

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Training Manual

STEP® 5 with S5 for Windows®

Basic Training

I N G E N I E U R B Ü R O F Ü R

TECHNOLOGIE TRANSFER

DIPL. -ING. B. P. SCHULZ-HEISE

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

The training documentation is for the personal use of the training participants only.

The duplication of the training documentation for not licensed purposes, the

passing on, utilization and communication of the contents to third parties is not

permitted.

Offense obliges to damage substitute.

All rights remain at TTI, Peter Schulz-Heise.

The software made available during the training class may be taken neither, nor be

copied all or part or be made in other, not licensed manner, usable.

TTI Ingenieurbüro für

Technologie Transfer

Dipl. Ing. B. Peter Schulz-Heise

Stadtring 207

64720 Michelstadt, Germany

Tel.: 06061 3382 Home page: TTIntl.com

Fax: 06061 71162 E-Mail: PSH@TTIntl.com

Simatic, STEP® 5, STEP® 7, S7-200®, S7-300®, S7-400® and GRAPH® 5 are registered trademarks of Siemens AG,
München and Berlin.. Picture Source: "© Siemens AG 2002, All rights reserved"
Windows™, Windows NT™ are trademarks of the Microsoft® Corporation in the USA and/or other countries.
InTouch® and Wonderware® are registered trademarks of the Wonderware Corporation.
Product names are trademarks of their owners.

 Table of Contents Page 1

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Table of Contents

Table of Contents .. 1

1 Basic S5 Programming .. 1-1

1.1 Methods of Representation ... 1-1

Ladder Diagram ...1-1
Ladder diagram representation on the monitor ...1-7
Symbolic Programming..1-8
Statement List (STL) ..1-9
Structure of a statement ..1-9
Function Block Call (STL presentation) .. 1-10
Control System Flowchart .. 1-13
Calling a Function Block ... 1-16

1.2 Structure of the Application Program 1-17

Blocks ... 1-17
Organization blocks (OBs) .. 1-18
Program blocks (PBs) ... 1-18
Function blocks (FBs, FXs) .. 1-18
Sequence blocks (SBs) .. 1-18
Data blocks (DBs, DXs) .. 1-19

1.3 Segment .. 1-19

1.4 PLC Program Structures .. 1-20

1.5 Linear Programs ... 1-20

1.6 Partitioned Program ... 1-21

1.7 Structured programs .. 1-22

1.8 Example of a program structure ... 1-24

1.9 Cyclic Program Processing ... 1-26

The Cyclic PLC Program Execution ... 1-28

1.10 CPU Start-up ... 1-29

RESTART OB’s .. 1-29
Cold Restart Routine .. 1-29
Restart Characteristics and Cyclic Operation ... 1-31

1.11 Cyclic Program Processing ... 1-32

The Cyclic PLC Program Execution ... 1-34

1.12 Organization Blocks for Interrupt-Driven Program Execution 1-35

Non-Cyclic Program Execution ... 1-35
Cyclic Interrupt Organization Blocks (OB10 to OB18) 1-37
Interrupt Driven Program Scanning .. 1-38
Overview of the System Interrupt OBs default settings 1-38

 Page 2 Table of Contents

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Error Handling Organization Blocks .. 1-38

2 Statement List Instructions Structure 2-1

2.1 STEP 5 Operands .. 2-4

2.2 Operands, Addressing Overview ... 2-7

Operands Addressing ... 2-7
Bit Variables (Bit Operands) ... 2-9
Byte Variable (Byte Operands) ... 2-11
Word Variable (Word Operands) .. 2-13
High Byte and Low Byte in a Word ... 2-14
Double Word Variable ... 2-15
Byte Order in a Double Word Variable.. 2-17
Overlapping of Variables ... 2-19

2.3 Symbolic Programming .. 2-21

Symbolic Table Format ... 2-21

2.4 Block Calls ... 2-25

Unconditional Call ... 2-25
Practice Exercise 2–1; Unconditional Call (JU) 2-28
Conditional Call ... 2-29
Practice Exercise 2–2; Conditional Call (JC) .. 2-32
Calling Organization Blocks .. 2-33
Calling Program Blocks ... 2-33
Calling Sequence Blocks .. 2-34
Calling Function Blocks ... 2-34

2.5 Block End (BE) .. 2-35

Block End Unconditional (BEU) .. 2-37
Practice Exercise 2–3; Conditional Call, BEU .. 2-38
Block End Conditional (BEC) .. 2-39
Practice Exercise 2–4; Conditional Call, BEC .. 2-40

3 Bit Logic Instructions .. 3-1

Binary Logical Instructions .. 3-1
Combinations of the Logical Instructions .. 3-2
Processing the Result of a Logic Operation ... 3-2
First Scan instruction... 3-4
Practice Exercise 3–1; Result of the Logic Operation, Status 3-6
RLO delimiting ... 3-7
RLO delimiting Instructions ... 3-7

3.1 Basic Rules of Boolean Algebra .. 3-8

Conversion AND / OR ... 3-8
Conversion OR / AND ... 3-8
Example of a Logical Connection ... 3-10
A AND Function .. 3-11
Practice Exercise 3–2; Logical AND ... 3-13
Practice Exercise 3–3; Logical OR ... 3-16
NAND Function ... 3-18

 Table of Contents Page 3

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

NOR Function ... 3-19
Practice Exercise 3–4; Conveyer Belt, Package Height 3-20
AND before OR ... 3-22
Practice Exercise 3–5; AND before OR .. 3-24
OR before AND ... 3-25
Practice Exercise 3–6; OR before AND .. 3-27
Practice Exercise 3–7; Normally Open (NO), Normally Closed (NC) 3-28
Converting a relay logic into a PLC Program ... 3-29
Using the LAD Editor .. 3-31
Practice Exercise 3–8; Motor right/left .. 3-35

3.2 Number Systems .. 3-36

Decimal system .. 3-36
Binary Numbers .. 3-38
Hexadecimal Numbers ... 3-39
The link between binary numbers and hexadecimal numbers 3-39
BCD numbers ... 3-41
The link between binary, BCD, and hexadecimal numbers 3-41
Practice Exercise 3–9; Seven Segment Display 3-44

3.3 Setting / Resetting Bit Addresses ... 3-47

S – Set instruction ... 3-47
R – Reset instruction .. 3-49
RS Flip Flop .. 3-50
SR Flip Flop .. 3-51
Practice Exercise 3–10; Latch .. 3-52

3.4 Edge Detection ... 3-53

Positive Edge Detection.. 3-54
Negative Edge Detection .. 3-56
Practice Exercise 3–11; Motor ON/OFF, Edge Detection with Latch 3-58

4 Timing Functions (Timer) and Counters 4-1

4.1 Timing Functions (Timer)... 4-1

Timer signals overview ..4-1
Area in Memory ...4-2
Enable Timer – FR (Free) ..4-5
Pulse Timer (SP) ...4-7
Extended Pulse Timer (SE) .. 4-10
On-Delay Timer (SD) .. 4-12
Retentive On-Delay Timer (SS) .. 4-15
Off-Delay Timer (SF) .. 4-17
Selecting the right Timer ... 4-19
Practice Exercise 4–1; Flashing Light .. 4-20
Practice Exercise 4–2; Traffic Light .. 4-21
Picture Block; Editor .. 4-23
Picture Block; Status Display ... 4-24

4.2 Counter Instructions .. 4-25

Enable Counter FR (Free) .. 4-25
Set Counter S (Preset Counter) .. 4-28

 Page 4 Table of Contents

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Load Current Counter Value (L) into ACCU 1 in Binary Form 4-28
Load Current Counter Value (LC) into ACCU 1 in BCD Form 4-30
Counter Up (CU) ... 4-31
Counter Down (CD)... 4-32
Practice Exercise 4–3; Counter .. 4-34

5 Function Blocks (FB; FX) and Data Blocks (DB; DX) 5-1

5.1 Programming Function Blocks .. 5-1

Function Blocks Without Block Parameters .. 5-2
Function Blocks With Block Parameters ... 5-2
Block Parameters .. 5-3
Parameter type .. 5-5
Data type ... 5-6
Block Parameters (Formal Operands) defined in a FB 5-8
Calling a Function Block with Parameters (graphic presentation) 5-8
Calling a Function Block with Parameters (STL) 5-10

5.2 Data Blocks ... 5-11

Calling Data Blocks ... 5-11
Opening another Data Block in a called Block .. 5-14
Creating a Data Block (DB, DX) .. 5-15
Changing the Data Word Format .. 5-16
Creating a Data Block (DB, DX) automatically 5-17
Function Block (FB) with Data Block (DB) .. 5-19
Practice Exercise 5–1; Hysteresis, Function Block with Data Block 5-20

 Chapter 1 Basic S5 Programming Page 1-1

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

1 Basic S5 Programming

1.1 Methods of Representation

In STEP 5, a task definition can be formulated using three different

methods of representation:

 Ladder diagram (LAD)

 Statement list (STL)

 Control system flowchart (CSF)

The three methods of representation are discussed briefly in the

following subsections.

Ladder Diagram

In ladder diagrams, the control task is defined using symbols similar to

those used in circuit diagrams. Programs can be entered, modified and

documented as ladder diagrams. This method of representation also

enables the output of dynamic status displays during on-line testing.

Symbols used in ladder diagrams

The symbols used in ladder diagrams are similar to those used in circuit

diagrams. They are represented on the screen by unbroken lines and in

printouts by characters from the printer’s standard character font.

Brackets (as per the standard “American” conventions) are used as

symbols for NO and NC contacts, and parentheses as coil symbol for a

contactor or relay:

As in circuit diagrams, the “contacts” can

be interconnected both in series and in

parallel. The symbol for the coil is located

at the end of the “rung”

 Page 1-2 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Example: Representing a series connection

The binary logic operations represented in a ladder diagram are

interconnecting structures of, NO and NC contacts in series and parallel

circuits. The coil symbol for a result assignment terminates the rung. It is

thus possible to represent individual set/reset operations and conditional

block calls (except for those relating to function blocks – these are

automatically displayed in Statement List presentation).

A special case is the “connector”, which represents a result assignment

within a logic operation and is identified by the symbol like a coil.

Example: Representing a “connector” in a ladder diagram

Complex operations are represented as boxes. A box contains the

symbol identifying the relevant operation. “Rungs” lead to the function

symbol’s inputs from the left, and “rungs” can be connected to the

function symbol’s outputs at the right. “Complex” operations include

set/reset, timer, and counters and compare operations.

 Chapter 1 Basic S5 Programming Page 1-3

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Examples of “complex” operations in ladder diagrams

Set/reset operation:

Timer operation:

Compare operation:

 Page 1-4 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Counter operation:

A function block call can also be called using LAD. S5 for Windows®

automatically switches into STL mode. If you prefer a graphical

presentation you must switch to CSF presentation. A function block call

must be programmed in a separate segment.

The number of the function block is shown within the Block call

instruction, the function block name and the names of the block

parameters (the function block’s “inputs” and “outputs”) are listed below.

 Chapter 1 Basic S5 Programming Page 1-5

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Function Block call, graphical presentation

The number of the function block is specified above the box, the function

block name and the names of the block parameters (the function block’s

“inputs” and “outputs”) in the box.

A function block call must be programmed in a separate segment.

Even when ladder diagram has been selected as the representation

method, it is still possible to enter basic STEP 5 operations which

cannot be represented in graphic form. To do so, you can switch to STL

presentation any time. This segment can subsequently be entered as

statement list. The system reverts to ladder diagram mode at the

beginning of the next segment.

It is also possible to prevent S5 for Windows® from switching into LAD

mode (if LAD is selected in the “Preference” settings). By entering “STL”

at the beginning of a segment the segment will only be displayed in STL.

 Page 1-6 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Example for program representation

SEGMENT 1 Series-parallel circuit (1)

SEGMENT 2 Series-parallel circuit (2)

The "rungs" are represented in segments. The segments are numbered

automatically. The first line is reserved to hold the segment header. The

segment header may be up to 60 characters (selected in the

“Preference” settings, miscellaneous tab).

To enter a segment commentary of arbitrary length the “Comments

display Window must be opened (Presentation Menu, Display

Comments).

A new segment must be created for each “rung”. A segment may

contain only one “rung”.

A block may comprise no more than 255 segments and no more than

4091 statements.

 Chapter 1 Basic S5 Programming Page 1-7

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Ladder diagram representation on the monitor

The screen space for ladder diagrams is subdivided into up to eight (8)

columns and up to thirty (30) lines. The logic operation is shown in the

first seven columns, the outputs in the eighth column.

The contacts for a logic operation are drawn at the left screen margin

(“rung”) or at a branch.

Each field contains a contact symbol and the associated operand

identifier. The vertical links between the contacts (branches) are shown

at the boundaries between the fields. Several fields may be required for

“complex” function symbols.

Segment Representation on the monitor:

The screen can be rolled up. A rung (for an output, for instance) may

comprise as many as 30 (ladder diagram) lines.

A “rung” corresponds to a “segment”.

 Page 1-8 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Symbolic Programming

Segment commentary and symbolic programming in a ladder diagram

Symbolic operands (such as -On) may be used in place of absolute

operand identifiers and parameters (such as I 5.0). An assignment list

(Symbolic Table) must be generated, however, before symbolic

operands can be used in the program.

To display symbolic operands the command “Symbolic Operands” from

the Presentation Menu must be selected. To display the “Symbolic

Table below the segment the command “Display Symbolic Table” from

the Presentation Menu must be selected. This window displays the

Operands in their absolute and symbolic form as well as an assigned

comment.

Whenever an operand is marked in the segment the corresponding line

is displayed in the Symbolic Table window and the line has also a blue

background.

 Chapter 1 Basic S5 Programming Page 1-9

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Statement List (STL)

In a statement list, the control task is described in form of a list using

mnemonic (easily assimilated) abbreviations. The programming

language is based on a standard for programmable controllers.

The program can be entered, modified and documented as statement

list. This method of representation also enables dynamic status displays

during on-line testing.

All operations available in the programming language (basic operations,

supplementary operations and system operations) can be represented

in statement list format.

Structure of a statement

A STEP 5 statement is the smallest independent unit of a program, and

represents a processor directive. A statement comprises an operation

code (such as A for the AND operation) and an operand (for instance

I 1.7); an operand consists of an identifier (e.g. I for input) and a

parameter (e.g. 1.7 for the 7th bit in the 1st byte).

Example: Representing an AND operation

“Complex” operations for which there are special symbols in the graphic

representation modes have no special symbols in a statement list; they

are written in the same manner as any other statement.

 Page 1-10 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Function Block Call (STL presentation)

A function block call is also represented in list form, and can be

programmed together with other statements, whereby the function

block’s inputs and outputs (i.e. the block parameters) immediately follow

the call statement.

All basic operations of the STEP 5 programming language, which can

be represented in graphic form, can also be inputted as a statement list

and outputted as control system flowchart or ladder diagram.

An input, however, certain conventions must be observed as regards

auxiliary statements (such as “NOP 0”). Segments, which cannot be

represented in graphic form, are always outputted as statement list.

In STL Presentation “rungs” do not have to be in separate segments.

Several “rungs” can be combined into a segment. However such a

combination of “rungs” in one segment cannot be displayed in a graphic

mode (LAD, CSF presentation.

Note:

In STL Presentation there are no rules how to construct a segment. It is

wise not to put to many lines of STL instructions into one segment.

 Chapter 1 Basic S5 Programming Page 1-11

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Example for program representation

The logic operations are combined into segments. Several logic

operations can be represented in each segment. The segments are

numbered automatically.

A 60-character segment header may be specified in the fist line after the

semicolon. Comments may be inserted in separate lines. Each comment

line must start with a semicolon.

Statement Comments may also be inserted after the STL command,

separated by a semicolon.

The segment end statement (“ *** “) and blank lines are separate

statements.

A segment commentary of arbitrary length may be written between the

network header and the first statement to complete the documentation.

A block may comprise no more than 255 segments. As many as 256

MC5 statements may be programmed in each segment. A block is

restricted to no more than 4091 statements.

 Page 1-12 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Representation on the monitor

The STEP 5 statement begins with the operation code, followed by the

operand identifier and the parameter (both of which are left-aligned). In

function blocks, a symbolic entry point (jump label – Tag) may be written

at the left of the colon.

To display the “Symbolic Table below the segment the command

“Display Symbolic Table” from the Presentation Menu must be selected.

This window displays the Operands in their absolute and symbolic form

as well as an assigned comment.

Whenever an operand is marked in the segment the corresponding line

is displayed in the Symbolic Table window and the line has also a blue

background.

 Chapter 1 Basic S5 Programming Page 1-13

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Control System Flowchart

A control system flowchart uses symbols to describe the control task.

The program can be input, modified and documented as control system

flowchart. This method of representation also enables the output of

dynamic status displays during on-line testing.

Symbols used in control system flowcharts

The basic symbol used in control system flowcharts is the rectangular

box. On the monitor screen unbroken lines form these boxes while

standard characters are used to represent them in printouts. The symbol

in a box identifies the operation, which the box represents. The inputs

are shown at the left, the outputs at the right of the function symbol.

Example: Representing an AND operation

The binary logic operations represented in control system flowcharts are

combinations of AND and OR operations.

A result assignment at the right of a logic operation always terminates

that logic operation (see above), thus making it possible to represent

individual set/reset operations and conditional block calls (except for

those relating to function blocks).

In addition to logic operations AND and OR, there are also “complex”

operations, i.e. set/reset, timer, counter and compare operations. These

operations are also represented by boxes. A symbol in each box

identifies the relevant operation. The inputs for these operations are

shown at the left, the outputs at the right of the boxes.

A special case is the “connector”, which represents a result assignment

within a logic operation and is identified by a “=” symbol in the box.

 Page 1-14 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Example: Representing a “connector” in a control system flowchart

Examples for representing “complex” operations in a control system

flowchart.

Set/reset operation

Compare operation

 Chapter 1 Basic S5 Programming Page 1-15

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Timer operation

Counter operation

 Page 1-16 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Calling a Function Block

A function block call can also be represented graphically.

To do so, the number of the function block is specified above the box

and the function block name and the names of the block parameters

(the function block’s “inputs” and “outputs”) in the box.

A function block call must be programmed in a separate segment.

Representing a function block call

Even when the control system flowchart has been selected as

representation method, it is still possible to enter basic STEP 5

operations which cannot be represented in graphic form. To do so, you

can switch to STL presentation any time. This segment can

subsequently be entered as statement list. The system reverts to control

system flowchart mode at the beginning of the next segment.

It is also possible to prevent S5 for Windows® from switching into CSF

mode (if CSF is selected in the “Preference” settings). By entering “STL”

at the beginning of a segment the segment will only be displayed in STL.

 Chapter 1 Basic S5 Programming Page 1-17

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

1.2 Structure of the Application Program

The program in the CPU is divided into the system program (Firmware)

and the application, or user, program.

System programs (Firmware) are all statements and declarations

relating to internal controller functions (e. g. the saving of data in the

event of a power failure, organizational functions for the nesting of

blocks, and so on). The system programs are stored in EPROMs in the

CPU’s program memory. The user has no access to system programs.

Application programs (User Program) comprise all statements and

declarations for processing the signals affecting the controlled plant

(process). Application programs are divided (structured) into blocks.

The Blocks in an application program are written in the STEP 5

programming language.

The organization blocks are the interface to the system program. A

number of standard function blocks are integrated in the CPU’s system

program (integral special functions).

Blocks

A block is a portion of a program delimited by its function, structure or

purpose. In STEP 5, a distinction is made between blocks containing

statements for signal processing (organization blocks, program blocks,

function blocks and sequence blocks) and blocks containing data (data

blocks).

As a rule, a STEP 5 program consists of program sections which are

invoked and processed sequentially. These sections are referred to as

“blocks”. There are several different types of blocks. These block types

are application-dependent,

The program normally begins with organization block OB 1. The other

blocks are then called as subroutines from within this block.

 Page 1-18 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Organization blocks (OBs)

Organization blocks (OBs) control the application program either by

listing the program blocks to be executed or by their existence as

special functions in the CPU system program.

Organization blocks of the first type control cyclic, interrupt- driven and

time-controlled program execution, restart performance, and responses

in the event of errors and faults. These OBs are invoked in the system

program, and are programmed by the user.

Organization blocks of the second type represent special functions, and

the user may only invoke them.

Program blocks (PBs)

Program blocks (PBs) usually contain the largest part of the user

program, and are programmed in accordance with process-related or

function-related aspects. Program blocks can be entered and

documented in all three methods of representation (CSF, LAD and STL).

Function blocks (FBs, FXs)

Function blocks (FBs, FXs) are used to implement frequently recurring

or very complex functions. The user may make use of preprogrammed

(standard) function blocks, and/or may also program his own FBs in STL

notation.

In addition to the basic operations, additional operations

(“supplementary operations” and “system operations”) may be used in

function blocks.

Function blocks can be assigned parameters, i.e. the function

implemented by a function block can execute with different operands

(block parameters).

Sequence blocks (SBs)

Sequence blocks (SBs) are used to program sequencers. When the

GRAPH 5 software is used, the entire sequencer is programmed in a

single sequence block. If GRAPH 5 is not used, one sequence block

must be written for each sequence step. These blocks are invoked by a

“Sequence control” function block which assumes organization of the

sequencer.

 Chapter 1 Basic S5 Programming Page 1-19

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Data blocks (DBs, DXs)

Data blocks (DBs, DXs) contain the data for the application program.

The operand area for data (D) is used when the flag area does not offer

sufficient capacity for storing signal states and data.

Generally speaking, the flag area is used primarily for storing binary

signal states and the data area for storing digital values.

Data is organized in data blocks (DBs or DXs); 256 16-bit data words

can be addressed directly in each data block.

The data is located either in user memory, where it must share the

available space with the user program, or in a memory area reserved

exclusively for data blocks (DR RAM).

Before a block can be processed, it must first be invoked, or called.

A call may be either unconditional or be dependent on the result of the

previous logic operation (RLO).

Once the block has been processed and the Block End (BE) statement

encountered, the program is resumed with the statement following the

block call statement, i.e. in the “calling” block.

1.3 Segment

The program in a block is subdivided into segments.

In the graphic programming modes, a segment contains one logic

operation (control system flowchart) or one rung (ladder diagram).

These strict conventions need not be applied to statement lists, in which

a segment may contain as many as 255 16-bit statements (fewer when

two-word statements are used).

It is nonetheless recommended that statement lists also have either a

process-related or logic-related structure, thus enabling each segment

to be documented as a self-contained program section.

Each segment may be preceded by up to a 60-character segment

header and a segment commentary of arbitrary length.

 Page 1-20 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

1.4 PLC Program Structures

The structure of PLC Programs can be segmented into three groups.

The kind of structure selected to build a PLC Program depends on the

application.

The programming language STEP® 5 and/or S5 for Windows® provides

the tools to build a PLC Program in all three structures.

1.5 Linear Programs

A program designed with a “linear” structure puts the entire program into

one contiguous block of instructions, usually OB1. The program

executes every instruction in sequence. This structure is a model of the

hard-wired relay ladder logic that PLC systems initially emulated.

The linear program has a simple, straightforward structure.

Only one logic block (typically OB1) contains all of the instructions for

the program.

Since all of the instructions reside within one block, this method of

programming is best suited for projects that have one person writing the

program. Since there is only one program file, software management

functions (like archival of the program files) are simplified.

PLC Program Structures

OB1

Linear Partitioned Structured

OB1
 Task 2

 Task 1

 Task 3

 Task ...

Valve

Motor

Pump

OB1

 Chapter 1 Basic S5 Programming Page 1-21

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

1.6 Partitioned Program

A partitioned program is divided into blocks, with each block containing

the logic for a given set of devices or tasks. The instructions residing in

an organization block (OB1) determines the execution of the partitioned

blocks of the control program. For example, a partitioned program might

contain the following elements:

 Functions for controlling each section of the equipment

 Functions for controlling each mode of operation for the

equipment

 Functions for controlling the operator interfaces

 Functions for handling diagnostic logic

In the partitioned program, there is still no interchange of data or

reusable code, however, each functional area is broken up into different

blocks. This allows you to have several people programming at the

same time without the conflict of editing the same file. The program that

resides in OB1 contains all the instructions required to call the different

blocks.

This design philosophy differs from a structured approach in that each

block is completely self-contained: it gathers and manipulates its own

data and processes its instructions in sequence. Unlike the structured

program, the blocks of a partitioned program do not pass or receive

parameters.

 Page 1-22 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

1.7 Structured programs

A “structured” program contains user-defined blocks of instructions with

parameters, similar to user-defined instructions. In creating a program

for a process or a machine, portions of the control logic are often

repeated for common equipment or logic functions. Instead of repeating

these instructions and then substituting a different addresses for specific

equipment, you can write the instructions into a block and then have the

program pass parameters (such as the specific address of the

equipment and operational data) to the block. The following list shows

examples of the use of generic (reusable) blocks in a program:

A block that contains the logic common to all of the AC motors in a

conveyor system.

A block that contains the logic common to all of the solenoids in an

assembly machine.

A block that contains the logic common to all of the operator station

interfaces, in a canning line.

A block that contains the logic common to all of the drives in a paper

machine.

The structured program identifies the types of functions required by the

process and attempts to provide a generic solution that can be used for

several tasks.

For example, the pumps for both Ingredients A; & B; and the motor for

the Agitator can be controlled by the same function block. By changing

the parameters that are passed to the FB called “Motor” the program

uses one block to control three different devices.

A structured program requires that you manage the data being stored

and used by the program.

 Chapter 1 Basic S5 Programming Page 1-23

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Example:

The Function (PLC Block)"Motor" in the illustration below contains the

logical connection (S5-Code) of “Inputs” (Ix.x) and Outputs (Qx.x), which

must be considered when switching on the different motors (e.g. mode

of operation, temperature etc.).

The PLC Block calling the Block "Motor, supplies the information in

order to switch on and control a specific Motor.

The programming language STEP® 5 offers different types of PLC

Blocks to divide a PLC Program.

The instructions to define a logical problem are located in a PLC Block.

Therefore a PLC Block can also be called “Sub-Routine”.

The Organization Block OB1 is used to supervise all the single PLC

Blocks. The Organization Block OB1 is called by the operating system in

a cyclic matter.

From the Organization Block OB1 the program branches out to all the

other PLC Blocks (Sub-Routine) holding the actual control program.

It becomes thereby between Program Blocks (PB) and functional

modules (FB) differentiated.

User programs for extensive tasks of automation are developed with

partitioned and structured program sections.

Structured Program

Motor 1

FB 2

Motor 3

FB 2

Motor 2

FB 2

OB 1

 Page 1-24 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

1.8 Example of a program structure

In the following example the absolute branching to a PLC Block

(JU) is used not only in the Organization Block OB1, but also in the

Program Block PB2 and the Function Block FB3.

With the instruction "JU PB2" within the Organization Block OB1 the

program branches out to the Program Block PB2. The instruction "JU

FB3" within the Program Block PB2 causes a further branching to the

Function Block FB3, in order to branch out from there with the

instruction "JU PB4" to the Program Block PB4.

Now the returns can take place. The arrows indicate that with “Block

End” of the Program Block PB4 the program returns to the Function

Block FB3. The “Block End” from the Function Block FB3 initiates a

return to the Program Block PB2, and from there the program returns to

the Organization Block OB1, initiated by “Block End”.

PLC Program Nesting

Call Block 1 (JU PB1)

Block End (BE

Call Block 2 (JU PB2)

Call Block5 (JU PB5)

)

OB 1 Block 1 (PB1)

Call Block 3
(JU FB3)

Block End
(BE)

Block End
(BE)

Block End
(BE)

Call Block 4
(JU PB4)

Block End
(BE)

Block End
(BE)

Block 2 (PB2)

Block 3 (FB3) Block 4 (PB4)

Block 5 (PB5)

In a PLC Program "branching out" is called "nesting depth". The nesting

depth states, how many PLC Blocks are called from OB1 in horizontal

direction.

The maximum nesting depth allowed depends on the CPU type. If

nesting goes beyond 32 levels, the PLC goes into the "STOP" mode

 Chapter 1 Basic S5 Programming Page 1-25

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

1.9 Cyclic Program Processing

In the following illustration, cyclic program processing is schematically

represented. In the example a program is executed.

Cyclic PLC Program Execution

Cycle Beginn

Process Image

Input Table (PII)

Process Image

Output Table (PIQ)

1 Instructionst

Last Instruction

2 Instruction
nd

3 Instruction
rd

4
th
 Instruction

Cycle End

The Status of the Inputs is

transfered into Process Image

Input Table (PII)

The Status of the Process Image

Output Table (PIQ) is transfered into

the Output Modules

PLC User Program

execution

 Page 1-26 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

The Cyclic PLC Program Execution

The operating system starts the cycle time monitoring.

The data of the inputs of the Input modules (Peripheral Input Memory)

are mapped into the Process Image Input Table. The Process Image

Input Table is a storage area in the main memory (RAM) of the CPU.

The execution of the PLC user program is started. One instruction after

another as written in the user PLC program is executed.

If all PLC Instructions are processed (Block End of OB1), the Process

Image Output Table holds the results of the logical connections. The

data of the Process Image Output Table are mapped to the “Peripheral

Output Memory” and is now available at the outputs of the Output

Modules.

The cyclic PLC Program execution described above shows some

fundamental weaknesses in the function of a PLC.

The status of the inputs (actuators etc.) is read at the beginning of a

cycle. Changes in status during the remaining cycle time are normally

not recognized by the system.

The outputs are only updated after the complete PLC Program has been

executed.

To overcome these restrictions, additional functions are available to

bypass the cyclic program execution.

 Chapter 1 Basic S5 Programming Page 1-27

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

1.10 CPU Start-up

With the change of the mode selector from "STOP" (ST) to "RUN" (RN)

the CPU executes the "RESTART" mode automatically and switches

from "STOP" to "RUN".

RESTART OB’s

Manual cold restart: OB21 is processed

Automatic cold restart: OB22 is processed (mode selector at “RN”)

Restart Characteristics

Everything that takes place between

 a STOP RUN transition (manual cold restart) or

 a POWER UP RUN transition (automatic cold restart after power

up)

is referred to as restart characteristics.

Two phases can be distinguished during restart:

 The cold restart routine (PLC cannot be directly influenced)

 The actual RESTART (PLC characteristics can be controlled in

RESTART OBs (OB21 and OB22)).

Cold Restart Routine

The following applies while the CPU runs the cold restart routine:

 The status of the error LEDs remains unchanged during manual

cold restart.

 The error LEDs light up momentarily during automatic cold restart

after power up

 Outputs display signal "0" if all output modules are disabled

 All inputs and outputs in the process I/O image display signal "0"

 Scan time monitoring is inactive.

During the cold restart routine, the processor configures the I/O modules

and stores this information.

 Page 1-28 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Restart Characteristics and Cyclic Operation

The following figures give an overview of the restart characteristics of

the CPUs and of cyclic operation. They also show how the restart

characteristics depend on the state of the backup battery and they

indicate the conditions for changing the operating mode.

Mode selector STOP RUN
PG command RUN

Power Restoration
(If the PLC was in RUN at POWER OFF)

Process I/O image (PII and PIQ) is ;

Non-retentive timers, counters and flags are

Digital outputs are with "0";

Configuration of I/O modules is

 and stored;

Memory submodule is :

Address list for the control program is

;

.

deleted

deleted;

overwritten

determined

 tested

constructed

DB1 is interpreted

Process I/O image (PII and PIQ) is ;

Non-retentive timers, counters and flags are

;

Digital outputs are with "0";

Cold restart routine is (delay

time in SD 126);

Configuration of I/O modules is

 and stored;

Memory submodule is :

Address list for the control program is

;

.

deleted

deleted

overwritten

delayed

determined

tested

constructed

DB1 is interpreted
In addition, the battery, memory submodule and status
before POWER OFF are evaluated.

C
o

ld
 re

s
ta

rt ro
u

tin
e

R
E

S
T
A

R
T

R
U

N
Processing of OB21 Processing of OB22

Outputs enable

Process Image Input (PII) read in

Processing of OB1

Process Image Output (PIQ) output

CPU Restart Characteristics

 Chapter 1 Basic S5 Programming Page 1-29

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

1.11 Cyclic Program Processing

In the following illustration, cyclic program processing is schematically

represented. In the example a program is executed, which consists of

the PLC Blocks OB1, PB1 and PB2.

Cyclic PLC Program Execution

Operating System

OB 1

PB 1

PB 2

Process Image
Input Table

Start Cycle Time Monitoring

The Status of the Inputs
 are transfered into the

“Process Image
Input Table (PII)”

The Status of the
“Process Image

Output Table (PIQ)”
are transfered to the Outputs

F

T

C

lag

ounter

imer

Outputs

Inputs

Bit

Bit

Bit

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

PII

B
y
te

B
y
te

B
y
te

0

1

2

3

4

 .

 .

n

.

0

1

2

3

4

 .

 .

n

.

0

1

2

PIQ
Pro essc Image

utput()TableO Q

Byte
 0

B
yte

 0

B
yt

e
1

B
yt

e
1

B
yt
e

2

Byt
e

2

B
yt

e
3

B
yt

e
3

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

W
it

h
 M

e
m

o
ry

A I 0.0
A I 0.1
= Q 0.0

A I 0.2
A I 0.3
= Q 0.1

A I 0.4
A I 0.5
= Q 0.0

A I 0.6
A I 0.7
= Q 0.2

JU PB 1
 ...
 ...

JU PB 2
 ...

11

1111111 0

10

 Page 1-30 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

The Cyclic PLC Program Execution

The operating system starts the cycle time monitoring.

The data of the inputs of the Input modules (Peripheral Input Memory)

are mapped into the Process Image Input Table (PII). The Process

Image Input Table is a storage area in the main memory (RAM) of the

CPU.

The execution of the PLC user program is started. From OB1 the

program execution branches out to PB1. The logic functions from PB1

are executed. Initiated by “Block End” from PB1 the program returns to

the Organization Block OB1.

If all PLC Blocks are processed (Block End of OB1), the Process Image

Output Table (PIQ) holds the results of the logical connections. The data

of the Process Image Output Table (PIQ) are mapped to the “Peripheral

Output Memory” and is now available at the outputs of the Output

Modules.

The operating system tests the cycle time monitoring and restarts the

execution.

If the preset watchdog is timed out, the CPU is switched into the stop

condition and the cyclic PLC Program execution is terminated.

The cyclic PLC Program execution described above shows some

fundamental weaknesses in the function of a PLC.

The status of the inputs (actuators etc.) is read at the beginning of a

cycle. Changes in status during the remaining cycle time are normally

not recognized by the system.

The outputs are only updated after the complete PLC Program has been

executed.

To overcome these restrictions, additional functions are available to

bypass the cyclic program execution.

 Chapter 1 Basic S5 Programming Page 1-31

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

1.12 Organization Blocks for Interrupt-Driven Program
Execution

The events that lead to an OB being called are known as interrupts. Not

all S5CPUs have the complete range of organization blocks.

Non-Cyclic Program Execution

With STEP 5, selected parts of the user program that do not need to be

executed cyclically can be executed when the situation deems it

necessary. The user program can be divided up into "subroutines" and

distributed in different organization blocks. If the user program should

react to an important signal that seldom occurs (for example a limit

switch indicates that the slide is at the end), the section of program to be

executed when this signal is present can be written in an OB that is not

executed cyclically.

Apart from cyclic program execution, STEP 5 provides the following

types of program execution:

 Time-driven program execution

 Hardware interrupt-driven program execution (from Inputs)

 Diagnostic interrupt-driven program execution

 Multi-computing interrupt-driven program execution

 Error handling

By providing interrupt OBs, the S5 CPUs allow the following:

 Program sections can be executed at certain times or intervals

(time-driven).

 The User PLC Program can react to external signals from the

process.

The cyclic user program does not need to query whether or not interrupt

events have occurred. If an interrupt does occur, the operating system

makes sure that the user program in the interrupt OB is executed, so

that there is a programmed reaction to the interrupt by the PLC.

 Page 1-32 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Cyclic Interrupt Organization Blocks (OB10 to OB18)

The S5 CPU's have integrated “Cyclic Interrupt OBs”. These OBs can

be called in a certain time pattern by the operating system, completely

independent from the cyclic program (OB1)

The internal CPU clock calls for the interrupted OB to interrupt the cyclic

program sequence.

After processing the OB the program returns to its cyclic execution.

Overview of the Cyclic Interrupt OBs default settings

(not all CPUs have all Cyclic Interrupt OBs)

Organization
Block

Time Pattern Organization
Block

Time Pattern

OB 10 10 ms OB 15 500 ms

OB 11 20 ms OB 16 1 s

OB 12 50 ms OB 17 2 s

OB 13 100 ms OB 18 5 s

OB 14 200 ms

Note:

The cycle time of a program (OB1) can be substantially changed by

processing “Interrupt OBs”.

This difference in execution time, per OB1 cycle, can cause problems.

 Chapter 1 Basic S5 Programming Page 1-33

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Interrupt Driven Program Scanning

The S5 CPUs provide interrupt OBs that react to signals from the input

modules.

Interrupts are triggered when a signal module, with system interrupt

capability passes on a received process signal to the CPU.

System interrupts (IR-A, IR-B, IR-C, IR-D) can only be executed when

the corresponding organization block exists in the CPU program. If this

is not the case, an error handling is executed (OB70 to OB87 / OB121 to

OB122)).

If the system interrupt OBs are deselected in the parameter assignment,

these cannot be started. The CPU recognizes a programming error and

changes to STOP mode.

Overview of the System Interrupt OBs default settings

(not all CPUs have all Hardware Interrupt OBs)

Organization Block Parameter

OB 2 System Interrupt A

OB 3 System Interrupt B

OB 4 System Interrupt C

OB 5 System Interrupt D

Error Handling Organization Blocks

The following table shows the types of errors that can occur, divided in

to the categories of the error OBs.

 Error Type

 OBs for handling programming errors and PLC faults

OB19 When a block is called which has not been loaded

OB23 CPU Redundancy Error (only in H CPUs, e.g., failure of a CPU)

OB24 Timeout during update of the process image and the inter-

processor communication flags

OB27 Substitution error

OB32 Transfer error

OB34 Battery failure

 Page 1-34 Basic S5 Programming Chapter 1

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

 Error Type

 OBs for handling system errors

OB26 Scan time exceeded

OB33 Collision of two timed interrupts

OB35 I/O error

 OBs which offer operating functions

OB31 Scan time triggering

OB160 Programmable time loop

OB250 Operating system services

OB254 Read in process I/O image

OB255 Output process I/O image

 Chapter 2 Statement List Instructions Structure Page 2-1

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

2 Statement List Instructions Structure

A large number of STEP® 5 instructions can only be displayed in the

“Statement List” (STL) presentation.

An instruction statement is the smallest executable part of a PLC

program and is made up of individual components. The statement is

interpreted, according to its structure, and is executed by the CPU.

Depending on the type of statements, the structure may vary.

Basically there are two types of statements. One is a statement made

up of an instruction alone (e.g. NOP, NOT, etc.) and the other is a

statement made up of an instruction and an address / parameter field

(e.g. L +12, L -Stop, etc.).

Jump Label
(Destination)

Operation Code
 (Instruction)

Operand Section
(Address)

Comment

Identifier Parameter / Address

S5 STL Statement

M003: L QB 47 ; Output Byte 47

Symbolic Address

TEST: L -MOTOR_Control_3 ; Output Byte 47

Note:

With the “Format” (key F9) command all “Key Words/Characters” entered

in the “Instruction and Address Field” that are lower case characters are

converted into upper case characters. In addition the “Format” command

puts every field in its predefined column.

Jump Labels, Symbolic Addresses and Comments are not changed with

the “Format” command.

S5 for Windows® supports all instructions used with the programming

language STEP®5.

 Page 2-2 Statement List Instructions Structure Chapter 2

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Jump Label

The destination of a jump instruction is indicated with a label. The label

may have up to four (4) characters. The first character must be an alpha

character. The destination label itself is terminated with a colon (:) (e.g.

TEST:).

Instruction (Operation Code)

In the instruction field of a statement, the task that the CPU should

execute is defined (e.g. A for AND, O for OR, T for a transfer, etc.).

The S5 for Windows® Format (F9) command converts all typed

characters into capital letters and puts them into the instruction field

column.

S5 for Windows® supports all the instructions available in the Siemens®

S5 PLC series. A list of the instructions that your particular CPU can

support will be found in the instruction list manual for that CPU.

Address (Operand Section)

In the address field of a statement, who should participate is defined,

when the instruction is executed by the CPU. This could be an absolute

addressed variable (e.g. QB47), a defined symbolic variable (e.g.

Limit_Switch), or a constant (e.g. KT 500.1), etc. Some instructions do

not require an operand.

Absolute Address

Identifier:

S5 for Windows® supports all “Identifiers” used with absolute addresses

for the instructions available in the Siemens® S5 PLC series.

The S5 for Windows® command Format (F9) converts all identifier

characters into capital letters and puts inserts them into the appropriate

column.

Parameters:

A parameter is an address made up of numbers. The S5 for Windows®

Format (F9) command does not change the address but inserts it into

the appropriate column.

 Chapter 2 Statement List Instructions Structure Page 2-3

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Symbolic Addresses

The S5 programming syntax requires that the Symbolic Addresses must

be typed in the statement in the same form as they are declared, with

regard to lower and upper case letters. The S5 for Windows® Format

(F9) command does not change the variable but inserts them into the

appropriate column.

Symbolic Addresses are defined in the symbolic table. A symbolic

variable is assigned to an absolute variable. This declaration must be

done in the STL editor prior to using the symbolic variable. A Symbolic

Address must be clearly defined for all blocks and may be used

throughout the entire PLC program.

Comments

Each statement line may have a comment assigned to it. The optional

comment starts with the semicolon character (;) and is valid up to the

end of the line. The comment may have up to 60 printable characters.

A comment may also be entered into a separate line. This line must

starts with the semicolon character (;).

The S5 for Windows® Format (F9) command does not change the

comment but inserts it into the appropriate column.

STL Instruction

M1: A Q 12.6
Bit Address

Byte Address

Address Identifier

Operand Section

Instruction

Jump Label

 Page 2-4 Statement List Instructions Structure Chapter 2

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

2.1 STEP 5 Operands

The programmable controller processes the signal states of sensors

made available via "inputs". The results of the logic operations are

forwarded to the actuators via "outputs".

These variables (inputs and outputs) are referred to as operands, and

are processed using functions or operations. The STEP 5 programming

languages recognizes several different types of operands, the most

important of which are inputs (I), outputs (Q), I/Os (P), flags (F), timers

(T), counters (C) and data (D). The letters in parentheses are the

abbreviations used for the various operand types in STEP 5.

The majority of operands can be processed bit by bit. A group of eight

contiguous bits combined to form a single unit is referred to as a byte. A

word consists of 16 bits, a double word of 32 bits.

Inputs, Outputs, I/Os

The I/O area (P – Peripherals) is used for direct addressing of the I/O

modules in the user program. This area enables addressing of 256

bytes on input modules and 256 bytes on output modules.

As a rule, the operand areas for inputs (I) and outputs (Q), rather than

the P (Input / Output modules) area, are used in the program to address

the I/O modules (which cannot be referenced by bit).

These operand areas are located on the CPU in an area of memory

referred to as the "process image".

The central processor's system program loads the signal states of the

input modules into the process input image at the start of the program

scan. The signal states of this operand area are then interrogated and

logically gated as per the operations and functions written in the user

program, and the appropriate bits subsequently set in the process

output image. At the end of the program scan, the system program

automatically transfers the signal states of the process image to the

output modules.

Should the 256-byte I/O area prove insufficient, expansion units can be

interfaced to enable use of the extended I/O area (called the O area) or

to provide an extended addressing capacity.

 Chapter 2 Statement List Instructions Structure Page 2-5

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Flags, Timers, Counters

The flags (F) are the controller's "contactor relays", so to speak, and are

used primarily for storing binary signal states. The operand area for

flags is a special memory area on the CPU.

There are 256 flag bytes (the equivalent of 2048 flag bits).

Some CPU’s have an extended flag area (S) with 1024 additional flag

bytes (equivalent to 8192 flag bits). These "S flags" are handled in the

same way as the "F flags".

The operand area for timers (T) corresponds to the timing relays in a

contactor control system. The timers are located in a special operand

area on the CPU. Up to 256 timers are possible (depending on the

CPU).

Five different kinds of timers can be implemented; these can be

programmed for times in the range from 10ms to 9990s (2h 46min 30s).

The counters (C) function as hardware counters, but are located in a

special memory area on the CPU. Up to 256 counters are possible

(depending on the CPU).

All of these counters can be used as up or down counters, and all have

a counting range of from 0 to 999.

Counts in the negative range are not possible. The count is made

available in binary or BCD.

Because these counters are software counters, their operating

frequency depends on the program scan time.

Data

The operand area for data (D) is used when the flag area does not offer

sufficient capacity for storing signal states and data.

Generally speaking, the flag area is used primarily for storing binary

signal states and the data area for storing digital values.

Data is organized in data blocks (DBs or DXs); 256 16-bit data words

can be addressed directly in each data block. The data is located either

in user memory, where it must share the available space with the user

program, or in a memory area reserved exclusively for data blocks (DB

RAM).

 Page 2-6 Statement List Instructions Structure Chapter 2

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

2.2 Operands, Addressing Overview

In the following chapter the most common S5 Operands are listed.

Operands Addressing

An Operand is built up from an “Address Identifier” (Name) and an

“Address”.

M 12.6

Name
Address

Depending on the number of bits addressed the Operand (Variable) has

different “Address Identifiers”.

STEP®5 uses the following number of bits with Variables:

Data
Width

Description Example

1 Bit Bit Variable (1 Bit) I2.3; Q45.6; M34.3; DBX43.1;

DIX14.6

8 Bit Byte Variable (8 Bit) IB12; QB45; MB23; DBB12; DIB14

16 Bit Word Variable (16 Bit) IW38; QW32; MW66; DBW3; DIW16

32 Bit Double Word Variable (32 Bit) ID55; QD43; MD62; DBD23; DID33

 Chapter 2 Statement List Instructions Structure Page 2-7

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Bit Variables (Bit Operands)

Bit variables have an address identifier, a byte number, and – separated

by a period – a bit number (Binary Address).

Addressing of an Output Variable

Q 12.6
Bit Address

Byte Address

Address Identifier

Variable

 (0...7)

Bit

 The numbering of Bit Variables start with the byte number at zero

for each address area. The upper limit is CPU specific.

 Bits (from the I, O, F, or S area) are numbered from 0 to 7.

 Bits (from Data Blocks, D / DX) are numbered from 0 to 15.

Variable Description Example

I A single Bit Input from the Process
Image Input Area (PII)

I 63.1

Q A single Bit Input from the Process
Image Output Area (PIQ)

Q 45.1

F A single Bit Input from the Flag
Memory Area

F 88.4

S A single Bit Input from the Extended
Flag Memory Area

S 12.7

D A single Bit from a Data Block or
Extended Data Block. Before the
operand area for data can be used,
the data block (DB or DX) containing
the relevant operand must be
selected in the program

D 74.15

T A Bit Information from / to a Timer T 12

C A Bit Information from / to a Counter C 15

 Page 2-8 Statement List Instructions Structure Chapter 2

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Byte Variable (Byte Operands)

The absolute address of a Byte Variable consists of the address

identifier and the number of the byte containing the variable.

The address identifier is supplemented with a “B” (not for Bytes from

Data Blocks).

Addressing a Memory Byte

MB 12
Byte Number (0 to)

 The numbering of Byte Variables start at zero for each address

area. The upper limit is CPU specific.

Variable Description Example

IB Input Byte from the Process Image Input Area
(PII)

IB 63

QB Output Byte from the Process Image Output
Area (PIQ)

QB 45

FY A Byte from the Flag Memory Area FY 88

SY A Byte from the Extended Flag Memory Area SY 12

DL A Low Byte (right Byte from a Data Word) from
a Data Block or Extended Data Block.
Before the operand area for data can be used,
the data block (DB or DX) containing the
relevant operand must be selected in the
program

DL 74

DH A High Byte (left Byte from a Data Word) from a
Data Block or Extended Data Block.
Before the operand area for data can be used,
the data block (DB or DX) containing the
relevant operand must be selected in the
program

DH 74

PY Peripheral Byte (direct I/O access) PY 123

OB Extended Peripheral Byte(direct I/O access) OB 234

 Chapter 2 Statement List Instructions Structure Page 2-9

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Word Variable (Word Operands)

A “Word Variable” consists of two (2) bytes, the “Low Byte” and the

“High Byte”.

The absolute address of a Word Variable consists of the address

identifier and the number of the byte addressing (high order byte) the

word variable.

The address identifier is supplemented with a “W”.

Addressing a Memory Word

MW 32
Byte Number (0 to)

 The numbering of Word Variables start at zero for each address

area. The upper limit is CPU specific.

 Data from Data Blocks are addressed with word numbers.

Variable Description Example

IW Input Word from the Process Image Input
Area (PII)

IW 63

QW Output Word from the Process Image
Output Area (PIQ)

QW 45

FW A Word from the Flag Memory Area FW 88

SW A Word from the Extended Flag Memory
Area

SW 12

DW A Data Word from a Data Block or
Extended Data Block.
Before the operand area for data can be
used, the data block (DB or DX)
containing the relevant operand must be
selected in the program

DW 74

PW Peripheral Word (direct I/O access) PW 123

OW Extended Peripheral Word (direct I/O
access)

OW 234

 Page 2-10 Statement List Instructions Structure Chapter 2

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

High Byte and Low Byte in a Word

Because of the “Byte Addressing” the orientation of digits within a Word

is very important.

A word is divided into a High Byte and a Low Byte.

The example in the picture shows that value of 18,335 is stored in the

Memory Word MW30 (hex 479F).

MB30 MB31

202122215 214 213 212 211 210 29 28 27 26 25 24 23

H i g h B y t e L o w B y t e

74 9 F

1 1 1 1 11 0 01 1 1 10 0 0 0

Note:

The “High Byte” specifies the Word Variable Address. It contains the

high order digits of the Word.

The “Low Byte” is the Word Variable Address +1. It contains the low

order digits of the Word.

Note:

In Data Blocks the data is organized with Word Numbers. A Data Word is

made up by the “High Byte” and the “Low Byte”.

 Chapter 2 Statement List Instructions Structure Page 2-11

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Double Word Variable

A “Double Word Variable” consists of four (4) bytes, the “Low, Low Byte”

the “Low Byte”, the “High Byte” and the “High, High Byte”.

The absolute address of a Double Word Variable consists of the

address identifier and the number of the byte addressing (highest byte)

the double word variable.

The address identifier is supplemented with a “D”.

Addressing a Memory Double Word

MD 64
Byte Number (0 to)

 The numbering of Double Word Variables start at zero for each

address area. The upper limit is CPU specific.

Variable Description Example

ID Input Double Word from the Process
Image Input Area (PII)

ID 63

QD Output Double Word from the Process
Image Output Area (PIQ)

QD 45

FD A Double Word Input from the Flag
Memory Area

FD 88

SD A Double Word from the Extended Flag
Memory Area

SD 12

DD A Double Data Word from a Data Block or
Extended Data Block.
Before the operand area for data can be
used, the data block (DB or DX)
containing the relevant operand must be
selected in the program

DD 74

Note:

Direct I/O access (Peripheral Data) cannot be accessed using Double

Words.

 Page 2-12 Statement List Instructions Structure Chapter 2

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Byte Order in a Double Word Variable

Because of the “Byte Addressing” the orientation of digits within a

Double Word is very important.

A double word is divided into a High High Byte, High Byte, a Low Byte,

and a Low Low Byte.

2
19

MB 31

9 E
1 1 1 1 01 0 0

MB 30

1 F
1 1 1 1 10 0

2
02122

2
15

2
14

2
13

2
12

2
11

2
10

2
9

2
8

2
7

2
6

2
5

2
4

2
3

MB 33

5 D
1 1 1 0 10 1 0

MB 32

B 7
1 0 1 1 11 0 1

Low Low ByteLow High Byte

2
20

2
162

17
2

182
21

2
22

2
23

2
24

2
25

2262
28

2292
30

231 227

High High Byte High Low Byte

0

The example in the picture shows that value of 530.495.323 (decimal) is

stored in the Memory Double Word MD30 (hex 1F9E B75D).

In a Double Word Variable Floating Point values (Real) are also stored.

The bit, in a Floating Point presentation, has other values

Note:

Data Blocks are organized with Words.

A Data Double Word is made up from two (2) Words.

 Chapter 2 Statement List Instructions Structure Page 2-13

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

S5 Variables (Operands)

Variables Description
Maximum
Address

Example

Qn.n Single Output Bit 0.0 to 127.7 Q0.1

QBn Output Byte 0 to 127 QB12

QWn Output Word 0 to126 QW23

QDn Output Double Word 0 to 124 QD45

In.n Single Input Bit 0.0 to 127.7 I0.1

IBn Input Byte 0 to 127 IB12

IWn Input Word 0 to126 IW23

IDn Input Double Word 0 to 124 ID45

Mn.n Single Flag Bit 0 to 255.7 M0.1

MBn Flag Byte 0 to 255 MB12

MWn Flag Word 0 to 254 MW23

MDn Flag Double Word 0 to 252 MD45

Sn.n Single Extended Flag Bit 0 to 1023.7 L0.1

SYn Extended Flag Byte 0 to 1023 LB12

SWn Extended Flag Word 0 to 1022 LW23

SDn Extended Flag Double Word 0 to 1020 LD45

PYn Peripheral Byte 0 to 255 PQB14

PWn Peripheral Word 0 to 254 PQW55

OBn Extended Peripheral Byte 0 to 255 PIB12

OWn Extended Peripheral Word 0 to 254 PIW45

Dn.n Single Bit in Data Block (DBn / DXn) 0.0 to 255.15 D 1.0

DLn Left Data Byte in a Data Block (DBn / DXn) 0 to 255 DL 12

DRn Right Data Byte in a Data Block (DBn / DXn) 0 to 255 DR 12

DWn Data Word in al Data Block (DBn / DXn) 0 to 255 DW 6

DDn Data Double Word in a Data Block (DBn / DXn) 0 to 254 DD 5

Tn Timer 0 to 255 T12

Cn Counter 0 to 255 C14

OBn Organization Block 1 to 122 OB 1

PBn Program Block 0 to 255 PB 23

FBn Function Block 0 to 255 FB 12

DBn Data Block 0 to 255 DB 17

DXn Extended Data Block 0 to 255 DX 27

BBn Picture Blocks 0 to 255 BB 15

 Page 2-14 Statement List Instructions Structure Chapter 2

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Overlapping of Variables

Addressing Word Variables, Double Word Variables, and Byte Variables

is done in the same way. The addressing for all three types of variables

is done using a byte number. Such an addressing scenario of Word

Variables and Double Word Variables allows for the overlapping of data.

The Flag Word FW10 consists of the Flag Bytes FY10 and FY11.

The Flag Word FW11 consists of the Flag Bytes FY11 and FY12. Both

Flag Words overlap each other with the Flag Byte FY11.

For the same reason an overlap with Double Word Variables is also

possible.

The Flag Double Word FD30 consists of the Flag Bytes FY30, FYB31,

FY32, and FY33.

The Flag Double Word FD31 consists of the Flag Bytes FYB31, FY32,

FY33, and FY34. Both Flag Double Words overlap each other with the

Flag Bytes FY30, FYB31, FY32, and FY33.

Variable Data Overlapping

FY30 FY31 FY32 FY33 FY34 FY35 FY36

FW30 FW32 FW34

FW35 FW33 FW31

FD30

FD31

FD32

FD33

Note:

To avoid data overlaps when working with Word Variables it is a good idea

to use even byte address numbers only.

To avoid data overlaps when working with Double Word Variables it is a

good idea to use only byte address numbers that can be divided by four

(4).

 Chapter 2 Statement List Instructions Structure Page 2-15

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

2.3 Symbolic Programming

In Step® 5, symbolic programming is a very common way to address

operands (variables).

Symbolic operands (such as –Test_01) may be used in place of

operator identifiers and parameters (e.g. I 4.0). An assignment list must

be generated, however, before symbolic operands can be used in the

program.

 Symbolic names can be used instead of absolute addressing.

 Symbolic names must be assigned prior using them in the PLC

program.

Symbolic Table Format

The maximum column width is set as follows:

Variable (Operand) Symbol Comment

The number of characters is
given by the absolute
address.
(maximum 10 characters)

PW 22

maximum 24 alpha
numerical characters

Temperatue_Comp_2

maximum 40 alpha
numerical characters

Motor temperature of
Compressor 2

The assigned symbol may be up to 24 characters (alpha and numeric

characters). The actual number of characters displayed on the screen in the

LAD and CSF presentation is dependent upon the selection from the

preferences dialog box.

With S5 for Windows® up to 24 characters can be displayed. In STL and

Block-STL (source text) presentation the symbolic address is always

displayed with up to 24 characters,

Note:

In the “Symbolic Table” the user assigns a “Symbol” to an absolute

operand (Variable). These “Symbols” can be used within the entire PLC

program. The symbolic name assigned to an operand (Variable) must be

unique within the whole PLC program.

 Page 2-16 Statement List Instructions Structure Chapter 2

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

 Symbolic Operands (Variables) (–Symbols) are not modified with

the format command (key F9).

Symbolic Table (Global Variables)

Absolute / Symbolic Operands (Variables)

Note:

In LAD, CSF STL and Block-STL presentation a symbolic operand

(variable) must be entered with a minus sign in front (–Symbol).

 Chapter 2 Statement List Instructions Structure Page 2-17

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Symbolic Operands (Variables)

Beneath the actual logic a part of the symbolic table can be displayed.

 Page 2-18 Statement List Instructions Structure Chapter 2

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

2.4 Block Calls

Before the blocks in a user program can be processed, they must be

called. These calls are special STEP 5 instructions known as “Block

Calls”. Block calls can only be programmed within logic blocks (OBs,

PBs, and FBs). They can be compared with jumps to a subroutine. Each

jump means that the execution is branched to a different block.

The return address in the calling block is temporarily saved by the

system.

The base of all “Block Calls” is OB1. Due to the complexity of the Block

Call instruction, the Block to be “called” should be programmed prior

inserting the call instruction into a Block.

Program Blocks (PB), Function Blocks (FB), or Organization Blocks

(OB) may be called.

STEP® 5 knows two (2) instructions JC, JU), to call a Program Block

(PB), Function Block (FB), or Organization Blocks (OB).

Unconditional Call

JU PBn = Unconditional Call JU PB12

JU FBn = Unconditional Call JU FB20

JU OBn = Unconditional Call JU OB13

The Instruction JU <logic block identifier> (unconditional block call) calls

a logic block of the PB, FB or OB type.

The call is executed as soon as the CPU recognizes the instruction and

the program execution branches to the first instruction in the called

Block.

Unconditional means the instruction is executed regardless the status of

the RLO bit in the Status Word.

 Chapter 2 Statement List Instructions Structure Page 2-19

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Unconditional call JU PB1

JU PB 1

End of OB 1

next Instruction

First Instruction

End of PB 1

OB 1 PB 1

Unconditional call JU FB1

JU FB 1

End of OB 1

next Instruction

First Instruction

End of FB 1

OB 1 FB 1

Unconditional call JU OB13

JU OB 13

End of OB 1

next Instruction

First Instruction

End of OB 13

OB 1 OB 13

 Page 2-20 Statement List Instructions Structure Chapter 2

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Practice Exercise 2–1; Unconditional Call (JU)

1. Create a “New Project” (Exercise 2–1; Unconditional Call).

2. Create the Program Block PB1 (STL presentation) with the

following logical instructions:

 A I0.0 ; Transfer status of input I0.0 into the RLO bit

 A I0.1 ; Logical AND with the status of I0.1

 A I0.2 ; Logical AND with the status of I0.2

 = Q0.0 ; Assign status of the RLO bit to output Q0.0

3. Create Organization Block OB1

4. Insert the unconditional block call

 JU PB 1 // Unconditional Call

5. Transfer the Blocks into the S5 Test PLC

6. Test the PLC user program

Note:

With STEP® 5 the end of a Block is not indicated by an instruction in CSF,

or LAD presentation.

In the presentation STL (Statement List) the end of a Block is indicated

with the “BE”.

 Chapter 2 Statement List Instructions Structure Page 2-21

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Conditional Call

JC PBn = Unconditional Call JC PB12

JC FBn = Unconditional Call JC FB20

JC OBn = Unconditional Call JC OB13

The Instruction JC <logic block identifier> (conditional block call) calls a

logic block of the PB, FB or OB type if a special condition is true.

If the RLO bit in the status word is “1” and the CPU recognizes the

instruction, the program execution branches to the first instruction in the

called Block.

Conditional means, the instruction is only executed if the status of the

RLO bit in the Status Word is “1” prior the CPU tries to execute the

“conditional” instruction.

Conditional Call JC PB1

OB 1 PB 1

A I0.0
JC PB1

End of OB 1

next Instruction

First Instruction

End of PB 1

Conditional Call JC FB1

OB 1 FB 1

A I0.0
JC Fb1

End of OB 1

next Instruction

First Instruction

End of FB 1

 Page 2-22 Statement List Instructions Structure Chapter 2

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Conditional Call JC OB13

OB 1 OB 13

A I0.0
JC Ob13

End of OB 1

next Instruction

First Instruction

End of OB 13

The Blocks PB1; FB1 or OB 13 are only called if the status of the input

I0.0 is “1”.

After branching to the called block the instructions in this Block are

executed.

Note:

Result of Logical Operation (RLO).

The RLO (Result of Logical Operation) is the status of a bit in the “Status

Word” (Bit 1) located in the system memory area of the CPU.

The RLO (Result of Logical Operation) is used within binary logical data

processing.

The status of the RLO (Result of Logical Operation) can be logically

connected with operands.

Also operands can set or reset the RLO depending on the status of the

operand.

 Chapter 2 Statement List Instructions Structure Page 2-23

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Practice Exercise 2–2; Conditional Call (JC)

1. Create a “New Project” (Exercise 2–2; Conditional Call)

2. Create the Program Block PB1 (STL presentation) with the

following logical instructions:

 A I0.4 ; Transfer status of input I0.4 into the RLO bit

 A I0.5 ; logical AND with the status of I0.5

 = Q0.4 ; Assign status of the RLO bit to output Q0.4

3. Create Organization Block OB1

4. Insert the conditional block call

 A I0.0 ; Transfer status of input I0.0 into the RLO bit

 A I0.1 ; logical AND with the status of I0.1

 = Q0.0 ; Assign status of the RLO bit to output Q0.0

 JC FC 1 ; Conditional Call

5. Transfer the Blocks into the S5 Test PLC

6. Test the PLC user program

 Page 2-24 Statement List Instructions Structure Chapter 2

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Calling Organization Blocks

The organization blocks form the interface between the system program

(the CPU's operating system) and the user program.

Organization Blocks are divided into two categories: those called by the

system program (these have the numbers 1 to 39) and those called by the

users (which have the numbers 40 to 255).

Those called by the system program control cyclic, interrupt-driven and

time-controlled program execution, the programmable controller's restart

performance, and device error recovery procedures.

Like Program Blocks and Function Blocks, these blocks are part of the

user program. The user programs these Organization Blocks himself, and

can thus control the programmable controller's subsequent performance.

Only basic operations may be used in Organization Blocks of this type.

Organization Blocks with numbers above 40 represent special system

program functions, and are not part of the user program; they may be

neither read nor modified.

When the user wants to make use of these special functions, he simply

calls the relevant Organization Block either conditionally or

unconditionally, and the system program does the rest.

Calling Program Blocks

The blocks obtained by structuring the user program are called Program

Blocks. When used correctly, the major Program Blocks provide an

excellent overview of the user program as a whole.

The various process-related functions, e g. those of an actuator, are then

written in the subordinate Program Blocks.

As a rule, a user program consists in the main of Program Blocks.

Only basic operations may be programmed in these blocks.

 Chapter 2 Statement List Instructions Structure Page 2-25

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Calling Sequence Blocks

Sequence blocks are mainly used in conjunction with a "Sequencer control"

Function Block in sequence control systems.

The Function Block then invokes the Sequence Blocks. When the

GRAPH 5 software is used, the entire sequencer, including all command

output and step enabling conditions or transitions, are contained in a

single sequence block.

When GRAPH 5 is not used, the user can program individual sequence

blocks.

In this case, their performance is identical to that of program blocks, and

they may be used as such (for example, when the number of program

blocks proves insufficient).

Only basic operations may be programmed in these blocks.

Calling Function Blocks

Function blocks are used to implement frequently recurring or extremely

complex functions.

A Function Block represents a sequence of operations describing a self-

contained function. It is present in memory only once, and can be invoked

as needed by Program Blocks or other Function Blocks.

A Function Block call is "programmable", i.e. it can be assigned the

parameters or operands with which the Block is to execute.

This parameter list is an integral part of a f Function Block call.

All STEP 5 operations may be programmed in Function Blocks, but the

program in a Function Block must be written as a statement list.

In addition to user-written Function Blocks, a number of pre-tested or

"standard" Function Blocks are also available.

Function Block FB 0 can be used as "substitute" for Organization Block

OB 1

The extended function blocks (FXs), with the exception of the call statement,

are handled in exactly the same way as Function Blocks (FBs).

The FX Function Blocks are not available with all S5 CPUs.

 Page 2-26 Statement List Instructions Structure Chapter 2

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

2.5 Block End (BE)

Each Block is terminated with the Block End command (BE).

The command “BE” is only displayed in the STL presentation.

Instructions placed after the Block End command (BE) will be

automatically removed as soon the Block is saved.

If the CPU recognizes a Block End, the CPU terminates the program

scan of the current block and causes a jump to the block that called the

current block.

The program scan resumes with the first instruction that follows the

block call statement in the calling program.

JU PB 1

next Instruction

BE ;Block End

First Instruction

BE ;Block End

OB 1 PB 1

Example:

Due to the instruction "JU PB 1" (in OB 1) the CPU sets the CPU

internal address counter to the starting address of the Program Block

PB1.

The return address (old address counter contents plus one) is saved in

the Block Stack (B Stack).

The instructions from PB1 are executed until the CPU recognizes the

“BE” (Block End). Now the CPU pushes the contents of the B Stack into

the address counter.

The instruction executed next is the first instruction that follows the block

call.

 Chapter 2 Statement List Instructions Structure Page 2-27

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Block End Unconditional (BEU)

BEU (Block End Unconditional) terminates the program scan in the

current block and causes a jump to the block that called the current

block. The program scan resumes with the first instruction that follows

the block call.

The current local data area is released and the previous local data area

becomes the current local data area.

JU PB 1
next Instruction

BE

First Instruction

A I 0.0
 = Q 0.0

JC =M1

BEU

M1:

 EB

OB 1 PB 1

~~

~~

The difference between the block end being automatically inserted by

the programming system and the instruction “BEU” is that logic can be

programmed beyond this block end.

If the CPU recognizes the “BEU” instruction, the program scan resumes

with the first instruction that follows the block call.

However, if the BEU instruction is jumped over (conditional jump

“JC =M1” to the label “M1:”), the current program scan does not end

and will continue starting at the jump destination within the block.

 Page 2-28 Statement List Instructions Structure Chapter 2

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Practice Exercise 2–3; Conditional Call, BEU

1. Create a “New Project” (Exercise 2–3; Conditional Call, BEU)

2. Create Program Block PB1 (STL presentation) with the following

logical instructions:

 A I0.0 ; Transfer status of input I0.0 into the RLO bit

 = Q0.0 ; Transfer status of the RLO bit into output Q0.0

 JC =M1 ; Conditional jump to the label M1

 BEU ; Block End Unconditional

M1: A I0.1 ; Transfer status of input I0.1 into the RLO bit

 A I0.2 ; logical AND with the status of I0.2

 = Q0.1 ; Transfer status of the RLO bit into output Q0.1

3. Create Organization Block OB1

4. Insert the conditional block call

 A I0.3 ; Transfer status of input I0.3 into the RLO bit

 A I0.4 ; logical AND with the status of I0.4

 = Q0.2 ; Transfer status of the RLO bit into output Q0.2

 JC PB 1 ; Conditional Call

5. Transfer the Blocks into the S5 Test PLC

6. Test the PLC user program

 Chapter 2 Statement List Instructions Structure Page 2-29

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Block End Conditional (BEC)

If RLO = 1, then BEC (Block End Conditional) interrupts the program

scan in the current block and causes a jump to the block that called the

current block. The program scan resumes with the first instruction that

follows the block call.

The current local data area is released and the previous local data area

becomes the current local data area.

JU PB 1

EB

Next Instruction

First Instruction

A I 0.0
 = Q 0.0

BEC

 EB

OB 1 PB 1

~~

~~

How the CPU interprets the instruction “BEC” depends on the status of

the RLO bit. If the status of the RLO = 1, then the CPU pushes the

contents of the B Stack into the address counter.

The next instruction executed is the first instruction that follows the

block-call in the Block, which called the block containing the BEC

instruction.

Otherwise, if the status of the RLO = 0, then the BEC instruction is

jumped over, the current program scan does not end and will continue

with the instruction following the BEC command.

 Page 2-30 Statement List Instructions Structure Chapter 2

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Practice Exercise 2–4; Conditional Call, BEC

1. Create a “New Project” (Exercise 2–4; Conditional Call, BEC)

2. Create the Program Block PB1 (STL presentation) with the

following logical instructions:

 A I0.0 ; Transfer status of input I0.0 into the RLO bit

 = Q0.0 ; Transfer status of the RLO bit into output Q0.0

 BEC ; Block End Conditional

 A I0.1 ; Transfer status of input I0.1 into the RLO bit

 A I0.2 ; logical AND with the status of I0.2

 = Q0.1 ; Transfer status of the RLO bit into output Q0.1

3. Create Organization Block OB1

4. Insert the conditional block call

 A I0.3 ; Transfer status of input I0.3 into the RLO bit

 A I0.4 ; logical AND with the status of I0.4

 = Q0.3 ; Transfer status of the RLO bit into output Q0.3

 JC PB 1 ; Conditional Call

5. Transfer the Blocks into the S5 Test PLC

6. Test the PLC user program

 Chapter 3 Bit Logic Instructions Page 3-1

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

3 Bit Logic Instructions

Bit Logic Instructions are described in the following chapter.

Binary Logical Instructions

Bit logic instructions work with two digits, 1 and 0. These two digits form

the basis of a binary number system. The two digits 1 and 0 are called

binary digits or bits. In the world of contacts and coils a 1 (true) indicates

activated or energized, and a 0 (false) indicates not activated or not

energized.

The bit logic instructions interpret the signal status of 1 and 0 and

combine them according to Boolean logic. These combinations produce

a result of 1 or 0 that is called the “result of logic operation” (RLO).

Boolean bit logic applies to the following basic instructions:

Name Mnemonics

AND A

OR O

Assignment =

Nesting Open (

Nesting Close)

In addition to the logic operations (O, A, X) one more operation is

necessary for a signal assignment. The assignment is the output of a

logical connection.

The destination of an assignment can be an Output, a Memory location

(Flag, Variable) or even an Input.

The first instruction of a logic one (1) bit connection is called "First

Check".

In nested logic operations single expressions are separated using

parenthesis ().

All logic connections follow the rules of the Boolean bit.

The logic operations (O, A, X) can be negated. The letter N following the

mnemonics of the instruction indicates the negation.

 Page 3-2 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Combinations of the Logical Instructions

Name Mnemonics

AND NOT AN

OR NOT ON

AND - with Nesting Open A(

OR - with Nesting Open O(

Nesting Closed)

Processing the Result of a Logic Operation

The result of the logic operation is the signal state in the CPU that is

used for the further processing of binary signals. The RLO can be

logically combined with the signal state of an operand or an operand

which signal stage dependent on the RLO.

Scan statements are used to scan the signal states of operands. A scan

statement also contains the directive with which the signal state

scanned is to be logically combined with the RLO in the CPU:

Example:

A I0.0 ;Scan input I 0.0 for "1" (TRUE) and AND

AN I0.1 ;Scan input I 0.1 for "0" (FALSE) and AND

O I0.2 ;Scan input I 0.2 for "1" (TRUE) and OR

ON I0.3 ;Scan input I 0.3 for "0" (FALSE) and OR

Result of the scan

To be precise, it is not the actual signal state of the operand scanned that is

logically combined with the RLO; instead, a result is generated from the scan.

It is this result that is then processed further.

In a scan for "1", the result is identical to the signal state of the operand

scanned. In a scan for "0", on the other hand, the result is the negated signal

state of the operand scanned.

 Chapter 3 Bit Logic Instructions Page 3-3

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

The result of a logical connection of two or more operands is called

RLO.

Example RLO:

Line No.: STL Instruction
Status of

the Operand
RLO

0001 O I 1.1 0 0

0002 O I 1.2 1 1

0003 O I 1.3 0 1

0004 A I 1.4 1 1

0005 = Q 0.4 1 1

0006

The RLO is 1 bit information saved in a CPU register (Status Word).

The value of the RLO can be therefore "0 or "1".

If in a new logical connection (line 1), the state of the operand ("0 or "1")

is transformed into the RLO bit. The state of the operand is not changed.

The first instruction in a new logical connection is called “First Scan”.

In the following lines the contents of the RLO are logically connected

with the status of the operands (lines2 to 4).

This procedure is continued until the RLO is assigned to an operand

(line 5).

Such an assignment is called “RLO delimiting command”.

In line 5 the RLO delimiting command (= Q0.4) is executed.

The status of the RLO is assigned to the output Q0.4.

The First Scan instruction has a special significance as the result of this

statement is entered directly into the RLO as the result of the logic

operation. The "old" RLO is thus lost. A first scan always represents the

beginning of a logic operation.

 Page 3-4 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

First Scan instruction

If a new logical connection starts, the contents of the first operand are

transferred to the RLO.

The RLO is independently set to the status of the first operand of a new

logical connection whether the instruction has an AND (A), an OR (O),

or an EXCUSVE OR (X) command.

 Chapter 3 Bit Logic Instructions Page 3-5

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Example:

Both examples have precisely the same behavior.

The assignment (= I 1.2, line n) delimits the RLO. In the next line (line n+1) a

new logical connection starts (first scan).

The RLO is put on the state of the operands (I 1.3), independent of the type

of command.

Line STL Instruction STL Instruction

…. ….

n = I 1.2 = I 1.2

n + 1 O I 1.3 A I 1.3

n + 2 O I 1.4 O I 1.4

n + 3 = Q 1.1 = Q 1.1

n + 4 A I 1.5 O I 1.5

n + 5 O I 1.6 O I 1.6

n + 6 = Q 1.2 = Q 1.2

Both examples have precisely the same behavior.

The assignment (= I 1.2, line n) delimits the RLO. In the next line (line n+1) a

new logical connection starts (first scan).

The RLO is put on the state of the operands (I 1.3), independent of the type

of command.

Line STL Instruction STL Instruction

…. ….

n = I 1.2 = I 1.2

n + 1 ON I 1.3 AN I 1.3

n + 2 O I 1.4 O I 1.4

n + 3 = Q 1.1 = Q 1.1

n + 4 ON I 1.5 AN I 1.5

n + 5 O I 1.6 O I 1.6

n + 6 = Q 1.2 = Q 1.2

n + 7 BE BE

 Page 3-6 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Practice Exercise 3–1; Result of the Logic Operation, Status

 I 1.0 A I 1.0

 I 1.1 A I 1.1

 Q 0.1 = Q 0.1

Q 0.0 = Q 0.0

I 1.2 O I 1.2

 I 1.2 O I 1.3

Q 0.2 = Q 0.2

AND - Function

OR - Function

Program
execution

RLO STAT

RLO = Result of Logic Operation ;
STAT = Status or Signal Level

RLO STAT RLO STAT RLO STAT RLO STAT

0 0 1 0 1

0 0 0 1 1

0 0

0 0

0 0 1 0 1

0 0 0 1 1

0 0

1. Logic
Connection

2. Logic
Connection

1 Statusst 2 Statusnd 3 Statusrd 4 Statusth

The result of the logic operation generated by scan statements is used

as the basis for executing (RLO "1") or not executing (RLO "0") these

conditional operations. The conditional operations do not change the

RLO making it possible to process several conditional operations with

the same RLO.

 Chapter 3 Bit Logic Instructions Page 3-7

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

RLO delimiting

An assignment of the RLO is a delimiting instruction

The next logical instruction will start a new logical connection.

Assignments (= Q0.1; = M0.0) or SET and RESET (S. M0.0, R A0.0) are

RLO delimiting commands.

RLO delimiting Instructions

In this table all types of RLO delimiting instructions STEP®7 provides

are listed.

RLO delimiting Operation Example

Assignment = M1.1, = Q1.1

Set Instruction S M0.1; S Q0.1

Reset Instruction R M0.1; R Q0.1

Nesting Open / Close
Instruction

A(, O(, etc

Counting Instruction CU C1, CD C2

Timer Instruction SP T1, SE T2 etc

Jump Instruction JU =M001, JC =M002, (JZ, JP; JN,
JM, etc.)

S5 Block Call JC PB10; JU FB22;; etc.

Block End Instructions
(Return from S5 Block Call)

BE, BEU, BEC

 Page 3-8 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

3.1 Basic Rules of Boolean Algebra

The AND instruction is executed before the OR instruction

Rule: AND before OR.

Conversion AND / OR

Executing an AND function whose output is inverted is identical with one

OR function whose inputs are inverted.

I0.0 I1.0 AND Q0.0
I0.0

negated
I1.0

negated
OR

Q0.0

0 0 0 1 1 1 1

0 1 0 1 1 0 1

1 0 0 1 0 1 1

1 1 1 0 0 0 0

Conversion OR / AND

Executing an OR function whose output is inverted is identical with one

AND function whose inputs are inverted.

I0.0 I1.0 OR Q0.0
I0.0

negated
I1.0

negated
AND
Q0.0

0 0 0 1 1 1 1

0 1 1 0 1 0 0

1 0 1 0 0 1 0

 Chapter 3 Bit Logic Instructions Page 3-9

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

1 1 1 0 0 0 0

 Page 3-10 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Example of a Logical Connection

Four sensors (S1, S2, S3 and S4) are installed in a system. If at least

two sensors detect a faulty condition a warning signal should be

generated.

The logic connections necessary are listed in the table below:

 S1 S2 S3 S4

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0 Warning

4 0 0 1 0

5 1 0 1 0 Warning

6 0 1 1 0 Warning

7 1 1 1 0 Warning

8 0 0 0 1

9 1 0 0 1 Warning

10 0 1 0 1 Warning

11 1 1 0 1 Warning

12 0 0 1 1 Warning

13 1 0 1 1 Warning

14 0 1 1 1 Warning

15 1 1 1 1 Warning

From the table above the logic functions can be programmed. From the

sixteen (16) possibilities eleven (11) indicate a warning.

It is also possible to use the inverted function. A warning is always

generated except for the following conditions:

 S1 S2 S3 S4

0 0 0 0 0 No Warning

1 1 0 0 0 No Warning

2 0 1 0 0 No Warning

4 0 0 1 0 No Warning

8 0 0 0 1 No Warning

 Chapter 3 Bit Logic Instructions Page 3-11

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

A AND Function

Format: A <Bit>

Address Data type Memory area

<Bit> BOOL I, Q, M, L, D, T, C

The AND (A) checks whether the state of the addressed bit is "1"

(TRUE) or "0" (FALSE), and AND’s the test result with the RLO.

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - x x x 1

Example:

In the example above the inputs I 0.2 and I 0.3 must have the signal

state of “1” and the input I0.4 must have the signal state of “1” to

activate the output Q0.1

 Page 3-12 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Practice Exercise 3–2; Logical AND

A compressor K1 should be switched on if the following conditions are

fulfilled:

ON – Switch S1 in its ON position.

Pressure switch S2 must be closed (operated).

The security valve S3 must be closed (not operated).

The oil pressure switch S4 must be closed (operated).

Function PLC Operand

S1 has the signal state of "1" if operated I 0.0

S2 has the signal state of "1" if operated I 0.1

S3 has the signal state of "0" if operated I 0.2

S4 has the signal state of "1" if operated I 0.3

K1 Q 0.0

Tasks:

1. Write a PLC program with the S5 Blocks PB10 and OB1.

2. Transfer of the program into the S5 TEST PLC.

3. Test the PLC program.

IF the input I 0.0 is “ON”

AND the input I 0.1 is “ON”

AND NOT the input I 0.2 is “ON”

AND the input I 0.3 is “ON”

IS the output Q 0.0 “ON”

With:

IF A/O

AND A

AND NOT AN

IS =

 Chapter 3 Bit Logic Instructions Page 3-13

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

O OR Function

Format: O <Bit>

Address Data type Memory area

<Bit> BOOL I, Q, M, L, D, T, C

The OR (O) Function checks whether the state of the addressed bit is

"1" or "0" (FALSE), and OR’s the test result with the RLO.

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - x x x 1

The output of an OR function has the signal state of "1" if one or several

inputs have the signal state of "1".

Only if all inputs have the signal state of "0", the output of an OR

function has the signal state of "0".

 Page 3-14 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

O OR Function (continued)

In the example above one of the inputs I 0.2 and I 0.4 must have the

signal state of “1” or the input I0.3 has the signal state of “0” to activate

the output Q0.1

 Chapter 3 Bit Logic Instructions Page 3-15

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Practice Exercise 3–3; Logical OR

A message should be displayed if one of the following conditions are

true:

Pressure switch S1 indicates “no Pressure”

The security pressure switch S2 indicates “Pressure to high”

The motor temperature switch S3 indicates “Temperature to high”

The compressor temperature switch S4 indicates “Temperature to high”

Function PLC Operand

S1 has the signal state of "1" if “no Pressure” I 0.0

S2 has the signal state of "1" if “Pressure to high” I 0.1

S3 has the signal state of "0" if “Temperature to high” I 0.2

S4 has the signal state of "0" if “Temperature to high” I 0.3

K1 Q 0.0

Tasks:

1. Write a PLC program with the S5 Blocks PB10 and OB1.

2. Transfer of the program into the S5 TEST PLC.

3. Test the PLC program.

IF the input I 0.0 is “ON”

OR the input I 0.1 is “ON”

OR NOT the input I 0.2 is “ON”

OR NOT the input I 0.3 is “ON”

IS the output Q 0.0 “ON”

With:

IF A/O

OR O

OR NOT AN

IS =

 Page 3-16 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

NAND Function

A NAND function is an AND function with a negated output. STEP® 5

does not know a special NAND function.

The following logical connections are possible to represent a NAND

function:

Using the Boolean Algebra Rule AND / OR Conversion

 Chapter 3 Bit Logic Instructions Page 3-17

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

NOR Function

A NOR function is an OR function with a negated output. STEP® 5 does

not know a special NOR function.

The following logical connections are possible to represent a NOR

function:

Using the Boolean Algebra Rule AND / OR Conversion

 Page 3-18 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Practice Exercise 3–4; Conveyer Belt, Package Height

The height of packages transported on a conveyer belt should be tested.

As soon as the sensors detect the height of a package the height should

be indicated on a lamp display.

Only one (1) "height" should be displayed (one lamp only). The lamp

should stay on until a new package appears before the sensors (Call of

PB10, only if package present – Conditional Call).

The actual logic should be programmed in the S5 Block PB10.

A conditional call may be used to call the Function PB10 from the OB1.

The condition is true only if the sensor has recognized a package

(Sensor). The sensor “Signal Package Present” should be made visible

with a lamp.

Height 2

Height 3

Height 1

Package
Present

Sensor

Height 2

Height 3

Height 1

Package
Present

Operand Explanation

I 0.0 Sensor Package Present

I 0.1 Sensor Height 1

I 0.2 Sensor Height 2

I 0.3 Sensor Height 3

Q 0.1 Lamp Height 1

Q 0.2 Lamp Height 2

Q 0.3 Lamp Height 3

Q 0.0 Lamp Package Present

 Chapter 3 Bit Logic Instructions Page 3-19

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Tasks:

1. Write a PLC program with the S5 Blocks PB10 and OB1.

2. Transfer of the program into the S5 TEST PLC.

3. Test the PLC program.

Block PB 1

IF the sensor "Height 1" is “ON”

AND NOT the Sensor "Height 2" is “ON”

AND NOT the Sensor "Height 3" is “ON”

IS the Lamp "Height 1" “ON”.

IF the sensor "Height 1" is “ON”

AND the Sensor "Height 2" is “ON”

AND NOT the Sensor "Height 3" is “ON”

IS the Lamp "Height 2" “ON”.

IF the sensor "Height 1" is “ON”

AND the Sensor "Height 2" is “ON”

AND the Sensor "Height 3" is “ON”

IS the Lamp "Height 1" “ON”.

Block OB1

IF the “Sensor Package Present” is “ON”

IS the Lamp "Sensor Active” “ON”

Only then the Block PB1 is called.

With:

IF A/O

AND NOT AN

AND A

IS =

Only then the Block is called JC

 Page 3-20 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

AND before OR

The O function performs a logical OR instruction on AND functions

according to the rule: AND before OR.

AND before OR

A I 0.0
A I 0.1
A I 0.2
A I 0.3

O
A I 0.4
A I 0.5
A I 0.6

O
A I 0.7
A I 1.0

O I 1.1
= Q 0.1

O(

)
(

)
(

)

Block 1

Block 2

Block 3

Q 0.1 = Block 1 OR Block 2 OR Block 3 OR I 1.1

The “Blocks” indicated in STL are marked in LAD.

 Chapter 3 Bit Logic Instructions Page 3-21

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

The “Blocks” indicated in STL can also be recognized in CSF.

AND before OR

No Nesting required

Programming an AND before OR function in STL the AND connections

do not be put into parenthesis.

O(Or with Nesting Open

Format: O(

O((OR nesting open) saves the RLO and OR bits and a function code

into the nesting stack. A maximum of seven nesting stack entries are

possible.

Status Word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - 0 1 - 0

 Page 3-22 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Practice Exercise 3–5; AND before OR

A Relay K1 (Q0.1) is energized if the following conditions are true:

 The signal state of the switch at input I0.0 is “On” and

 the signal state of the switch at input I0.1 is “Off” and

 the signal state of the switch at input I0.2 is “On”.

Also the relay should be energized independent of the signals at I0.0,

I0.1 and I0.2. if the switch at the input I0.3 and the switch at the input

I0.4 are “On” or the switch at the input I0.5 and the switch at the input

I0.6 are “On”.

Tasks:

Write a PLC program with the S5 Blocks PB10 and OB1.

Transfer of the program into the S5 TEST PLC.

Test the PLC program.

Practice Exercise 5–4; AND before OR

IF the input I0.0 is “ON”

AND NOT the input I0.1 is “ON”

AND the input I0.2 is “ON”

OR

IF the input I0.3 is “ON”

AND the input I0.4 is “ON”

OR

IF the input I0.4 is “ON”

AND the input I0.4 is “ON”

IS the output (relay) “ON”.

With:

IF A/O

AND NOT AN

AND A

OR O

IS =

 Chapter 3 Bit Logic Instructions Page 3-23

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

OR before AND

A(And with Nesting Open

Format: A(

A((AND nesting open) saves the RLO and OR bits and a function code

into the nesting stack. A maximum of seven nesting stack entries are

possible.

Status Word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - 0 1 - 0

Programming an OR before AND function in STL the OR connections

must be put into parenthesis.

The function A((AND nesting open) is an “RLO delimiting command”

therefore a new logical connection starts with the first instruction after

the parenthesis. The nesting close is not a RLO delimiting command.

OR before AND

A(
O I 0.0
O I 0.1
O I 0.2
O I 0.3
)
A(
O I 0.4
O I 0.5
O I 0.6
)
A(
O I 0.7
O I 1.0
)
A I 1.1
= Q 0.1

Block 1

Block 2

Block 3

Q 0.1 = Block 1 AND Block 2 AND Block 3 AND I 1.1

 Page 3-24 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

The “Blocks” indicated in STL are marked in LAD.

The “Blocks” indicated in STL can also be recognized in CSF.

 Chapter 3 Bit Logic Instructions Page 3-25

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Practice Exercise 3–6; OR before AND

A Relay K1 (Q0.1) is energized if

 The signal state of the switch at input I0.0 is “On” or

 the signal state of the switch at input I0.1 is “Off” or

 the signal state of the switch at input I0.2 is “On”.

Also the switch at the input I0.3 or the switch at the input I0.4 are “On”

and the switch at the input I0.5 or the switch at the input I0.6 are “On”.

Tasks:

Write a PLC program with the S5 Blocks PB10 and OB1.

Transfer of the program into the S5 TEST PLC.

Test the PLC program.

IF the input I0.0 is “ON”

OR NOT the input I0.1 is “ON”

OR the input I0.2 is “ON”

UND

IF the input I0.3 is “ON”

OR the input I0.4 is “ON”

UND

IF the input I0.5 is “ON”

OR the input I0.6 is “ON”

IS the output Q0.1 “ON”.

With:

IF A/O

OR O

OR NOT ON

AND A(

)

IS =

 Page 3-26 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Practice Exercise 3–7; Normally Open (NO), Normally Closed (NC)

The relay K1 should be energized if the Switch 1 (S1) is operated and

the Switch 2 (S2) is not operated.

The above exercise has the following four (4) possibilities.

NO NO NO NC

I0.0 I0.1

Q 0.1

PLC

K1

S1 S2

I0.2 I0.3

Q 0.2

PLC

K1

S1 S2

NC NO NC NC

I0.4 I0.5

Q 0.3

PLC

K1

S1 S2

I0.6 I0.7

Q 0.4

PLC

K1

S1 S2

Tasks:

Write a PLC program with the S5 Blocks PB10 and OB1.

Transfer of the program into the S5 TEST PLC.

Test the PLC program.

 Chapter 3 Bit Logic Instructions Page 3-27

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Converting a relay logic into a PLC Program

Example: Motor ON / OFF with Locking

The simple relay circuit shown in the picture needs to be converted to a

PLC Program.

N

Coil

K1

NC
Contact

NC
Contact

NC
Contact

S6S1 S4 S5

NO Contact

NO Contact

NO Contact

NO Contact

S2

S3

K1

L 1

Name
PLC

Operand
 Name

PLC
Operand

S1 (NO) Push Button I 0.0 S4 (NC) Push Button I 0.3

S2 (NO) Push Button I 0.1 S4 (NC) Push Button I 0.4

S3 (NO) Push Button I 0.2 S4 (NC) Push Button I 0.5

K1 Relay (Motor On) Q0.0

Write a PLC program with the S5 Blocks PB10 and OB1.

Transfer of the program into the S5 TEST PLC.

Test the PLC program.

 Page 3-28 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Using the LAD Editor

Programming an Example using Ladder Diagram (LAD)

The programming of the example is explained using Ladder Logic

(LAD).

Confirming the name in the “ Enter new Block” dialog box the editor

windows is opened and the new block is ready to be programmed.

Selecting Ladder Diagram (LAD) Presentation

The Command Ladder Diagram (LAD) from the Presentation Menu

selects the PLC logic presentation Ladder Diagram.

 Chapter 3 Bit Logic Instructions Page 3-29

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

The workplace is ready for entering the program block PB10.

S5 Programming Software Editor Window, Ladder Diagram

Presentation

The first segment is opened.

The first line is reserved to enter a comment.

The tool bar II provides the icons for easy programming. Clicking an icon

with the mouse calls the desired function.

Next Segment selection

Previous Segment selection

Enlarge the size of the logic shown in the workplace. The

selected font must be a true type font to allow scaling.

Reduce the size of the logic shown in the workplace. The

selected font must be a true type font to allow scaling.

Draw a line to the right of the insertion mark. If a line is

already to the right of the insertion mark the line is erased. A

line replaces a contact to the right of the insertion mark.

Draw a line to the left of the insertion mark. If a line is

already to the left of the insertion mark the line is erased. A

line replaces a contact to the right of the insertion mark.

 Page 3-30 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Draw a line to upward from the insertion mark. If a line is

already exists the line is erased.

Draw a line to downward from the insertion mark. If a line is

already exists the line is erased.

Insert a contact to the right of the insertion mark. If a contact

already exists to the right of the insertion mark the contact is

erased. A line to the right is replaced by a contact.

Insert a contact to the left of the insertion mark. If a contact

already exists to the left of the insertion mark the contact is

erased. A line to the left of the insertion mark is replaced by

a contact.

Delete the contact to the right of the insertion mark. The

delete button only works in a logical operational segment.

Change the selected (mark operand or insertion mark to the

right of the contact) contact from normally open (NO) to

normally closed (NC) or vice versa (NC to NO). The operand

must be defined prior to the change command.

Insert a normally open (NO) contact to the right of the

insertion mark. The insert button only works in a logical

operational segment.

Insert a parallel branch with a normally open (NO) contact to

the right (and down) of the insertion mark. The insert button

only works in a logical operational segment.

Insert a SR Flip Flop (latch) with a dominating reset input.

Insert a RS Flip Flop (latch) with a dominating set input.

This icon opens a dialog box to select timers.

 Chapter 3 Bit Logic Instructions Page 3-31

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

This icon opens a dialog box to select counters.

This icon opens a dialog box to select comparators.

Insert a function block (FB) call. A function block call is only

be permitted in a separate segment

Clicking the bottom of the vertical line the insertion mark, a blue cross

appears.

Building a Segment using the Mouse. Click the icon to insert a contact to

the right of the insertion mark. By using the icons explained above the

logic is built.

Program Block BB10

 Page 3-32 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Practice Exercise 3–8; Motor right/left

The relay logic shown in the picture (motor right, motor left) needs to be

converted to a PLC program.

S1 S2

S3

K1
Coil

Coil

L 1
K1

N

K2

K1 K2

K2

Name PLC Operand

S1 (NC) Motor OFF I 0.0

S2 (NO) Motor right I 0.1

S3 (NO) Motor left I 0.2

K1 Relay (Motor right) Q0.0

K2 Relay (Motor left) Q0.0

Write a PLC program with the S5 Blocks PB10 and OB1.

Transfer of the program into the S5 TEST PLC.

Test the PLC program.

 Chapter 3 Bit Logic Instructions Page 3-33

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

3.2 Number Systems

In order to understand the definition of variables in the STEP® 5

programming language, the type of numbering systems used in the PLC

technology must be known.

Decimal system

Normally we use the decimal system to indicate numbers.

The decimal number system has the base number of ten (10). Each

number in the decimal system is expressed as a multiple of a power of

ten.

Figure: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

Base: 10

Value: Power of 10 (Base)

Example: 7 4 1 1

1

1

4

7

x

x

x

x

10

10

10

10

0

1

2

3

=

=

=

=

1

10

100

1000

1

10

400

7000

1

1

4

7

x

x

x

x

=

=

=

=

Sum : 7411

Note:

A number by the power of zero (0) is one (1) e.g. 100 = 1; 20 = 1

 160 = 1;

A number by the power of one (1) is the number itself. e.g. 101 = 10; 21 = 2

 161 = 16

 Page 3-34 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Binary Numbers

Binary Numbers can only have two (2) values:

 FALSE (Zero (0) or low)

 TRUE (One (1) or High)

Therefore the binary number system is used in the digital system

(on/off).

The binary number system has the base number two (2).

Each number in the binary number system is expressed as multiple of a

power-of-two number.

Figure: 0, 1,

Base: 2

Value: Power of 2 (Base)

Example: 1 0 0 1 1 0 1 1

1

1

0

1

1

0

0

1

x

x

x

x

x

x

x

x

2

2

2

2

2

2

2

2

0

1

2

3

4

5

6

7

=

=

=

=

=

=

=

=

1

2

4

8

16

32

64

128

1

2

0

8

16

0

0

128

1

1

0

1

1

0

0

1

x

x

x

x

x

x

x

x

=

=

=

=

=

=

=

=

Sum : 155

Eight (8) digits are needed, in order to represent the decimal value of 155.

The maximum value, which can be represented with eight (8) digits, is

decimally 255.

A "digit" in the binary number system is called "bit". It is common that eight (8)

bits are called a Byte.

 Chapter 3 Bit Logic Instructions Page 3-35

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Hexadecimal Numbers

The example of the binary numbers shows that the number of digits

required to express a large number will increase drastically.

In order to take advantage of the binary numbering system for digital

systems (on/off) and to reduce the number of digits required to express

a large number, four (4) binary digits are combined to create a

hexadecimal digit.

The base number of the hexadecimal system is sixteen (16).

Each number in the hexadecimal number system is expressed as

multiple of a power of "16".

Figure: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Base: 16

Value: Power of 16 (Base)

Example: 4 A 7 F

, A (10), B (11), C (12), D (13), E (14), F (15)

F

7

A

4

x

x

x

x

16

16

16

16

0

1

2

3

=

=

=

=

1

16

256

4 096

 15

112

2 560

16 384

15

 7

10

 4

x

x

x

x

=

=

=

=

Sum : 19 071

The link between binary numbers and hexadecimal numbers

2
0

2
1

2
2

2
5

2
6

2
3

2
4

2
7

2
8

2
9

2
10

2
11

2
12

2
14

2
13

2
15

16
1

1

16
0

16
2

16
3

0 0 0 001 1 1 1 1 1 1 1 1 1

5 B E 7

Power of 2 (Base 2)

Power of 16 (Base 16)

Binary Number

Hexadecimal Number

Decimal Number 23 527

 Page 3-36 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Hexadecimal Numbers

Four (4) bits are required to represent a single hexadecimal number.

Hexadecimal - Numbers

Decimal

8 4 2 1

0

1

2

3

4

5

6

7

8

9

A (10)

B (11)

C (12)

D (13)

E (14)

F (15)

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

 Chapter 3 Bit Logic Instructions Page 3-37

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

BCD numbers

The BCD numbering system is based on the hexadecimal number

system with the agreement that only the numbers, which are present in

the decimal number system, are used.

Due to this rule the decimal number system and the BCD number

system have a base of ten (10).

The BCD number system as well as the hexadecimal numbering system

uses four (4) bits for the representation of each BCD digit.

Each number in the BCD number system is expressed as multiple of a

power of "10". Only the numbers 0 to 9 are used.

The advantage of the BCD numbering system is that the represented

numbers are easier to read. However the disadvantage of the BCD

numbering system is that it requires substantial conversion and memory

power.

Figure: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

Base: 10

Value: Power of 10 (Base 10)

Example: 7 4 1 1

1

1

4

7

x

x

x

x

10

10

10

10

0

1

2

3

=

=

=

=

1

10

100

1000

1

10

400

7000

1

1

4

7

x

x

x

x

=

=

=

=

Sum : 7411

The link between binary, BCD, and hexadecimal numbers

2
0

2
1

2
2

2
5

2
6

2
3

2
4

2
7

2
8

2
9

2
10

2
11

2
12

2
14

2
13

2
15

10
1

1

10
0

10
2

10
3

0 0 0 001 1 0 1 0 1 1 1 1 1

5 9 6 7

Power of 2 (Base 2)

Power of 10 (Base 10)

Binary Number

BCD Number

Decimal Number 5 967

 Page 3-38 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

BCD Example: Thumb wheel switch

01110100 1001 0010

x 1000 x 100 x 10 x 1

Thumb Wheel Switch
(BCD-Code)

BCD - Numbers

Decimal

8 4 2 1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

 Chapter 3 Bit Logic Instructions Page 3-39

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Practice Exercise 3–9; Seven Segment Display

The four switches S0, S1, S2, and S3 will be used to control a seven-

segment display.

A Program Block (PB10) should be programmed to display the number.

The switches have the following values:

Switch Value PLC Operand

S0 20 I0.0

S1 21 I0.1

S2 22 I0.2

S3 23 I0.3

Write a PLC program with the S5 Blocks PB10 and OB1.

Transfer of the program into the S5 TEST PLC.

Test the PLC program.

 Page 3-40 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Switch Decoding

Number
I 0.0

one (1)
I 0.1

two (2)
I 0.2

four (4)

I 0.3
eight

(8)
Flag

Display
FW 2

0 0 0 0 0 F3.0 1

1 1 0 0 0 F3.1 2

2 0 1 0 0 F3.2 4

3 1 1 0 0 F3.3 8

4 F3.4 16

5 F3.5 32

6 F3.6 64

7 F3.7 128

8 F2.0 256

9 F2.1 512

A F2.2 1024

B F2.3 2048

C F2.4 4096

D F2.5 8192

E F2.6 16384

F F2.7 -32768

 Chapter 3 Bit Logic Instructions Page 3-41

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

7 Segment Decoding

N
u

m
b

e
r

Flag

Segment
A

Segment

B
Segment

C
Segment

D
Segment

E
Segment

F
Segment

G

Q0.0 Q0.1 Q0.2 Q0.3 Q0.4 Q0.5 Q0.6

0 F3.0 X X X X X X

1 F3.1 X X

2 F3.2 X X X X X

3 F3.3 X X X X X

4 F3.4 X X X X

5 F3.5 X X X X X

6 F3.6 X X X X X X

7 F3.7 X X X

8 F2.0 X X X X X X X

9 F2.1 X X X X X

A F2.2 X X X X X X

B F2.3 X X X X X

C F2.4 X X X X

D F2.5 X X X X X

E F2.6 X X X X X

F F2.7 X X X X

X Output (Q..) must be “ON”

 Page 3-42 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

3.3 Setting / Resetting Bit Addresses

The value of “1” (true) or the value of “0” (false) can be assigned to an

Address (memory location, operand) when the RLO has a value of “1”

(true) by using the instructions “S” (Set) or “R” (Reset).

S – Set instruction

Format: S <Bit>

Address Data type Memory area

<Bit> BOOL I, Q, M, L, D

S (set bit) places a "1" (true) in the addressed bit if RLO = 1. The “S”

instruction is an RLO delimiting Instruction.

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - 0 x - 0

Example

 Chapter 3 Bit Logic Instructions Page 3-43

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

R – Reset instruction

Format: R <Bit>

Address Data type Memory area

<Bit> BOOL I, Q, M, L, D

R (reset bit) places a "0" in the addressed bit if RLO = 1. The “R”

instruction is an RLO delimiting Instruction.

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - 0 x - 0

Example

The output Q 0.4 is set to “1” as soon as the input I 0.0 has a status of

“1” (actually the RLO must be “1”). If the input I 0.0 goes back to “0” the

output Q 0.4 remains set.

The output Q 0.4 is reset to “0” as soon as the input I 0.1 has a status of

“1” (actually the RLO must be “1”).

In the example it is possible that both inputs (I 0.0 and I 0.1) are “1”

(true). In this case the output Q 0.4 is set to “1” and immediately reset to

“0”. The output Q 0.4 therefore remains reset (false) because the “R”

(reset instruction) follows the “S” (set instruction).

 Page 3-44 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

RS Flip Flop

With the button “RS” a RS Flip Flop with a dominating set input is

inserted.

CSF Presentation

LAD Presentation

STL Presentation

Note:

Set Dominant

If a latch (RS Flip Flop) should remain set (“1” – true) when both inputs

(set and reset) of the latch are “1” (true), the “R” (reset instruction) must be

programmed prior the “S” (set instruction).

Reset Dominant

If a latch (SR Flip Flop) should be reset (“0” – false) when both inputs (set

and reset) of the latch are “1” (true), the “S” (set instruction) must be

programmed prior the “R” (set instruction).

 Chapter 3 Bit Logic Instructions Page 3-45

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

SR Flip Flop

With the button “SR” a SR Flip Flop with a dominating reset input is

inserted.

CSF Presentation

LAD Presentation

STL Presentation

The instruction “NOP 0” is only required to convert the STL presentation

into LAD or CSF presentation.

 Page 3-46 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Practice Exercise 3–10; Latch

A light needs to be switched on and off from three (3) different locations.

If an ON switch and an OFF switch are operated at the same time the

light should stay on.

Device PLC Operand

S1: Switch ON (Location 1) I 0.0

S2: Switch OFF (Location 1) I 0.1

S3: Switch ON (Location 2) I 0.2

S4: Switch OFF (Location 2) I 0.3

S5: Switch ON (Location 3) I 0.4

S6: Switch OFF (Location 3) I 0.5

H1: Light Q 0.0

Write a PLC program with the S5 Blocks PB10 and OB1.

Transfer of the program into the S5 TEST PLC.

Test the PLC program.

 Chapter 3 Bit Logic Instructions Page 3-47

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

3.4 Edge Detection

STEP® 5 does not provide Instructions to detect the rising and falling

edge (flange detection) of a signal (RLO).

0

1

Positive Flange (positive edge)

0

1

Negative Flange (negative edge)

The “Edge Detection” can be programmed using bit operations. The

instructions require “Flange Memory”. This “Flange Memory” must be a

bit address that fulfills the following requirements:

The “Flange Memory” may not be modified at any other location within

the PLC program.

The status of the “Flange Memory” must be available in the next OB1

cycle.

The following “Flange Memory” operands (Bit) fulfill these requirements:

Flag for instance: F10.0, F15.1 etc.

Data Bit in a Data Block for instance: D3.1, D2.14

 Page 3-48 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Positive Edge Detection

Input Signal (RLO)

Flange Memory
(Temporary Storage)

Output Pulse (RLO)

1 OB1 Cycle

-ON

-STRG

-PLS

(I 0.0)

(F 1.1)

(F 1.0)

If a positive edge of the Input Signal “-ON” (I 0.0) is detected, the Output

Pulse “-PLS” F1.0) is “1” (true) for one (1) OB 1 scan cycle. The

previous RLO state is stored in “Flange Memory”.

Positive Edge Detection (STL – absolute operands)

During each program scan cycle, the signal state of the Input Signal

(RLO) bit is compared with the previous cycle to see if there has been a

state change.

The previous RLO state must be stored in the “Flange Memory” (Bit) to

make the comparison. If there is a difference between current and

previous "0" state (detection of rising edge), the Output Pulse (RLO) bit

will be "1".

Positive Edge Detection (STL – symbolic operands)

 Chapter 3 Bit Logic Instructions Page 3-49

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Positive Edge Detection (LAD – two segments)

Negative Edge Detection

Input Signal (RLO)

Flange memory
(Temporary storage)

Output Pulse (RLO)

1 Cycle (OB 1)

-OFF

-STRG

-PLS

I 0.0

F 1.1

F 1.0

If a negative edge of the Input Signal “-OFF” (I 0.0) is detected, the

Output Pulse “-PLS” F1.0) is “1” (true) for one (1) OB 1 scan cycle. The

previous RLO state is stored in “Flange Memory”.

Negative Edge Detection (STL – absolute operands)

 Page 3-50 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Negative Edge Detection (STL – symbolic operands)

During each program scan cycle, the signal state of the Input Signal

(RLO) bit is compared with the previous cycle to see if there has been a

state change.

The previous RLO state must be stored in the “Flange Memory” (Bit) to

make the comparison. If there is a difference between current and

previous "0" state (detection of rising edge), the Output Pulse (RLO) bit

will be "1".

 Chapter 3 Bit Logic Instructions Page 3-51

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Practice Exercise 3–11; Motor ON/OFF, Edge Detection with Latch

Two (2) push buttons are used to switch a Motor (Latch) ON and OFF.

To be independent of the activation of the push buttons, edge detection

should be used.

For safety reasons the OFF push button should have a NO contact (activating

the OFF push button puts a “0” at the input).

If a “wire brake” occurs at the OFF push button the motor should be switched

off and it should not be possible to start the motor with the ON push button.

Device PLC Operand

Pushbutton ON I 0.0

Pushbutton OFF I 0.1

Motor Relay (Latch) Q 0.0

Flange Memory (ON – , Pos.) F 10.1

Flange Memory (OFF – ,Neg.) F 10.3

Pulse Positive (not required) F 10.0

Pulse Negative (not required F 10.2

Write a PLC program with the S5 Blocks PB10 and OB1.

Transfer of the program into the S5 TEST PLC.

Test the PLC program.

 Page 3-52 Bit Logic Instructions Chapter 3

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

 Chapter 4 Timing Functions (Timer) and Counters Page 4-1

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

4 Timing Functions (Timer) and Counters

The Timing functions and Counters are similarly constructed software

functions, using 16-bit word operands.

4.1 Timing Functions (Timer)

Timing functions are used to implement waiting periods and monitoring

times in the PLC program

The timing functions are constructed using 16-bit word operands.

With the command Timer… a dialog box is opened to select one Timer

from a choice of five timer functions.

Timer signals overview

SP, SE, SR, SS, SF Start timer

TV Time Constant KT
The Time Constant occupies a 16 bit word.
The Time constant is entered as a 3 digit BCD number, the
Time value followed by a decimal point and a multiplication
factor.
min. KT 1.0 = 10ms max. KT 999.3 = 2h, 46m, 25s

 The following multiplication factors are available:

Time Base Accuracy Example Time

0 = 0.01s 10ms KT 500.0 5 Seconds

1 = 0.1s 100ms KT 50.1 5 Seconds

2 = 1s 1s KT 5.2 5 Seconds

3 = 10s 10s KT 100.3 1000 Seconds

R Reset

BI Current counter value (Binary)

DE Current counter value (BCD)

Q Output

 Page 4-2 Timing Functions (Timer) and Counters Chapter 4

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Area in Memory

Timers have an area reserved for them in the memory of your CPU. This

memory area reserves one 16-bit word for each timer address.

The following functions have access to the timer memory area:

Timer instructions

Updating of timer words by means of clock timing. This function of your

CPU in the RUN mode decrements a given time value by one unit at the

interval designated by the time base until the time value is equal to zero.

Time Value

Bits 0 through 9 of the timer word contain the time value in binary code.

The time value specifies a number of units. Time updating, decrements

the time value by one unit at an interval designated by the time base.

Decrementing continues until the time value is equal to zero. The time

value is loaded into the accumulator 1 in the following format.

KT xyz.t

 Where t = the time base (that is, the time interval or resolution)

 Where xyz = the time value in binary coded decimal format

The maximum time value that you can enter is 9,990 seconds, or

2H_46M_30S.

Time Base

Bits 12 and 13 of the timer word contain the time base in binary code.

The time base defines the interval at which the time value is

decremented by one unit. The smallest time base is 10 ms; the largest is

10 s.

Time Base Binary Code for the Time Base

10 ms 00

100 ms 01

1 s 10

10 s 11

Values that exceed 2h46m30s are not accepted. A value whose

resolution is too high for the range limits (for example, 2h10ms) is

 Chapter 4 Timing Functions (Timer) and Counters Page 4-3

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

truncated down to a valid resolution. The general format for S5TIME has

limits to range and resolution as shown below:

Resolution Range Time Constant

0.01 second 10MS to 9S_990MS KT 1.0 – KT 999.0

0.1 second 100MS to 1M_39S_900MS KT 1.1 – KT 999.1

1 second 1S to 16M_39S KT 1.2 – KT 999.2

10 seconds 10S to 2H_46M_30S KT 1.3 – KT 999.3

Bit Configuration in ACCU 1

When a timer is started, the contents of ACCU1 are used as the time

value.

Bits 0 through 11 of the ACCU1-L hold the time value in binary coded

decimal format (BCD format: each set of four bits contains the binary

code for one decimal value). Bits 12 and 13 hold the time base in binary

code.

The following figure shows the contents of ACCU1-L loaded with timer

value 127 and a time base of 1 second:

Starting a Timer

A timer is started as soon as signal (RLO) at the start input (LAD, CSF)

or at the start operation (STL) changes its state as indicated in the table

below.

This change of the signal state of the RLO is compulsory for starting a

timer

 Page 4-4 Timing Functions (Timer) and Counters Chapter 4

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

For starting a timer the time base from accumulator 1 is used. In

accumulator 1 are the BCD values for time value and time basis.

For starting a timer different functions can be used:

Name Timer function Start with the change of the

SP Pulse timer Signal State from "0" to "1"

SE Extended pulse timer Signal State from "0" to "1"

SD On-delay timer Signal State from "0" to "1"

SS
Retentive on-delay
timer

Signal State from "0" to "1"

SF Off-delay timer Signal State from "1" to "0"

Reset Timer (R)

Format: R <timer>

Address Data type Memory area Description

<timer> TIMER T Timer number, range depends on CPU

R <timer> stops the current timing function and clears the timer value

and the time base of the addressed timer word if the RLO transitions

from 0 to 1.

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - 0 - - 0

 Chapter 4 Timing Functions (Timer) and Counters Page 4-5

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Enable Timer – FR (Free)

Format: FR <timer>

Address Data type Memory area Description

<timer> TIMER T Timer number, range
depends on CPU

When the RLO transitions from "0" to "1", FR <timer> clears the edge-

detecting flag that is used for starting the addressed timer. A change in

the RLO bit from 0 to 1 in front of an enable instruction (FR) enables a

timer.

Timer enable is not required to start a timer, nor is it required for normal

timer instruction. An enable is used only to re-trigger a running timer,

that is, to restart a timer. The restarting is possible only when the start

instruction continues to be processed with RLO = 1.

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - 0 - - 0

Note:

The instruction Enable Timer – FR (Free) is only available in

STL – Presentation.

 Page 4-6 Timing Functions (Timer) and Counters Chapter 4

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Pulse Timer (SP)

Format: SP <timer>

Address Data type Memory area Description

<timer> TIMER T Timer number, range
depends on CPU

SP <timer> starts the addressed timer when the RLO transitions from

"0" to "1". The programmed time elapses as long as RLO = 1. The timer

is stopped if, the RLO transitions to "0" before the programmed time

interval has expired. This timer start command expects the time value

and the time base to be stored as a BCD number in ACCU 1-L.

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - 0 - - 0

tt

t = programmed time interval

RLO at
Enable Input I 0.2

RLO at
Reset Input I 0.1

RLO at
Start Input I 0.0

Time Response

Check Signal
State at Timer
Output Q 0.0

t
t

t

The maximum time that the output signal remains at 1 is the same as

the programmed time value t. The output signal stays at 1 for a shorter

period if the input signal changes to 0.

 Chapter 4 Timing Functions (Timer) and Counters Page 4-7

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Pulse Timer (SP) (continued)

 Page 4-8 Timing Functions (Timer) and Counters Chapter 4

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Extended Pulse Timer (SE)

Format: SE <timer>

Address Data type Memory area Description

<timer> TIMER T Timer number, range
depends on CPU

SE <timer> starts the addressed timer when the RLO transitions from

"0" to "1". The programmed time interval elapses, even if the RLO

transitions to "0" in the meantime.

The programmed time interval is started again if, the RLO transitions

from "0" to "1" before the programmed time has expired. This timer start

command expects the time value and the time base to be stored as a

BCD number in ACCU 1-L.

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - 0 - - 0

tt t
t

t = programmed time interval

t

RLO at
Enable Input I 0.2

RLO at
Reset Input I 0.1

RLO at
Start Input I 0.0

Time Response

Check Signal
State at Timer
Output Q 0.0

t
t

t

The output signal remains at 1 for the programmed length of time,

regardless of how long the input signal stays at 1.

 Chapter 4 Timing Functions (Timer) and Counters Page 4-9

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Extended Pulse Timer (SE) (continued)

 Page 4-10 Timing Functions (Timer) and Counters Chapter 4

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

On-Delay Timer (SD)

Format: SD <timer>

Address Data type Memory area Description

<timer> TIMER T Timer number, range
depends on CPU

SD <timer> starts the addressed timer when the RLO transitions from

"0" to "1". The programmed time interval elapses as long as RLO = 1.

The time is stopped if, the RLO transitions to "0" before the programmed

time interval has expired.

This timer start instruction expects the time value and the time base to

be stored as a BCD number in ACCU 1-L.

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - 0 - - 0

tt

t = programmed time interval

t

RLO at
Enable Input I 0.2

RLO at
Reset Input I 0.1

RLO at
Start Input I 0.0

Time Response

Check Signal
State at Timer
Output Q 0.0

t
t

t

The output signal changes to 1 only when the programmed time has

elapsed and the input signal is still 1.

 Chapter 4 Timing Functions (Timer) and Counters Page 4-11

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

On-Delay Timer (SD) (continued)

 Page 4-12 Timing Functions (Timer) and Counters Chapter 4

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Retentive On-Delay Timer (SS)

Format: SS <timer>

Address Data type Memory area Description

<timer> TIMER T Timer number, range
depends on CPU

SS <timer> (start timer as a retentive ON-delay timer) starts the

addressed timer when the RLO transitions from "0" to "1". The full

programmed time interval elapses, even if the RLO transitions to "0" in

the meantime.

The programmed time interval is re-triggered (started again) if the RLO

transitions from "0" to "1" before the programmed time has expired. This

timer start command expects the time value and the time base to be

stored as a BCD number in ACCU 1-L.

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - 0 - - 0

tt
t t

t t

t = programmed time interval

t t

RLO at
Enable Input I 0.2

RLO at
Reset Input I 0.1

RLO at
Start Input I 0.0

Time Response

Check Signal
State at Timer
Output Q 0.0

t

The output signal changes from 0 to 1 only when the programmed time

has elapsed, regardless of how long the input signal stays at 1.

 Chapter 4 Timing Functions (Timer) and Counters Page 4-13

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Retentive On-Delay Timer (SS) (continued)

 Page 4-14 Timing Functions (Timer) and Counters Chapter 4

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Off-Delay Timer (SF)

Format: SF <timer>

Address Data type Memory area Description

<timer> TIMER T Timer number, range
depends on CPU

SF <timer> starts the addressed timer when the RLO transitions from

"1" to "0". The programmed time elapses as long as RLO = 0.

The time is stopped if, the RLO transitions to "1" before the programmed

time interval has expired.

This timer start command expects the time value and the time base to

be stored as a BCD number in ACCU 1-L.

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - 0 - - 0

t t t
t

t = programmed time interval

t

RLO at
Enable Input I 0.2

RLO at
Reset Input I 0.1

RLO at
Start Input I 0.0

Time Response

Check Signal
State at Timer
Output Q 0.0

t
t

t

 Chapter 4 Timing Functions (Timer) and Counters Page 4-15

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Off-Delay Timer (SF) (continued)

 Page 4-16 Timing Functions (Timer) and Counters Chapter 4

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Selecting the right Timer

The following overview should help you to select the right timer for your

timing application.

t = programmed time interval

Pulse Timer SE
 Output Q 0.0

On- Delay Timer SD
 Output Q 0.0

Retentive On- Delay Timer SS
 Output Q 0.0

OFF- Delay Timer SF
 Output Q 0.0

RLO at Start Input I 0.0

Pulse Timer SP
 Output Q 0.0

Extended

t

t

t

t

t

 Chapter 4 Timing Functions (Timer) and Counters Page 4-17

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Practice Exercise 4–1; Flashing Light

A flashing light with an ON time of 1 second and an OFF time of 0.5

second needs to be programmed. The ON time and the OFF time

should be separately adjustable.

I0.0

Q 0.0
= Blinking Output

T1

T2

Write a PLC program with the S5 Blocks PB10 and OB1.

Transfer of the program into the S5 TEST PLC.

Test the PLC program.

 Page 4-18 Timing Functions (Timer) and Counters Chapter 4

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Practice Exercise 4–2; Traffic Light

A pedestrian crossing light needs to be controlled. If a pedestrian

pushes the "Walk" button, the traffic light should be switched to "Red" for

the cars and "Green" for the pedestrian crossing light.

The yellow phase for the automobiles should be 3 seconds and the red

phase 8 seconds. The pedestrians have a green phase of the 5

seconds. The automobiles should have a green phase from at least 4

seconds.

Comment Operands

Push button "Walk" I 0.0

Red light Automobiles Q 0.0

Green light Automobiles Q 0.2

Yellow light Automobiles Q 0.1

Red light Pedestrian Q 0.3

Green light Pedestrian Q 0.4

Time Value for Timer T1 3 seconds

Time Value for Timer T2 5 seconds

Time Value for Timer T3 3 seconds

Time Value for Timer T4 4 seconds

Traffic light cycle flag F10.0

Edge Flag for “Walk” F10.1

Edge Pulse “Walk” F10.2

Edge Flag for “Output T4” F10.3

Edge Pulse “Output T4” F10.4

Write a PLC program with the S5 Blocks PB10 and OB1.

Transfer of the program into the S5 TEST PLC.

Test the PLC program.

 Chapter 4 Timing Functions (Timer) and Counters Page 4-19

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Traffic Light Control

Push button "Walk"

Traffic light cycle flag

Pedestrian

Red_Pedestrian

Green_Pedestrian

Pulse (RLO) "Walk"

T1 (Auto Yellow 1)

T2 (Green)

T3 (Auto 2)

T4 (Auto min. Green)

 "Min. Green Auto"

Red_Auto

Yellow_Auto

Green_Auto

Yellow

Pulse (RLO)

 Page 4-20 Timing Functions (Timer) and Counters Chapter 4

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Picture Block; Editor

Available Data Formats:

 Chapter 4 Timing Functions (Timer) and Counters Page 4-21

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Picture Block; Status Display

Available Data Formats:

 Page 4-22 Timing Functions (Timer) and Counters Chapter 4

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

4.2 Counter Instructions

A counter is a function element of the STEP® 5 programming language

that counts. Up and Down counting is possible. Counters have an area

reserved for them in the memory of your CPU. This memory area

reserves one 16-bit word for each counter.

Counter instructions are the only functions with access to the memory

area. You can vary the count value within this range by using the

following Counter instructions:

 FR Enable Counter (Free)

 L Load Current Counter Value into ACCU 1

 LC Load Current Counter Value into ACCU 1 as BCD

 R Reset Counter

 S Set Counter Preset Value

 CU Counter Up

 CD Counter Down

Enable Counter FR (Free)

Format: FR <counter>

Address Data type Memory area Description

<Counter> COUNTER C Counter, range depends on
CPU

When RLO transitions from "0" to "1", FR <counter> clears the edge-

detecting flag that is used for setting and selecting the counting direction

(up or down) of the addressed counter.

Enable counter is not required to set a counter or for normal counting.

This means that in spite of a constant RLO of 1 for the Set Counter

Preset Value, Counter Up, or Counter Down, these instructions are not

executed again after the enable.

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - 0 - - 0

 Chapter 4 Timing Functions (Timer) and Counters Page 4-23

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Example: Enable Counter FR (Free)

Reset Counter R

Format: R <counter>

Address Data type Memory area Description

<Counter> COUNTER C Counter to be reset,
range depends on CPU

R <counter> loads the addressed counter with "0" if RLO = 1.

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - 0 - - 0

Example:

 Page 4-24 Timing Functions (Timer) and Counters Chapter 4

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Set Counter S (Preset Counter)

Format: S <counter>

Address Data type Memory area Description

<Counter> COUNTER C Counter to be preset,
range depends on CPU

S <counter> loads the count from ACCU 1-L into the addressed counter

when the RLO transitions from "0" to "1". The count in ACCU 1 must be

a BCD number between "0" and "999".

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - 0 - - 0

Example:

Load Current Counter Value (L) into ACCU 1 in Binary Form

Format: L <counter>

Address Data type Memory area Description

<Counter> COUNTER C Counter range
depends on CPU

L <counter> loads the current count of the addressed counter as a

binary number into ACCU 1-L (between "0" and "999").

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - - - - -

 Chapter 4 Timing Functions (Timer) and Counters Page 4-25

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Example:

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value (0 to 999) in Binary

Count Value (0 to 999) in Binary

Counter Word
for Counter C1
In Memory

Contents of
ACCU1 after
Load Instruction
 L C1

L C1

All “0”

Load Current Counter Value (LC) into ACCU 1 in BCD Form

Format: LC <counter>

Address Data type Memory area Description

<Counter> COUNTER C Counter range
depends on CPU

LC <counter> loads the current count of the addressed counter as a

BCD number into ACCU 1-L (between "0" and "999").

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - - - - -

 Page 4-26 Timing Functions (Timer) and Counters Chapter 4

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Example:

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value (0 to 999) in Binary

Count Value (0 to 999) in BCD

Counter Word
for Counter C1
In Memory

Contents of
ACCU1 after
Load Instruction
 LC C1

LC C1

00 00

10 Ones
0

10 Tens
1

10 Hundreds
2

Counter Up (CU)

Format: CU <counter>

Address Data type Memory area Description

<Counter> COUNTER C Counter range depends
on CPU

CU <counter> increments the count of the addressed counter by 1 when

RLO transitions from "0" to "1" and the count is less than "999". When

the count reaches its upper limit of "999", incrementing stops. Additional

transitions of RLO have no effect and overflow OV bit is not set.

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - 0 - - 0

 Chapter 4 Timing Functions (Timer) and Counters Page 4-27

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Example:

Counter Down (CD)

Format: CD <counter>

Address Data type Memory area Description

<Counter> COUNTER C Counter range
depends on CPU

CD <counter> decrements the count of the addressed counter by 1

when RLO transitions from "0" to "1" and the count is greater than "0".

When the count reaches its lower limit of "0", decrementing stops.

Additional transitions of RLO have no effect as the counter will not count

with negative values.

Status word

 CC 1 CC 0 OV OS OR STA RLO /FC

writes: - - - - 0 - - 0

Example:

 Page 4-28 Timing Functions (Timer) and Counters Chapter 4

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Counter (continued)

 Chapter 4 Timing Functions (Timer) and Counters Page 4-29

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Practice Exercise 4–3; Counter

The number of times a compressor is switched on needs to be

monitored. If the compressor is switched on, a counter should be

incremented. The input signal

I 0.0 is used to monitor the on stage of the compressor.

The number, how many times the compressor has been switched on

should be displayed in the output word QW2.

A light should indicate if the compressor was switched on at least once

(output Q 0.0).

The input "I 0.1" resets the counter.

To understand the function of the counter better, the down count input

(I 0.2), the set input (I 0.3) with the set value (IW 2) should be used.

Also the second output giving the momentary value of the counter

should be displayed at an output word (QW 4).

Write a PLC program with the S5 Blocks PB10 and OB1.

Transfer of the program into the S5 TEST PLC.

Test the PLC program.

 Page 4-30 Timing Functions (Timer) and Counters Chapter 4

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

 Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-1

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

5 Function Blocks (FB; FX) and Data Blocks (DB; DX)

Advanced Step 5 programming requires the use of Function Blocks in

conjunction with Data Blocks. A lot of Step 5 operations can only be

performed in Function Blocks.

5.1 Programming Function Blocks

As a rule, program blocks contain the largest portion of an application

program.

Only basic operations, however, may be programmed in these blocks.

Function blocks must be used to implement control tasks which require

supplementary operations. Function blocks are also used when a control

function (for an individual control element, for example) occurs

frequently in a program. In such cases, it is possible to make use of one

of the biggest advantages proffered by function blocks: the fact that they

can be assigned runtime parameters, i.e. when a function block is

invoked, the user may specify the operands with which it is to execute.

This can be done each time the block is called, thus enabling a block

that is present in memory only once to be used repeatedly for the same

function, but with different operands each time.

Essentially, the following characteristics distinguish function blocks from

program blocks:

 They can be programmed using the CPU's full operations set.

 Function blocks can be assigned different parameters each time

they are called.

 Function blocks have names.

These characteristics make it possible to utilize the CPU's full

capabilities. On the other hand, function blocks are not as easy to

program as, for example, program blocks.

All information included in this section applies both to "normal" function

blocks (FBs) and extended function blocks (FXs)

 Page 5-2 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Programming Function Blocks (continued).

Function Blocks (FB, FX) are made up of STEP® 5 instructions. The

PLC program or parts of the program are stored in FB’s. Especially

complex or recurring program sequences are accomplished within FB’s.

Comments may be added. The instructions may be edited and displayed

in STL, CSF, and LAD (optional).

The first segment, with the name and the identifiers, must be

programmed using STL presentation.

Function blocks can be roughly divided into two categories: those with

and those without block parameters.

Function Blocks Without Block Parameters

Function blocks without block parameters are programmed in

essentially the same way as program blocks. The user has to enter

the name of the function block (which may comprise up to eight

characters). Programming can be continued in the "normal" way

following entry of the function block name, including statements from the

supplementary operations set.

The function block name is stored in the block header; the programmer

thus has the name at its disposal at all times. A function block header is

therefore longer than the headers of other blocks.

Function Blocks With Block Parameters

If Function Blocks are to be assigned block parameters, these must be

specified with name, parameter type and data type following entry of the

block name (see next subsection). Once all block parameters have been

entered, the user must program the control function.

It stands to reason that the block parameters (and the program) should

be carefully defined before beginning programming.

Note:

A Function Block (FB; FX) always have a name. The name can have up to

eight characters (A – Z and 0 – 9). The only special character allowed in

the colon “:”.

 Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-3

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Function Blocks With Block Parameters (continued).

Although it is possible to delete or insert a block parameter once a

function block has been programmed, insertions and deletions result in

renumbering of the block parameters.

Since the (MC 5) program contains only the numbers (not the names!)

of the block parameters, it is necessary, after changing the block

parameter list, to check the entire function block program to see whether

the parameter assignments are still correct. This can involve

considerable overhead.

Modifications in the parameter type and data type of block parameters

also normally necessitate a full program check.

Function block programs may also include the “Substitution

Statements”.

The programmer automatically stores the block parameter specifications

in the block header, behind the function block name. The block header

thus contains all the information the programmer requires to

 display the names of the block parameters for the purpose of

operator guidance and

 carry out an operand check during programming and initialization

of the function block.

As many as 40 block parameters may be programmed. In practice,

block parameters are normally restricted to approximately a dozen for

purposes of manageability and clarity.

Block Parameters

A block parameter is classified by its name (identifier), its parameter

type and its data type, all of which must be entered.

S5 for Windows® provides a dialog box to insert the FB / FX Formal

Operands (Block Parameters).

With this dialog box you can easily insert a formal operand parameter by

name (Declaration - DECL:), its type and its data configuration.

 Page 5-4 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Insert Formal Operand dialog box

Name

In the text field enter the name of the block parameter. The name may

be up to four (4) characters long and must start with a letter. The name

is automatically entered in capital letters. The block parameter name is

identical to the formal operand specified in the program in place of the

actual operand.

Type

A marked button identifies the block parameter type. Input parameter,

output parameter and parameters representing a constant, need further

definitions.

Type for I and Q

Input and output parameters need a further definition. With the buttons

you may define if an input or output parameter represents a bit (BI), a

byte (BY), a word (W), or a double word (D).

Type for D

A parameter representing a constant needs further definition. The value

may be presented in different forms. Mark the button to select the

required form.

 Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-5

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Insert button

If you activate the “Insert” button the defined

parameter will be entered into the function block. The

dialog box stays open and is ready to define the next parameter. Up to

forty block parameters may be defined per function block.

Done button

If you activate the “Done” button the defined

parameter will be entered into the function block and

the dialog box will be closed.

Parameter type

A block parameter may be of type "I", "Q", "D", "B", "T" or "C".

 I = Input parameter

 Q = Output parameter

 D = Data

 B = Block

 T = Timer

 C = Counter

In graphic representation, parameters of type "I", "D", "B", "T" and "C"

appear at the left, parameters of type "Q" at the right of the function

symbol.

Note:

Prior to opening the dialog box Insert Formal Operand you must position

the insertion mark in a separate line directly below the line defining the

name.

 Page 5-6 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Data type

The programmer checks the data type when the function block call is

initialized.

The following data types are permitted for parameters of type "I" or "Q":

 BI for an operand with bit address

 BY for an operand with byte address

 W for an operand with word address

 D for an operand with doubleword address

The following actual operands are permissible for data type "BI":

 I n.m Input

 Q n.m Output

 F n.m Flag

The following actual operands are permissible for data type "BY":

 IB n Input byte

 QB n Output byte

 FY n Flag byte

 DL n Left (i. e. high-order) data byte

 DR n Right (i. e. low-order) data byte

 PY n Peripheral byte

 OB n Extended peripheral byte

The following actual operands are permissible for data type "W":

 IW n Input word

 QW n Output word

 FW n Flag word

 DW n Data word

 PW n Peripheral word

 OW n Extended peripheral word

 RS n System data word

 RT n Extended system data word

 RI n System transfer data word

 RJ n Extended system transfer data word

 Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-7

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

System data areas RS, RT, RI and RJ can only be output if the function

block call is itself within a function block. System data areas RT and RJ

are only available with all CPUs.

The following actual operands are permissible for data type "D":

 ID n Input double word

 QD n Output double word

 FD n Flag double word

 DD n Data double word

The following data types are permissible for block parameters of

type “D”:

 KM Binary constant (16 digits)

 KH Hexadecimal constant (max. 4 digits)

 KY Two one-byte absolute values, each in the range 0 to 255,

 separated from one another by a comma

 KS Character constant (max. 2 alphanumeric characters)

 KF Fixed-point number in the range -32 768 to +32 767

 KT Time constant (BCD) with time base 1.0...999.3

 KC Count constant (BCD) in the range 0...999

 KG Floating-point number in the range ± 1.701411 x10±38

No data type specification is permitted for block parameters of type “B”

The following actual operands are permissible:

 DB n Data blocks; the C DBn statement is executed

 FB n Function blocks (without parameter list)

 PB n Program blocks

 SB n Sequence blocks

All blocks are called unconditionally (JU...n).

No data type specification is permitted for block parameters of type “T”.

Only the T (Timer) operand is allowed when initializing called function

blocks.

No data type specification is permitted for block parameters of type “C”.

Only the C (Counter) operand is allowed when initializing called function

blocks.

 Page 5-8 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Block Parameters (Formal Operands) defined in a FB

Calling a Function Block with Parameters (graphic presentation)

 Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-9

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Calling a Function Block with Parameters (STL)

The Place holder must be replaced with the Actual Parameters to be

used in the called Function Block.

 Page 5-10 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

5.2 Data Blocks

The data blocks contain the data for the user program. A data block

comprises 256 data words. Should this prove insufficient, the data block

is changed and a new data block invoked. All operations with operand

identifier D then access the “new” data block.

An unconditional data block call (C DB or CX DX) is executed without regard

to any conditions whatsoever. All data subsequently addressed refer to this

data block. Cyclic program scanning is not interrupted, and neither the RLO

nor the contents of the accumulators are affected.

All data blocks must be “generated” before they can be used (i.e. before data

can be read from or written to them), that is to say, space must be reserved for

the data. Data blocks can be generated over the programmer or with the G

DB or GX DX operations. Attempts to access non-existent data blocks may

produce an undefined state or result in flagging of a “transfer error” (TRAP)

(“Load/Transfer Errors (OB 32”).

Before data can be used, the relevant data block must be called. A data block

remains “valid” until another data block is called. If the data block is

changed within an invoked (“lower level”) block, the “new” data block

remains valid until exited, at which point the “old” data block becomes

valid again (in the “higher-level” block).

Calling Data Blocks

Data blocks may only be called from segments in STL presentation.

 Create a new segment by activating the commands Add New

Segment or Insert Segment from the modify menu. You may

also create a separate block.

 Select STL presentation.

 Enter C DBnn or CX DXnn.

Note:

Like all other software blocks, data blocks can be up to 2048 and/or 4096

words long depending on the CPU version; however, the area that can be

addressed direct with STEP 5 operations is limited to the first 256 data words.

 Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-11

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Example:

Comparing the value in data word DW 15 in data block DB 20 and the

value in data word DW 27 in data block DB 12 and setting flag F 15.5 if they

are identical (i.e. equal).

C DB 20 Call data block DB. 20

L DW 15 Load the value in data word DW 15, data block

DB 20

C DB 21 Call data block DB 21

L DW 27 Load the value in data word DW 27, data block

DB 21

!=F Compare the two data words for “equal”

= F 15.5 Set flag F 15.5 to “1” if the comparison is true

Calling the Data Blocks DB 20 and DB 21

DB 20

DW 15

DB 21

DW 27

DW 15 from DB 20

DW 27 from DB 21

! = F

= F 15.5

L
o

a
d

in
g

 t
h

e
D

a
ta

 W
o

rd
s

C
o

m
p

a
re

L
o

g
ic

Data Block Call (DB, DX)

 Page 5-12 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Opening another Data Block in a called Block

Data block DB 5 is called in program block PB 5.

The program subsequently processes the data in this data block.

When program block PB 10 is called, both the jump address and the

data area valid at this address (in this case DB 5) are pushed onto the

stack.

Program block PB 10 is then executed.

Data block DB 5 is still valid at this point, and remains so until data block

DB 10 is invoked.

Data block DB 10 then remains valid until the final statement in program

block PB 10 has been processed.

Upon return to program block PB 5, both the jump address and the

address of data block DB 5 are popped from the stack, and PB 5

resumes execution using the data in DB 5.

Data block DB 10 was thus "local" to program block PB 10.

PB 5

JU PB 10 C DB 10

C DB 5

BE BE

PB 10

D
B

 5

D
B

 5

D
B

 5

D
B

 1
0

 Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-13

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Creating a Data Block (DB, DX)

To create a data block, perform the following steps.

 Open a data block by activating the New Block command from

the block menu (PC or PLC block list window).

When you open a new data block, STL presentation is automatically

selected from the presentation menu (editor window).

 A data block is not divided into segments. The icons to select the

previous or next segment are not active and no block end mark

(BE) is shown.

 Enter the text as shown below (Data Block (DB, DX) prior

formatting)

To enter the data words you must follow a defined syntax.

 Spaces within data type declaration (K H is not permitted) or

within numbers (123 456) are not permitted.

 A comment after a data word that is separated by a semicolon (;

) is permitted.

 A separate line comment is not permitted.

 The data words are automatically (using the format command)

numbered starting with data word zero (0). If you enter numbers

(e.g. 5:) they are ignored.

 Format the data block (key F9) and save the block.

 Page 5-14 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

The formatted data will have the following form (Data Block (DB, DX)

formatted).

Changing the Data Word Format

A dialog box is provided to modify the format of a data word.

 Mark a data word.

 Click Change Type in the modify menu.

 Select the new data word format by activating the desired button

and confirm the selection (OK button).

 Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-15

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Possible Data Word Formats (constants).

Format Limits Explanation

 lower upper

KM 00000000.00000000 11111111.11111111 arbitrary bit pattern (16 bit)

KH 0000 FFFF hexadecimal code

KY 000.000 255.255 two (2) byte (address)

KS two ASCII characters, max. 24 chr. per line text format

KF - 32768 + 32767 integer (fixed point number)

KT 000.0 999.3 time value with multiplier

KC 0 999 count

KG - 1469368 - 38 + 17014112 + 39 floating point value

Creating a Data Block (DB, DX) automatically

The generate data block statement may also be used to create a data

block. To do so you must write a segment as shown in the following

picture.

The data block is generated in the internal data block area of the PLC

CPU.

Prior to the generate instruction (G DBnn or G DXnn) the number of

data words must be defined (L KF +xx).

The maximum number of data words that can be generated depends on

the CPU type (max KB 253 = 254 Data Words).

 Page 5-16 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

After executing the PLC program the data block is created. You may edit

the value or change the data type format.

 Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-17

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

Function Block (FB) with Data Block (DB)

Example: (Maximum Value)

The maximum value entered into the PLC via an input module should be

saved. Other PLC Blocks should have access to that value any time.

The easiest way to accomplish this task is to save the “Maximum Value”

in a Data Block.

The value coming from the input module (IW 2) is compared with the

value stored in the Data Block (DB 10) (“Maximum Value”).

If the “New Value” is higher than the stored “Maximum Value” the “New

Value” is saved by replacing the previous “Maximum Value”

The current “Maximum Value” and “New Value” should be monitored

outside the Function Block (in OB1).

Function Block FB 10

Data Block DB 10

 Page 5-18 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

Organization Block OB 1

Practice Exercise 5–1; Hysteresis, Function Block with Data Block

A “Value” coming from an input module should be compared against an

“Upper Limit” and a “Lower Limit”. If the “Value” exceeds the limits, lights

should be turned on. The lights should be turned off if the “Value” is

away from the limits by the defined offset (Hysteresis).

1. Start a new project.

2. Declare the following parameters in the Data Block DB10:

 Chapter 5 Function Blocks (FB; FX) and Data Blocks (DB; DX) Page 5-19

TTI Trans Tech International© 2013 STEP® 5 S5 for Windows® Training

3. Make a new S5 Block (Function Block FB10) and program the

logic in the Function Block.

4. Transfer of the program into the S5 TEST PLC.

5. Test the PLC program.

Upper Limit

Lower Limit

Upper Hysteresis

Lower Hysteresis

Value

S

R

S

R

S

R

Value IW2

Switching Point (for the lights)

Upper Limit Light Q0.0

Set (light on)

Reset (Light off)

Lower Limit Light Q0.4

 Page 5-20 Function Blocks (FB; FX) and Data Blocks (DB; DX) Chapter 5

STEP® 5 S5 for Windows® Training TTI Trans Tech International© 2013

	Training Manual Sheet 1
	Table of Contents
	1 Basic S5 Programming
	2 Statement List Instructions Structure
	3 Bit Logic Instructions
	4 Timer and Counter
	5 Function Blocks (FB; FX) and Data Blocks (DB; DX)

