

Traditional vs. Mobile
Operating Systems

CS-502
Fall 2011

James Process
Andrew Sawchuk

Jeffrey Martin
Mike Sandman

Overview

 Introduction

 Design

 Development

 Test

 Packaging/Distribution

 Wrap-up

Introduction

 Discuss the differences between Traditional and Mobile Operating
Systems

 Focus will be on Android vs. Linux and iOS vs. Mac OS** X

 Cross compare all four, Android vs. Linux vs. iOS vs. Mac OS X
from the developer perspective

 Objective - What is the mental model a developer must have when
developing for mobile vs. traditional operating systems

A New Age of Operating
Systems

 Why create new operating systems for phones, tablets and
other devices? Why not just use existing ones?
 End user has different expectations/requirements from their

mobile device than their laptop/desktop
 More simple/cleaner design that can be driven from a very

limited number of peripherals i.e. only has a touch screen, and
maybe a keyboard

 Added reliability needed by user as users depend on their
mobile devices for daily functions (e.g., calling, email,
calendars, etc.)

Design
Android vs. Linux

 Languages
 Linux – Most modern languages available: C/C++, Java,

JavaScript, Python, Ruby, etc.
 Android – Must be coded using Java. JNI allows the use of other

languages, but all system APIs must be called from Java code

 Integrated Development Environment (IDE)
 Linux – Commonly text editors are used in conjunction with

cmdline compilers. But several other options are available based
on language

 Android – SDK is available as an integrated tool for Eclipse and
also a cmdline based set of tools for emulation, debug, and
compilation are available

Design
Android vs. Linux

 Defining your audience
 Version Compatibility
 Android – different versions and upgrade not available for all devices
 Must weigh increased feature set of newer versions versus audience

size of including older versions
 Linux – Must consider various architectures and target distributions

(e.g. RHEL, OpenSUSE, Ubuntu, etc.)
 Peripherals
 Linux – Keyboard, mouse, monitor, all others should be available for

purchase.
 Android – No guarantee on hardware, though most mobile devices

have at least a touch screen. May have others, physical keyboard,
trackball, front facing camera, etc.
 Most likely not to upgrade to a new device for a specific peripheral

for your app

Design
iOS vs. Mac OS X

 Languages
 Mac OS** X Based on OPENSTEP, Mach, BSD and Mac OS*:
 Apple** SDK: Xcode

 Darwin kernel

 Native language/SDK is Objective-C based

 Unix languages (C, Objective-C, java, scripting languages …)

 iOS is OS X Based but supports Objective-C as only language
 Library support provided by “Frameworks” ***

 Integrated Development Environment (IDE)
 Mac OS X: Xcode provided by Apple**
 Third-party IDEs (such as Eclipse) supported

Design
iOS vs. Mac OS X

 Integrated Development Environment (cont.)
 iOS SDK provided and controlled by Apple Inc.
 Includes Xcode which provides the editor, debugger and compiler

 Interface builder –Program for creating the Graphical User
Interface and associating to the application code

 Simulator – iOS virtual machine allows testing of applications on
a MAC**

 Tracing and Profiling (Instruments) – Application profiler
providing details on memory usage and system performance.
Based on Sun Microsystems Dtrace package.

Design
iOS vs. Mac OS X

 Defining your audience
 Version Compatibility
 iOS – Version Restricted and controlled by Apple Inc.
 Apple is the sole OS and hardware platform developer
 Application developers need to consider the iOS version they are

developing to
 Newer features may change development approach (Ex:

Automated Reference counting*)
 Mac OS* X– Versions restricted and controlled by Apple**
 Only one manufacturer of hardware/OS
 (Basically the same thing as iOS)

Design
iOS vs. Mac OS X

 Defining your audience (cont.)
 Peripherals
 Mac OS* X
 FireWire Reference Platform 2.0
 Bluetooth (Apple’s Bluetooth Stack, based on Bluetooth SIG

Standard)
 Multiple USB devices (camcorders, digital cameras, cell

phones)
 DVD-ROM drive, mouse, keyboard, monitor

 iOS
 Supports “Bonjour”* for network device discovery
 Bluetooth for Peer-to-Peer connectivity
 USB Cable can be used

Design
Summary

 Linux/Mac OS* X
 Freedom to choose IDE/Language
 More peripherals/upgrades available
 Operating systems released as standalone software
 Different Linux architectures and distributions, not so for Mac

 Android
 Restricted to Java, minimal IDE flexibility
 Non-standard hardware
 Varying OS version per device
 OS is distributed by hardware mfg

 iOS
 Restricted to Objective C
 Slight hardware variation between older/newer devices but for the most part standardized
 Single hardware vendor, standardized hardware
 Latest version generally available

Development
Linux

 Memory Management
 Large address spaces via virtual memory

 Each process has its own virtual address space, and cannot
touch others

 Virtual memory mapping is managed by the Linux kernel

 Process Lifecycle
 Each process has a corresponding metadata structure within

the Linux kernel

 Processes are started, scheduled, and destroyed by the Linux
kernel

Development
Android

 Process and Memory Management
 Each Android application runs in its own Dalvik VM
 Dalvik VM is memory-optimized so that multiple instances may

be run on the same device

 Threading and low-level memory management is done by the
Linux kernel

 Android Runtime
 Manages processes and memory at a higher level

 Each process is assigned a state (and associated priority)

 Android runtime kills tasks to free up memory based on priority of
task

Development
Application Security

 Linux
 Running application inherits privileges of the user running it

 Every file has permissions and filetype embedded straight into
the file

 Android
 Each application must request needed permissions (e.g.,

read/write storage, access contact information, access the
Internet, etc.)

 When installing, end user must “accept” list of requested
permissions

Development
User Interface

 Linux
 Command shell

 Various graphics libraries available (e.g., OpenGL, TK, etc.)

 Several GUIs (window managers)
 Different window managers are bundled with different

distributions

 Android
 Standardized GUI provided by the Android platform

 GUI may be tweaked slightly by device manufacturers

Development
Mac OS X

 Memory Management
 Sparse virtual memory scheme (one of the major upgrades

from Mac OS9)

 Garbage collection

 Process Lifecycle
 Multiple processes allowed

 Unix/Linux style process IDs and management, processes
managed within kernel

 Processes can be started/terminated/force quit from command
line or Desktop

Development
iOS

 Memory Management
 Same virtual memory scheme as Mac OS** X

 Garbage collection
 Viewed differently by the beholder

 If memory is low, app is requested to release, if it does not it is
terminated (See process life cycle).

 Application memory has to be either marked for release (ARC) or
manually released (MRR)*

 Automated reference counting (new)

 Manual retain and release

Development
iOS

 Process Lifecycle
 “Multitasking” is supported in newer iOS versions*
 Restrictions are applied to back ground tasks (Playing audio or cell

calls)

 App operations are expected to be short in duration if running in
the background (exception with previous statement).

 Processes not in the foreground (only running app) are suspended

 If memory is running low on the system these apps are stopped

Development
Application Security

 Mac OS X

 Running application inherits privileges of the user running it

 Every file has permissions and filetype embedded straight into the file

 Some changes require administrator permissions (different from “root” user)

 iOS
 Application installation done via an App store (Apple iTunes* or private)

 Data encryption done via KeyChain and Cryptography Services

 Access provided by application signature

 Keychain items can be shared across applications

 Only the keychain item is encrypted on backups

 Don’t store the password information directly (and always look up latest threats)

 No actual “users” are present on the system

Development
User Interface

Mac OS Xand iOS

 Mac OS X
 GUI is Apple* desktop with dock and application bar

 Command line interface (Terminal) similar to Linux shell,
runnable from GUI

 iOS
 Graphical User interface only

 Single Application user window displayed at a time
 Note multiple views can be provided via the application

 Different hardware has different resolutions

Development
Summary

 Linux/Mac OS* X
 Separate virtual memory per process

 Large address space

 Graphical and command line interface

 Large number of concurrent processes

 Application privileges match those of user running it

Development
Summary

 iOS
 Same virtual memory management as Mac OS* X

 Memory resources limited, multitasking limited

 Security is restricted to Keychain and cryptography methods

 Android
 Each process runs in its own VM

 Process lifecycle managed by Android runtime

 Each application has its own permissions

Test and Debug
Android vs. Linux

 Similar mechanics for both Linux and Android

 Linux
 Bare metal or Virtual Machine
 Can print messages to stdout
 GNU Debugger (GDB)/Kernel Debugger (KDB)

 Android
 Physical device
 SDK provides emulator
 Can configure OS Version, peripherals, screen size, disk size

 Can print messages out to system log, viewable using ADB logcat
 Android Debug Bridge (ADB)

Test and Debug
Android vs. Linux

Key difference between Linux and Android debugging…

 Client-server debugging vs. local debugging

 Both Android and Linux support client-server debug models

 Linux supports local debugging

 Very limited debug tools on standalone Android device

Test and Debug
Mac OS X

 LLDB
 Part of LLVM open source project

 Included as part of Xcode v4

 Apple Developer Tools
 Suite of test tools provided by Apple Inc.

 10.6 and later

 Packaged with Xcode but not installed by default

 Use own debugger of third-party IDEs

Test and Debug
iOS

 Xcode debugging interface provided
 SDK version should be greater then or equal to the iOS version

developed to.

 Console provided, logging facilities should be used

 USB Connection needed for debugging

 Simulator included in Apple Inc. SDK, runs on Mac OS X

 Use of each i[Device]* should be tested on

Test and Debug
Summary

 Linux/Mac OS X
 Debuggers as part of IDE
 Multiple choices
 Traditional test and debug approach

 Android
 Single debugger
 Debugging easier in client/server environment*

 iOS
 Single debugger (Xcode)
 Debugging can be done on phone or on iOS Simulator*

Packaging
Android vs. Linux

 Linux – Several different packaging types
 RHEL/CentOS - .rpm file format

 Debian/Ubuntu - .deb file format

 Others…

 Android – One package type
 .apk files for all android releases/platforms

Packaging
iOS vs. Mac OS X

 Mac OS X- .pkg files
 Installer – installation wizard for Mac

 Often packaged in a .dmg (disk image)

 Sometimes need to drag executable into Applications folder
manually

 iOS – Application bundles
 Inventory list of the files for the Apps “Information Property

list”*

 Application content files (Program, data files “Resources”)

Distribution
Linux

 Various software repositories, based on Linux distribution
(e.g., Yum, Apt-Get, Pacman, etc.)
 Private and public entities can create repositories, which end

users then use that repository’s client to connect and download
software packages

 Developer must manually package and submit software for
each repository

 Source code, binaries, and other packaging may optionally
be distributed via other means

Distribution
Android

 Original app repository is the Android Market, which is
hosted by Google

 Third-party app repositories are also available, such as the
Amazon Appstore for Android

 Both Google and Amazon repositories:
 offer license enforcement mechanisms (copy protection)
 actively police apps in their repositories
 take a cut of app sales revenue

 Developer may distribute source and/or .apk via other
means

Distribution
Mac OS X

 Third-party distribution
 Developers make software available on website/in stores
 No approval with Apple needed

 App store in later versions
 Through iTunes
 Modeled after iOS App store
 Need to submit through Apple* development process

Distribution
iOS

 Apps registered through Apple Inc. iTunes*

 Must be a registered developer with Apple Inc.
 Additional work beyond registration may be needed.

 Can distribute beta versions of app to a limited audience

 Private distributions can be done in Enterprises

 Educational access is available

Packaging/Distribution
Summary

 Linux
 Multiple repositories (based on distribution)
 Multiple package types
 Option to release independently

 Mac OS* X
 Independent distribution
 Core OS from Apple*
 iOS-like App Store in later versions

Packaging/Distribution
Summary

 Android
 Single format (.apk)
 Typically distributed through Google on Android Market
 Option to distribute third-party e.g. Amazon Market
 Independent distribution possible

 iOS
 Single package format
 Apps must be submitted to Apple for distribution (approval)
 No third-party commercial distribution

Wrap-up

 Less flexibility in development environment on
iOS/Android

 iOS and Android require tighter memory
management/more controlled access to devices

 Mobile app development targeted for a more specific and
known set of devices

 Application distribution has tighter regulation on iOS and
Android

Resources/References
Linux/Android

 Android
 Android Developers
 http://developer.android.com/index.html

 Android Open Source Project
 http://source.android.com/index.html

 Linux
 The Linux Documentation Project
 �http://tldp.org/LDP/tlk/mm/memory.html

 IBM on Linux Memory Management
 http://www.ibm.com/developerworks/linux/library/l-linux-process-

management/
 ResearchBooth.com on Linux Security
 http://www.researchbooth.com/categories/computers/open_source/

understanding_linux_security.php

http://developer.android.com/index.html
http://source.android.com/index.html
http://tldp.org/LDP/tlk/mm/memory.html
http://www.ibm.com/developerworks/linux/library/l-linux-process-management/
http://www.ibm.com/developerworks/linux/library/l-linux-process-management/
http://www.researchbooth.com/categories/computers/open_source/understanding_linux_security.php
http://www.researchbooth.com/categories/computers/open_source/understanding_linux_security.php

Resources/References
iOS/Mac OS X

 Apple Inc. Development portal

 http://developer.apple.com/

 Apples' Open Source resources

 http://www.opensource.apple.com/

 http://developer.apple.com/opensource/

 MAC OS Forge:

 http://www.Mac OSforge.org/

 Other Useful resources:

 http://cocoadevcentral.com/

 http://boredzo.org/cocoa-and-cocoa-touch-intro/

 http://www.w3.org/Consortium/

 http://www.raywenderlich.com/

http://www.opensource.apple.com/
http://developer.apple.com/opensource/
http://cocoadevcentral.com/
http://boredzo.org/cocoa-and-cocoa-touch-intro/
http://www.w3.org/Consortium/

Resources/References
iOS/Mac OS X

 Publications

 The iOS 5 Developer's Cookbook: Core Concepts and Essential Recipes for iOS Programmers, Third Edition, Erica Sadun,
Addison-wesley Professional, November 14 2011 ISBN-13 978-0-321-75426-4

 iOS5 Programming Cookbook, Vandad Nahavandipoor, O’Reilly Media, Inc., Updated November 2, 2011, ISBN-13 978-1-
4492-1143-8

 Introducing Xcode 4 Tools for iOS Development. Xcode 4 iOS Development, Steven F. Daniel, August 25, 2011 ISBN:
9781849691307

 iOS Development Bibliography, Safari Content Team, Safari Books Online August 1, 2011

	Traditional vs. Mobile Operating Systems
	Overview
	Introduction
	A New Age of Operating Systems
	Design�Android vs. Linux
	Design�Android vs. Linux
	Design�iOS vs. Mac OS X
	Design�iOS vs. Mac OS X
	Design�iOS vs. Mac OS X
	Design�iOS vs. Mac OS X
	Design�Summary
	Development�Linux
	Development�Android
	Development�Application Security
	Development�User Interface
	Development�Mac OS X
	Development�iOS
	Development�iOS
	Development�Application Security
	Development�User Interface�Mac OS Xand iOS
	Development�Summary
	Development�Summary
	Test and Debug�Android vs. Linux
	Test and Debug�Android vs. Linux
	Test and Debug�Mac OS X
	Test and Debug�iOS
	Test and Debug�Summary
	Packaging�Android vs. Linux
	Packaging�iOS vs. Mac OS X
	Distribution�Linux
	Distribution�Android
	Distribution�Mac OS X
	Distribution�iOS
	Packaging/Distribution�Summary
	Packaging/Distribution�Summary
	Wrap-up
	Resources/References�Linux/Android
	Resources/References�iOS/Mac OS X
	Resources/References�iOS/Mac OS X

