Traditional vs. Mobile Operating Systems

CS-502 Fall 2011 James Process Andrew Sawchuk Jeffrey Martin Mike Sandman

- Introduction
- Design
- Development
- Test
- Packaging/Distribution
- ♦ Wrap-up

Introduction

- Discuss the differences between Traditional and Mobile Operating Systems
- Focus will be on Android vs. Linux and iOS vs. Mac OS** X
- Cross compare all four, Android vs. Linux vs. iOS vs. Mac OS X from the developer perspective
- Objective What is the mental model a developer must have when developing for mobile vs. traditional operating systems

A New Age of Operating Systems

- Why create new operating systems for phones, tablets and other devices? Why not just use existing ones?
 - End user has different expectations/requirements from their mobile device than their laptop/desktop
 - More simple/cleaner design that can be driven from a very limited number of peripherals i.e. only has a touch screen, and maybe a keyboard
 - Added reliability needed by user as users depend on their mobile devices for daily functions (e.g., calling, email, calendars, etc.)

Design Android vs. Linux

- Languages
 - Linux Most modern languages available: C/C++, Java, JavaScript, Python, Ruby, etc.
 - Android Must be coded using Java. JNI allows the use of other languages, but all system APIs must be called from Java code
- Integrated Development Environment (IDE)
 - Linux Commonly text editors are used in conjunction with cmdline compilers. But several other options are available based on language
 - Android SDK is available as an integrated tool for Eclipse and also a cmdline based set of tools for emulation, debug, and compilation are available

Design Android vs. Linux

- Defining your audience
 - Version Compatibility
 - Android different versions and upgrade not available for all devices
 - Must weigh increased feature set of newer versions versus audience size of including older versions
 - Linux Must consider various architectures and target distributions (e.g. RHEL, OpenSUSE, Ubuntu, etc.)
 - Peripherals
 - Linux Keyboard, mouse, monitor, all others should be available for purchase.
 - Android No guarantee on hardware, though most mobile devices have at least a touch screen. May have others, physical keyboard, trackball, front facing camera, etc.
 - Most likely not to upgrade to a new device for a specific peripheral for your app

- Languages
 - Mac OS** X Based on OPENSTEP, Mach, BSD and Mac OS*:
 - Apple** SDK: Xcode
 - Darwin kernel
 - Native language/SDK is Objective-C based
 - Unix languages (C, Objective-C, java, scripting languages ...)
 - iOS is OS X Based but supports Objective-C as only language
 - Library support provided by "Frameworks" ***
- Integrated Development Environment (IDE)
 - Mac OS X: Xcode provided by Apple**
 - Third-party IDEs (such as Eclipse) supported

Integrated Development Environment (cont.)

- iOS SDK provided and controlled by Apple Inc.
 - Includes Xcode which provides the editor, debugger and compiler
 - Interface builder –Program for creating the Graphical User Interface and associating to the application code
 - Simulator iOS virtual machine allows testing of applications on a MAC**
 - Tracing and Profiling (Instruments) Application profiler providing details on memory usage and system performance. Based on Sun Microsystems Dtrace package.

• Defining your audience

- Version Compatibility
 - iOS Version Restricted and controlled by Apple Inc.
 - Apple is the sole OS and hardware platform developer
 - Application developers need to consider the iOS version they are developing to
 - Newer features may change development approach (Ex: Automated Reference counting*)
 - Mac OS* X– Versions restricted and controlled by Apple**
 - Only one manufacturer of hardware/OS
 - (Basically the same thing as iOS)

• Defining your audience (cont.)

- Peripherals
 - ♦ Mac OS* X
 - FireWire Reference Platform 2.0
 - Bluetooth (Apple's Bluetooth Stack, based on Bluetooth SIG Standard)
 - Multiple USB devices (camcorders, digital cameras, cell phones)
 - DVD-ROM drive, mouse, keyboard, monitor
 - iOS
 - Supports "Bonjour"* for network device discovery
 - Bluetooth for Peer-to-Peer connectivity
 - USB Cable can be used

- Linux/Mac OS* X
 - Freedom to choose IDE/Language
 - More peripherals/upgrades available
 - Operating systems released as standalone software
 - Different Linux architectures and distributions, not so for Mac
- Android
 - Restricted to Java, minimal IDE flexibility
 - Non-standard hardware
 - Varying OS version per device
 - OS is distributed by hardware mfg
- iOS
 - Restricted to Objective C
 - Slight hardware variation between older/newer devices but for the most part standardized
 - Single hardware vendor, standardized hardware
 - Latest version generally available

Development

- Memory Management
 - Large address spaces via virtual memory
 - Each process has its own virtual address space, and cannot touch others
 - Virtual memory mapping is managed by the Linux kernel
- Process Lifecycle
 - Each process has a corresponding metadata structure within the Linux kernel
 - Processes are started, scheduled, and destroyed by the Linux kernel

Development Android

Process and Memory Management

- Each Android application runs in its own Dalvik VM
 - Dalvik VM is memory-optimized so that multiple instances may be run on the same device
 - Threading and low-level memory management is done by the Linux kernel
- Android Runtime
 - Manages processes and memory at a higher level
 - Each process is assigned a state (and associated priority)
 - Android runtime kills tasks to free up memory based on priority of task

Development Application Security

Linux

- Running application inherits privileges of the user running it
- Every file has permissions and filetype embedded straight into the file

Android

- Each application must request needed permissions (e.g., read/write storage, access contact information, access the Internet, etc.)
- When installing, end user must "accept" list of requested permissions

Development User Interface

- Linux
 - Command shell
 - Various graphics libraries available (e.g., OpenGL, TK, etc.)
 - Several GUIs (window managers)
 - Different window managers are bundled with different distributions
- Android
 - Standardized GUI provided by the Android platform
 - GUI may be tweaked slightly by device manufacturers

Development Mac OS X

Memory Management

- Sparse virtual memory scheme (one of the major upgrades from Mac OS9)
- Garbage collection
- Process Lifecycle
 - Multiple processes allowed
 - Unix/Linux style process IDs and management, processes managed within kernel
 - Processes can be started/terminated/force quit from command line or Desktop

Development iOS

- Memory Management
 - Same virtual memory scheme as Mac OS** X
 - Garbage collection
 - Viewed differently by the beholder
 - If memory is low, app is requested to release, if it does not it is terminated (See process life cycle).
 - Application memory has to be either marked for release (ARC) or manually released (MRR)*
 - Automated reference counting (new)
 - Manual retain and release

Development iOS

- Process Lifecycle
 - "Multitasking" is supported in newer iOS versions*
 - Restrictions are applied to back ground tasks (Playing audio or cell calls)
 - App operations are expected to be short in duration if running in the background (exception with previous statement).
 - Processes not in the foreground (only running app) are suspended
 - If memory is running low on the system these apps are stopped

Development Application Security

- Mac OS X
 - Running application inherits privileges of the user running it
 - Every file has permissions and filetype embedded straight into the file
 - Some changes require administrator permissions (different from "root" user)

• iOS

- Application installation done via an App store (Apple iTunes* or private)
- Data encryption done via KeyChain and Cryptography Services
- Access provided by application signature
- Keychain items can be shared across applications
- Only the keychain item is encrypted on backups
- Don't store the password information directly (and always look up latest threats)
- No actual "users" are present on the system

Development

User Interface Mac OS Xand iOS

- Mac OS X
 - GUI is Apple* desktop with dock and application bar
 - Command line interface (Terminal) similar to Linux shell, runnable from GUI
- iOS
 - Graphical User interface only
 - Single Application user window displayed at a time
 - Note multiple views can be provided via the application
 - Different hardware has different resolutions

Development Summary

- ♦ Linux/Mac OS* X
 - Separate virtual memory per process
 - Large address space
 - Graphical and command line interface
 - Large number of concurrent processes
 - Application privileges match those of user running it

• iOS

- Same virtual memory management as Mac OS* X
- Memory resources limited, multitasking limited
- Security is restricted to Keychain and cryptography methods

Android

- Each process runs in its own VM
- Process lifecycle managed by Android runtime
- Each application has its own permissions

Test and Debug Android vs. Linux

- Similar mechanics for both Linux and Android
- ♦ Linux
 - Bare metal or Virtual Machine
 - Can print messages to stdout
 - GNU Debugger (GDB)/Kernel Debugger (KDB)
- Android
 - Physical device
 - SDK provides emulator
 - Can configure OS Version, peripherals, screen size, disk size
 - Can print messages out to system log, viewable using ADB logcat
 - Android Debug Bridge (ADB)

Test and Debug

Key difference between Linux and Android debugging...

- Client-server debugging vs. local debugging
- Both Android and Linux support client-server debug models
- Linux supports local debugging
- Very limited debug tools on standalone Android device

Test and Debug Mac OS X

♦ LLDB

- Part of LLVM open source project
- Included as part of Xcode v4
- Apple Developer Tools
 - Suite of test tools provided by Apple Inc.
 - 10.6 and later
 - Packaged with Xcode but not installed by default
- Use own debugger of third-party IDEs

Test and Debug

- Xcode debugging interface provided
 - SDK version should be greater then or equal to the iOS version developed to.
 - Console provided, logging facilities should be used
- USB Connection needed for debugging
- Simulator included in Apple Inc. SDK, runs on Mac OS X
- Use of each i[Device]* should be tested on

Test and Debug Summary

Linux/Mac OS X

- Debuggers as part of IDE
- Multiple choices
- Traditional test and debug approach

Android

- Single debugger
- Debugging easier in client/server environment*

• iOS

- Single debugger (Xcode)
- Debugging can be done on phone or on iOS Simulator*

Packaging Android vs. Linux

- Linux Several different packaging types
 - RHEL/CentOS .rpm file format
 - Debian/Ubuntu .deb file format
 - Others...
- Android One package type
 - .apk files for all android releases/platforms

Packaging iOS vs. Mac OS X

- Mac OS X- .pkg files
 - Installer installation wizard for Mac
 - Often packaged in a .dmg (disk image)
 - Sometimes need to drag executable into Applications folder manually
- iOS Application bundles
 - Inventory list of the files for the Apps "Information Property list"*
 - Application content files (Program, data files "Resources")

Distribution Linux

- Various software repositories, based on Linux distribution (e.g., Yum, Apt-Get, Pacman, etc.)
 - Private and public entities can create repositories, which end users then use that repository's client to connect and download software packages
 - Developer must manually package and submit software for each repository
- Source code, binaries, and other packaging may optionally be distributed via other means

Distribution Android

- Original app repository is the Android Market, which is hosted by Google
- Third-party app repositories are also available, such as the Amazon Appstore for Android
- Both Google and Amazon repositories:
 - offer license enforcement mechanisms (copy protection)
 - actively police apps in their repositories
 - take a cut of app sales revenue
- Developer may distribute source and/or .apk via other means

Distribution Mac OS X

- Third-party distribution
 - Developers make software available on website/in stores
 - No approval with Apple needed
- App store in later versions
 - Through iTunes
 - Modeled after iOS App store
 - Need to submit through Apple* development process

Distribution iOS

- Apps registered through Apple Inc. iTunes*
- Must be a registered developer with Apple Inc.
 - Additional work beyond registration may be needed.
- Can distribute beta versions of app to a limited audience
- Private distributions can be done in Enterprises
- Educational access is available

Packaging/Distribution Summary

Linux

- Multiple repositories (based on distribution)
- Multiple package types
- Option to release independently
- ♦ Mac OS* X
 - Independent distribution
 - Core OS from Apple*
 - iOS-like App Store in later versions

Packaging/Distribution Summary

- Android
 - Single format (.apk)
 - Typically distributed through Google on Android Market
 - Option to distribute third-party e.g. Amazon Market
 - Independent distribution possible
- iOS
 - Single package format
 - Apps must be submitted to Apple for distribution (approval)
 - No third-party commercial distribution

Wrap-up

- Less flexibility in development environment on iOS/Android
- iOS and Android require tighter memory management/more controlled access to devices
- Mobile app development targeted for a more specific and known set of devices
- Application distribution has tighter regulation on iOS and Android

Resources/References

- Android
 - Android Developers
 - http://developer.android.com/index.html
 - Android Open Source Project
 - http://source.android.com/index.html
- Linux
 - The Linux Documentation Project
 - ♦ □ <u>http://tldp.org/LDP/tlk/mm/memory.html</u>
 - IBM on Linux Memory Management
 - http://www.ibm.com/developerworks/linux/library/l-linux-processmanagement/
 - ResearchBooth.com on Linux Security
 - http://www.researchbooth.com/categories/computers/open_source/ understanding_linux_security.php

Resources/References iOS/Mac OS X

- Apple Inc. Development portal
 - http://developer.apple.com/
- Apples' Open Source resources
 - http://www.opensource.apple.com/
 - http://developer.apple.com/opensource/
- MAC OS Forge:
 - http://www.Mac OSforge.org/
- Other Useful resources:
 - <u>http://cocoadevcentral.com/</u>
 - http://boredzo.org/cocoa-and-cocoa-touch-intro/
 - http://www.w3.org/Consortium/
 - http://www.raywenderlich.com/

Resources/References iOS/Mac OS X

- Publications
 - The iOS 5 Developer's Cookbook: Core Concepts and Essential Recipes for iOS Programmers, Third Edition, Erica Sadun, Addison-wesley Professional, November 14 2011 ISBN-13 978-0-321-75426-4
 - iOS5 Programming Cookbook, Vandad Nahavandipoor, O'Reilly Media, Inc., Updated November 2, 2011, ISBN-13 978-1-4492-1143-8
 - Introducing Xcode 4 Tools for iOS Development. Xcode 4 iOS Development, Steven F. Daniel, August 25, 2011 ISBN: 9781849691307
 - iOS Development Bibliography, Safari Content Team, Safari Books Online August 1, 2011