


Traditional vs. Mobile
Operating Systems

CS-502
Fall 2011

James Process
Andrew Sawchuk

Jeffrey Martin
Mike Sandman

Overview

 Introduction

 Design

 Development

 Test

 Packaging/Distribution

 Wrap-up

Introduction

 Discuss the differences between Traditional and Mobile Operating
Systems

 Focus will be on Android vs. Linux and iOS vs. Mac OS** X

 Cross compare all four, Android vs. Linux vs. iOS vs. Mac OS X
from the developer perspective

 Objective - What is the mental model a developer must have when
developing for mobile vs. traditional operating systems

A New Age of Operating
Systems

 Why create new operating systems for phones, tablets and
other devices? Why not just use existing ones?
 End user has different expectations/requirements from their

mobile device than their laptop/desktop
 More simple/cleaner design that can be driven from a very

limited number of peripherals i.e. only has a touch screen, and
maybe a keyboard

 Added reliability needed by user as users depend on their
mobile devices for daily functions (e.g., calling, email,
calendars, etc.)

Design
Android vs. Linux

 Languages
 Linux – Most modern languages available: C/C++, Java,

JavaScript, Python, Ruby, etc.
 Android – Must be coded using Java. JNI allows the use of other

languages, but all system APIs must be called from Java code

 Integrated Development Environment (IDE)
 Linux – Commonly text editors are used in conjunction with

cmdline compilers. But several other options are available based
on language

 Android – SDK is available as an integrated tool for Eclipse and
also a cmdline based set of tools for emulation, debug, and
compilation are available

Design
Android vs. Linux

 Defining your audience
 Version Compatibility
 Android – different versions and upgrade not available for all devices
 Must weigh increased feature set of newer versions versus audience

size of including older versions
 Linux – Must consider various architectures and target distributions

(e.g. RHEL, OpenSUSE, Ubuntu, etc.)
 Peripherals
 Linux – Keyboard, mouse, monitor, all others should be available for

purchase.
 Android – No guarantee on hardware, though most mobile devices

have at least a touch screen. May have others, physical keyboard,
trackball, front facing camera, etc.
 Most likely not to upgrade to a new device for a specific peripheral

for your app

Design
iOS vs. Mac OS X

 Languages
 Mac OS** X Based on OPENSTEP, Mach, BSD and Mac OS*:
 Apple** SDK: Xcode

 Darwin kernel

 Native language/SDK is Objective-C based

 Unix languages (C, Objective-C, java, scripting languages …)

 iOS is OS X Based but supports Objective-C as only language
 Library support provided by “Frameworks” ***

 Integrated Development Environment (IDE)
 Mac OS X: Xcode provided by Apple**
 Third-party IDEs (such as Eclipse) supported

Design
iOS vs. Mac OS X

 Integrated Development Environment (cont.)
 iOS SDK provided and controlled by Apple Inc.
 Includes Xcode which provides the editor, debugger and compiler

 Interface builder –Program for creating the Graphical User
Interface and associating to the application code

 Simulator – iOS virtual machine allows testing of applications on
a MAC**

 Tracing and Profiling (Instruments) – Application profiler
providing details on memory usage and system performance.
Based on Sun Microsystems Dtrace package.

Design
iOS vs. Mac OS X

 Defining your audience
 Version Compatibility
 iOS – Version Restricted and controlled by Apple Inc.
 Apple is the sole OS and hardware platform developer
 Application developers need to consider the iOS version they are

developing to
 Newer features may change development approach (Ex:

Automated Reference counting*)
 Mac OS* X– Versions restricted and controlled by Apple**
 Only one manufacturer of hardware/OS
 (Basically the same thing as iOS)

Design
iOS vs. Mac OS X

 Defining your audience (cont.)
 Peripherals
 Mac OS* X
 FireWire Reference Platform 2.0
 Bluetooth (Apple’s Bluetooth Stack, based on Bluetooth SIG

Standard)
 Multiple USB devices (camcorders, digital cameras, cell

phones)
 DVD-ROM drive, mouse, keyboard, monitor

 iOS
 Supports “Bonjour”* for network device discovery
 Bluetooth for Peer-to-Peer connectivity
 USB Cable can be used

Design
Summary

 Linux/Mac OS* X
 Freedom to choose IDE/Language
 More peripherals/upgrades available
 Operating systems released as standalone software
 Different Linux architectures and distributions, not so for Mac

 Android
 Restricted to Java, minimal IDE flexibility
 Non-standard hardware
 Varying OS version per device
 OS is distributed by hardware mfg

 iOS
 Restricted to Objective C
 Slight hardware variation between older/newer devices but for the most part standardized
 Single hardware vendor, standardized hardware
 Latest version generally available

Development
Linux

 Memory Management
 Large address spaces via virtual memory

 Each process has its own virtual address space, and cannot
touch others

 Virtual memory mapping is managed by the Linux kernel

 Process Lifecycle
 Each process has a corresponding metadata structure within

the Linux kernel

 Processes are started, scheduled, and destroyed by the Linux
kernel

Development
Android

 Process and Memory Management
 Each Android application runs in its own Dalvik VM
 Dalvik VM is memory-optimized so that multiple instances may

be run on the same device

 Threading and low-level memory management is done by the
Linux kernel

 Android Runtime
 Manages processes and memory at a higher level

 Each process is assigned a state (and associated priority)

 Android runtime kills tasks to free up memory based on priority of
task

Development
Application Security

 Linux
 Running application inherits privileges of the user running it

 Every file has permissions and filetype embedded straight into
the file

 Android
 Each application must request needed permissions (e.g.,

read/write storage, access contact information, access the
Internet, etc.)

 When installing, end user must “accept” list of requested
permissions

Development
User Interface

 Linux
 Command shell

 Various graphics libraries available (e.g., OpenGL, TK, etc.)

 Several GUIs (window managers)
 Different window managers are bundled with different

distributions

 Android
 Standardized GUI provided by the Android platform

 GUI may be tweaked slightly by device manufacturers

Development
Mac OS X

 Memory Management
 Sparse virtual memory scheme (one of the major upgrades

from Mac OS9)

 Garbage collection

 Process Lifecycle
 Multiple processes allowed

 Unix/Linux style process IDs and management, processes
managed within kernel

 Processes can be started/terminated/force quit from command
line or Desktop

Development
iOS

 Memory Management
 Same virtual memory scheme as Mac OS** X

 Garbage collection
 Viewed differently by the beholder

 If memory is low, app is requested to release, if it does not it is
terminated (See process life cycle).

 Application memory has to be either marked for release (ARC) or
manually released (MRR)*

 Automated reference counting (new)

 Manual retain and release

Development
iOS

 Process Lifecycle
 “Multitasking” is supported in newer iOS versions*
 Restrictions are applied to back ground tasks (Playing audio or cell

calls)

 App operations are expected to be short in duration if running in
the background (exception with previous statement).

 Processes not in the foreground (only running app) are suspended

 If memory is running low on the system these apps are stopped

Development
Application Security

 Mac OS X

 Running application inherits privileges of the user running it

 Every file has permissions and filetype embedded straight into the file

 Some changes require administrator permissions (different from “root” user)

 iOS
 Application installation done via an App store (Apple iTunes* or private)

 Data encryption done via KeyChain and Cryptography Services

 Access provided by application signature

 Keychain items can be shared across applications

 Only the keychain item is encrypted on backups

 Don’t store the password information directly (and always look up latest threats)

 No actual “users” are present on the system

Development
User Interface

Mac OS Xand iOS

 Mac OS X
 GUI is Apple* desktop with dock and application bar

 Command line interface (Terminal) similar to Linux shell,
runnable from GUI

 iOS
 Graphical User interface only

 Single Application user window displayed at a time
 Note multiple views can be provided via the application

 Different hardware has different resolutions

Development
Summary

 Linux/Mac OS* X
 Separate virtual memory per process

 Large address space

 Graphical and command line interface

 Large number of concurrent processes

 Application privileges match those of user running it

Development
Summary

 iOS
 Same virtual memory management as Mac OS* X

 Memory resources limited, multitasking limited

 Security is restricted to Keychain and cryptography methods

 Android
 Each process runs in its own VM

 Process lifecycle managed by Android runtime

 Each application has its own permissions

Test and Debug
Android vs. Linux

 Similar mechanics for both Linux and Android

 Linux
 Bare metal or Virtual Machine
 Can print messages to stdout
 GNU Debugger (GDB)/Kernel Debugger (KDB)

 Android
 Physical device
 SDK provides emulator
 Can configure OS Version, peripherals, screen size, disk size

 Can print messages out to system log, viewable using ADB logcat
 Android Debug Bridge (ADB)

Test and Debug
Android vs. Linux

Key difference between Linux and Android debugging…

 Client-server debugging vs. local debugging

 Both Android and Linux support client-server debug models

 Linux supports local debugging

 Very limited debug tools on standalone Android device

Test and Debug
Mac OS X

 LLDB
 Part of LLVM open source project

 Included as part of Xcode v4

 Apple Developer Tools
 Suite of test tools provided by Apple Inc.

 10.6 and later

 Packaged with Xcode but not installed by default

 Use own debugger of third-party IDEs

Test and Debug
iOS

 Xcode debugging interface provided
 SDK version should be greater then or equal to the iOS version

developed to.

 Console provided, logging facilities should be used

 USB Connection needed for debugging

 Simulator included in Apple Inc. SDK, runs on Mac OS X

 Use of each i[Device]* should be tested on

Test and Debug
Summary

 Linux/Mac OS X
 Debuggers as part of IDE
 Multiple choices
 Traditional test and debug approach

 Android
 Single debugger
 Debugging easier in client/server environment*

 iOS
 Single debugger (Xcode)
 Debugging can be done on phone or on iOS Simulator*

Packaging
Android vs. Linux

 Linux – Several different packaging types
 RHEL/CentOS - .rpm file format

 Debian/Ubuntu - .deb file format

 Others…

 Android – One package type
 .apk files for all android releases/platforms

Packaging
iOS vs. Mac OS X

 Mac OS X- .pkg files
 Installer – installation wizard for Mac

 Often packaged in a .dmg (disk image)

 Sometimes need to drag executable into Applications folder
manually

 iOS – Application bundles
 Inventory list of the files for the Apps “Information Property

list”*

 Application content files (Program, data files “Resources”)

Distribution
Linux

 Various software repositories, based on Linux distribution
(e.g., Yum, Apt-Get, Pacman, etc.)
 Private and public entities can create repositories, which end

users then use that repository’s client to connect and download
software packages

 Developer must manually package and submit software for
each repository

 Source code, binaries, and other packaging may optionally
be distributed via other means

Distribution
Android

 Original app repository is the Android Market, which is
hosted by Google

 Third-party app repositories are also available, such as the
Amazon Appstore for Android

 Both Google and Amazon repositories:
 offer license enforcement mechanisms (copy protection)
 actively police apps in their repositories
 take a cut of app sales revenue

 Developer may distribute source and/or .apk via other
means

Distribution
Mac OS X

 Third-party distribution
 Developers make software available on website/in stores
 No approval with Apple needed

 App store in later versions
 Through iTunes
 Modeled after iOS App store
 Need to submit through Apple* development process

Distribution
iOS

 Apps registered through Apple Inc. iTunes*

 Must be a registered developer with Apple Inc.
 Additional work beyond registration may be needed.

 Can distribute beta versions of app to a limited audience

 Private distributions can be done in Enterprises

 Educational access is available

Packaging/Distribution
Summary

 Linux
 Multiple repositories (based on distribution)
 Multiple package types
 Option to release independently

 Mac OS* X
 Independent distribution
 Core OS from Apple*
 iOS-like App Store in later versions

Packaging/Distribution
Summary

 Android
 Single format (.apk)
 Typically distributed through Google on Android Market
 Option to distribute third-party e.g. Amazon Market
 Independent distribution possible

 iOS
 Single package format
 Apps must be submitted to Apple for distribution (approval)
 No third-party commercial distribution

Wrap-up

 Less flexibility in development environment on
iOS/Android

 iOS and Android require tighter memory
management/more controlled access to devices

 Mobile app development targeted for a more specific and
known set of devices

 Application distribution has tighter regulation on iOS and
Android

Resources/References
Linux/Android

 Android
 Android Developers
 http://developer.android.com/index.html

 Android Open Source Project
 http://source.android.com/index.html

 Linux
 The Linux Documentation Project
 �http://tldp.org/LDP/tlk/mm/memory.html

 IBM on Linux Memory Management
 http://www.ibm.com/developerworks/linux/library/l-linux-process-

management/
 ResearchBooth.com on Linux Security
 http://www.researchbooth.com/categories/computers/open_source/

understanding_linux_security.php

http://developer.android.com/index.html
http://source.android.com/index.html
http://tldp.org/LDP/tlk/mm/memory.html
http://www.ibm.com/developerworks/linux/library/l-linux-process-management/
http://www.ibm.com/developerworks/linux/library/l-linux-process-management/
http://www.researchbooth.com/categories/computers/open_source/understanding_linux_security.php
http://www.researchbooth.com/categories/computers/open_source/understanding_linux_security.php

Resources/References
iOS/Mac OS X

 Apple Inc. Development portal

 http://developer.apple.com/

 Apples' Open Source resources

 http://www.opensource.apple.com/

 http://developer.apple.com/opensource/

 MAC OS Forge:

 http://www.Mac OSforge.org/

 Other Useful resources:

 http://cocoadevcentral.com/

 http://boredzo.org/cocoa-and-cocoa-touch-intro/

 http://www.w3.org/Consortium/

 http://www.raywenderlich.com/

http://www.opensource.apple.com/
http://developer.apple.com/opensource/
http://cocoadevcentral.com/
http://boredzo.org/cocoa-and-cocoa-touch-intro/
http://www.w3.org/Consortium/

Resources/References
iOS/Mac OS X

 Publications

 The iOS 5 Developer's Cookbook: Core Concepts and Essential Recipes for iOS Programmers, Third Edition, Erica Sadun,
Addison-wesley Professional, November 14 2011 ISBN-13 978-0-321-75426-4

 iOS5 Programming Cookbook, Vandad Nahavandipoor, O’Reilly Media, Inc., Updated November 2, 2011, ISBN-13 978-1-
4492-1143-8

 Introducing Xcode 4 Tools for iOS Development. Xcode 4 iOS Development, Steven F. Daniel, August 25, 2011 ISBN:
9781849691307

 iOS Development Bibliography, Safari Content Team, Safari Books Online August 1, 2011

	Traditional vs. Mobile Operating Systems
	Overview
	Introduction
	A New Age of Operating Systems
	Design�Android vs. Linux
	Design�Android vs. Linux
	Design�iOS vs. Mac OS X
	Design�iOS vs. Mac OS X
	Design�iOS vs. Mac OS X
	Design�iOS vs. Mac OS X
	Design�Summary
	Development�Linux
	Development�Android
	Development�Application Security
	Development�User Interface
	Development�Mac OS X
	Development�iOS
	Development�iOS
	Development�Application Security
	Development�User Interface�Mac OS Xand iOS
	Development�Summary
	Development�Summary
	Test and Debug�Android vs. Linux
	Test and Debug�Android vs. Linux
	Test and Debug�Mac OS X
	Test and Debug�iOS
	Test and Debug�Summary
	Packaging�Android vs. Linux
	Packaging�iOS vs. Mac OS X
	Distribution�Linux
	Distribution�Android
	Distribution�Mac OS X
	Distribution�iOS
	Packaging/Distribution�Summary
	Packaging/Distribution�Summary
	Wrap-up
	Resources/References�Linux/Android
	Resources/References�iOS/Mac OS X
	Resources/References�iOS/Mac OS X

