is to minimize the time to capture
the Np closest evaders. Obviously, many different coordination
objectives can be formulated as they are strongly application-
dependent. We have chosen the definition of global worst case
time-to-capture as it enforces strong global coordination to
achieve high performance.

Fig. 4. Single target position estimation error as a function of sensing range.
See Section IV-B.3 for the sensor network setup used in simulations (Monte
Carlo simulation of 1000 samples, unity corresponds to the separation between
sensors).

IV. CONTROL SYSTEM IMPLEMENTATION

A. Multi-Sensor Fusion Module

1) Signal-Strength Sensor Model: Consider the signal-
strength sensor model described in Section III-A. Recall that
zi is the signal strength measured by node i. For each node i,
if zi ≥ θ, where θ is a threshold set for appropriate values of
detection and false-positive probabilities, the node transmits
zi to its neighboring nodes, which are at most 2Rs away from
si, and listens to incoming messages from neighboring nodes
within a 2Rs radius. We assume that the communication range
of each node is larger than 2Rs. For a node i, if zi is larger
than all incoming messages, zi1 , . . . , zik−1 , and zik

= zi, then
the position of an object is estimated by

ẑi =

∑k
j=1 zij

sij∑k
j=1 zij

. (12)

The estimate ẑi corresponds to a center of mass of the node
locations weighed by their measured signal strengths. Node i
transmits ẑi to the Tier-2 node g(i). If zi is not the largest
compared to the incoming messages, node i simply continues
sensing. Although each sensor cannot give an accurate esti-
mate of the object’s position, as more sensors collaborate, the
accuracy of the estimates improves as shown in Figure 4.

2) Binary Sensor Model: In order to obtain finer position
reports from binary detections, we use spatial correlation
among detections from neighboring sensors. The idea behind
the fusion algorithm is to compute the likelihood of detections
assuming there is a single target. This is only an approxi-
mation since there can be more than one target. However,
any inconsistencies caused by this approximation are fixed by
the tracking algorithm described in Section IV-B using spatio-
temporal correlation.

Consider the binary sensor model described in Section III-
A. Let x be the position of an object. For the purpose of
illustration, suppose that there are two sensors, sensor 1 and
sensor 2, and R1 ∩ R2 6= ∅ (see Figure 5(a)). The overall
sensing region R1 ∪ R2 can be partitioned into a set of non-
overlapping cells (or blocks) as shown in Figure 5(b). The
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(a) (b)

Fig. 5. (a) Sensing regions of two sensors 1 and 2. Ri is the sensing region
of sensor i. (b) A partition of the overall sensing region R1 ∪ R2 into non-
overlapping cells S1, S2 and S3, where S1 = R1 \R2, S2 = R2 \R1 and
S3 = R1 ∩R2.

Fig. 6. Detections of two targets by a 10 × 10 sensor grid (targets in ×,
detections in disks, and sensor positions in small dots).

likelihoods can be computed as follows:

P (z1, z2|x ∈ S1) = pz1
1 (1− p1)1−z1qz2

2 (1− q2)1−z2

P (z1, z2|x ∈ S2) = qz1
1 (1− q1)1−z1pz2

2 (1− p2)1−z2

P (z1, z2|x ∈ S3) = pz1
1 (1− p1)1−z1pz2

2 (1− p2)1−z2 ,
(13)

where S1 = R1 \ R2, S2 = R2 \ R1 and S3 = R1 ∩ R2 (see
Figure 5(b)). Hence, for any deployment we can first partition
the surveillance region into a set of non-overlapping cells.
Then, given detection data, we can compute the likelihood
of each cell as shown in the previous example.

An example of detections of two targets by a 10×10 sensor
grid is shown in Figure 6. In this example, the sensing region
is assumed to be a disk with radius of 7.62m (10 ft). We have
assumed pi = 0.7 and qi = 0.05 for all i. These parameters are
estimated from measurements made with the passive infrared
(PIR) sensor of an actual sensor node described in Section V.
From the detections shown in Figure 6, the likelihood can
be computed using equations similar to (13) for each non-
overlapping cell (see Figure 7). Notice that it is a time-
consuming task to find all non-overlapping cells for arbitrary
sensing region shapes and sensor deployments. Hence, we
quantized the surveillance region and the likelihoods are
computed for a finite number of points as shown in Figure 7.

There are two parts in this likelihood computation: the
detection part (terms involving pi) and the false detection part
(terms involving qi). Hereafter, we call the detection part of the

Fig. 7. Likelihood of detections from Figure 6.

likelihood as the detection-likelihood and the false detection
part of the likelihood as the false-detection-likelihood. Notice
that the computation of the false-detection-likelihood requires
measurements from all sensors. However, for a large wireless
sensor network, it is not feasible to exchange detection data
with all other sensors. Instead, we use a threshold test to
avoid computing the false-detection-likelihood and distribute
the likelihood computation. The detection-likelihood of a cell
is computed if there are at least θd detections, where θd is a
user-defined threshold. Using θd = 3, the detection-likelihood
of the detections from Figure 6 can be computed as shown in
Figure 8. The computation of the detection-likelihood can be
done in a distributed manner. Assign a set of non-overlapping
cells to each sensor such that no two sensors share the same
cell and each cell is assigned to a sensor whose sensing region
includes the cell. For each sensor i, let {Si1 , . . . , Sim(i)} be
a set of non-overlapping cells, where m(i) is the number of
cells assigned to sensor i. Then, if sensor i reports a detection,
it computes the likelihoods of each cell in {Si1 , . . . , Sim(i)}
based on its own measurements and the measurements from
neighboring sensors. A neighboring sensor is a sensor whose
sensing region intersects the sensing region of sensor i. Notice
that no measurement from a sensor means no detection.

Based on the detection-likelihoods, we compute target po-
sition reports by clustering. Let S = {S1, . . . , Sm} be a set
of cells whose detection-likelihoods are computed, i.e., the
number of detections for each Si is at least θd. First, randomly
pick Sj from S and remove Sj from S. Then cluster around
Sj the remaining cells in S whose set-distance to Sj is less
than the sensing radius. The cells clustered with Sj are then
removed from S. Now repeat the procedure until S is empty.
Let {Ck : 1 ≤ k ≤ Kcl} be the clusters formed by this
procedure, where Kcl is the total number of clusters. For
each cluster Ck, its center of mass is computed to obtain a
a fused position report, i.e., an estimated position of a target.
An example of position reports is shown in Figure 8.

The multi-sensor fusion algorithm described above runs on
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Fig. 8. Detection-likelihood of detections from Figure 6 with threshold
θd = 3. Estimated positions of targets are shown in circles.

two levels: Algorithm 1 on the Tier-1 nodes and Algorithm 2
on the Tier-2 node. Each Tier-1 node combines detection data
from itself and neighboring nodes using Algorithm 1 and
computes detection-likelihoods. The detection-likelihoods are
forwarded to its Tier-2 node and the Tier-2 node generates
position reports from the detection-likelihoods using Algo-
rithm 2. The position reports are then used by the MTT module
described in Section IV-B to track multiple targets.

Algorithm 1 Multi-Sensor Fusion: Sensor i

Input: detections from sensor i and its neighbors
Output: detection-likelihoods

1: for each Sij , j = 1, . . . ,m(i) do
2: if number of detections for Sij ≥ θd then
3: compute detection-likelihood ẑi(j) of Sij

4: forward ẑi(j) to Tier-2 node g(i)
5: end if
6: end for

Algorithm 2 Multi-Sensor Fusion: Tier-2 Node
Input: detection-likelihoods Z = {ẑi(j)} received from its

tracking group
Output: position reports y

1: S = {Sij
: ẑi(j) ∈ Z}

2: y = ∅
3: find clusters {Ck : 1 ≤ k ≤ Kcl} from S as described in

the text
4: for each Ck, k = 1, . . . ,Kcl do
5: compute the center of mass yk of Ck

6: y = y ∪ yk

7: end for

B. Multi-Target Tracking and Multi-Track Fusion Modules

Our tracking algorithms are based on Markov chain Monte
Carlo data association (MCMCDA) [21]. We first describe the
MCMCDA algorithm and then describe the MTT and MTF
modules of LochNess.

Markov chain Monte Carlo (MCMC) plays a significant
role in many fields such as physics, statistics, economics, and
engineering [58]. In some cases, MCMC is the only known
general algorithm that finds a good approximate solution to
a complex problem in polynomial time [59]. MCMC tech-
niques have been applied to complex probability distribution
integration problems, counting problems such as #P-complete
problems, and combinatorial optimization problems [59, 58].

MCMC is a general method to generate samples from a
distribution π on a space Ω by constructing a Markov chain
M with states ω ∈ Ω and stationary distribution π(ω). We
now describe an MCMC algorithm known as the Metropolis-
Hastings algorithm [60]. If we are at state ω ∈ Ω, we propose
ω′ ∈ Ω following the proposal distribution q(ω, ω′). The move
is accepted with an acceptance probability A(ω, ω′) where

A(ω, ω′) = min
(

1,
π(ω′)q(ω′, ω)
π(ω)q(ω, ω′)

)
, (14)

otherwise the sampler stays at ω, so that the detailed balance is
satisfied. If we make sure thatM is irreducible and aperiodic,
then M converges to its stationary distribution by the ergodic
theorem [61].

The MCMC data association (MCMCDA) algorithm is
described in Algorithm 3. MCMCDA is an MCMC algorithm
whose state space is Ω, as described in Section III-B, and
whose stationary distribution is the posterior (5). The proposal
distribution for MCMCDA consists of five types of moves (a
total of eight moves). They are (1) a birth/death move pair;
(2) a split/merge move pair; (3) an extension/reduction move
pair; (4) a track update move; and (5) a track switch move.
The MCMCDA moves are illustrated in Figure 9. We index
each move by an integer such that m = 1 for a birth move,
m = 2 for a death move and so on. The move m is chosen
randomly from the distribution qm

K(m) where K is the number
of tracks of the current partition ω. When there is no track,
we can only propose a birth move, so we set qm

0 (m = 1) = 1
and qm

0 (m = 1) = 0 for all other moves. When there is only a
single target, we cannot propose a merge or track switch move,
so qm

1 (m = 4) = qm
1 (m = 8) = 0. For the other values of K

and m, we assume qm
K(m) > 0. For a detailed description of

each move, see [21]. The inputs for MCMCDA are the set
of all observations Y , the number of samples nmc, the initial
state ωinit, and a bounded function X : Ω→ Rn. At each step
of the algorithm, ω is the current state of the Markov chain.
The acceptance probability A(ω, ω′) is defined in (14) where
π(ω) = P (ω|Y ) from (5). The output X̂ approximates the
MMSE estimate EπX and ω̂ approximates the MAP estimate
arg max P (ω|Y ). The computation of ω̂ can be considered
as simulated annealing at a constant temperature. Notice that
MCMCDA can provide both MAP and MMSE solutions to
the multi-target tracking problem. In this paper, we use the
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MAP estimate ω̂ to estimate the states of the targets5.

Algorithm 3 MCMCDA
Input: Y, nmc, ωinit, X : Ω→ Rn

Output: ω̂, X̂
1: ω = ωinit; ω̂ = ωinit; X̂ = 0
2: for n = 1 to nmc do
3: propose ω′ based on ω (see below)
4: sample U from Unif[0, 1]
5: ω = ω′ if U < A(ω, ω′)
6: ω̂ = ω if p(ω|Y )/p(ω̂|Y ) > 1
7: X̂ = n

n+1X̂ + 1
n+1X(ω)

8: end for

It has been shown that MCMCDA is an optimal Bayesian
filter in the limit [22]. In addition, in terms of time and
memory, MCMCDA is more computationally efficient than
MHT and outperforms MHT with heuristics (i.e., pruning,
gating, clustering, N -scan-back logic and k-best hypotheses)
under extreme conditions, such as a large number of targets
in a dense environment, low detection probabilities, and high
false alarm rates [21].

1) Multi-Target Tracking Module: At each Tier-2 node,
we implement the online MCMCDA algorithm with a sliding
window of size ws using Algorithm 3 [21]. This online im-
plementation of MCMCDA is suboptimal because it considers
only a subset of past measurements. But since the contribution
of older measurements to the current estimate is much less
than recent measurements, it is still a good approximation.
At each time step, we use the previous estimate to initialize
MCMCDA and run MCMCDA on the observations belonging
to the current window. Each Tier-2 node maintains a set of
observations Y = {yj(t) : 1 ≤ j ≤ n(t), tcurr − ws + 1 ≤
t ≤ tcurr}, where tcurr is the current time. Each yj(t) is either
a fused measurement ẑi from some signal-strength sensor i
or an element of the fused position reports y from some
binary sensors. At time tcurr + 1, the observations at time
tcurr−ws+1 are removed from Y and a new set of observations
is appended to Y . Any delayed observations are inserted
into the appropriate slots. Then, each Tier-2 node initializes
the Markov chain with the previously estimated tracks and
executes Algorithm 3 on Y . Once a target is found, the next
state of the target is predicted. If the predicted next state
belongs to the surveillance area of another Tier-2 node, the
target’s track information is passed to the corresponding Tier-
2 node. These newly received tracks are then incorporated into
the initial state of MCMCDA for the next time step. Lastly,
each Tier-2 node forwards its track information to the base
station.

2) Multi-Track Fusion Module: Since each Tier-2 node
maintains its own set of tracks, there can be multiple tracks
from a single target maintained by different Tier-2 nodes.
To make the algorithm fully hierarchical and scalable, the
MTF module performs the track-level data association at the

5The states of the targets can be easily computed by any filtering algorithm
since, given ω̂, the associations between the targets and the measurements are
completely known.

Fig. 9. Graphical illustration of MCMCDA moves (associations are indicated
by dotted lines and hollow circles are false alarms). Each move proposes a
new joint association event ω′ which is a modification of the current joint
association event ω. The birth move proposes ω′ by forming a new track
from the set of false alarms ((a) → (b)). The death move proposes ω′ by
combining one of the existing tracks into the set of false alarms ((b) → (a)).
The split move splits a track from ω into two tracks ((c) → (d)) while the
merge move combines two tracks in ω into a single track ((d) → (c)). The
extension move extends an existing track in ω ((e) → (f)) and the reduction
move reduces an existing track in ω ((f) → (e)). The track update move
chooses a track in ω and assigns different measurements from the set of false
alarms ((g) ↔ (h)). The track switch move chooses two track from ω and
switches some measurement-to-track associations ((i) ↔ (j)).

base station to combine tracks from different Tier-2 nodes.
Let ωj be the set of tracks maintained by Tier-2 node j ∈
{1, . . . , Nss}. Let Yc = {τi(t) ∈ ωj : 1 ≤ t ≤ tcurr, 1 ≤
i ≤ |ωj |, 1 ≤ j ≤ Nss} be the combined observations only
from the established tracks. We form a new set of tracks ωinit
from {τi ∈ ωj : 1 ≤ i ≤ |ωj |, 1 ≤ j ≤ Nss} while making
sure that the constraints defined in Section III-B are satisfied.
Then, we run Algorithm 3 on this combined observation set
Yc with the initial state ωinit. An example in which the multi-
track fusion corrects mistakes made by Tier-2 nodes due to
missing observations at the tracking group boundaries is shown
in Section IV-B.3.

The algorithm is autonomous and shown to be robust against
packet loss, communication delay and sensor localization
error. In simulation, there is no performance loss up to an
average localization error of 0.7 times the separation between
sensors, and the algorithm tolerates up to 50% lost-to-total
packet ratio and 90% delayed-to-total packet ratio [23].

3) An Example of Surveillance using Sensor Networks:
Here, we give a simulation example of surveillance using
sensor networks. The surveillance region R = [0, 100]2 was
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(a) (b)

(c) (d)

Fig. 10. (a) Tracking scenario, where the numbers are target appearance and disappearance times, the initial positions are marked by circles, and the stars
are the positions of Tier-2 nodes. (b) Accumulated observations received by Tier-2 nodes with delayed observations circled. (c) Tracks estimated locally by
the MTT modules at Tier-2 nodes, superimposed. (d) Tracks estimated by the MTF module.

divided into four quadrants and sensors in each quadrant
formed a tracking group, where a Tier-2 node was placed at the
center of each quadrant. The scenario is shown in Figure 10(a).
We assumed a 100× 100 sensor grid, in which the separation
between sensors was normalized to 1. Thus, the unit length
in simulation was the length of the sensor separation. For
MCMCDA, nmc = 1000 and ws = 10. The signal-strength
sensor model was used with parameters α = 2, γ = 1, θ = 2,
and β = 3(1 + γRα

s ). In addition, pte = .3 and pde = .3. The
surveillance duration was Ts = 100.

The state vector of a target is x = [x1, x2, ẋ1, ẋ2]T as
described in Section III-C. The simulation used the dynamic
model in (6) and the evader control inputs were modeled by
the random motion (9) with qe = .152 and Q set according to
Figure 4. Since the full state is not observable, the measure-
ment model (7) was modified as follows:

y(t) = Dx(t) + v(t), where D =
[

1 0 0 0
0 1 0 0

]
(15)

and y is a fused measurement computed by the MSF module
in Section IV-A.

Figure 10(b) shows the observations received by the Tier-2
nodes. There were a total of 1174 observations and 603 of

these observations were false alarms. A total of 319 packets
out of 1174 packets were lost due to transmission failures
and 449 packets out of 855 received packets were delayed.
Figure 10(c) shows the tracks estimated locally by the MTT
modules on the Tier-2 nodes while Figure 10(d) shows the
tracks estimated by the MTF module using track-level data as-
sociation. Figure 10(d) shows that the MTF module corrected
mistakes made by Tier-2 nodes due to missing observations at
the tracking group boundaries. The algorithm is written in C++
and MATLAB and run on PC with a 2.6-GHz Intel Pentium
4 processor. It takes less than 0.06 seconds per Tier-2 node,
per simulation time step.

C. Multi-Agent Coordination Module

The time-to-capture is estimated using the abstract model
of pursuer and evader dynamics given in Section III-C. Let
us consider the error between the pursuer and the evader
ξ = [ξ1, ξ2, ξ̇1, ξ̇2]T whose dynamics is given in (11). The
time-to-capture problem is equivalent to the following opti-
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mization problem:

min
u

p
1(t),u

p
2(t)

T

subject to

 ξ(t + δ) = Aδξ(t) + Gδu
p(t)

|up
1(t)| ≤ Up, |up

2(t)| ≤ Up
ξ(t + T ) = 0.

(16)
Recently, Gao et al. [62] solved the previous problem as
an application of minimum-time control for the discretized
double integrator. An extension to minimum-time control for
the discretized triple integrator is also available [63]. Despite
its simplicity and apparent efficacy, minimum-time control is
rarely used in practice, since it is highly sensitive to small
measurement errors and external disturbances. Although, in
principle, minimum-time control gives the best performance,
it needs to be modified to cope with practical issues such as
the quantization of inputs, measurement and process noise, and
modeling errors. We propose an approach that adds robustness
while preserving the optimality of minimum-time control.

Since the state error dynamics is decoupled along the x and
y-axes, the solution of the optimization problem (16) can be
obtained by solving two independent minimum-time problems
along each axis. When δ → 0 in (11), the minimum-time
control problem restricted to one axis reduces to the well
known minimum-time control problem of a double integrator
in continuous time, which can be found in many standard
textbooks on optimal control such as [64, 65]. The solution
is given by a bang-bang control law and can be written in
state feedback form as follows:

up
1 =


−Up If 2Upξ̇1 > −ξ1|ξ1|
+Up If 2Upξ̇1 < −ξ1|ξ1|

−Up sign(ξ1) If 2Upξ̇1 = −ξ1|ξ1|
0 If ξ̇1 = ξ1 = 0.

(17)

The minimum time required to drive ξ1 to zero in the x-axis
can be also written in terms of the position and velocity error
as follows:

Tc,1(ξ1, ξ̇1) =


−ξ̇1+
√

2ξ̇2
1−4Upξ1

Up
if 2Upξ̇1 ≥ −ξ1|ξ1|

ξ̇1+
√

2ξ̇2
1+4Upξ1

Up
otherwise.

(18)
Figure 11 shows the switching curve 2Upξ̇1 = −ξ1|ξ1| and the
level curves of the time-to-capture Tc for different values.

Similar equations can be written for the control up
2 along

the y-axis. Therefore the minimum time-to-capture is given
by:

Tc = max(Tc,1, Tc,2) (19)

According to the previous analysis, given the state error ξ(t)
at current time t, we can compute the corresponding constant
velocity time-to-capture Tc, the optimal input sequence up∗(t′)
and the optimal trajectory ξ∗(t′) for t′ ∈ [t, t + Tc].

However, the optimal input (17) is the solution when δ → 0
in (11) with no measurement errors and no change in the
evader’s trajectory. In order to add robustness to take into
account the quantization in the digital implementation, the
measurement errors, and the evasive maneuvers of the evader,
we analyze how the time-to-capture can be affected by these

Fig. 11. Optimal switching curve for the continuous minimum-time control of
the double integrator (thick solid line) and curves of constant time-to-capture
(thin solid lines) in the phase space (ξ1, ξ̇1). The hexagon represents the set
of all possible locations of the true error state (ξ1(t + δ), ξ̇1(t + δ)) at the
next time step t + δ given measurement (η1, η̇1) and pursuer control input
u

p
1 at time t.

terms. Let us first rewrite the error dynamics given by (11)
explicitly for the x-axis:

ξ1(t + δ) = ξ1(t) + δ ξ̇1(t) + 1
2δ2up

1(t) + 1
2δ2ue

1(t)
ξ̇1(t + δ) = ξ̇1(t) + δ up

1(t) + δue
1(t)

ηξ
1(t) = ξ1(t) + vξ

1(t)
η̇ξ
1(t) = ξ̇1(t) + v̇ξ

1(t)

If we substitute the last two equations into the first two we
get:

ξ1(t + δ) = ηξ
1(t) + δη̇ξ

1(t)+
1
2
δ2up

1(t)−

−vξ
1(t)−δv̇ξ

1(t) +
1
2
δ2ue

1(t) (20)

ξ̇1(t + δ) = η̇ξ
1(t) + δ up

1(t)− v̇ξ
1(t) + δue

1(t) (21)

where (ηξ
1, η̇

ξ
1) are output estimates from the MTF module,

up
1 is the controllable input, and (ue

1, v
ξ
1, v̇

ξ
1) play the role

of external disturbances. Our goal now is to choose up
1, i.e.,

the thrust of the pursuer, in such a way as to minimize the
time-to-capture under the worst possible choice of (ue

1, v
ξ
1, v̇

ξ
1),

which are not known in advance but are bounded. Figure
11 illustrates this approach graphically: the hexagon in the
figure represents the possible position of the true state error
(ξ1, ξ̇1) at the next time step t + δ which accounts for all
possible evasive maneuvers of the evader, i.e., |ue

1| < Ue, and
accounts for the estimation errors on the position and velocity
of the pursuer and the evader, i.e., |vξ

1| < V1, |v̇ξ
1| < V̇1,

for a given choice of up
1. Since the center of the hexagon

(ηξ
1+δη̇ξ

1+ 1
2δ2up

1, η̇
ξ
1+δup

1) depends on the pursuer control up
1,

one could try to choose up
1 in such a way that the largest time-

to-capture Tc,1 of the hexagon is minimized. This approach
is common in the literature for non-cooperative games [66].
More formally, the feedback control input will be chosen based
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on the following min-max optimization problem

up
1
∗(t) = arg min

|up
1|≤Up

 max
|vξ

1 |≤V1,|v̇ξ
1 |≤V̇1,

|ue
1|≤Ue

Tc,1
(
ξ1(t+δ), ξ̇1(t+δ)

)
(22)

This is, in general, a nonlinear optimization problem. However,
thanks to the specific structure of the time-to-capture function
Tc,1, it is possible to show that (22) is equivalent to:

up
1
∗ = arg min

|up
1|≤Up

max
(
Tc,1(ξ+

1 , ξ̇+
1 ), Tc,1(ξ−1 , ξ̇−1 )

)
ξ±1 := ηξ

1 + δη̇ξ
1± V1±δV̇1 ±

1
2
δ2Ue +

1
2
δ2up

1

ξ̇±1 := η̇ξ
1± V̇1±δUe + δup

1, (23)

i.e., it is necessary to compute only the time-to-capture of
the top right and the bottom left corner of the hexagon
in Figure 11 since all points inside the set always have
smaller values of Tc,1. Once the expected minimum time-
to-capture control input up∗(t′), t′ ∈ [t, t + Tc] is computed,
then the corresponding optimal trajectory for the pursuer
xp∗(t′), t′ ∈ [t, t + Tc] can be easily obtained by substituting
up∗(t′) into the pursuer dynamics (6). The robust minimum-
time path planning algorithm is summarized in Algorithm 4.

Algorithm 4 Robust Minimum-Time Path Planning

Input: xp(t), xe(t), and bounds V1, V2, V̇1, V̇2, Ue, Up
Output: optimal trajectory xp∗(t′), t′ ∈ [t, t + Tc]

1: compute up∗(t′), t′ ∈ [t, t + Tc] using (23)
2: compute xp∗(t′), t′ ∈ [t, t + Tc] given up∗(t′) using (6)

Figure 12 shows the performance of the proposed robust
minimum time-to-capture control feedback for a scenario
where the evader moves with random motion and the evader’s
position and velocity estimates are noisy. It is compared with
the discrete-time minimum-time controller proposed in [63]
and [62]. Our controller feedback design outperforms the
discrete-time minimum-time controller since the latter one
does not take into account process and measurement noises.
Note how both controllers do not direct pursuers toward the
actual position of evader, but to the estimated future location
of the evader to minimize the time-to-capture.

As introduced in Section III-C, given the positions and
velocities of all pursuers and evaders and bounds on the mea-
surement error and evader input, it is possible to compute the
expected time-to-capture matrix C = [cij ] ∈ RNp×Ne using
the solution to the optimal minimum-time control problem.
The entry cij of the matrix C corresponds to the expected time
for pursuer i to capture evader j, Tc(i, j), that can be computed
as described in (18) and (19). As motivated in Section III-C,
we assume the same number of pursuers as the number of
evaders, i.e., Np = Ne = N .

An assignment can be represented as a matrix Φ = [φij ] ∈
RN×N , where the entry φij of the matrix Φ is equal to 1 if
pursuer i is assigned to evader j, and equal to 0 otherwise.
The assignment problem can therefore be written formally as

Fig. 12. Trajectories of pursuers and evaders on the x-y plane. The feedback
control is based on noisy measurements (thin solid line) of the true evader
positions (thick solid line). The robust minimum time-to-capture feedback
proposed in this paper (dot-solid line) is compared with the discrete-time
minimum time-to-capture feedback (dashed line) proposed in [63].

follows:

minφij∈{0,1} maxi,j=1,...,N (cij · φij)
subject to

∑N
i=1 φij = 1, ∀i∑N
j=1 φij = 1, ∀j.

(24)

As formulated in (24), the assignment problem is a combina-
torial optimization problem.

The optimization problem given in (24) can be reformulated
as a linear bottleneck assignment problem and can be solved
by any of the polynomial-time algorithms based on network
flow theory. Here we give a brief description of one algorithm
and we direct the interested reader to the survey [45] for a
detailed review of these algorithms. For our implementation,
we use a randomized threshold algorithm that alternates be-
tween two phases. In the first phase, we list the cost elements
cij in increasing order and we choose a cost element c∗, i.e.,
a threshold. Then we construct the matrices C̄(c∗) = [c̄ij ] ∈
RN×N and CTutte(c∗) ∈ R2N×2N as follows:

c̄ij =
{

aij if cij > c∗

0 if cij ≤ c∗
, CTutte =

[
0 C̄
−C̄ 0

]
(25)

where aij’s are independent random numbers sampled from a
uniform distribution in the interval [0, 1], i.e., aij ∼ U([0, 1]).
Using Tutte’s Theorem [45], it is possible to show that if
det(CTutte(c∗)) 6= 0, then there exists an assignment that
achieves c∗6. Therefore, we search for the smallest c∗min in the
ordered list of costs cij which guarantees an assignment. Once
we find c∗min, we find the pursuer-evader pair corresponding
to that cost. Then, we remove its row and column from the
cost matrix C and repeat the procedure until all pursuers
are assigned. The assignment algorithm is summarized in
Algorithm 5.

6In reality, since the algorithm is randomized, there is a small probability
equal to (1/N)r that there exists a feasible assignment if det(CTutte) = 0 for
r random Tutte’s matrices CTutte. In the rare cases when this event happens,
the algorithm simply gives a feasible assignment with a higher cost to capture.
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Algorithm 5 Pursuers-to-evaders Assignment
Input: xp

i , x
e
j , i, j = 1, . . . , N

Output: assignment (i→ j) for i = 1, . . . , N
1: compute matrix C = [cij ], cij = Tc(i, j)
2: for n = 1 to N do
3: [i∗, j∗] = argminij

�
cij | det(CTutte(cij)) 6= 0

	
, using (25)

4: assign pursuer i∗ to evader j∗, i.e., (i∗ → j∗)
5: C ← {C | remove row i∗ and column j∗}
6: end for

It is important to note that an assignment based on the
solution to the global optimization problem described above is
necessary for good performance. For example, let us consider
the greedy assignment algorithm. This algorithm looks for
the smallest time-to-capture entry in the matrix C, assigns
the corresponding pursuer-evader pair, and removes the corre-
sponding row and column from the matrix C. The dimensions
of the resulting matrix C become (N − 1) × (N − 1) and
the algorithm repeats the same process until each pursuer
is assigned to an evader. This algorithm is very simple and
can be implemented in a fully distributed fashion. However,
it is a suboptimal algorithm since there are cases where the
greedy assignment finds the worst solution. Consider the time-

to-capture matrix C =
[

1 2
3 100

]
. The optimal assignment

that minimizes the time-to-capture of all evaders for this matrix
is (1→ 2) and (2→ 1), which gives Tc,max = 3, where Tc,max
is the time-to-capture of all evaders. The greedy assignment
would instead assign pursuer 1 to evader 1 and pursuer 2
to evader 2, with the time-to-capture of all evaders equal to
Tc,max = 100.

V. EXPERIMENTS

Multi-target tracking and a pursuit evasion game using
the control system LochNess were demonstrated at the De-
fense Advanced Research Projects Agency (DARPA) Network
Embedded Systems Technology (NEST) final experiment on
August 30, 2005. The experiment was performed under warm
sunny conditions on a large-scale, long-term, outdoor sensor
network testbed deployed on a short grass field at U.C.
Berkeley’s Richmond Field Station (see Figure 13). A total
of 557 sensor nodes were deployed and 144 of these nodes
were allotted for the tracking and PEG experiments. However,
six out of the 144 nodes used in the experiment were not
functioning on the day of the demo, reflecting the difficulties
of deploying large-scale, outdoor systems.

The 144 nodes used for the tracking and PEG experiments
were deployed at approximately 5 meter spacing in a 12× 12
grid (see Figure 14). Each node was elevated using a camera
tripod to prevent the passive infrared (PIR) sensors from being
obstructed by grass and uneven terrain (see Figure 13(a)).
The locations of the nodes were measured during deployment
using differential GPS and stored in a table at the base station
for reference and for generating Figure 14. However, in the
experiments the system assumed the nodes were placed exactly
on a 5 meter spacing grid to highlight the robustness of the
system with respect to localization error.

(a) (b)

Fig. 13. Hardware for the sensor nodes. (a) Trio sensor node on a tripod.
On top is the microphone, buzzer, solar panel, and user and reset buttons. On
the sides are the windows for the passive infrared sensors. (b) A live picture
from the 2 target PEG experiment. The targets are circled.

Fig. 14. Sensor network deployment (not all deployed sensor nodes are
shown). The disks and circles represent the positions of the sensor nodes. The
network of 144 nodes used in the multi-target tracking and PEG experiments
is highlighted.

The deployment of LochNess contained some modifications
to the architecture described in Section III. Due to the time
constraint, the Tier-2 nodes were not fully functional on the
day of the demo. Instead, we used a mote connected to a
personal computer as the Tier-2 node. Only one such Tier-2
node was necessary to maintain connectivity to all 144 nodes
used for the tracking experiment. In the experiment, simulated
pursuers were used since it was difficult to navigate a ground
robot in the field of tripods.

A. Platform

A new sensor network hardware platform called the Trio
mote was designed by Dutta et al. [44] for the outdoor testbed.
The Trio mote is a combination of the designs of the Telos B
mote, eXtreme Scaling Mote (XSM) sensor board [67], and
Prometheus solar charging board [68], with improvements.
Figure 15 shows the Trio node components and Figure 13(a)
shows the assembled Trio node in a waterproof enclosure
sitting on a tripod.

The Telos B mote [69] is the latest in a line of wireless
sensor network platforms developed by U.C. Berkeley for the
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(a) (b)

Fig. 15. (a) Telos B. (b) Trio sensor board, based off the XSM sensor board
and Prometheus solar power circuitry. See [44] for details.

NEST project. It features an 8MHz Texas Instruments MSP430
microcontroller with 10kB of RAM and 48kB of program flash
and a 250kbps, 2.4GHz, IEEE 802.15.4 standard compliant,
Chipcon CC2420 radio. The Telos B mote provides lower
power operation than previous motes (5.1 µA sleep, 19 mA
on) and a radio range of up to 125 meters, making it the ideal
platform for large-scale, long-term deployments.

The Trio sensor board includes a microphone, a piezoelec-
tric buzzer, x-y axis magnetometers, and four passive infrared
(PIR) motion sensors. For the multi-target tracking application,
we found that the PIR sensors were the most effective at
sensing human subjects moving through the sensor field. The
magnetometer sensor had limited range even detecting targets
with rare earth magnets and the acoustic sensor required
complex signal processing to pick out the various acoustic
signatures of a moving target from background noise. The PIR
sensors provided an effective range of approximately 8 meters,
with sensitivity varying depending on weather conditions and
time of day. The variability in the signal strength of the PIR
sensor reading prohibited extraction of ranging information
from the sensor, so the PIR sensors were used as binary
detectors.

The software running on the sensor nodes are written in
NesC [70] and run on TinyOS [71], an event-driven operating
system developed for wireless embedded sensor platforms.
The core sensor node application is the DetectionEvent mod-
ule, a multi-mode event generator for target detection and
testing node availability. The sensor node application relies
on a composition of various TinyOS subsystems and services
that facilitate management and interaction with the network
(see Figure 16).

The DetectionEvent module provides four modes of event
generation from the node – events generated periodically by
a timer; events generated by pressing a button on the mote;
events generated by the raw PIR sensor value crossing a
threshold; and events generated by a three-stage filtering,
adaptive threshold, and windowing detection algorithm for the
PIR sensor signal developed by the University of Virginia [75].
The timer generated events were parsed and displayed at the
base station to help visualize which nodes in the network were
alive. The three-stage PIR detection filter code was used during
the development cycle. While it had potential to be more robust
to different environmental conditions, during the day of the
demo we reverted to the simple threshold PIR detector because

Fig. 16. Software services on the sensor network platform. The core
network management services are Deluge for network reprogramming [72]
and Marionette for fast reconfiguration of parameters on the nodes [73]. The
DetectionEvent application relies on the Drip and Drain routing layer for
dissemination of commands and collection of data [74]. For more details on
the software architecture used in the outdoor testbed, see [44, 73].

the simple threshold detector was easy to tune and performed
well.

The algorithms for the MSF, MTT, MTF, and MAC modules
are all written in MATLAB and C++ and run on the base
station in real-time. The same implementation of the tracking
algorithm and the robust minimum time controller used in the
simulations shown in Figure 10 and Figure 12 are used in the
experiments. The data was timestamped at the base station.

B. Live Demonstration

The multi-target tracking algorithm was demonstrated on
one, two, and three human targets, with targets entering the
field at different times. In all three experiments, the track-
ing algorithm correctly estimated the number of targets and
produced correct tracks. Furthermore, the algorithm correctly
disambiguated crossing targets in the two and three target
experiments without classification labels on the targets, using
the dynamic models and target trajectories before crossing to
compute the tracks.

Figure 17 shows the multi-target tracking results with three
targets walking through the field. The three targets entered and
exited the field around time 10 and 80, respectively. During
the experiment, the algorithm correctly rejected false alarms
and compensated for missing detections. There were many
false alarms during the span of the experiments, as can be
seen from the false alarms before time 10 and after time 80 in
Figure 18. Also, though not shown in the figures, the algorithm
dynamically corrected previous track hypotheses as it received
more sensor readings. Figure 18 also gives a sense of the
irregularity of network traffic. The spike in traffic shortly after
time 50 was approximately when two of the targets crossed.
It shows that the multi-target tracking algorithm is robust
against missing measurements, false measurements, and the
irregularity of network traffic.
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Fig. 17. Estimated tracks of targets at time 70 from the experiment with three
people walking in the field. (upper left) Detection panel. Sensors are marked
by small dots and detections are shown in large disks. (lower left) Fusion
panel shows the fused likelihood. (right) Estimated Tracks and Pursuer-to-
evader Assignment panel shows the tracks estimated by the MTT module,
estimated evader positions (stars) and pursuer positions (squares).

Fig. 18. Raster plot of the binary detection reports from the three target
tracking demo. Dots represent detections from nodes that were successfully
transmitted to the base station.

In the last demonstration, two simulated pursuers were
dispatched to chase two crossing human targets. The pursuer-
to-target assignment and the robust minimum time-to-capture
control law were computed in real-time, in tandem with the
real-time tracking of the targets. The simulated pursuers cap-
tured the human targets, as shown in Figure 19. In particular,
note that the MTT module is able to correctly disambiguate
the presence of two targets (right panel of Figure 19(a)) using
past measurements, despite the fact that the MSF module
reports the detection of a single target (upper left panel of
Figure 19(a)). A live picture of this experiment is shown on
the right of Figure 13.

(a)

(b)

Fig. 19. Estimated tracks of evaders and pursuer positions from the pursuit
evasion game experiment. (a) Before crossing. (b) After crossing.

VI. CONCLUSIONS AND FUTURE WORK

This paper described LochNess, a hierarchical real-time
control system for sensor networks. LochNess is applied to
pursuit evasion games, in which a group of evaders are
tracked using a sensor network and a group of pursuers are
coordinated to capture the evaders. Although sensor networks
provide global observability, they cannot provide high quality
measurements in a timely manner due to packet loss, commu-
nication delay, and false detections. These factors have been
the main challenge to developing a real-time control system
using sensor networks.

This paper proposes a possible solution for closing the loop
around wireless ad-hoc sensor networks. The hierarchical real-
time control system LochNess decouples the estimation of
evader states from the control of pursuers by using multiple
layers of data fusion, including the multi-sensor fusion (MSF)
module, the multi-target tracking (MTT) module, and the
multi-track fusion (MTF) module. While a sensor network
generates noisy, inconsistent, and bursty measurements, the
three layers of data fusion convert raw sensor measurements
into fused measurements in a compact and consistent repre-
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sentation and forward the fused measurements to the pursuers’
controllers in a timely manner.

In order to coordinate multiple pursuers, the multi-agent
coordination (MAC) module is developed. The assignments of
pursuers to evaders are chosen such that the time to capture
all evaders is minimized. The controllers for the pursuers are
based on minimum-time control but were designed to account
for the worst-case evader motions and to add robustness to the
quantization of inputs, measurement and process noises, and
modeling errors.

Simulation and experimental results have shown that
LochNess is well suited for solving real-time control problems
using sensor networks and that a sensor network is an attractive
solution for the surveillance of a large area.

In this work, we assumed a stationary hierarchy, i.e., the
Tier-2 nodes and base station are fixed. However, a stationary
hierarchy is not robust against malicious attacks. In our future
work, we will address this issue by introducing redundancy,
distributing the coordination tasks among Tier-2 nodes, and
dynamically managing the hierarchy of the system. Our im-
mediate goal is to quantify the robustness of the system against
false measurements and packet loss and to identify the sensor
network parameters such as maximum delay rate, maximum
packet loss rate, and maximum false detection rate, necessary
for seamless operation of the control system.
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