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Abstract

We develop a dynamic equilibrium model of an asset market with multiple securities in
which investors trade to share risks and smooth consumption over time, and investigate
the empirical implications for the cross-sectional characteristics of trading volume and the
dynamic volume-return relation. We extend the model to include fixed transactions costs,
and when calibrated to aggregate data, the model implies realistic levels of trading volume.
We also evaluate the efficacy of technical analysis in capturing the relation between prices
and volume heuristically.
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1 Introduction

One of the most fundamental notions of economics is the determination of prices through

the interaction of supply and demand. The remarkable amount of information contained in

equilibrium prices has been the subject of countless studies, both theoretical and empirical,

and with respect to financial securities, several distinct literatures devoted solely to prices

have developed.1 Indeed, one of the most well-developed and most highly cited strands of

modern economics is the asset-pricing literature.

However, the intersection of supply and demand determines not only equilibrium prices

but also equilibrium quantities, yet quantities have received far less attention, especially in

the asset-pricing literature (is there a parallel asset-quantities literature?). One explanation

for this asymmetry is the fact that for most individual investors, financial markets have

traditionally been considered close to perfectly competitive, so that the size of a typical in-

vestment has little impact on prices. For such scale-free investment opportunities, quantities

are largely irrelevant and returns become the basic objects of study, not prices. But for large

investors such as institutional investors, the securities markets are not perfectly competitive,

at least not in the short run. Moreover, when investors possess private information—about

price movements, their own trading intentions, and other market factors—perfect competi-

tion is even less likely to hold.

For example, if a large pension fund were to liquidate a substantial position in one

security, that security’s price would drop precipitously if the liquidation were attempted

through a single sell-order, yielding a significant loss in the value of the security to be

sold. Instead, such a liquidation would typically be accomplished over several days, with

a professional trader managing the liquidation process by breaking up the entire order into

smaller pieces, each executed at opportune moments so as to minimize the trading costs

and the overall impact of the sale on the market price of the security.2 This suggests that

there is information to be garnered from quantities as well as prices; a 50,000-share trade has

different implications than a 5,000-share trade, and the sequence of trading volume contains

information as well. The fact that the demand curves of even the most liquid financial

securities are downward-sloping for institutional investors, and that information is often

1For example, the Journal of Economic Literature classification system includes categories such as Market
Structure and Pricing (D4), Price Level, Inflation, and Deflation (E31), Determination of Interest Rates and
Term Structure of Interest Rates (E43), Foreign Exchange (F31), Asset Pricing (G12), and Contingent and
Futures Pricing (G13).

2See Chan and Lakonishok (1995) for further discussion of the price impact of institutional trades.
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revealed through the price-discovery process, implies that quantities are as fundamental

as prices and equally worthy of investigation. Even in absence of market imperfections,

quantities reveal important information about the underlying risks of the securities and

their prices. After all, such risks constitute an important motive for trading in financial

securities.

In this paper, we hope to provide some balance to the asset-pricing literature by devel-

oping quantity implications of a dynamic general equilibrium model of asset markets under

uncertainty, and investigating those implications empirically. Through theoretical and em-

pirical analysis, we seek to understand the motives for trade, the process by which trades

are consummated, the interaction between prices and volume, and the roles that risk prefer-

ences and market frictions play in determining trading activity as well as price dynamics. In

Section 2, we propose a continuous-time model of asset prices and trading activity in which

a linear factor structure emerges not only for asset returns, but also for trading activity. We

examine these implications empirically in Sections 3 and 4 using recently available trading

volume data for individual US equity securities from 1962 to 1996, and find that substantial

cross-sectional variation in trading volume can be explained by economic factors such as

trading costs. In Section 5, we examine additional implications of the model for a dynamic

volume-return relation, both theoretically and empirically. We focus on trading costs explic-

itly in Section 6 by incorporating them into our theoretical model, and show that even small

fixed costs can induce the type of trading activity we observe in existing financial markets.

In Section 7, we turn our attention to technical analysis, a controversial method of forecast-

ing future price movements based on geometric patterns in past prices and volume. Despite

its somewhat dubious academic standing, technical analysis has always emphasized the im-

portance of volume in determining the impact of price movements over time, and the fact

that many professional traders are still devoted to its practice today suggests that a deeper

investigation is warranted. We conclude in Section 8 with several suggestions for future

research directions for incorporating trading volume into a more complete understanding of

the economics of financial markets.

2 A Dynamic Equilibrium Model

In this section, we develop a simple equilibrium model of asset trading and pricing in an

dynamic setting. We restrict our attention to the case where investors have homogeneous
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information about the economy; the extension to the case of heterogeneous information is

discussed briefly at the end of this section. Since our motivation for developing this model is

to derive qualitative implications for the behavior of volume and returns, we keep the model

as parsimonious as possible.

2.1 The Economy

We consider an economy defined on a continuous time-horizon [0, ∞). There is a single,

perishable good, which is also used as the numeraire. The underlying uncertainty of the

economy is characterized by an n-dimensional Brownian motion B = {Bt : t ≥ 0}, defined

on its filtered probability space (Ω,F , F, P ). The filtration F = {Ft : t ≥ 0} represents the

information revealed by B over time.

There are J risky assets in the economy which we call stocks. Each stock pays a stream

of dividends over time. Let Djt denote the cumulative dividend of stock j paid up to time t

and Pjt its ex-dividend price. We assume that

Djt = µDjt + σDjBt (j = 1, . . . , J) (1)

where µDj > 0. Without loss of generality, we assume that the total number of shares

outstanding is unity for all stocks.

In addition to the stock, there is also a risk-free bond that yields a constant, positive

interest rate r.

There are I investors in the economy, each initially endowed with equal shares of the

stocks and zero bonds, and with a stream of non-financial income (e.g., income from labor,

non-traded assets, etc.). Let N i
t denote investor i’s cumulative non-financial income up to t.

We assume that

N i
t =

∫ t

0

(
X i

s+Y i
s +Zs

)
σNdBs (i = 1, . . . , I) (2)

where

X i
t =

∫ t

0
σi

XdBs (3a)

Y i
t =

∫ t

0
−αY Y i

s ds + σi
Y dBs (3b)
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Zt =
∫ t

0
−αZZsds + σZdBs (3c)

where αY > 0 and αZ > 0. We also assume that for all 1 ≤ k, l ≤ I, there is perfect

symmetry between
(
Xk

t , Y k
t

)
and

(
X l

t , Y
l
t

)
in the joint distribution of the state variables

({Dt, X
i
t , Y

i
t , Zt; i = 1, . . . , I}), and

I∑

i=1

X i
t =

I∑

i=1

Y i
t = 0 ∀ t ≥ 0. (4)

From (2), investor i’s non-financial income from t to t + dt is (X i
t +Y i

t +Zt) σNdBt. Thus,

σNdBt defines the risk in investors’ non-financial income and (X i
t +Y i

t +Zt) gives the investor

i’s risk exposure. Since Zt is common to all investors, it measures the aggregate exposure

to the risk in non-financial income. (X i
t +Y i

t ) on the other hand measures the idiosyncratic

exposure of investor i. From (3), it is clear that X i
t measures the permanent component of

the idiosyncratic exposure and Y i
t measures the transitory component.3

Each investor chooses his consumption and stock trading policies to maximize his ex-

pected utility over lifetime consumption. Let C denote the investor’s set of consumption

policies and S the set of stock trading policies, respectively. The consumption and stock

trading polices are F -adapted processes that satisfy certain technical conditions (see, for

example, Huang and Pages, 1990). Under a particular consumption-trading policy within

the policy set, investor i’s financial wealth (the market value of his stock and bond holdings),

denoted by W i
t , satisfies

W i
t =

∫ t

0

(
rW i

s − ci
s

)
ds +

J∑

j=1

Si
js (dDjs + dPjs − rPjsds) + dN i

t . (5)

We denote the set of consumption-trading policies that satisfy the budget constraint (5) by

Φ.

Investors are assumed to choose the consumption-trading policy within the set Φ to

3Here, we have omitted any non-risky component in investors’ non-financial income. Also, by (3), we
have assumed that the steady-state distribution of the investors’ exposure has mean zero. Relaxing these
assumptions have no impact on our results. We adopt them merely for parsimony in exposition. For example,
under the assumption of constant absolute risk aversion for the investors, which we make later, there is no
income effect in their demand of the stocks. Thus, the level of their mean non-financial income plays no role
in their stock trading. Also, a non-zero mean in their idiosyncratic exposure to the non-financial risk may
change their average stock demand, but not their trading, which is generated by changes in their exposures.
See Section 2.2 for more discussion on this point.
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maximize their expected lifetime utility of the following form:

E0

[
−
∫ ∞

0
e−ρs−γci

sds
]

(ρ > 0 and γ > 0) (6)

subject to the terminal wealth condition:

lim
t→∞

E
[
−e−ρt−rγW i

t

]
= 0 (7)

where γ is his risk aversion coefficient, ρ is his time-discount coefficient, and i = 1, . . . , I.4

In addition, we require 4γ2σ2
Nσ2

Z < 1 to ensure that the model is well behaved.

2.2 Discussion, Notation, and Simplifications

The economy defined above has several special features. For tractability, we assume that

stock dividends are normally distributed and investors have constant absolute risk aversion.

These assumptions have restrictive implications. For example, investors’ stock demand be-

comes independent of their wealth, which makes the model tractable but less realistic. As

a result, investors have no need to change their stock holdings as their wealth changes, an

otherwise natural motive to trade.

To provide motivation for trading, we endow investors with non-financial income that

is positively correlated with stock dividends. The investors’ desire to manage their total

risk exposure gives rise to their need to trade the stock. For example, when an investor’s

exposure to non-financial risks increases, he would like to reduce his exposure to financial

risks from his stock holdings because the two risks are positively correlated. In other words,

he sells stock from his portfolio. Each investor’s non-financial risk is determined by two

factors: his exposure to the risk, which is determined by (X i
t + Y i

t + Zt), and the risk itself,

which is given be σNBt. Moreover, (X i
t + Y i

t + Zt) gives the idiosyncratic exposure and

Zt the aggregate exposure. As their exposures change, they adjust their stock holdings, In

particular, through trading, they mutually insure the idiosyncratic part of their non-financial

risk.

Another feature of our model is that the interest rate on the bond is assumed to be

constant, hence the bond market is required to clear. This is a modeling choice we have

4The terminal wealth condition is imposed on the strategies to prevent investors from running Ponzi
schemes.
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made to simplify our analysis and to focus on the stock market. As will become clear later,

changes in the interest rate is not important for the issues we are concerned about in this

paper. Also, from an empirical perspective, given the frequency we are interested in (daily

or weekly), changes in interest rates are usually small.5

For convenience, we introduce some notational conventions. Given m scalar elements,

e1, . . . , em, let (e1, . . . , em) denote the row vector and (e1; . . . ; em) the column vector formed

from the m elements. Let M ′ denote the transpose of a matrix M . Thus, Dt ≡ (D1t; · · · ; DJt)

is the column vector of cumulative stock dividends, µD ≡ (µD1; . . . ; µDJ) is its expected

growth rate, and Dt = µDt + σDBt, where σD ≡ (σD1; . . . ; σDJ).

A portfolio of stocks is given by the number of shares of each stock it contains. Let

Sj be the number of shares of stock j in a portfolio, where j = 1, . . . , J . Then, S ≡

(S1; . . . ; Sj; . . . ; SJ) defines the portfolio. A portfolio of particular importance is the market

portfolio, denoted by SM , which is given by:

SM = ι (8)

where ι is a column vector of 1’s with rank J .

For any two processes Ft and Gt, let 〈Ft, Gt〉 denote their cross-variation process and

σFσ ≡ d〈Ft, Gt〉/dt denote their instantaneous cross-variation.

For expositional clarity, we make the following simplifying assumptions on the correlation

(cross-variation) among the state variables:

σi
X

′σD = σi
Y
′σD = 0 and σN = ι′σD. (9)

The first condition states that the idiosyncratic components of investors’ exposure to non-

financial risk are uncorrelated with stock dividends. The second condition states that non-

financial risk itself is perfectly correlated with the aggregate risk in stock dividends. We also

assume that n = J + 2I + 1 and σDD has full rank to avoid redundancies.

5Endogenize the interest by clearing the bond market introduces additional risks (the interest rate risk).
This creates additional risk-sharing motives. Also, bonds with longer maturities (if they are traded) provide
additional vehicles for risk sharing.

6



2.3 The Equilibrium

We now define and derive the equilibrium of the economy described above. Let Pt ≡

(P1t; . . . ; PJt) be the vector of (ex-dividend) stock prices and Si
t ≡ (Si

1t; . . . ; S
i
Jt) the vec-

tor of investor i’s stock holdings.

Definition 1 An equilibrium is given by a price process {Pt : t ≥ 0} and the investors’ stock

holdings {Si
t : t ≥ 0} ∈ Φ, i = 1, . . . , I, such that:

1. Si
t solves investor i’s optimization problem:

Max E0

[
−
∫ ∞

t
e−ρt−γci

tdt
]

(10)

s. t. W i
t = W i

0 +
∫ t

0

(
rW i

s − ci
s

)
ds + Si

s
′ (dDs + dPs − rPsds) + dN i

t (11)

lim
t→∞

E
[
e−ρt−rγW i

t

]
= 0

2. The stock market clears:

i∑

i=1

Si
t = ι ∀ t ≥ 0. (12)

This definition of equilibrium is standard, except that the clearing of the bond market is not

imposed, as discussed above.

For expositional convenience, we define Qt to be the vector of cumulative excess dollar

returns on the stocks:

Qt =
∫ t

0
(dDs + dPs − rPtds) . (13)

For the remainder of this section, returns on the stocks always refer to their excess dollar

returns (13). The solution to the equilibrium is summarized in the following theorem (see

the Appendix for its derivation):

Theorem 1 The economy defined above has a linear equilibrium in which

Pt =
1

r
µD − a − bZt (14)
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and

Si
t = I−1ι +

(
X i

t +Y i
t

)
SI +

(
hIIXX i

t + hIIY Y i
t

)
SII (15)

where

a = γ̄σQQι + λaσQZ , b =
rγ

r + αZ

σQN + λbσQZ

γ̄ = γ/I, λa, λb, hIIX, hIIY are constants given in the Appendix, ι is the market portfolio

and

SI ≡ (σQQ)−1 σQN , SII ≡ (σQQ)−1 σQZ

are two hedging portfolios.

The equilibrium has the following properties. First, stock prices equal the expected value

of future dividends discounted at the risk-free rate (µD/r) minus a risk discount (a + bZt)

which is an affine function of Zt, the aggregate exposure to the non-financial risk. Stock

prices are independent of the other state variables. Second, four-fund separation holds

for the investors’ portfolio choices, i.e., all investors hold combinations of the same four

portfolios: the market portfolio, two hedging portfolios, and the riskless bond.6 The first

hedging portfolio SI is used to hedge non-financial risks and the second hedging portfolio

SII is used to hedge changes in market conditions, which are driven by changes in Zt. Third,

stock returns are not IID over time; in particular, we have

dQt = [ra + (r+αZ)bZt] dt + σQdBt (16)

where σQ = σD − bσZ . Thus, expected stock returns are affine functions of Zt, which follows

a AR(1) process.

To develop further intuition for the model and the nature of the equilibrium, consider

the special case when Zt = 0:

6As a matter of convention, we use the phrase “(K +1)-fund separation” to describe the situation in
which investors hold combinations of the same K+1 funds—the riskless bond and K stock funds. Therefore,
four-fund separation implies three stock funds.

8



Corollary 1 When Zt = 0 ∀ t ≥ 0, the equilibrium stock price is

Pt =
1

r
µD − γ̄σDDι

and the investors’ stock holdings are

Si
t =

(
I−1 − X i

t − Y i
t

)
ι .

In this case, the stock prices are constant over time and all investors hold a fraction of the

market portfolio. Moreover, stock returns are given by

dQt = (rγ̄σDDι) dt + σDdBt

and the return on the market portfolio is

dQMt = ι′dQt = rγ̄ (ι′σDDι) dt + ι′σDdBt.

Let σ2
M = ι′σDDι denote the squared volatility of the return on the market portfolio. We

can define

βM ≡
(
1/σ2

M

)
d〈Qt, QMt〉/dt =

(
1/σ2

M

)
σDDι

to be the vector of the stocks’ betas with respect to the market portfolio. Then the expected

returns (per unit of time) of the stocks are given by

Q̄ ≡ E [dQt] /dt = rγ̄σDDι = βMQ̄M

where Q̄M = rγ̄σ2
M is the expected return on the market portfolio. This is the well-known

pricing relation of the Sharpe-Lintner Capital Asset Pricing Model (CAPM).

Thus, when Zt = 0 ∀ t ≥ 0, each investor only holds a fraction of the market portfolio. In

other words, two-fund separation holds. When the investors adjust their stock investments,

as their exposure to the non-financial risk changes, they only trade in the market portfolio.

Furthermore, stock returns are IID over time and the CAPM holds.
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In the more general case when the aggregate exposure to the non-financial risk Zt is

changing over time, the situation is more complicated. First, in addition to the market

portfolio, the investors invest in two other portfolios to hedge their non-financial risk and

changes in market conditions, respectively. Second, stock returns are no long IID over

time; in general, they are predictable. Third, the CAPM no longer holds. In addition to

contemporaneous market risk (the risk with respect to the market portfolio), there is also

the risk of changing market conditions. For convenience, we refer to these two risks as the

static risk and the dynamic risk, respectively. Different stocks have different exposures to

the dynamic risk as well as the static risk. The expected returns on the stocks now depend

on their exposures to these two different risks.

2.4 Implications for Trading and Returns

In the remainder of this section, we explore in more detail the implications of our model for

the behavior of trading and returns.

Trading Activity

As (15) shows, the investors’ portfolio choices satisfy four-fund separation where the three

stock funds are: the market portfolio ι, the hedging portfolio SI (which allows investors to

hedge their current non-financial risk), and the hedging portfolio SII (which allows investors

to hedge against changes in market conditions, driven by changes in the aggregate exposure

to non-financial risk Zt). The fact that investors only hold and trade in a few funds has

strong implications about the behavior of trading activities in the market, especially their

cross-sectional characteristics.

As an illustration, consider the special case when Zt = 0 for all t ≥ 0. In this case,

investors trade only in the market portfolio, implying that when an investor reduces his

stock investments, he sells stocks in proportion to their weights in the market portfolio.

Under our normalization, he sells an equal number of shares of each stock. Consequently,

the turnover ratio must be numerically identical across all stocks, i.e., turnover exhibits an

exact one-factor structure.

In the more general case of changing market conditions, investors trade in three stock

portfolios, which, in general, can give rise to complex patterns in the turnover across stocks.

However, when the trading in the market portfolio dominates the trading in the other two

portfolios, turnover exhibits an approximate three-factor structure. There is a dominating
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factor—representing the trading in the market portfolio—and two minor factors, representing

the trading in the other two portfolios. Furthermore, when the trading in the market portfolio

dominates and the approximate three-factor structure holds for the cross-section of turnover,

the loadings on the two minor factors are proportional to the share weights of the two hedging

portfolios. This provides a way to empirically identify the hedging portfolio from the data on

the turnover of individual stocks. In Sections 3 and 4, we discuss the empirical implications

for volume in more detail and present some supporting empirical evidence for the cross-

sectional behavior of volume.

Stock Returns

The identification of the hedging portfolio allows us to further explore the predictions of

the model for the behavior of returns. For example, since the stock returns are changing

over time as Zt changes, the second hedging portfolio SII = (σQQ)−1 σQZ allows investors to

hedge the risk of changing expected returns. As Merton (1971) has shown, among all the

portfolios, the return on the hedging portfolio SII has the highest correlation with changes in

expected returns. In other words, it best predicts future stock returns. Moreover, the return

on SII serves as a proxy for the dynamic risk, while the return on the market portfolio serves

as a proxy for the static risk. Consequently, the returns on these two portfolios give the

two risk factors. The stocks’ expected returns only depend on their loadings on these two

portfolio returns. We obtain a two-factor pricing model, which extends the static CAPM

when returns are IID into an intertemporal CAPM when returns are changing over time.

In contrast to the approach of Fama and French (1992), which seeks purely empirically

based factor models, the approach here is to start with a structural model which specifies

the risk factors, identify the risk factors empirically using the predictions of the model on

trading activities, and further test its pricing relations. We explore this approach in more

detail in Lo and Wang (2000b).

Volume-Return Relations

The previous discussion mainly focused on the behavior of trading activity and the behavior

of returns separately. We now consider the joint behavior of return and trading activities.

To fix ideas, we divide the investors into two groups: those for whom the correlation between

their idiosyncratic exposure to the non- financial risk (X i
t and Y i

t ) and the aggregate exposure

(Zt) is positive and those for whom the correlation is negative. For now, we call them group

11



A and group B.

When the investors’ exposure to non-financial risk changes, their stock demand also

shifts. In equilibrium, they trade with each other to revise their stock holdings and the

stock prices adjust to reflect the change in demand. Thus, an immediate implication of our

model is that the absolute changes in prices are positively correlated with contemporaneous

trading activities, which has been documented empirically (for a survey of earlier empirical

literature, see Karpoff, 1987).

Another implication of our model involves the dynamic relation between return and

volume: current returns and volume can predict future returns. Campbell, Grossman and

Wang (1993) and Wang (1994) have examined this relation (see also Antoniewicz, 1993;

Llorente, Michaely, Saar, and Wang, 2000; LeBaron, 1992). The intuition for such a dynamic

volume-return relation is as follows. When the investors’ exposure to non-financial risk

changes, they wish to trade. Stock prices must adjust to attract other investors to take

the other side. However, these price changes are unrelated to the stocks’ future dividends.

Thus, they gives rise to changes in expected future returns. For example, when group

A investors’ exposure to non-financial risk increases, they want to sell the stocks in their

portfolios. To attract group B investors to buy these stocks, stock prices have to decrease,

yielding a negative return in the current period. Since there is no change in expectations

about future dividends, the decrease in current stock prices implies an increase in expected

future returns. In fact, it is this increase in expected returns that induces group B investors

to increase their stock holdings. Thus, low current returns accompanied by high volume

portends high future returns. In the opposite situation when group B investors’ exposure to

non-financial risk decreases, we have high current returns (group A investors want to buy

and drives up the prices) accompanied by high volume, which predicts lower future returns

(with unchanged expectation of future dividends but higher prices). Hence, our model leads

to the following dynamic volume-return relation: returns accompanied by high volume are

more likely to exhibit reversals in the future. In Section 5, we discuss the empirical analysis

of this relation.

Merton’s ICAPM

Our model bears an important relation to the intertemporal CAPM (ICAPM) framework of

Merton (1973). Based on a class of assumed price processes, Merton has characterized the

equilibrium conditions—including mutual-fund separation—for the investors’ portfolios and
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the risk factors in determining expected returns. But except for one special case when the

static CAPM is obtained, Merton does not provide any specification of the primitives of the

economy that can support the assumed price processes in equilibrium. Several authors, e.g.,

Ohlson and Rosenberg (1976), have argued that it is difficult to construct an economy capable

of supporting Merton’s price processes. Our model provides a concrete example in which

equilibrium prices indeed fit Merton’s specification.7 Obviously, restrictive assumptions are

required to achieve this specification.

3 The Data

One of the most exciting aspects of the recent literature on trading volume is the close cor-

respondence between theory and empirical analysis, thanks to newly available daily volume

data for individual US securities from the Center for Research in Securities Prices (CRSP).

In this section, we describe some of the basic characteristics of this dataset as a prelude to

the more formal econometric and calibration analyses of Sections 4–7. We begin in Section

3.1 by reviewing the various measures of volume, and in light of the implications of the

model in Section 2, we argue that turnover is the most natural measure of trading activity.

In Section 3.2, we describe the construction of our turnover database which is an extract of

the CRSP volume data, and we report some basic summary statistics for turnover indexes

in Section 3.3.

3.1 Volume Measures

To analyze the behavior of volume empirically, a prerequisite is an appropriate definition

of volume. In the existing literature, many different volume measures have been used, in-

cluding share volume, dollar volume, share turnover ratio, dollar turnover ratio, number of

trades, etc. Certainly, the choice of volume measure should depend on what is supposed to

be measured, i.e., what information we would like the measure to convey. A good measure

of volume should contain useful information about underlying economic conditions, espe-

cially why investors trade and how they trade. Thus, the appropriate measure of volume is

intimately tied to the particular model and motives for trading.

7Wu and Zhou (2001) considers a model that has many features similar to ours.
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A Numerical Example

The theoretical model we developed in Section 2 suggests that the turnover ratio provides

a good measure, in the sense that it clearly reflects the underlying economic regularities in

trading activities. To illustrate this point, we consider a simple numerical example in the

special case of our model when investors only trade in the market portfolio (i.e., when Zt = 0

for all t ≥ 0).

Suppose there are only two stocks, 1 and 2. For concreteness, assume that stock 1 has

10 shares outstanding and is priced at $100 per share, yielding a market value of $1000,

and stock 2 has 30 shares outstanding and is priced at $50 per share, yielding a market

value of $1500. Let N1t and N2t denote the numbers of shares outstanding for the two

stocks, respectively (for expositional convenience, we do not normalize the number of shares

outstanding to one in this example). We have N1t = 10, N2t = 30, P1t = 100, P2t = 50.

In addition, suppose there are only two investors in this market—investor 1 and 2—and

two-fund separation holds for their stock investments so that both investors hold different

amounts of the market portfolio. Specifically, let investor 1 hold 1 share of stock 1 and 3

shares of stock 2, and let investor 2 hold 9 shares of stock 1 and 27 shares of stock 2. Thus,

S1
1t−1 = 1, S1

2t−1 = 3, S2
1t−1 = 9, and S2

2t−1 = 27. In this way, all shares are held and both

investors hold a (fraction of) the market portfolio (10 shares of stock 1 and 30 shares of

stock 2).

Now suppose that investor 2 liquidates $750 of his portfolio—3 shares of stock 1 and 9

shares of stock 2—and investor 1 is willing to purchase exactly this amount from investor 2

at the prevailing market prices.8 After completing the transaction, investor 1 owns 4 shares

of stock 1 and 12 shares of stock 2, and investor 2 owns 6 shares of stock 1 and 18 shares of

stock 2. In other words, S1
1t = 4, S1

2t = 12, S2
1t = 6, S2

2t = 18. What kind of trading activity

does this transaction imply?

For individual stocks, we can construct the following measures of trading activity:

• Number of trades per period

• Share volume, Vjt ≡
1
2

∑2
i=1 |S

i
jt − Si

jt−1|

• Dollar volume, PjtVjt

• Relative dollar volume, PjtVjt/
∑

j PjtVjt

8In our model, in absence of aggregate exposure to the non-financial risk, the trading needs of the two
investors are exactly the opposite of each other. Thus, trade occurs without any impact on prices.
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• Share turnover, τjt ≡ Vjt/Njt

• Dollar turnover, νjt ≡ (PjtVjt)/(PjtNjt) = τjt

where j = 1, 2.9 To measure aggregate trading activity, we can define similar measures:

• Number of trades per period

• Total number of shares traded, V1t+V2t

• Dollar volume, P1tV1t+P2tV2t

• Share-weighted turnover, τSW
t ≡ ωSW

1 τ1t + ωSW
2 τ2t, where ωSW

j ≡ Nj/(N1 + N2) and

j = 1, 2

• Equal-weighted turnover, τEW
t ≡ 1

2
(τ1t + τ2t)

• Value-weighted turnover, τV W
t ≡ ωV W

1t τ1t + ωV W
2t τ2t, where ωV W

j ≡ PjtNj/(P1tN1 +

P2tN2) and j = 1, 2.

Table 1 reports the values that these various measures of trading activity take on for the

hypothetical transaction between investors 1 and 2. Though these values vary considerably—

2 trades, 12 shares traded, $750 traded—one regularity does emerge: the turnover measures

are all identical. This is no coincidence, but is an implication of two-fund separation from our

equilibrium model. If all investors hold the same relative proportions of stocks at all times,

then it can be shown that trading activity—as measured by turnover—must be identical

across all stocks. Although the other measures of volume do capture important aspects of

trading activity, if the focus is on the relation between volume and equilibrium models of

asset markets, such as the ICAPM we developed in Section 2, turnover yields the sharpest

empirical implications and is the most natural measure. For this reason, we use turnover in

our empirical analysis.

Defining Individual and Portfolio Turnover

For each individual stock j, its share volume at time t is defined by

Vjt =
1

2

I∑

i=1

|Si
jt − Si

jt−1|. (17)

9Although the definition of dollar turnover may seem redundant since it is equivalent to share turnover,
it will become more relevant in the portfolio case below.
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Its turnover is defined by:

τjt ≡
Vjt

Nj

(18)

where Nj is the total number of shares outstanding of stock j.10

For the specific purpose of investigating the volume implications of our model, we also

introduce a measure of portfolio trading activity, defined as follows: For any portfolio p

defined by the vector of shares held Sp
t = (Sp

1t; . . . ; S
p
Jt) with non-negative holdings in all

stocks, i.e., Sp
jt ≥ 0 for all j, and strictly positive market value, i.e., Sp

t
′Pt > 0, let ωp

jt ≡

Sp
jtPjt/(Sp

t
′Pt) be the fraction invested in stock j, j = 1, . . . , J . Then its turnover is defined

to be

τp
t ≡

J∑

j=1

ωp
jtτjt . (19)

Under this definition, the turnover of value-weighted and equal-weighted indexes are well-

defined

τV W
t ≡

J∑

j=1

ωV W
jt τjt , τEW

t ≡
1

J

J∑

j=1

τjt (20)

respectively, where ωV W
jt ≡ NjPjt/

(∑
j NjPjt

)
, for j = 1, . . . , J .

Although (19) gives a reasonable definition of portfolio turnover within the context of

our model, care must be exercised in interpreting it and generalizing it into a different

context. While τV W
t and τEW

t are relevant to the volume implications of our model, they

should be viewed in a more general context only as particular weighted averages of individual

turnover, not necessarily as the turnover of any specific trading strategy. In particular, our

definition for portfolio turnover cannot be applied too broadly. For example, when shortsales

are allowed, some portfolio weights can be negative and (19) can be quite misleading since

the turnover of short positions will offset the turnover of long positions. In general, the

appropriate turnover measure for portfolio trading crucially depends on why these portfolios

are traded and how they are traded. See Lo and Wang (2000a) for further discussion.

10Although we define the turnover ratio using the total number of shares traded, it is obvious that using
the total dollar volume normalized by the total market value gives the same result.
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Time Aggregation

Given our choice of turnover as a measure of volume for individual securities, the most

natural method of handling time aggregation is to sum turnover across dates to obtain time-

aggregated turnover. Formally, if the turnover for stock j at time t is given by τjt, the

turnover between t − 1 to t + q, for any q ≥ 0 is given by:

τjt(q) ≡ τjt + τjt+1 + · · · + τjt+q. (21)

3.2 MiniCRSP Volume Data

Having defined our measure of trading activity as turnover, we use the CRSP Daily Master

File to construct weekly turnover series for individual NYSE and AMEX securities from

July 1962 to December 1996 (1,800 weeks) using the time-aggregation method discussed

in Section 3.1.11 We choose a weekly horizon as the best compromise between maximiz-

ing sample size while minimizing the day-to-day volume and return fluctuations that have

less direct economic relevance. Since our focus is the implications of portfolio theory for

volume behavior, we confine our attention to ordinary common shares on the NYSE and

AMEX (CRSP sharecodes 10 and 11 only), omitting ADRs, SBIs, REITs, closed-end funds,

and other such exotica whose turnover may be difficult to interpret in the usual sense.12

We also omit NASDAQ stocks altogether since the differences between NASDAQ and the

NYSE/AMEX (market structure, market capitalization, etc.) have important implications

for the measurement and behavior of volume (see, for example, Atkins and Dyl, 1997), and

this should be investigated separately.

Throughout our empirical analysis, we report turnover and returns in units of percent

per week—they are not annualized.

11To facilitate research on turnover and to allow others to easily replicate our analysis, we have pro-
duced daily and weekly “MiniCRSP” dataset extracts comprised of returns, turnover, and other data items
for each individual stock in the CRSP Daily Master file, stored in a format that minimizes storage space
and access times. We have also prepared a set of access routines to read our extracted datasets via ei-
ther sequential and random access methods on almost any hardware platform, as well as a user’s guide to
MiniCRSP (see Lim et al., 1998). More detailed information about MiniCRSP can be found at the website
http://lfe.mit.edu/volume/.

12The bulk of NYSE and AMEX securities are ordinary common shares, hence limiting our sample to
securities with sharecodes 10 and 11 is not especially restrictive. For example, on January 2, 1980, the entire
NYSE/AMEX universe contained 2,307 securities with sharecode 10, 30 securities with sharecode 11, and
55 securities with sharecodes other than 10 and 11. Ordinary common shares also account for the bulk of
the market capitalization of the NYSE and AMEX (excluding ADRs of course).
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Finally, in addition to the exchange and sharecode selection criteria imposed, we also

discard 37 securities from our sample because of a particular type of data error in the CRSP

volume entries.13

3.3 Turnover Indexes

Although it is difficult to develop simple intuition for the behavior of the entire time-

series/cross-section volume dataset—a dataset containing between 1,700 and 2,200 individual

securities per week over a sample period of 1,800 weeks—some gross characteristics of vol-

ume can be observed from value-weighted and equal-weighted turnover indexes.14 These

characteristics are presented in Figures 1 and 2, and in Table 2.

Figure 1a shows that value-weighted turnover has increased dramatically since the mid-

1960’s, growing from less than 0.20% to over 1% per week. The volatility of value-weighted

turnover also increases over this period. However, equal-weighted turnover behaves some-

what differently: Figure 1b shows that it reaches a peak of nearly 2% in 1968, then declines

until the 1980’s when it returns to a similar level (and goes well beyond it during Octo-

ber 1987). These differences between the value- and equal-weighted indexes suggest that

smaller-capitalization companies can have high turnover.

Table 3 reports various summary statistics for the two indexes over the 1962–1996 sam-

ple period as well as over five-year subperiods. Over the entire sample the average weekly

turnover for the value-weighted and equal-weighted indexes is 0.78% and 0.91%, respectively.

The standard deviation of weekly turnover for these two indexes is 0.48% and 0.37%, respec-

tively, yielding a coefficient of variation of 0.62 for the value-weighted turnover index and

0.41 for the equal-weighted turnover index. In contrast, the coefficients of variation for the

value-weighted and equal-weighted returns indexes are 8.52 and 6.91, respectively. Turnover

13Briefly, the NYSE and AMEX typically report volume in round lots of 100 shares—“45” represents 4500
shares—but on occasion volume is reported in shares and this is indicated by a “Z” flag attached to the
particular observation. This Z status is relatively infrequent, usually valid for at least a quarter, and may
change over the life of the security. In some instances, we have discovered daily share volume increasing by a
factor of 100, only to decrease by a factor of 100 at a later date. While such dramatic shifts in volume is not
altogether impossible, a more plausible explanation—one that we have verified by hand in a few cases—is
that the Z flag was inadvertently omitted when in fact the Z status was in force. See Lim et al. (1998) for
further details.

14These indexes are constructed from weekly individual security turnover, where the value-weighted index
is re-weighted each week. Value-weighted and equal-weighted return indexes are also constructed in a similar
fashion. Note that these return indexes do not correspond exactly to the time-aggregated CRSP value-
weighted and equal-weighted return indexes because we have restricted our universe of securities to ordinary
common shares. However, some simple statistical comparisons show that our return indexes and the CRSP
return indexes have very similar time series properties.

18



is not nearly so variable as returns, relative to their means.

Table 3 also illustrates the nature of the secular trend in turnover through the five-year

subperiod statistics. Average weekly value-weighted and equal-weighted turnover is 0.25%

and 0.57%, respectively, in the first subperiod (1962–1966); they grow to 1.25% and 1.31%,

respectively, by the last subperiod (1992–1996). At the beginning of the sample, equal-

weighted turnover is three to four times more volatile than value-weighted turnover (0.21%

versus 0.07% in 1962–1966, 0.32% versus 0.08% in 1967–1971), but by the end of the sample

their volatilities are comparable (0.22% versus 0.23% in 1992–1996).

The subperiod containing the October 1987 crash exhibits a few anomalous properties:

excess skewness and kurtosis for both returns and turnover, average value-weighted turnover

slightly higher than average equal-weighted turnover, and slightly higher volatility for value-

weighted turnover. These anomalies are consistent with the extreme outliers associated with

the 1987 crash (see Figure 1).

Table 3 also reports the percentiles of the empirical distributions of turnover and re-

turns which document the skewness in turnover that Figure 1 hints at, as well as the first

10 autocorrelations of turnover and returns and the corresponding Box-Pierce Q-statistics.

Unlike returns, turnover is highly persistent, with autocorrelations that start at 91.25% and

86.73% for the value-weighted and equal-weighted turnover indexes, respectively, decaying

very slowly to 84.63% and 68.59%, respectively, at lag 10. This slow decay suggests some

kind of nonstationarity in turnover—perhaps a stochastic trend or unit root (see, for ex-

ampe, Hamilton, 1994). For these reasons, many empirical studies of volume use some form

of detrending to induce stationarity. This usually involves either taking first differences or

estimating the trend and subtracting it from the raw data. However, Lo and Wang (2000a)

show that detrending methods can alter the time series properties of the data in significant

ways, and that without further economic structure for the source of the trend, there is no

canonical method for eliminating the trend (see Lo and Wang, 2000a, Table 4, for a more

detailed analysis of detrending). Therefore, we shall continue to use raw turnover rather

than its first difference or any other detrended turnover series in much of our empirical anal-

ysis (the sole exception is the eigenvalue decomposition of the first differences of turnover in

Table 5). To address the problem of the apparent time trend and other nonstationarities in

raw turnover, the empirical analysis of Section 4.2 is conducted within five-year subperiods

only.
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4 Cross-Sectional Characteristics of Volume

The theoretical model of Section 2 leads to sharp predictions about the cross-sectional behav-

ior of trading activity. In this section, we examine the empirical support for these predictions.

The empirical results presented here are from Lo and Wang (2000a), in which the starting

point was mutual-fund separation, and our dynamic equilibrium model of Section 2 provides

the theoretical foundations for such a starting point.

4.1 Theoretical Implications for Volume

The dynamic equilibrium model of Section 2 leads to (K+1)-fund separation for the investors’

stock investments. In the special case with IID stock returns, we have two-fund separation.

In the general case with time-varying stock returns, we have four-fund separation. In this

case, expected stock returns are driven by a one-dimensional state variable Zt. However, our

model can easily be generalized to allow Zt to be multi-dimensional, in which case, more than

three funds would emerge as the separating stock funds. Thus, in the following discussion,

we leave K unspecified, except that it is a small number when compared to the total number

of stocks, J .

Let Sk
t = (Sk

1 ; . . . ; Sk
J), k = 1, . . . , K, denote the K separating stock funds, where the

separating funds are expressed in terms of the number of shares of their component stocks.

Each investors stock holdings can be expressed in term of their holdings of the K separating

funds:

Si
t =

K∑

k=1

hi
ktS

k, i = 1, . . . , I. (22)

It should be emphasized that from our theoretical model, the separating stock funds are

constant over time, which leads to much simpler behavior in volume. Since in equilibrium,
∑I

i=1 Si,t = SM for all t, we have

K∑

k=1

(
I∑

i=1

hi
kt

)

Sk = SM .

Thus, without loss of generality, we can assume that the market portfolio SM is one of the

separating stock funds, which we label as the first fund. The remaining stock funds hedging
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portfolios (see Merton (1973)).15

From (22), investor i’s holding in stock j is Si
jt =

∑K
k=1 hi

ktS
k
j . Therefore, the turnover of

stock j at time t is

τjt =
1

2

I∑

i=1

|Si
jt − Si

jt−1| =
1

2

I∑

i=1

∣∣∣∣
K∑

k=1

(
hi

ktS
k
j − hi

kt−1S
k
j

) ∣∣∣∣, j = 1, . . . , J. (23)

To simplify notation, we define h̃i
kt ≡ hi

kt−hi
kt−1 as the change in investor i’s holding of fund

k from t−1 to t.

We now impose the assumption that the amount of trading in the hedging portfolios is

small (relative to the trading in the market portfolio) for all investors:

Assumption 1 For k = 1, . . . , K, and i = 1, . . . , I, |h̃i
1t| < H < ∞ and |h̃i

kt| ≤ λH < ∞

for 1 < k ≤ K, where 0 < λ ≪ 1, and h̃i
1t, h̃i

2t, . . ., h̃i
Jt have a continuous joint probability

density.

We then have the following proposition (Lo and Wang, 2000a):

Proposition 1 Under Assumption 1, the turnover of stock j at time t can be approximated

by

τjt ≈
1

2

I∑

i=1

|h̃i
1t| +

1

2

K∑

k=2

[
I∑

i=1

sgn
(
h̃i

1t

)
h̃i

kt

]

Sk
j , j = 1, . . . , J (24)

and the n-th absolute moment of the approximation error is o(λn).

Now define the following “factors”:

F1t ≡
1

2

I∑

i=1

∣∣∣∣h̃
i
1t

∣∣∣∣

Fkt ≡
1

2

I∑

i=1

sgn
(
h̃i

1t

)
h̃i

kt, k = 2, . . . , K.

15In addition, we can assume that all the separating stock funds are mutually orthogonal, i.e., Sk′Sk′

= 0,
k = 1, . . . , K, k′ = 1, . . . , K, k 6= k′. In particular, SM ′Sk =

∑J

j=1
Sk

j = 0, k = 2, . . . , K, hence the total
number of shares in each of the hedging portfolios sum to zero under our normalization. For this particular
choice of the separating funds, hi

kt has the simple interpretation that it is the projection coefficient of Si
t on

Sk. Moreover,
∑I

i=1
hi

1t = 1 and
∑I

i=1
hi

kt = 0, k = 2, . . . , K.
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Then the turnover of each stock j can be represented by an approximate K-factor model

τjt = F1t +
K∑

k=2

Sk
j Fkt + o(λ) , j = 1, . . . , J. (25)

(25) summarizes the implication of our model on the cross- sectional behavior of volume,

which we now examine empirically.

4.2 The Cross Section of Turnover

To develop a sense for cross-sectional differences in turnover over the sample period, we turn

our attention from turnover indexes to the turnover of individual securities. Since turnover

is, by definition, an asymmetric measure of trading activity—it cannot be negative—its

empirical distribution is nautrally skewed. Taking natural logarithms may provide a clearer

visual representation of its behavior, hence we plot in Figure 2a the weekly deciles for the

cross section of the logarithm of weekly turnover for each of the 1,800 weeks in the sample

period. Figure 2b simplifies this by plotting the deciles of the cross section of average log-

turnover, averaged within each year.

Figure 2b shows that the median log-turnover (the horizontal bars with vertical sides

in Figure 2b) has a positive drift over time, but the cross-sectional dispersion is relatively

stable. This suggests that the cross-sectional distribution of log-turnover is similar over time

up to a location parameter, an implies a potentially useful “reduced-form” description of the

cross-sectional distribution of turnover: an identically distributed random variable multiplied

by a time-varying scale factor.

An important aspect of individual turnover data that is not immediately obvious from

Figure 2 is the frequency of turnover outliers among securities and over time. To develop a

sense for the magnitude of such outliers, we plot in Figure 3 the turnover and returns of a

stock in the 1992–1996 subperiod that exhibited large turnover outliers: UnionFed Financial

Corporation. Over the course of just a few weeks in the second half of 1993, Unionfed’s

weekly turnover jumped to a level of 250%. This was likely the result of significant news

regarding the company’s prospects—on June 15, 1993, the Los Angeles Times reported the

fact that UnionFed, a California savings and loan, “has become ‘critically undercapitalized’

and subject to being seized within 90 days by federal regulators”. In such cases, turnover

outliers are not surprising, yet it is interesting that the returns of UnionFed during the same
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period do not exhibit the same extreme behavior.

Figure 4 displays the time series of turnover and return for four randomly selected stocks

during the same 1992–1996 subperiod, and although the outliers are considerably smaller

here, nevertheless, there are still some rather extreme turnover values in their time series. For

example, for most of 1996, Culligan Water Technologies Inc. exhibits weekly turnover in the

2–3% range, but towards the end of the year, there is one week in which the turnover jumped

to 13%. Other similar patterns in Figure 4 seem to suggest that for many stocks there are

short bursts of intense trading activity lasting only a few weeks, but with turnover far in

excess of the “typical” values during the rest of the time. This characteristic of individual

turnover is prevalent in the entire database, and must be taken into account in any empirical

analysis of trading activity.

Cross-Sectional Regressions

The volume implications of our theoretical model provide a natural direction for empirical

analysis: look for linear factor structure in the turnover cross- section. If two-fund separation

holds, turnover should be identical across all stocks, i.e., a one-factor linear model where all

stocks have identical factor loadings. If (K+1)-fund separation holds, turnover should satisfy

a K- factor linear model. We examine these hypotheses in this section.

It is clear from Figure 2 that turnover varies considerably in the cross section, hence two-

fund separation may be rejected out of hand. However, the turnover implications of two-fund

separation might be approximately correct in the sense that the cross-sectional variation in

turnover may be “idiosyncratic” white noise, e.g., cross-sectionally uncorrelated and without

common factors. We shall test this and the more general (K+1)-fund separation hypothesis

below but before doing so, we first consider a less formal, more exploratory analysis of the

cross-sectional variation in turnover. In particular, we wish to examine the explanatory

power of several economically motivated variables such as expected return, volatility, and

trading costs in explaining the cross section of turnover.

To do this, we estimate cross-sectional regressions over five-year subperiods where the

dependent variable is the median turnover τ̃j of stock j. We use median turnover instead of

mean turnover to minimize the influence of outliers, which can be substantial in this dataset

(see Figures 3 and 4 and the corresponding discussion above).16 The explanatory variables

16Also, within each five-year period we exclude all stocks that are missing turnover data for more than
two-thirds of the subsample.
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are the following stock-specific characteristics:17

α̂r,j: Intercept coefficient from the time-series regression of stock j’s
return on the value-weighted market return.

β̂r,j: Slope coefficient from the time-series regression of stock j’s
return on the value-weighted market return.

σ̂ǫ,r,j: Residual standard deviation of the time-series regression of
stock j’s return on the value-weighted market return.

vj : Average of natural logarithm of stock j’s market capitalization.

pj : Average of natural logarithm of stock j’s price.

dj: Average of dividend yield of stock j, where dividend yield in
week t is defined by

djt = max
[

0 , log
(
(1 + Rjt)Vjt−1/Vjt

) ]

and Vjt is j’s market capitalization in week t.

SP500j Indicator variable for membership in the S&P 500 Index.

γ̂r,j(1) First-order autocovariance of returns.

The inclusion of these regressors in our cross-sectional analysis is loosely motivated by various

intuitive “theories” that have appeared in the volume literature.

The motivation for the first three regressors comes partly from linear asset-pricing models

such as the CAPM and APT; they capture excess expected return (α̂r,j), systematic risk

(β̂r,j), and residual risk (σ̂ǫ,r,j), respectively. To the extent that expected excess return (α̂r,j)

may contain a premium associated with liquidity (see, for example, Amihud and Mendelson,

1986a,b, and Hu, 1997) and heterogeneous information (see, for example, He and Wang,

1995 and Wang, 1994), it should also give rise to cross-sectional differences in turnover.

17We use median turnover instead of mean turnover to minimize the influence of outliers, which can be
substantial in this dataset (see Figures 3 and 4 and the corresponding discussion above). Also, within
each five-year period we exclude all stocks that are missing turnover data for more than two-thirds of the
subsample.
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Although a higher premium from lower liquidity should be inversely related to turnover, a

higher premium from heterogeneous information can lead to either higher or lower turnover,

depending on the nature of information heterogeneity. The two risk measures of an asset, β̂r,j

and σ̂ǫ,r,j, also measure the volatility in its returns that is associated with systematic risk and

residual risk, respectively. Given that realized returns often generate portfolio-rebalancing

needs, the volatility of returns should be positively related to turnover.

The motivation for log-market-capitalization (vj) and log-price (pt) is two-fold. On the

theoretical side, the role of market capitalization in explaining volume is related to Merton’s

(1987) model of capital market equilibrium in which investors hold only the assets they are

familiar with. This implies that larger-capitalization companies tend to have more diverse

ownership, which can lead to more active trading. The motivation for log-price is related to

trading costs. Given that part of trading costs comes from the bid-ask spread, which takes

on discrete values in dollar terms, the actual costs in percentage terms are inversely related

to price levels. This suggests that volume should be positively related to prices.

On the empirical side, there is an extensive literature documenting the significance of log-

market-capitalization and log-price in explaining the cross-sectional variation of expected

returns, e.g., Banz (1981), Black (1976), Brown, Van Harlow, and Tinic (1993), Marsh

and Merton (1987), and Reinganum (1992). If size and price are genuine factors driving

expected returns, they should drive turnover as well (see Lo and Wang (2000b) for a more

formal derivation and empirical analysis of this intuition).

Dividend yield (dj) is motivated by its (empirical) ties to expected returns, but also by

dividend-capture trades—the practice of purchasing stock just before its ex-dividend date and

then selling it shortly thereafter.18 Often induced by differential taxation of dividends versus

capital gains, dividend-capture trading has been linked to short-term increases in trading

activity, e.g., Karpoff and Walking (1988, 1990), Lakonishok and Smidt (1986), Lakonishok

and Vermaelen (1986), Lynch-Koski (1996), Michaely (1991), Michaely and Murgia (1995),

Michaely and Vila (1995, 1996), Michaely, Vila and Wang (1996), and Stickel (1991). Stocks

with higher dividend yields should induce more dividend-capture trading activity, and this

may be reflected in higher median turnover.

The effects of membership in the S&P 500 have been documented in many studies, e.g.,

18Our definition of dj is meant to capture net corporate distributions or outflows (recall that returns Rjt

are inclusive of all dividends and other distributions). The purpose of the non-negativity restriction is to
ensure that inflows, e.g., new equity issues, are not treated as negative dividends.
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Dhillon and Johnson (1991), Goetzmann and Garry (1986), Harris and Gurel (1986), Jacques

(1988), Jain (1987), Lamoureux and Wansley (1987), Pruitt and Wei (1989), Shleifer (1986),

Tkac (1996), and Woolridge and Ghosh (1986). In particular, Harris and Gurel (1986)

document increases in volume just after inclusion in the S&P 500, and Tkac (1996) uses

an S&P 500 indicator variable to explain the cross-sectional dispersion of relative turnover

(relative dollar-volume divided by relative market-capitalization). The obvious motivation

for this variable is the growth of indexation by institutional investors, and by the related

practice of index arbitrage, in which disparities between the index futures price and the

spot prices of the component securities are exploited by taking the appropriate positions

in the futures and spot markets. For these reasons, stocks in the S&P 500 index should

have higher turnover than others. Indexation began its rise in popularity with the advent

of the mutual-fund industry in the early 1980’s, and index arbitrage first became feasible in

1982 with the introduction of the Chicago Mercantile Exchange’s S&P 500 futures contracts.

Therefore, the effects of S&P 500 membership on turnover should be more dramatic in the

later subperiods. Another motivation for S&P 500 membership is its effect on the publicity

of member companies, which leads to more diverse ownership and more trading activity in

the context of Merton (1987).

The last variable, the first-order return autocovariance (γ̂r,j(1)), serves as a proxy for

trading costs, as in Roll’s (1984) model of the “effective” bid/ask spread. In that model,

Roll shows that in the absence of information-based trades, prices bouncing between bid and

ask prices implies the following approximate relation between the spread and the first-order

return autocovariance:

s2
r,j

4
≈ − Cov[Rjt, Rjt−1] ≡ − γr,j(1) (26)

where sr,j ≡ sj/
√

PajPbj is the percentage effective bid/ask spread of stock j as a percentage

of the geometric average of the bid and ask prices Pbj and Paj , respectively, and sj is the

dollar bid/ask spread.

Rather than solve for sr,j, we choose instead to include γ̂r,j(1) as a regressor to sidestep

the problem of a positive sample first-order autocovariance, which yields a complex number

for the effective bid/ask spread. Of course, using γ̂r,j(1) does not eliminate this problem,

which is a symptom of a specification error, but rather is a convenient heuristic that allows

us to estimate the regression equation (complex observations for even one regressor can yield
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complex parameter estimates for all the other regressors as well!). This heuristic is not unlike

Roll’s method for dealing with positive autocovariances, however, it is more direct.19

Under the trading-cost interpretation for γ̂r,j(1), we should expect a positive coefficient

in our cross-sectional turnover regression—a large negative value for γ̂r,j(1) implies a large

bid/ask spread, which should be associated with lower turnover. Alternatively, Roll (1984)

interprets a positive value for γ̂r,j(1) as a negative bid/ask spread, hence turnover should be

higher for such stocks.

These eight regressors yield the following regression equation to be estimated:

τ̃j = γ0 + γ1α̂r,j + γ2β̂r,j + γ3σ̂ǫ,r,j + γ4vj + γ5pj + γ6dj +

γ7SP500j + γ8γ̂r,j(1) + ǫj . (27)

Table 3 contains the estimates of the cross-sectional regression model (27). We estimated

three regression models for each subperiod: one with all eight variables and a constant term

included, one excluding log market-capitalization, and one excluding log price. Since the

log price and log market-capitalization regressors are so highly correlated (see Lim et al.,

1998), regressions with only one or the other included were estimated to gauge the effects

of multicollinearity. The exclusion of either variable does not affect the qualitative features

of the regression—no significant coefficients changed sign other than the constant term—

though the quantitative features were affected to a small degree. For example, in the first

subperiod vj has a negative coefficient (−0.064) and pj has a positive coefficient (0.150),

both significant at the 5% level. When vj is omitted the coefficient of pj is still positive

but smaller (0.070), and when pj is omitted the coefficient of vj is still negative and also

smaller in absolute magnitude (−0.028), and in both these cases the coefficients retain their

significance.

The fact that size has a negative impact on turnover while price has a positive impact is

an artifact of the earlier subperiods. This can be seen heuristically in the time-series plots of

Figure 1—compare the value-weighted and equal-weighted turnover indexes during the first

two or three subperiods. Smaller-capitalization stocks seem to have higher turnover than

larger-capitalization stocks.

This begins to change in the 1977–1981 subperiod: the size coefficient is negative but

19In a parenthetical statement in footnote a of Table I, Roll (1984) writes “The sign of the covariance was
preserved after taking the square root”.
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not significant, and when price is excluded, the size coefficient changes sign and becomes

significant. In the subperiods after 1977–1981, both size and price enter positively. One

explanation of this change is the growth of the mutual fund industry and other large in-

stitutional investors in the early 1980’s. As portfolio managers manage larger asset bases,

it becomes more difficult to invest in smaller- capitalization companies because of liquidity

and corporate-control issues. Therefore, the natural economies of scale in investment man-

agement coupled with the increasing concentration of investment capital make small stocks

less actively traded than large stocks. Of course, this effect should have implications for the

equilibrium return of small stocks versus large stocks, and we investigate such implications

in ongoing research.

The first-order return autocovariance has a positive coefficient in all subperiods except the

second regression of the last subperiod (in which the coefficient is negative but insignificant),

and these coefficients are significant at the 5% level in all subperiods except 1972–1976 and

1992–1996. This is consistent with the trading-cost interpretation of γ̂r,j(1): a large negative

return autocovariance implies a large effective bid/ask spread which, in turn, should imply

lower turnover.

Membership in the S&P 500 also has a positive impact on turnover in all subperiods

as expected, and the magnitude of the coefficient increases dramatically in the 1982–1986

subperiod—from 0.013 in the previous period to 0.091—also as expected given the growing

importance of indexation and index arbitrage during this period, and the introduction of

S&P 500 futures contracts in April 1982. Surprisingly, in the 1992–1996 subperiod, the S&P

500 coefficient declines to 0.029, perhaps because of the interactions between this indicator

variable and size and price (all three variables are highly positively correlated with each

other; see Lim et al. (1998) for further details). When size is omitted, S&P 500 membership

becomes more important, yet when price is omitted, size becomes more important and S&P

500 membership becomes irrelevant. These findings are roughly consistent with those in

Tkac (1996).20

Both systematic and idiosyncratic risk—β̂r,j and σ̂ǫ,r,j—have positive and significant im-

pact on turnover in all subperiods. However, the impact of excess expected returns α̂r,j on

20In particular, she finds that S&P 500 membership becomes much less significant after controlling for
the effects of size and institutional ownership. Of course, her analysis is not directly comparable to ours
because she uses a different dependent variable (monthly relative dollar-volume divided by relative market-
capitalization) in her cross-sectional regressions, and considers only a small sample of the very largest
NYSE/AMEX stocks (809) over the four year period 1988–1991.
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turnover is erratic: negative and significant in the 1977–1981 and 1992–1996 subperiods, and

positive and significant in the others.

The dividend-yield regressor is insignificant in all subperiods but two: 1982–1986 and

1992–1996. In these two subperiods, the coefficient is negative, which contradicts the notion

that dividend-capture trading affects turnover.

In summary, the cross-sectional variation of turnover does seem related to several stock-

specific characteristics such as risk, size, price, trading costs, and S&P 500 membership.

The explanatory power of these cross-sectional regressions—as measured by R2—range from

29.6% (1992–1996) to 44.7% (1967–1971), rivaling the R2’s of typical cross-sectional return

regressions. With sample sizes ranging from 2,073 (1962–1966) to 2,644 (1982–1986) stocks,

these R2’s provide some measure of confidence that cross-sectional variations in median

turnover are not purely random but do bear some relation to economic factors.

Tests of (K+1)-Fund Separation

Since two-fund and (K+1)-fund separation imply an approximately linear factor structure for

turnover, we can investigate these two possibilities by using principal components analysis

to decompose the covariance matrix of turnover (see Muirhead (1982) for an exposition of

principal components analysis). If turnover is driven by a linear K-factor model, the first

K principal components should explain most of the time-series variation in turnover. More

formally, if

τjt = αj + δ1F1t + · · · + δKFKt + ǫjt (28)

where E[ǫjtǫj′t] = 0 for any j 6=j′, then the covariance matrix Σ of the vector τt ≡ (τ1t; · · · ; τJt)

can be expressed as

Var[τt] ≡ Σ = HΘH ′ (29)

Θ =





θ1 0 · · · 0
0 θ2 0
...

. . .
...

0 · · · 0 θN




(30)
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where Θ contains the eigenvalues of Σ along its diagonal and H is the matrix of correspond-

ing eigenvectors. Since Σ is a covariance matrix, it is positive semidefinite hence all the

eigenvalues are nonnegative. When normalized to sum to one, each eigenvalue can be in-

terpreted as the fraction of the total variance of turnover attributable to the corresponding

principal component. If (28) holds, it can be shown that as the size N of the cross section

increases without bound, exactly K normalized eigenvalues of Σ approach positive finite

limits, and the remaining N −K eigenvalues approach 0 (see, for example, Chamberlain,

1983 and Chamberlain and Rothschild, 1983). Therefore, the plausibility of (28), and the

value of K, can be gauged by examining the magnitudes of the eigenvalues of Σ.

The only obstacle is the fact that the covariance matrix Σ must be estimated, hence we

encounter the well-known problem that the standard estimator

Σ̂ ≡
1

T

T∑

t=1

(τt − τ̄ )(τt − τ̄ )′

is singular if the number of securities J in the cross section is larger than the number of time

series observations T .21 Since J is typically much larger than T—for a five-year subperiod

T is generally 261 weeks, and J is typically well over 2,000—we must limit our attention

to a smaller subset of stocks. We do this by following the common practice of forming a

small number of portfolios (see Campbell, Lo, and MacKinlay, 1997, Chapter 5), sorted

by turnover beta to maximize the dispersion of turnover beta among the portfolios.22 In

particular, within each five-year subperiod we form ten turnover-beta-sorted portfolios using

betas estimated from the previous five-year subperiod, estimate the covariance matrix Σ̂

using 261 time-series observations, and perform a principal-components decomposition on

Σ̂. For purposes of comparison and interpretation, we perform a parallel analysis for returns,

21Singularity by itself does not pose any problems for the computation of eigenvalues—this follows from
the singular-value decomposition theorem—but it does have implications for the statistical properties of
estimated eigenvalues. In some preliminary Monte Carlo experiments, we have found that the eigenvalues of
a singular estimator of a positive-definite covariance matrix can be severely biased. We thank Bob Korajczyk
and Bruce Lehmann for bringing some of these issues to our attention and plan to investigate them more
thoroughly in ongoing research.

22Our desire to maximize the dispersion of turnover beta is motivated by the same logic used in Black,
Jensen, and Scholes (1972): a more dispersed sample provides a more powerful test of a cross-sectional
relationship driven by the sorting characteristic. This motivation should not be taken literally in our context
because the theoretical implications of Section 2 need not imply a prominent role for turnover beta (indeed,
in the case of two-fund separation, there is no cross-sectional variation in turnover betas!). However, given
the factor structure implied by (K +1)-fund separation (see Section 4.1), sorting by turnover betas seems
appropriate.
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using ten return-beta-sorted portfolios. The results are reported in Table 4.

Table 4 contains the principal components decomposition for portfolios sorted on out-

of-sample betas, where the betas are estimated in two ways: relative to value-weighted

indexes (τV W and RV W ) and equal-weighted indexes (τEW and REW ).23 The first principal

component typically explains between 70% to 85% of the variation in turnover, and the first

two principal components explain almost all of the variation. For example, the upper-left

subpanel of Table 4 shows that in the second five-year subperiod (1967–1971), 85.1% of the

variation in the turnover of turnover-beta-sorted portfolios (using turnover betas relative to

the value-weighted turnover index) is captured by the first principal component, and 93.6% is

captured by the first two principal components. Although using betas computed with value-

weighted instead of equal-weighted indexes generally yields smaller eigenvalues for the first

principal component (and therefore larger values for the remaining principal components)

for both turnover and returns, the differences are typically not large.

The importance of the second principal component grows steadily through time for the

value-weighted case, reaching a peak of 15.6% in the last subperiod, and the first two principal

components account for 87.3% of the variation in turnover in the last subperiod. This is

roughly comparable with the return portfolios sorted on value-weighted return-betas—the

first principal component is by far the most important, and the importance of the second

principal component is most pronounced in the last subperiod. However, the lower left

subpanel of Table 4 shows that for turnover portfolios sorted by betas computed against

equal-weighted indexes, the second principal component explains approximately the same

variation in turnover, varying between 6.0% and 10.4% across the six subperiods.

Of course, one possible explanation for the dominance of the first principal component is

the existence of a time trend in turnover. Despite the fact that we have limited our analysis

to five-year subperiods, within each subperiod there is a certain drift in turnover; might

this account for the first principal component? To investigate this conjecture, we perform

eigenvalue decompositions for the covariance matrices of the first differences of turnover for

the 10 turnover portfolios.

These results are reported in Table 5 and are consistent with those in Table 4: the first

principal component is still the most important, explaining between 60% to 88% of the

23In particular, the portfolios in a given period are formed by ranking on betas estimated in the immediately
preceding subperiod, e.g., the 1992–1996 portfolios were created by sorting on betas estimated in the 1987–
1991 subperiod, hence the first subperiod in Table 4 begins in 1967, not 1962.
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variation in the first differences of turnover. The second principal component is typically

responsible for another 5% to 20%. And in one case—in-sample sorting on betas relative to

the equal-weighted index during 1987–1991—the third principal component accounts for an

additional 10%. These figures suggest that the trend in turnover is unlikely to be the source

of the dominant first principal component.

In summary, the results of Tables 4 and 5 indicate that a one-factor model for turnover is

a reasonable approximation, at least in the case of turnover-beta-sorted portfolios, and that

a two-factor model captures well over 90% of the time-series variation in turnover. This lends

some support to the practice of estimating “abnormal” volume by using an event-study style

“market model”, e.g., Bamber (1986), Jain and Joh (1988), Lakonishok and Smidt (1986),

Morse (1980), Richardson, Sefcik, Thompson (1986), Stickel and Verrecchia (1994), and Tkac

(1996).

As compelling as these empirical results seem to be, several qualifications should be kept

in mind. First, we have provided little statistical inference for our principal components

decomposition. In particular, the asymptotic standard errors reported in Tables 4 and 5

were computed under the assumption of IID Gaussian data, hardly appropriate for weekly

US stock returns and even less convincing for turnover (see Muirhead, 1982, Chapter 9 for

further details). In particular, Monte Carlos simulations should be conducted to check the

robustness of these standard errors under a variety of data-generating processes.

5 Dynamic Volume-Return Relation

In this section, we examine the empirical support for the implications of our model for the

joint behavior of returns and volume. We first use a simple version of the model to derive its

specific implications for a dynamic volume-return relation. We then present the empirical

evidence based on the work of Campbell, Grossman and Wang (1993) (CGW) and Llorente,

Michaely, Saar, and Wang (2001) (LMSW).

5.1 Theoretical Implications for Volume-Return Relation

Our model leads to a set of predictions about the joint behavior of volume and returns,

especially how they are related intertemporally. A specific relation we want to examine is

how current volume and returns can forecast future returns. In the context of our model, this

relation can be formally expressed by the following conditional expectation: E
[
Q̃t+1|Q̃t, τt

]
,

32



where Q̃t ≡ Qt −Qt−1 is the (excess dollar) return on the stocks from t− 1 to t and τt is the

vector of turnover at t.

To simplify our analysis, we consider the special case of a single stock (J = 1) and two

investors (I = 2).24 Furthermore, we let X1
t = Zt = −X2

t , Y 1
t = Y 2

t = 0. In this case, the

return on the stock and the investors’ stock holdings can be expressed as follows

Q̃t+1 = [ra + (r + αZ)bZt] + ǫQt+1 (31a)

Si
t =

(
1

2
− X i

t

)
(i = 1, 2) (31b)

where ǫQt+1 is normally distributed and uncorrelated with Zt.
25 The turnover of the stock

is then

τt ≡
1

2

(
|X1

t − X1
t−1| + |X2

t − X2
t−1|

)
= |Zt − Zt−1|. (32)

It should be emphasized that in our continuous-time model, in absence of any frictions,

there is no natural timescale and the share volume over any finite time interval is not well

defined. However, a natural timescale does emerge and the share volume is well defined once

transactions costs are introduced; we return to this issue in Section 6. For the moment, we

assume that trading occurs at certain time intervals (at least in expectation), and volume

and return are measured over this interval, which is taken to be the unit of time.

We can now compute the expected return on the stock conditional on the current return

and volume. The result is summarized in the following proposition (its proof can be found

in Wang, 1994):

Proposition 2 From (31) and (32), we have

E
[
Q̃t+1|Q̃t, τt

]
= θ0 + θ1Q̃t + θ2τtQ̃t + higher order terms in Q̃t and τt (33)

and θ2 ≤ 0.

24In our model, even with multiple stocks, when σ′
DσZ = 0 and σ2

Z is small, SI ≈ SM and we obtain
approximate two-fund separation. Effectively, the model reduces to the one-stock case we consider here,
where the market portfolio plays the role of the single stock.

25From Theorem 1, (Qt; Zt) is a Gaussian process. Furthermore, E[Q̃t+1|Zt] = ra + (r + αsz)bZt gives
the expectation of Q̃t+1 conditional on Zt and Ut+1 is the residual, which is also a normally distributed and
independent of Zt.
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In other words, returns accompanied by high volume are more likely to exhibit reversals.

CGW and LMSW have explicitly tested this dynamic relation between volume and returns

in the form of (33). We discuss their empirical findings in Section 5.3.

5.2 The Impact of Asymmetric Information

An important aspect of financial markets that our dynamic equilibrium model of Section 2

neglected is the possibility of asymmetric information, which is critical to an understanding

of dynamic volume-return relations.

Without information asymmetry, returns accompanied with higher volume are more likely

to reverse themselves, as Proposition 2 states. The intuition behind this result is simple:

Suppose (a subset of) investors sell stocks to adjust their risk profile in response to exoge-

nous shocks to their risk exposure or preferences (e.g., their exposure to the non-financial

risk), stock prices must decrease to attract other investors to take the other side of the

trade. Consequently, we have a negative current return accompanied by high volume. Since

the expectation of future stock dividends has not changed, the decrease in current prices

corresponds to an increase in expected future returns.

In the presence of information asymmetry, especially when some investors have superior

information about the stocks relative to other investors, the dynamic volume-return relation

can be different. Suppose, for example, better informed investors reduce their stock positions

in response to negative private information about future dividends. Current prices have to

decrease to attract other investors to buy. However, prices will not drop by the amount that

fully reflects the negative information since the market, in general, is not informationally

efficient (in our model, due to incompleteness). As a result, they drop further later as more

of the negative information gets impounded into prices (through additional trading or public

revelation). In this case, we have negative current returns accompanied by high volume,

followed by lower returns later.

Of course, investors may still trade for non-informational reasons (e.g., hedging their

non-financial risk), in which case the opposite is true, as discussed before. The net effect,

i.e., the expected future return conditioned on current return and volume, depends on the

relative importance of asymmetric information. Wang (1994) has shown that in the presence

of severe information asymmetry, it is possible that θ2 becomes negative. Under the simpli-

fying assumption that private information is short-lived and investors are myopic, LMSW

further show that θ2 decreases monotonically with the degree of information asymmetry.
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The differences in the degree of information asymmetry can give rise to differences in the

dynamic volume-return relation across stocks.

5.3 Empirical Evidence

Many authors have explored the dynamic volume-return relation (33). For example, CGW

and LeBaron (1992) provided supporting evidence based on market indices and aggregate

volume measures. Antoniewicz (1993) and Stickel and Verrecchia (1994) examine the same

relation using pooled returns and volume of individual stocks and find conflicting evidence.

Wang (1994) develops a model to incorporate the effect of information asymmetry on volume-

return relations, which provides a framework to explain the difference between market indices

and individual stocks. LMSW sharpened the results in Wang (1994) and empirically exam-

ined the cross-sectional variations in the volume-return relation predicted by the model.

Their results reconcile the previous empirical evidence on the volume-return relation.

We now discuss the empirical results presented in CGW and LMSW in testing (33) for

market indices and individual stocks, respectively. In both studies, turnover for the market

and individual stocks are used as a measure of trading volume. In particular, following the

existing literature, detrended log-turnover is used:26

τ̃t = log (τt + ε) −
1

N

−1∑

s=−N

log (τt+s + ε) . (34)

Here, a moving average of past turnover is used for detrending. The average is taken over N

days, where N is set at 250 in CGW and 200 in LMSW. For individual stocks, daily trading

volume is often zero, in which case, a small constant ε, which is set at 0.00000255 in LMSW,

is added to the turnover before taking logarithms.27 For market indices, daily volume is

always positive and ε is set to zero.

Both CGW and LMSW estimate the dynamic volume-return relation of the following

form:

Rt+1 = θ0 + θ1Rt + θ2τ̃tRt + ǫt+1 (35)

26As discussed in Section 3, detrending can affect the time-series properties of the data. The detrending
scheme in CGW and LMSW merely to make the results comparable to theirs or to report their results.

27The value of the constant is chosen to maximize the normality of the distribution of daily trading volume.
See Richardson, Sefcik and Thompson (1986), Cready and Ramanan (1991), and Ajinkya and Jain (1989)
for an explanation.
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for market indices and individual stocks, respectively, where Rt is the rate of return on

an index or an individual stock. LMSW further examine the cross-sectional variation in the

coefficient θ2. Note that there is a slight gap between the variables proposed in the theoretical

model and those used in the empirical part. In particular, the model considers excess dollar

returns per share and turnover while the empirical analysis considers returns per dollar and

detrended log-turnover. The difference between the theoretical and corresponding empirical

variables is mainly a matter of normalization. At the daily frequency that we focus on, the

relation among these variables should not be very sensitive to the normalizations used here.

CGW used the value-weighted return on stocks traded on NYSE and AMEX, as provided

by CRSP, from July 1962 to December 1988. For the turnover measure of the market, they

used the total number of shares traded for all the stocks (in the sample), normalized by

the total number of shares outstanding. As shown in Lo and Wang (2000a), this turnover

measure is equivalent to the weighted average of individual turnover, where the weight for

each stock is proportional to its number of shares outstanding. To be more compatible

with our current analysis, we repeat the CGW procedure using our data set which is more

complete (including the additional period from January 1989 to December 1996), and using

the value-weighted turnover index as a measure of market turnover. The results are reported

in Table 6. We find that for market indices, θ2 is negative for the whole sample period and

for each of the subperiods, confirming the prediction of the model.

LMSW examine (35) at the level of individual stocks and its cross-sectional differences.

From the CRSP dataset, they have chosen the sample to be stocks traded on the NYSE

and AMEX between January 1, 1983 and December 31, 1992.28 Stocks with more than

20 consecutive days of missing values or more than 20 consecutive days without a single

trade are excluded from the sample. The characteristics of the sample are given in Table

7, which reports the summary statistics of the average market capitalization, average daily

share volume, average daily turnover and average price for the whole sample and for the five

quintiles.

Their results on (35) are reproduced in Table 8. It shows that for stocks in the largest

three quintiles, the average of their estimates for θ2 is positive, as our model predicts. This

is consistent with the Results of CGW and LeBaron (1992) based on market indices or large

28The main reason for their choosing this ten-year period it because it overlaps with the TAQ data on
bid-ask spreads of individual stocks, which they use as a potential measure of information asymmetry among
investors. In the published version of LMSW, they use a more recent but shorter sample, January 1, 1993
to December 31, 1998.
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stocks. However, for the two smallest quintiles, the average of the θ2 estimate is negative.

As LMSW suggest, if market capitalization can be used an negative proxy for the degree of

information asymmetry about a stock, the decrease in the value of θ2 as market capitalization

decreases is consistent with the above theoretical discussion. The negative θ2 estimates for

many small stocks are consistent with the negative θ2 Antoniewicz (1993) reported based on

pooled individual returns and volume.

What we conclude from the discussion in this section is that our theoretical model leads

to important implications about the joint behavior of volume and returns. In particular, its

implication on the dynamic volume-return relation is generally supported by the empirical

findings. However, the model ignores many other factors in the market, such as the existence

of private information, frictions, and a rich set of trading motives. These factors can be

important in developing a more complete understanding the behavior of volume and its

relation with returns. For the specific dynamic volume-return relations examine by LMSW,

for example, the existence of information asymmetry is crucial. In this sense, we should view

our model as a merely a starting point from which we can build a more complete model. Our

discussion in the next two sections, which deals with transactions costs and trading behavior

based on technical analysis, is one approach to pursuing this broader agenda.

6 Trading Volume and Transactions Costs

The theoretical model of Section 2 assumes that investors can trade in the market contin-

uously at no cost. Consequently, the volume of trade is unbounded over any finite time

interval. In our empirical analysis, we have avoided this issue by implicitly assuming that

investors trade at a finite frequency. Trading volume over the corresponding trading interval

is determined by the desired changes in the investors’ stock positions over the interval, which

is finite. This shortcut is intuitive. In practice, transactions costs would prevent any investor

from trading continuously. They only trade discretely over time. However, the actual trading

interval does depend on the nature of the costs as well as investors’ motives to trade.

In this section, we address this issue directly within the framework of our theoretical

model by incorporating transactions costs explicitly into our analysis. Our objective is two-

fold. The narrow objective is to provide a theoretical justification for the shortcut in our

empirical analysis. The broader objective is to provide a benchmark for understanding the

level of volume. It has often been argued that the level of volume we see in the market is too
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high to be justifiable from a rational asset-pricing perspective, in which investors trade to

share risk and to smooth consumption over time (see, for example, Ross, 1986). Yet, in the

absence of transactions costs, most dynamic equilibrium models imply that trading volume

is infinite when the information flow to the market is continuous (i.e., a diffusion). Thus,

the level of volume crucially depends on the nature and the magnitude of transactions costs.

By considering the impact of transactions costs on the investors’ trading behavior as well as

the stock prices in our theoretical model, we hope to better understand the level of trading

volume.

Our discussion in this section is based on Lo, Mamaysky and Wang (2000a) (LMW1,

thereafter). Only the relevant results are presented here and the readers are referred to

LMW1 for details.

6.1 Equilibrium under Fixed Transactions Costs

We start by introducing fixed transactions costs into our model. It is obvious that fixed costs

makes continuous trading prohibitively costly. Consequently, investors do not adjust their

stock positions continuously as new shocks hit the economy. Instead, as market conditions

and their own situations change, investors will wait until their positions are far from the op-

timal ones under the new conditions and then trade discretely toward the optimal positions.

As a result, they only trade infrequently, but by discrete amounts when they do trade. How

frequent and how much they trade depend on the magnitude of the cost and the nature of

their trading needs.

For tractability, we again consider a simple case of our model with only one stock and

two investors. We also assume that Zt = 0 for all t ≥ 0. In this case there is no aggregate

exposure to non-financial risk and the stock returns are IID over time. It should be pointed

out that in our model, it is the difference in the investors’ exposures to the non-financial risk

that gives rise to the trading between them. The aggregate exposure does not give rise to

trading needs since it affects all investors in the same way. In addition, we let Y i
t = 0 for all

t ≥ 0 (i = 1, 2) and αX = 0.29

In addition, we assume that investors have to pay a fixed cost each time they trade the

stock. In particular, for each stock transaction, the two sides have to pay a total fixed cost

29There is no loss of generality by setting Y i
t = 0 since X i

t captures the same effect. Setting αX = 0 implies
that shocks to investors’ exposure to non-financial risk are permanent, not transitory, which simplifies the
analysis (see LMW1 for more details).
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of κ, which is exogenously specified and independent of the amount transacted. This cost

is allocated between the buyer and seller as follows. For a trade δ, the transactions cost is

given by

κ(δ) =






κ+ for δ > 0

0 for δ = 0

κ− for δ < 0

(36)

where δ is the signed volume (positive for purchases and negative for sales), κ+ is the cost

for purchases, κ− is the cost for sales, and the sum κ+ + κ− = κ. The allocation of the fixed

cost, given by κ+ and κ−, is determined endogenously in equilibrium.

Under fixed transactions costs, investors only trade infrequently. We limit their stock

trading policy set to impulse policies defined as follows:

Definition 2 Let N+ ≡ {1, 2, . . .}. An impulse trading policy {(τk, δk) : k ∈ N+} is a

sequence of trading times τk and trade amounts δk with

(1) 0 ≤ τk ≤ τk+1 a.s. ∀ k ∈ N+

(2) τk is a stopping time of F

(3) δk is progressively measurable with respect to Fτk
.

Following an impulse trading policy, investor i’s stock holding at time t is Si
t , given by

Si
t = Si

0− +
∑

{k: τ i

k
≤t}

δi
k (37)

where Si
0− is his initial endowment of stock shares, which is assumed to be S̄.

We denote the set of impulse trading policies by S∆ and the set of consumption-trading

policies by Φ∆. For the remainder of this section, we restrict the investors policies to the set

Φ∆.

We also need to revise the notion of equilibrium in order to accommodate the situation

of infrequent trading:

Definition 3 In the presence of fixed transactions costs, an equilibrium in the stock market

is defined by:
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(a) a price process P = {Pt : t ≥ 0} progressively measurable with respect to F

(b) an allocation of the transaction cost (κ+, κ−) as defined in (36)

(c) agents’ consumption-trading policies (ci, Si) ∈ Φ∆, i = 1, 2

such that:

(i) each agent’s consumption-trading policy solves his optimization problem as defined in

(10)

(ii) the stock market clears:

∀ k ∈ N+ : τ 1
k = τ 2

k (38a)

δ1
k = −δ2

t . (38b)

The solution to the equilibrium involves two standard steps: first to solve for the op-

timal consumption-trading policy for the two investors, given a stock price process and an

allocation of the fixed transaction cost, and next to find the stock price process and cost

allocation such that the stock market clears. However, in the presence of transactions costs,

the market-clearing condition consists of two parts: investors’ trading times always match,

which is (38), and their desired trade amount also match, which is (38). In other words,

“double-coincidence of wants” must always be guaranteed in equilibrium, which is a very

stringent condition when investors trade only occasionally.

Before solving it, we make several comments about the equilibrium (assuming it exists).

We have skipped technical details in supporting some of the comments and refer the readers

to LMW1 for formal derivations.

First, in the absence of transaction costs, our model reduces to (a special version of) the

model considered in Section 2. Investors trade continuously in the stock market to hedge

their non-financial risk. Since their non-financial risks offset each other, the investors can

eliminate their non-financial risk through trading. Consequently, the equilibrium price re-

mains constant over time, independent of the idiosyncratic non-financial risk as characterized

by X1
t = −X2

t . In particular, the equilibrium price has the following form:

Pt =
µD

r
− a ∀ t ≥ 0 (39)
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where a ≡ ā = γσ2
DS̄ gives the risk discount on the price of the stock to compensate for its

risk. The investors’ optimal stock holding is linear in his exposure to the non-financial risk:

Si
t = S̄ − X i

t (40)

where θ̄ is a number of stock shares per capita.

Second, in the presence of transaction costs, investors only trade infrequently. However,

whenever they trade, we expect them to reach optimal risk-sharing. This implies, as in

the case of no transactions costs, that the equilibrium price at all trades should be the

same, independent of the idiosyncratic non-traded risk X i
t (i = 1, 2). Thus, we consider

the candidate stock price processes of the form (39) even in the presence of transaction

costs.30The discount a now reflects the price adjustment of the stock for both its risk and

illiquidity.

Third, since the stock price stays constant (in the conjectured equilibrium, which is veri-

fied later), changes in investors’ stock demand is purely driven by changes in their exposure

to the non-financial risk. Given the correlation between the non-financial risk and the stock

risk, which becomes perfect when Zt = 0 as assumed here, each investor can completely

hedge their non-financial risk by trading the stock. The net risk an investor actually bears

is the difference between his stock position and his exposure to the non-financial risk. In

other words, what he would like to control is really zi
t = Si

t − X i
t , which determines his net

risk exposure. Thus, zi
t becomes the effective state variable (in addition to his wealth) that

drives investor i’s optimal policy and determines his value function.

Investor i can control zi
t by adjusting his stock holding Si

t , from time to time. In par-

ticular, his optimal trading policy falls into the class of bang-bang policies:31 He maintains

zi
t within a certain band, characterized by three parameters, (zl, zm, zu). When zi

t hits the

upper bound of the band zu, investor i sells δ− ≡ zu−zm shares of the stock to move zi
t down

to zm. When zi
t hits the lower bound of the band zl, investor i buys δ+ ≡ zm − zl shares of

the stock to move zi
t up to zm. Thus, trading occurs at the first passage time when zi

t hits zl

or zm and the trade amount is δ+ or δ−, correspondingly. The optimal policy is then further

determined by the optimal choice of (zl, zm, zu), which depends on the stock price (i.e., a)

30Given the perfect symmetry between the two agents, the economy is invariant under the following
transformation: X1

t → −X1
t . This implies that the price must be an even function of Xt. A constant is the

simplest even function.
31see LMW1 for more discussion on the optimal policy and references therein.
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and the allocation of transaction costs.

Fourth, given nature of the investors’ trading policies, an equilibrium can be achieved by

choosing a and κ±, such that (1) δ+ = δ− (i.e., zu −zm = zm −zl), and (2) zm = S̄. The first

condition guarantees match of trading timing and amount for both investors (noting that

z1
t = z2

t . The second condition guarantees that the two investors always hold all the shares

of the stock at the prevailing prices.

In light of the discussion above, the solution to the optimal trading policy becomes solving

for zm, δ+ and δ− given a and κ±, and the solution to the equilibrium reduces to finding the

right a and κ± such that δ+ = δ− and zm = S̄.

For an arbitrary fixed cost, only numerical solutions to the equilibrium are available

(see LMW1). However, when the fixed cost is small, approximate analytical solution to the

equilibrium can be obtained. In particular, we seek the solution to each agent’s optimal

trading policy, the equilibrium stock price and cost allocation and stock price that can be

approximated by powers of ε ≡ κα where α is a positive constant. Especially, κ± takes the

form:

κ± = κ

(
1
2
±

∞∑

n=1

k(n)εn

)

. (41)

The following theorem summarizes the equilibrium (see LMW1 for the proof):

Theorem 2 Let ε ≡ κ
1

4 . For (a) κ small and κ± in the form of (41), and (b) the value

function is analytic for small z and ε, the investors optimal trading policy is given by

δ± = φκ
1

4 + o(κ
1

2 ) (42a)

zm = S̄. (42b)

In equilibrium, the stock price and allocation of transaction cost are given by

a = ā
(
1 + 1

6
rγ2σ2

Dφ2κ
1

2

)
+ o(κ

1

2 ) (43a)

κ± = κ
[

1
2
± 2

15
rγaφκ

1

4 + o(κ
1

4 )
]

(43b)
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where

φ =

(
6σ2

z

rγσ2
D

) 1

4

.

Here, o(κα) denotes terms of higher order of κα.

Two things are worth pointing out. Investors now indeed trade only infrequently. Yet, in

equilibrium the coincidence of the timing and the size of their trade is guaranteed. Moreover,

the transactions costs lower the stock price, giving rise to an illiquidity discount, in addition

to the risk discount given by ā.

The results above are derived with one pair of investors, who have offsetting trading

needs. Extending these results to allow more pairs is straightforward. However, when

the heterogeneity in investors’ trading needs takes more general forms, the solution to the

equilibrium becomes much harder. Yet, as argued in LMW1, the qualitative features of

investors’ optimal trading policy are quite robust. Thus, we may expect the results on the

trading frequency, trade size, volume to survive. But the robustness of the results on the

equilibrium price with general forms of heterogeneity in trading needs is less clear.

6.2 Volume under Fixed Transactions Costs

Given the optimal trading policies in equilibrium, we can now analyze how the level of

trading volume depends on the transactions costs. Intuitively, an increase in transaction

costs must reduce the volume of trade. Our model suggests a specific form for this relation.

In particular, the equilibrium trade size is a constant. From our solution to equilibrium, the

volume of trade between time interval t and t+1 is given by:

Vt+1 =
∑

{k: t<τk≤t+1}
|δi

k| (44)

where i = 1 or 2. The average trading volume per unit of time is

E [Vt+1] = E

[
∑

k

1{τk∈(t, t+1]}

]

δ ≡ ωδ

where ω denotes the expected frequency of trade (i.e., the number of trades per unit of

time). For convenience, we define another measure of average trading volume as the number
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of shares traded over the average time between trades, or

V =
δ

∆τ
= σ2

X/δ (45)

where ∆τ ≡ E [τk+1 − τk] ≈ δ2/σ2
z is the average time between trades.32 From (42), we have

V = σ2
Zφ−1κ− 1

4

[
1 + O

(
κ

1

4

)]

where O(κα) denotes terms of the same order of κα. Clearly, as κ goes to zero, trading

volume goes to infinity. However, we also have

∆V

V
≈ −1

4

∆κ

k
.

In other words, (for positive transaction costs) one percentage increase in the transaction

cost only decreases trading volume by a quarter of a percent. In this sense, within the range

of positive transaction costs, an increase in the cost only reduce the volume mildly at the

margin.

Figure 5 plots the average volume measure V versus different values of transaction cost

κ as well as the appropriate power laws. Clearly, as κ approaches zero, volume diverges.

6.3 A Calibration Exercise

Our model shows that even small fixed transactions costs imply a significant reduction in

trading volume and an illiquidity discount in asset prices. To further examine the impact of

fixed costs in equilibrium, we calibrate our model using historical data and derive numerical

implications for the illiquidity discount, trading frequency, and trading volume. From (43),

for small fixed costs κ we can re-express the illiquidity discount π as:

π ≡ a − ā ≈ 1√
6
r−

1
2γ

3
2 σX āκ

1
2 (46)

Without loss of generality, we set σN = 1, hence the remaining parameters to be calibrated

are: the interest rate r, the risk discount ā, the volatility of the idiosyncratic non-traded risk

σX , the agents’ coefficient of absolute risk aversion γ, and the fixed transaction cost κ.

32Of course, V is different from E[Vt+1] by Jensen’s inequality. The calculation of ∆τ is straightforward
(see LMW1).
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The starting point for our calibration exercise is a study by Campbell and Kyle (1993).

In particular, they propose and estimate a detrended stock-price process of the following

form:

Pt = At −
λ

r
− Zt (47)

where At (the present value of future dividends discounted at the risk-free rate) is assumed to

follow a Gaussian process, Zt (fluctuations in stock demand) is assumed to follow an AR(1)

Gaussian process, r is the risk-free rate, and λ/r is the risk discount.33 In Section 2, we

have seen that in the absence of transactions costs, our model yields the same price process

as (47). Moreover, in our model λ/r is denoted by ā and Zt is the aggregate exposure of

non-traded risk, which generates changes in stock demand. Therefore, we can obtain values

for r, ā, γ, and σZ (the instantaneous volatility of Zt) from their parameter estimates.

Campbell and Kyle based their estimates on annual time series of US real stock prices

and dividends from 1871 to 1986. The real stock price of each year is defined by the Standard

& Poors Composite Stock Price Index in January, normalized by the Producer Price Index

in the same month. The real dividend each year is taken to be the annual dividend per-

share normalized by the Producer Price Index (over this sample period, the average annual

dividend growth rate is 0.013). The price and dividend series are then detrended by an

exponential detrending factor exp(−0.013 t) and the detrended series are used to estimate

(47) via maximum likelihood estimation. In particular, they obtain the following estimates

for the price process:

r = 0.037, λ = 0.0210, Ā = 1.3514, αCK

Z = 0.0890

σCK

Z = 0.1371, σCK

P = 0.3311, ρCK

PZ = −0.5176

where Ā denotes the unconditional mean of ACK

t , αCK

Z and σCK

Z denote the mean-reversion

coefficient and the instantaneous volatility of ZCK

t , σCK

P denotes the instantaneous volatility

of P CK

t , and ρCK

PY denotes the instantaneous correlation between P CK

t and ZCK

t .34 From these

estimates, we are able to compute values for the following parameters in our model (in

33See Campbell and Kyle (1993, equation (2.3), p. 3).
34See Campbell and Kyle’s (1993, p. 20) estimates for “Model B”.
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addition to the value of r):

āD = 0.0500, p̄0 = 0.5676, γσZ = 1.3470, σD = 0.2853, P̄ = 0.6486

(see LMW1 for the computation of these parameter values of the model from the estimates

of Campbell and Kyle). These estimates do not allow us to fully specify the values of γ and

σZ . However, they do allow us to fix the product of the two. Thus, a choice of γ uniquely

specifies the value of σZ .

Our model also contains the parameter σX , the volatility of idiosyncratic non-traded risk.

Because it is the aggregate non-traded risk that affects prices, Campbell and Kyle (1993)

only provides an estimate for the volatility σZ of aggregate non-traded risk as a function of

the coefficient of absolute risk aversion γ.

Obtaining an estimate for the magnitude of σX requires data at a more disaggregated

level, which has been performed by Heaton and Lucas (1996) using PSID data. Their analysis

shows that the residual variability in the growth rate of individual income—the variability

of the component that is uncorrelated with aggregate income—is 8 to 13 times larger than

the variability in the growth rate of aggregate income. Based on this result, we use values

for σX to be 4 times the value of σZ to be conservative.35

The two remaining parameters to be calibrated are the coefficient of absolute risk aversion

γ and the fixed cost κ. Since there is little agreement as to what the natural choices are for

these two parameters, we calibrate our model for a range of values for both.

Table 9 reports the results of our calibrations. The table contains five sub-panels. The

first sub-panel reports the fixed transaction cost as the percentage of average trade amount,

the second sub-panel reports the expected time between trades τ (in years), the third sub-

panel reports the illiquidity discount in the stock price (as a percentage of the price P̄ ≡

µD/r − ā in the absence of transaction costs, the fourth panel reports the return premiums

on the stock (due to its risk as well as illiquidity), the fifth panel reports the average turnover

per year, all as functions of the transactions cost κ, which ranges from 1 basis point to 5

percent of P̄ , and the absolute risk aversion coefficient γ, which ranges from 0.001 to 5.000.36

The entries in Table 9 show that our model is capable of yielding empirically plausible

35Other values for the ratio of σX and σZ are considered in LMW1.
36We display transactions costs as a percentage of P̄ simply to provide a less scale-dependent measure of

their magnitudes. Since κ is a fixed cost, its value is, by definition, scale-dependent and must therefore be
considered in the complete context of the calibration exercise.
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values for trading frequency, trading volume, and the illiquidity discount. In contrast to

much of the existing literature, e.g., Huang (1998), Schroeder (1998), Vayanos (1998), we

find that transactions costs can have very large impact on both the trading frequency as well

as the illiquidity discount in the stock price. For example, Schroeder (1998) finds that when

faced with a fixed transactions cost of 0.1%, individuals in his model trade only once every 10

years! In Table 9, we see that for a 0.1% fixed cost, individuals in our model trade anywhere

between 1/0.002 = 600 and 1/0.148 = 6.8 times per year as the risk aversion parameter

varies from 0.001 to 5.000, respectively. This contrast between our results and those of

the existing literature stems from the fact that our investors have a strong need to trade

frequently. The high-frequency changes in their risk exposure to non-financial risk imply

that not trading can be very costly. Furthermore, not trading means that the risk exposure

from holding market-clearing levels of the stock is much greater. Models of transactions cost

often fail to account for a high-frequency component in trading needs.37

As the risk aversion parameter increases while holding κ fixed, trading becomes less

frequent, the illiquidity discount increases, and the trade size also declines. For example, a

risk aversion parameter of 5.00 and a fixed cost of 1% of P̄ implies that the investor will

trade approximately once every two years, each trade consisting of only 1.297 shares, with

an illiquidity discount of 1.547% of P̄ .

What seems very striking is that for reasonable magnitudes of investors trading needs

(measured by σX) and transaction cost, our model produces reasonable levels of volume.

For example, a risk aversion parameter of 1 and a fixed cost of 0.50% of P̄ imply a trading

frequency of 1/0.148 = 6.8 trades per year, an illiquidity discount of 1.97%, and a turnover

of 352%, which is higher than the observed turnover (see Section 4). These results suggest

that existing levels of trading frequency and volume in financial markets may not be as

unusual or as irrational as many have thought. The calibration results in Table 9 shows

that our dynamic equilibrium model is clearly capable of generating empirically plausible

implications.

37While many partial equilibrium models do contain a high-frequency component in the uncertainty faced
by their investors, such as Constantinides (1986) and Amihud and Mendelson (1986a), they still miss these
equilibrium effects because they do not take into account the unwillingness of investors to hold large amounts
of the risky asset in the presence of transactions costs.
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7 Technical Analysis

Although the interest in trading volume is a relatively recent development in the academic

finance literature, it has been a long-standing tradition among finance professionals engaging

in “technical analysis” or “charting”, the practice of forecasting future price movements in

financial securities based on geometric patterns in the time series plots of past prices and

volume. Historically ridiculed by academics as “voodoo finance”, technical analysis has never

enjoyed the widespread acceptance among academics and industry practitioners that fun-

damental analysis and quantitative finance have. However, several recent academic studies

suggest that historical prices may contain incremental information that has not already been

incorporated into current market prices, raising the possibility that technical analysis can

add value to the investment process.38 Moreover, a closer reading of the early technical anal-

ysis literature, e.g., Hamilton (1922), reveals a surprisingly contemporary view of the market

forces that influence prices and price dynamics. In particular, the importance of supply and

demand, buying and selling pressure, and the risk preferences of market participants were

acknowledged by technical analysts long before financial economists developed similar inter-

ests (albeit with different tools and terminology). And the emphasis that technical analysts

place on trading volume is the motivation for our interest in technical analysis.

In this section, we review the results of Lo, Mamaysky, and Wang (2000b) (hereafter,

“LMW2”) in which the information content of technical indicators is measured by first

developing an automated procedure for detecting certain types of patterns, e.g., head-and-

shoulders, and then applying this procedure to historical prices of US stocks to measure

the impact of these patterns on post-pattern return distributions. By comparing the un-

conditional empirical distribution of daily stock returns to the conditional distribution—

conditioned on the occurrence of specific technical indicators such as head-and-shoulders or

double-bottoms—they find that over the 35-year sample period, several technical indicators

do provide incremental information and may have some practical value.

38For example, in rejecting the Random Walk Hypothesis for weekly US stock indexes, Lo and MacKinlay
(1988, 1999) have shown that past prices may be used to forecast future returns to some degree, a fact that all
technical analysts take for granted. Studies by Tabell and Tabell (1964), Treynor and Ferguson (1985), Brown
and Jennings (1989), Jegadeesh and Titman (1993), Blume, Easley, and O’Hara (1994), Chan, Jegadeesh,
and Lakonishok (1996), Lo and MacKinlay (1997), Grundy and Martin (1998), and Rouwenhorst (1998) have
also provided indirect support for technical analysis, and more direct support has been given by Pruitt and
White (1988), Neftci (1991), Brock, Lakonishok, and LeBaron (1992), Neely, Weller, and Dittmar (1997),
Neely and Weller (1998), Chang and Osler (1994), Osler and Chang (1995), and Allen and Karjalainen
(1999).
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In Section 7.1 we describe the pattern-detection algorithm of LMW2, Section 7.2 discusses

the statistical methods for gauging the information content of the patterns detected, and

Section 7.3 reports the empirical results of the pattern-detection algorithm applied to a large

sample of individual US stocks from 1962 to 1996.

7.1 Automating Technical Analysis

To determine the efficacy of technical analysis, we must be able to apply it in a consistent

fashion over an extended period of time and across a broad sample of securities, and then

assess its performance statistically. Therefore, we must first develop a method for automat-

ing the identification of technical indicators, i.e., we require a pattern-recognition algorithm.

Once such an algorithm is developed, it can be applied to a large number of securities over

many time periods to quantify the information content of various technical indicators. More-

over, quantitative comparisons of the performance of several indicators can be conducted,

and the statistical significance of such performance can be assessed through Monte Carlo

simulation and bootstrap techniques. This is the approach taken by LMW2.39

The starting point of LMW2’s analysis is the assumption that prices Pt can be represented

by the following expression:

Pt = m(·) + ǫt (48)

where m(·) is a nonlinear function of time (and perhaps other state variables) and ǫt is white

noise. LMW2 argue that technical analysts estimate m(·) visually by attempting to discern

geometric regularities in the raw price series {Pt}, and that this process is similar in spirit

to smoothing estimators in which sophisticated forms of local averaging are used to estimate

m(·) by averaging out the noise ǫt. Specifically, LMW2 propose the following algorithm for

detecting the occurrence of various technical patterns:

1. Define each technical pattern in terms of its geometric properties, e.g., local extrema

(maxima and minima) of m(·).

2. Construct a kernel estimator m̂(·) of a given time series of prices so that its extrema

39A similar approach has been proposed by Chang and Osler (1994) and Osler and Chang (1995) for the
case of foreign-currency trading rules based on a head-and-shoulders pattern. They develop an algorithm for
automatically detecting geometric patterns in price or exchange data by looking at properly defined local
extrema.
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can be determined numerically.

3. Analyze m̂(·) for occurrences of each technical pattern.

LMW2 focus on five pairs of technical patterns that are among the most popular patterns

of traditional technical analysis (see, for example, Edwards and Magee, 1966, Chapters VII–

X): head-and-shoulders (HS) and inverse head-and-shoulders (IHS), broadening tops (BT)

and bottoms (BB), triangle tops (TT) and bottoms (TB), rectangle tops (RT) and bottoms

(RB), and double tops (DT) and bottoms (DB). Specifically, denote by E1, E2, . . . , En the

n extrema of m(·) and t∗1, t
∗
2, . . . , t

∗
n the dates on which these extrema occur. Then LMW2

propose the following definitions for the head-and-shoulders and inverted head-and-shoulders

patterns:

Definition 1 (Head-and-Shoulders) Head-and-shoulders (HS) and inverted head-and-
shoulders (IHS) patterns are characterized by a sequence of five consecutive local extrema

E1, . . . , E5 such that:

HS ≡






E1 a maximum
E3 > E1 , E3 > E5

E1 and E5 within 1.5 percent of their average
E2 and E4 within 1.5 percent of their average

IHS ≡






E1 a minimum
E3 < E1 , E3 < E5

E1 and E5 within 1.5 percent of their average
E2 and E4 within 1.5 percent of their average

Note that only five consecutive extrema are required to identify a head-and-shoulders pat-

tern, which follows from the formalization of the geometry of a head-and-shoulders pattern:

three peaks, with the middle peak higher than the other two. Because consecutive extrema

must alternate between maxima and minima for smooth functions,40 the three-peaks pattern

corresponds to a sequence of five local extrema: maximum, minimum, highest maximum,

minimum, and maximum. The inverse head-and-shoulders is simply the mirror image of the

head-and-shoulders, with the initial local extrema a minimum.

LMW2 develop similar definitions for broadening, rectangle, and triangle patterns, each

with two possible versions depending on whether the initial extremum is a local maximum

or minimum, yielding a total of ten patterns in all.

40After all, for two consecutive maxima to be local maxima, there must be a local minimum in between,
and vice versa for two consecutive minima.
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Given a sample of prices {P1, . . . , PT}, kernel regressions for rolling subsamples or win-

dows, and within each window, local extrema of the estimated function m̂(τ) can be readily

identified by finding times τ such that Sgn(m̂′(τ)) = −Sgn(m̂′(τ+1)), where m̂′ denotes the

derivative of m̂ with respect to τ and Sgn(·) is the signum function. If the signs of m̂′(τ)

m̂′(τ +1) are +1 and −1, respectively, then we have found a local maximum, and if they

are −1 and +1, respectively, then we have found a local minimum. Once such a time τ

has been identified, we proceed to identify a maximum or minimum in the original price

series {Pt} in the range [t−1, t+1], and the extrema in the original price series are used

to determine whether or not a pattern has occurred according to the definitions of the 10

technical patterns.41 One useful consequence of this algorithm is that the series of extrema

which it identifies contains alternating minima and maxima. That is, if the kth extremum

is a maximum, then it is always the case that the (k+1)th extremum is a minimum, and

vice versa.

An important advantage of using this kernel regression approach to identify patterns is

the fact that it ignores extrema that are “too local.” For example, a simpler alternative is

to identify local extrema from the raw price data directly, i.e., identify a price Pt as a local

maximum if Pt−1 < Pt and Pt > Pt+1, and vice versa for a local minimum. The problem

with this approach is that it identifies too many extrema, and also yields patterns that are

not visually consistent with the kind of patterns that technical analysts find compelling.

Once all of the local extrema in a given window have been identified, the presence of the

various technical patterns can be determined using definitions such as 1. This procedure is

then repeated for the next window and continues until the end of the sample is reached.

7.2 Statistical Inference

Although there have been many tests of technical analysis over the years, most of these tests

have focused on the profitability of technical trading rules.42 While some of these studies do

41If m̂′(τ) = 0 for a given τ , which occurs if closing prices stay the same for several consecutive days, we
need to check whether the price we have found is a local minimum or maximum. We look for the date s

such that s = inf { s > τ : m̂′(s) 6= 0 }. We then apply the same method as discussed above, except here
we compare Sgn

(
m̂′(τ−1)

)
and Sgn

(
m̂′(s)

)
. See LMW2 for further details.

42For example, Chang and Osler (1994) and Osler and Chang (1995) propose an algorithm for automatically
detecting head-and-shoulders patterns in foreign exchange data by looking at properly defined local extrema.
To assess the efficacy of a head-and-shoulders trading rule, they take a stand on a class of trading strategies
and compute the profitability of these across a sample of exchange rates against the U.S. dollar. The null
return distribution is computed by a bootstrap that samples returns randomly from the original data so as
to induce temporal independence in the bootstrapped time series. By comparing the actual returns from
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find that technical indicators can generate statistically significant trading profits, they beg

the question of whether or not such profits are merely the equilibrium rents that accrue to

investors willing to bear the risks associated with such strategies. Without specifying a fully

articulated dynamic general equilibrium asset-pricing model, it is impossible to determine

the economic source of trading profits.

Instead, LMW2 proposes a more fundamental test in their study, one that attempts to

gauge the information content in the technical patterns of Section 7.1 by comparing the

unconditional empirical distribution of returns with the corresponding conditional empirical

distribution, conditioned on the occurrence of a technical pattern. If technical patterns are

informative, conditioning on them should alter the empirical distribution of returns; if the

information contained in such patterns has already been incorporated into returns, the con-

ditional and unconditional distribution of returns should be close. Although this is a weaker

test of the effectiveness of technical analysis—informativeness does not guarantee a prof-

itable trading strategy—it is, nevertheless, a natural first step in a quantitative assessment

of technical analysis.

To measure the distance between the two distributions, LMW2 use the Kolmogorov-

Smirnov test.43 which is designed to test the null hypothesis that two samples have the

same distribution function, and is based on the empirical cumulative distribution functions

of both samples. Under the null hypothesis, Smirnov (1939a, 1939b) has derived the limiting

distribution of the statistic, and an approximate α-level test of the null hypothesis can be

performed by computing the statistic and rejecting the null if it exceeds the upper 100α-th

percentile for the null distribution (see Hollander and Wolfe, 1973, Table A.23, Csáki, 1984;

and Press et al., 1986, Chapter 13.5; and Lo, Mamaysky, and Wang, 2000b).

trading strategies to the bootstrapped distribution, the authors find that for two of the six currencies in
their sample (the yen and the Deutsche mark), trading strategies based on a head and shoulders pattern can
lead to statistically significant profits. See, also, Neftci and Policano (1984), Pruitt and White (1988), and
Brock, Lakonishok, and LeBaron (1992).

43LMW2 also compute chi-squared goodness-of-fit statistics but we omit them to conserve space.Note that
the sampling distribution of the Kolmogorov-Smirnov statistic is derived under the assumption that returns
are independently and identically distributed, which is not plausible for financial data. LMW2 attempt to
address this problem by normalizing the returns of each security, i.e., by subtracting its mean and dividing by
its standard deviation (see Section 7.3 below), but this does not eliminate the dependence or heterogeneity,
and warrants further research.
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7.3 Empirical Results

LMW2 apply the Kolmogorov-Smirnov test to the daily returns of individual NYSE/AMEX

and Nasdaq stocks from 1962 to 1996 using data from the Center for Research in Securities

Prices (CRSP). To ameliorate the effects of nonstationarities induced by changing market

structure and institutions, they split the data into NYSE/AMEX stocks and Nasdaq stocks

and into seven five-year periods: 1962 to 1966, 1967 to 1971, and so on. To obtain a

broad cross-section of securities, in each five-year subperiod, they randomly select ten stocks

from each of five market-capitalization quintiles (using mean market-capitalization over the

subperiod), with the further restriction that at least 75 percent of the price observations

must be non-missing during the subperiod.44 This procedure yields a sample of 50 stocks

for each subperiod across seven subperiods (note that they sample with replacement, hence

there may be names in common across subperiods).

For each stock in each subperiod, LMW2 apply the procedure outlined in Section 7.1

to identify all occurrences of the 10 patterns they define mathematically according to the

properties of the kernel estimator. For each pattern detected, they compute the one-day

continuously compounded return three days after the pattern has completed. Therefore, for

each stock, there are 10 sets of such conditional returns, each conditioned on one of the 10

patterns of Section 7.1.

For each stock, a sample of unconditional continuously compounded returns is con-

structed using non-overlapping intervals of length τ , and the empirical distribution function

of these returns is compared with those of the conditional returns. To facilitate such com-

parisons, all returns are standardized—both conditional and unconditional—by subtracting

means and dividing by standard deviations, hence:

Xit =
Rit − Mean[Rit]

SD[Rit]
(49)

where the means and standard deviations are computed for each individual stock within each

subperiod. Therefore, by construction, each normalized return series has zero mean and unit

variance.

To increase the power of their goodness-of-fit tests, LMW2 combine the normalized

returns of all 50 stocks within each subperiod; hence for each subperiod they have two

44If the first price observation of a stock is missing, they set it equal to the first non-missing price in the
series. If the t-th price observation is missing, they set it equal to the first non-missing price prior to t.

53



samples—unconditional and conditional returns—from which two empirical distribution func-

tions are computed and compared using the Kolmogorov-Smirnov test.

Finally, given the prominent role that volume plays in technical analysis, LMW2 also con-

struct returns conditioned on increasing or decreasing volume. Specifically, for each stock in

each subperiod, they compute its average share-turnover during the first and second halves

of each subperiod, τ1 and τ2, respectively.45 If τ1 > 1.2 × τ2, they categorize this as a “de-

creasing volume” event; if τ2 > 1.2×τ1, they categorize this as an “increasing volume” event.

If neither of these conditions holds, then neither event is considered to have occurred. Using

these events, conditional returns can be constructed conditioned on two pieces of informa-

tion: the occurrence of a technical pattern and the occurrence of increasing or decreasing

volume. Therefore, the empirical distribution of unconditional returns can be compared with

three conditional-return distributions: the distribution of returns conditioned on technical

patterns, the distribution conditioned on technical patterns and increasing volume, and the

distribution conditioned on technical patterns and decreasing volume.46

To develop some idea of the cross-sectional and time-series distributions of each of the

10 patterns, Figures 6 and 7 plot the occurrences of the patterns for the NYSE/AMEX and

NASDAQ samples, respectively, where each symbol represents a pattern detected by the

LMW2 algorithm. The vertical axis is divided into five quintiles, the horizontal axis is cal-

endar time, and alternating symbols (diamonds and asterisks) represent distinct subperiods.

These graphs show that there are many more patterns detected in the NYSE/AMEX sample

than in the Nasdaq sample (Figure 6 is more densely populated than Figure 7). Also, for

the NYSE/AMEX sample, the distribution of patterns is not clustered in time or among a

subset of securities, but there seem to be more patterns in the first and last subperiods for

the Nasdaq sample.

Table 9 contains the results of the Kolmogorov-Smirnov test of the equality of the condi-

tional and unconditional return distributions for NYSE/AMEX and NASDAQ stocks from

1962 to 1996. Recall that conditional returns are defined as the one-day return starting three

days following the conclusion of an occurrence of a pattern. The p-values are with respect to

the asymptotic distribution of the Kolmogorov-Smirnov test statistics. The entries in the top

45For the Nasdaq stocks, τ1 is the average turnover over the first third of the sample, and τ2 is the average
turnover over the final third of the sample.

46Of course, other conditioning variables can easily be incorporated into this procedure, though the “curse
of dimensionality” imposes certain practical limits on the ability to estimate multivariate conditional distri-
butions nonparametrically.
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panel of Table 9 shows that for NYSE/AMEX stocks, five of the ten patterns—HS, BBOT,

RTOP, RBOT, and DTOP—yield statistically significant test statistics, with p-values rang-

ing from 0.000 for RBOT to 0.021 for DTOP patterns. However, for the other five patterns,

the p-values range from 0.104 for IHS to 0.393 for DBOT, which implies an inability to

distinguish between the conditional and unconditional distributions of normalized returns.

When LMW2 condition on declining volume trend as well as the occurrence of the pat-

terns, the statistical significance declines for most patterns, but increases for TBOT. In

contrast, conditioning on increasing volume trend yields an increase in the statistical signifi-

cance of BTOP patterns. This difference may suggest an important role for volume trend in

TBOT and BTOP patterns. The difference between the increasing and decreasing volume-

trend conditional distributions is statistically insignificant for almost all the patterns (the

sole exception is the TBOT pattern). This drop in statistical significance may be due to a

lack of power of the Kolmogorov-Smirnov test given the relatively small sample sizes of these

conditional returns.

The bottom panel of Table 9 reports corresponding results for the NASDAQ sample and

in contrast to the NYSE/AMEX results, here all the patterns are statistically significant

at the 5 percent level. This is especially significant because the NASDAQ sample exhibits

far fewer patterns than the NYSE/AMEX sample (compare Figures 6 and 7), hence the

Kolmogorov-Smirnov test is likely to have lower power in this case.

As with the NYSE/AMEX sample, volume trend seems to provide little incremental

information for the NASDAQ sample except in one case: increasing volume and BTOP. And

except for the TTOP pattern, the Kolmogorov-Smirnov test still cannot distinguish between

the decreasing and increasing volume-trend conditional distributions, as the last pair of rows

of Table 9 indicate.

When applied to many stocks over many time periods, LMW2’s approach shows that cer-

tain technical patterns do provide incremental information, especially for NASDAQ stocks.

While this does not necessarily imply that technical analysis can be used to generate “excess”

trading profits, it does raise the possibility that technical analysis can add value to the invest-

ment process. Moreover, the evidence also suggests that volume trend provides incremental

information in some cases. Although this hardly seems to be a controversial conclusion—that

both prices and quantities contain incremental information for future returns—nevertheless,

it comes from a rather surprising source that may contain other insights into the role of

trading volume for economic activity.
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8 Conclusion

Trading volume is an important aspect of the economic interactions of investors in financial

markets. Both volume and prices are driven by underlying economic forces, and thus convey

important information about the workings of the market. Although the literature on finan-

cial markets has focused almost exclusively on the behavior of returns based on simplifying

assumptions about the market such as perfect competition, lack of frictions, and informa-

tional efficiency, we wish to develop a more realistic framework to understand the empirical

characteristics of prices and volume.

In this paper, we hope to have made a contribution towards this goal. We first develop a

dynamic equilibrium model for asset trading and pricing. The model qualitatively captures

the most important motive for investors to participate in the market, namely, to achieve

optimal allocations of wealth over time and across different risk profiles. We then explore

the implications of the model for the behavior of volume and returns, particularly, the

cross-sectional behavior of volume and the dynamic volume-return relations. We test these

implications empirically and have found them to be generally consistent with the data. Fully

realizing that our model merely provides a benchmark at best since it omits many important

factors such as asymmetric information, market frictions, and other trading motives, we

extend our model to include information asymmetry and transaction costs. We also go

beyond the framework of our formal model and analyze the relation between price and volume

in heuristic models of the market such as technical analysis. Our empirical analysis of these

heuristic models finds some interesting connections between volume and price dynamics.

Our main approach in this paper has been to investigate study the behavior of price

and volume using a structured equilibrium framework to motivate and direct our empirical

analysis. While this has led to several interesting insights, there are many other directions

to be explored. One important direction is to derive and test the implications of the model

for identifying the specific risk factors that explain the cross-sectional variation in expected

returns. We are currently pursuing this line of research in Lo and Wang (2000b). Another

direction is to extend the framework to include other important factors, such as a richer

set of trading motives, the actual trading mechanism, price impact, frictions, and other

institutional aspects in our analysis. We hope to turn to these issues in the near future.
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A Appendix

In this appendix, we give a proof for Theorem 1. We first solve the investors optimization

problem under the stock prices in the form of (14) and then show that a and b can be chosen

to clear the market.

Define θt ≡ (1; Xt; Yt; Zt) to be the state variable for an individual investor, say, i. For

simplicity, we omit the superscript i for now. Then

dθt = αθθtdt + σθdBt (A.1)

where αθ ≡ diag{0, αX , αY , αZ} is a diagonal matrix, σθ ≡ (0; σX ; σY ; σZ). Given the price

function in (14), the excess dollar return on the stocks can be written as

dQt = eQθtdt + σQdBt (A.2)

where eQ ≡ (ra, 0, 0, (r+αZ)b) and σQ ≡ σD − bσZ .

Let J(W, θ, t) denote the value function. We conjecture that it has the following form:

J(W, θ, t) = −e−ρt−rγW−1
2

θ′vθ (A.3)

The Bellman equation then takes the following form:

0 = sup
c, S

−e−ρt−γct + E[dJ ]/dt (A.4a)

= sup
c, S

−e−ρt−γct − J
[
ρ + (rγ)(rW − c) − 1

2
θ′mθ

+(rγ)S ′eQθ − 1
2
(rγ)2S ′σQQS − (rγ)2S ′σQN ι′θ − (rγ)S ′σQθvθ

]
(A.4b)

where

m ≡ (rγ)2σ2
N ιι′ + vσθθv + vαθ + αθv + (rγ)(ισNθv + vσθN ι′). (A.5)
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The first order condition for optimality gives

c = rW −
1

γ
ln r +

1

2γ
θ′vθ (A.6a)

S =
1

rγ
[eQ − (rγ)σQN ι′ − σQθv] θ. (A.6b)

Substituting into the Bellmen equation, we have

0 = v00 +
r

2
θ′vθ + 1

2
θ′mθ − 1

2
θ (eQ − rγσQN ι′ − σQθv)

′
(eQ − rγσQN ι′ − σQθv) θ (A.7)

where v00 ≡ r − ρ − r ln r. This then leads to the following equation for v:

0 = v̄ + 1
2
rv + 1

2
m − 1

2
(eQ − rγσQN ι′ − σQθv)

′
(eQ − rγσQN ι′ − σQθv) (A.8)

where v̄ ≡ v00((1, 0, 0, 0); (0, 0, 0, 0); (0, 0, 0, 0); (0, 0, 0, 0)).

We now consider market clearing. First,

Si
t =

1

rγ
(σQQ)−1 [ra + (r+αZ)bZt − (rγ)σQN ι′θt − σQθvθt] . (A.9)

Second, let v ≡ (v0; vX ; vY ; vZ). Since σQθ = (0, 0, 0, σQZ), we have σQθv = σQZvZ . Thus,

Si
t =

1

rγ
(σQQ)−1

[
ra + (r+αZ)bZt − (rγ)σQN

(
X i

t + Y i
t + Zt

)

−σQZ

(
vZ0 + vZXX i

t + vZY Y i
t + vZZZt

)]
. (A.10a)

Third, summing over the investors, we have

ι =
I∑

i=1

Si
t =

1

rγ̄
(σQQ)−1 [ra + (r+αZ)bZt − (rγ)σQNZt − σQZ (vZ0 + vZZZt)] (A.11)

where γ̄ = γ/I. Thus, we have

a = γ̄ (σQQ)−1 ι + (vZ0/r)σQZ (A.12a)

b =
1

r + αZ

(vZZσQZ + rγσQN) . (A.12b)
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Substituting (A.12) (the equilibrium prices) into the expression for investors’ asset de-

mand gives us their equilibrium holdings:

Si
t = (1/I)ι −

(
X i

t + Y i
t

)
(σQQ)−1 σQN −

1

rγ

(
vZXX i

t + vZY Y i
t

)
(σQQ)−1 σQZ (A.13)

which is the four-fund separation result in Theorem 1.

The remaining part of the proof is the existence of a solution to the system of algebraic

equations defined by (A.8) and (A.12). The proof of the existence of a solution in the case of

a single stock can be found in Huang and Wang (1997), which can be extended to the case

of multiple stocks. In particular, equation (A.8) reduces to a Riccatti equation, which has a

closed form solution (under certain parameter restrictions, see Huang and Wang (1997) for

more details). The existence of a solution to (A.12) is then straightforward to establish.
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