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Abstract

Autonomous vehicle technologies offer potential to eliminate the number of traffic

accidents that occur every year, not only saving numerous lives but mitigating the

costly economic and social impact of automobile related accidents. The premise be-

hind this dissertation is that autonomous cars of the near future can only achieve this

ambitious goal by obtaining the capability to successfully maneuver in friction-limited

situations. With automobile racing as an inspiration, this dissertation presents and

experimentally validates three vital components for driving at the limits of tire fric-

tion. The first contribution is a feedback-feedforward steering algorithm that enables

an autonomous vehicle to accurately follow a specified trajectory at the friction lim-

its while preserving robust stability margins. The second contribution is a trajectory

generation algorithm that leverages the computational speed of convex optimization

to rapidly generate both a longitudinal speed profile and lateral curvature profile for

the autonomous vehicle to follow. While the algorithm is applicable to a wide variety

of driving objectives, the work presented is for the specific case of vehicle racing,

and generating minimum-time profiles is therefore the chosen application. The final

contribution is a set of iterative learning control and search algorithms that enable

autonomous vehicles to drive more effectively by learning from previous driving ma-

neuvers. These contributions enable an autonomous Audi TTS test vehicle to drive

around a race circuit at a level of performance comparable to a professional human

driver. The dissertation concludes with a discussion of how the algorithms presented

can be translated into automotive safety systems in the near future.
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Chapter 1

Introduction

Advancements in sensing, perception, and low-cost embedded computing have re-

sulted in the rapid growth of autonomous vehicle technology over the last two decades.

Once the subject of sci-fi imagination in world exhibitions and popular journalism,

semi-autonomous driving features such as emergency braking, autonomous lane guid-

ance and adaptive cruise control are now readily available. Furthermore, many au-

tomotive manufacturers and technology firms are developing automated vehicles re-

quiring little or no human interaction [11][14][37][39][45][66].

The potential benefits of an automated vehicle ecosystem are significant. A com-

prehensive 2015 study by the consulting firm McKinsey and Company [2] estimates

that widespread adoption of autonomous vehicle technology would reduce automobile

accidents by over 90%, preventing thousands of fatalities, hundreds of thousands of

hospitalizations, and many billions of dollars in property damage annually.

While a large portion of autonomous vehicle research and development is focused

on handling routine driving situations, achieving the safety benefits of autonomous

vehicles also requires a focus on automated driving at the limits of tire fric-

tion. The need for an automated vehicle to fully utilize its capability can arise when

avoiding a collision with human-operated vehicles. This is crucial from an automo-

tive safety standpoint as human error accounts for over 90% of automobile accidents

[73], and there will likely be a significant period of time where autonomous vehicles

must interact with human-operated vehicles [2]. Furthermore, successful handling at

1



CHAPTER 1. INTRODUCTION 2

the friction limits will be required where environmental factors are involved, such as

unpredicted natural obstructions and poor tire friction caused by inclement weather

(e.g. ice, rain). The potential for technology to assist in friction-limited situations

has already been demonstrated by electronic stability control (ESC) systems, which

reduced single-vehicle accidents by 36% in 2007 [13] and are now standard on all

passenger cars.

1.1 Driving at the Handling Limits

Each of the four tires on an automobile contacts the road surface over a contact patch,

an area roughly the size of a human hand (Fig. 1.1(b)). As shown in Fig. 1.1(a),

these contact patches generate the friction forces between the tire and road that

are necessary for both vehicle longitudinal acceleration (braking and acceleration)

as well as lateral acceleration (turning). Because the available friction between the

tire and road is limited, each of the four tires is limited in the turning, braking, and

accelerating forces they can produce. This relationship is given for each tire by the

commonly known “friction circle” equation:

µFz ≥
√
F 2
x + F 2

y (1.1)

where µ is the friction coefficient between the tire and the road, Fz is the normal force

acting on the tire, and Fx and Fy are the lateral and longitudinal forces, respectively

(Fig. 1.1(c)). One key insight from (1.1) is that the cornering and braking ability

of the car is heavily determined by the amount of friction. On a dry, paved asphalt

surface, values of µ are typically equal to 1.0. However, on wet or rainy asphalt, µ can

decrease to 0.7, and in snow or ice, the value of µ can be as low as 0.2 [59]. Another

insight from (1.1) is the coupled relationship between vehicle lateral and longitudinal

forces. If the vehicle is braking (or accelerating) heavily, the value of F 2
x will be large

and there will be less friction force available for turning.
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Figure 1.1: (a) Friction forces Fx and Fy generated in the contact patch allow for
lateral and longitudinal vehicle acceleration. (b) Side view of tire contact patch. (c)
Graph showing combined lateral and longitudinal force capability for a tire given the
normal load and friction coefficient µ.
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1.1.1 Exceeding the Friction Limits: Understeer and

Oversteer

In normal driving situations, the forces required for turning, braking, and accelerat-

ing will be much smaller than the available friction force. However, in rainy or icy

conditions, accidents frequently occur when the driver enters a turn too fast or when

the driver attempts to turn too quickly while already applying the brakes. In these

situations, the tire forces at either the front or rear axle become saturated, resulting

in one of two distinct scenarios.

When the front tires forces become saturated, the vehicle will understeer, as il-

lustrated in Fig. 1.2(a). The steering actuator of a vehicle only has direct control of

the front tire forces. As a result, additional turning of the steering wheel will not

generate additional lateral force or acceleration when the front axle is saturated. The

vehicle therefore becomes uncontrollable and has no ability to reduce the radius of

its turn.

Figure 1.2: (a) Vehicle understeering at the limits of handling. (b) Vehicle oversteer-
ing at the limits of handling.
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For the converse scenario where the rear tire forces become saturated, the vehicle

enters an oversteer condition, as illustrated in Fig. 1.2(b). In this situation, the vehicle

loses stability and begins to spin. An oversteer situation differs from an understeer

because the front tire forces are not saturated, and the steering actuator can therefore

be used to fully control the vehicle. As a result, it is possible to apply a countersteer

maneuver to reverse the vehicle spin and gain control of the vehicle without deviating

from the desired path.

1.2 Race Car Driving as Inspiration for

Autonomous Safety Systems

Automotive engineers today face the challenge of designing autonomous safety systems

that can utilize the full capabilities of the vehicle’s tires in emergency scenarios to

avoid accidents and significant understeer or oversteer. While this is a difficult task,

professional race driving provides a source of inspiration for designing autonomous

safety systems.

In order to complete a race in minimum time, race car drivers use nearly 100% of

the available friction between their vehicle’s tires and the road. Professional drivers

are extremely skilled at coordinating their brake, throttle, and steering inputs to

maximize the speed of the vehicle through all corners of a race course while keeping

the vehicle tires within the friction limits. Furthermore, they must achieve this while

avoiding collisions with other competing drivers who are also driving extremely ag-

gressively. Finally, race car drivers often exceed the friction limits temporarily while

seeking the fastest lap time, and have the ability to re-stabilize the vehicle from an

understeer or oversteer scenario.

The primary focus of this dissertation is therefore to develop a set

of control algorithms that allow an autonomous vehicle to drive at the

handling limits with the same capability as a professional race driver. In

particular, these algorithms focus on autonomously completing three primary tasks

that race car drivers demonstrate with proficiency:
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1. Vehicle Steering at the Limits of Handling. A vital task of racing is

steering an automobile through a race course at the handling limits. Given

the high lateral accelerations required for racing, mitigating vehicle oversteer or

understeer is necessary. Good race car drivers have the ability to quickly and

aggressively operate the steering wheel to complete a turn while maintaining

vehicle stability.

2. Finding a Time-Optimal “Racing Trajectory”. Given a race track and

race vehicle, another fundamental task of racing is determining the fastest tra-

jectory, or “racing line” for the vehicle to follow. Race car drivers are skilled at

driving though a race track along a path that enables them to take larger radius

turns and accelerate aggressively on straight paths, increasing the permissible

speed of the vehicle given tire friction constraints.

3. Lap-to-Lap Learning. Finally, most races require the driver to complete

many laps around the same race track. Given this repetition, race car drivers

have the opportunity to improve their lap times by slightly modifying their

driving behavior on each lap to account for observations made during prior

laps. The ability to learn from prior laps of driving also enables race car drivers

to account for changing conditions (e.g. increasing temperatures, tire wear)

over the course of a race.

While these tasks may seem specific to the niche field of race car driving, al-

gorithms that enable a vehicle to autonomously drive like a race professional have

enormous potential for vehicle safety systems. Algorithms that allow for steering at

the limits of handling can be vital in piloting a vehicle through a sudden stretch of

icy road during the winter. With a small modification to the objective function, an

algorithm that maximizes the turning radius on a race course can be used to maxi-

mize the distance between a vehicle and oncoming traffic. Learning algorithms that

allow more precise driving over a fixed race course can be used to assist drivers with

their daily commute. Potential applications of the developed racing algorithms will

be discussed further in the conclusion of this dissertation.
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1.3 State of the Art

There has been significant prior work focused on autonomous steering control at the

friction limits, time-optimal trajectory planning, and iteration-based learning control.

This section provides a brief overview of prior work that is relevant to the research

contributions presented in this dissertation.

1.3.1 Autonomous Race Vehicles

Given the highly visible marketing opportunity provided by racing, several automo-

tive companies have made notable attempts at racing-inspired automated driving.

In 2008, BMW introduced the “Track Trainer”, which records race data collected

from a professional driver. To “replay” the professional’s driving autonomously, the

vehicle tracks the pre-recorded speed and racing line with a proportional-derivative

controller for throttle and brake and a dynamic programming algorithm for steering

[88]. Using pre-recorded inputs allows the controller to naively account for nonlinear

vehicle dynamics at the handling limits, although this approach limits the flexibility

of the controller to respond to unpredicted events.

A second German luxury brand, Audi AG, also launched a collaborative research

effort with Stanford University in 2008. The collaboration, with which this doctoral

research is affiliated, resulted in the development of “Shelley”, an autonomous Audi

TTS. Doctoral work by Stanford students Theodosis [80] and Kritayakirana [48] pro-

vided initial forays into racing line generation and trajectory-following algorithms.

Notable early accomplishments include autonomous driving at speeds of 190 mph at

the Salt Flats in Utah and an autonomous drive up the Pikes Peak International

Hill Climb in 2009 [29][85]. More recently, Audi has incorporated results from the

collaboration to build a demonstration vehicle for media events, “Bobby” (Fig. 1.3),

an autonomous RS7 which debuted at Germany’s Hockenheimring [11]. The primary

focus for the RS7 vehicle was robustness, enabling the vehicle to be demonstrated at

a public event with journalists inside the vehicle at high speeds.
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Figure 1.3: “Bobby”, Audi’s autonomous RS7.

1.3.2 Automated Steering at the Limits of Handling

In the 1990’s and early 2000’s, a primary focus of autonomous driving research was

designing control systems to follow a desired path below the limits of handling. Initial

designs typically centered around linear feedback-feedforward controllers, using linear

models of the vehicle dynamics to design the steering control laws [72]. An important

development at this time was the idea of lookahead steering feedback, where the

objective is to minimize the lateral tracking error at a certain point in front of the

vehicle [28][33][67].

Given the success of linear controller designs for automated steering, early at-

tempts at driving at the handling limits also made the assumption of linear vehicle

dynamics. While the dynamics of an automobile become nonlinear at the handling

limits due to tire saturation, assuming linear dynamics in the controller design re-

sulted in respectable results in several studies [60][71][82]. To improve upon these

results, more recent publications have proposed control systems that account for the

nonlinear effect of tire saturation at the handling limits [19][49][90]. The most recent

development has been the application of model-predictive control (MPC), which en-

ables state-of-the-art steering controllers to track a path at the handling limits while

trading off between competing objectives of obstacle avoidance and vehicle stabiliza-

tion [8][21].
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While there are a wide variety of published steering controllers with varying levels

of complexity, there is no single experimentally validated controller that displays a

well-understood combination of robust stability margins and low path tracking error

both at the limits of handling and in ordinary driving situations. Work by Rosseter

[67] and Talvala [78] provides great analysis of the desirable stability properties of

lookahead steering feedback, but no discussion of how path tracking behavior changes

as the vehicle approaches the limits of handling. Kritayakirana and Gerdes [49]

presented a steering controller with lookahead feedback and a feedforward designed to

provide zero lateral error at the vehicle center of percussion, a special point within the

vehicle frame. This method was validated experimentally at the limits of handling and

had desirable stability properties, although there was an issue of competing feedback

and feedforward control due to the selection of inconsistent error minimization points.

Experimentally validated results using model-predictive control [8][21] demonstrate

the ability to balance competing objectives of vehicle path tracking and stability when

the front or rear tires are saturated, but consist of complex optimization problems

that make fundamental issues such as stability and closed-loop tracking performance

difficult to analyze mathematically or understand qualitatively.

1.3.3 Time-Optimal Trajectory Planning

The problem of calculating the minimum lap time trajectory for a given vehicle and

race track has been studied over the last several decades in the control, optimization,

and vehicle dynamics communities. Early attempts were generally focused on deter-

mining analytical solutions for simple maneuvers via the calculus of variations [31]

or developing qualitative insights for race car drivers and enthusiasts [55][79]. With

advances in computing power and numerical optimization techniques, minimum-time

path planning sparked the interest of professional racing teams hoping to quanti-

tatively determine the effect of vehicle modifications on the optimal lap time for a

specific racing circuit. Casanova [9] therefore developed a method in 2000 (later

refined by Kelly [44] in 2008) capable of simultaneously optimizing both the path

and speed profile for a fully nonlinear vehicle model using nonlinear programming
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(NLP). The developed software helped Formula One race teams analyze the effects

of subtle changes in vehicle parameters, including tire thermodynamic properties and

suspension designs.

More recently, the development of autonomous vehicle technology has led to re-

search on optimal path planning algorithms that can be used for driverless cars.

Theodosis and Gerdes published a nonlinear gradient descent approach for determin-

ing time-optimal racing lines [81], which has the rare distinction of being validated

experimentally on an autonomous race vehicle.

However, a significant drawback of nonlinear programming solutions is high com-

putational expense. Given the need for real-time trajectory planning in autonomous

vehicles, there has been a recent interest in finding approximate methods that provide

fast lap times with low computational expense. Published methods include formulat-

ing the minimum lap time problem into a model predictive control (MPC) problem

[51][83] or solving a series of locally optimal optimization problems [24][87]. How-

ever, one potential drawback of the model predictive control approach is that an

optimization problem must be reformulated at every time step, which can still be

computationally expensive.

Experimental validation on an autonomous race vehicle has only been reported by

Theodosis and Gerdes [81] and Gerdts et al. [24]. To the author’s knowledge, a tra-

jectory planning algorithm with a runtime close enough for real-time implementation

has not been validated on an experimental vehicle. While an autonomous vehicle

can apply a closed-loop controller to follow a time-optimal vehicle trajectory com-

puted offline, there are significant benefits to developing a fast trajectory generation

algorithm that can approximate the globally optimal trajectory in real-time. If the

algorithm runtime is small compared to the actual lap time, the algorithm can run

as a real-time trajectory planner and find a fast racing line for the next several turns

of the racing circuit. This would allow the trajectory planner to modify the desired

path based on the motion of competing race vehicles and estimates of road friction,

tire wear, engine/brake dynamics and other parameters learned over several laps of

racing. Additionally, the fast trajectory algorithm can be used to provide a very good

initial trajectory for a nonlinear optimization method.
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1.3.4 Iteration-Based Learning

Developing algorithms that mimic a human’s ability to adapt and learn over time has

been a focus for researchers in a variety of fields. In the field of automated control,

an interesting approach for adaptation is iterative learning control (ILC), based on

the notion that the performance of a system that executes the same task multiple

times can be improved by learning from previous executions [6]. Because iterative

learning control works best when learning to follow the same reference trajectory

under the same ambient conditions, the most common applications of ILC are in

the field of automated manufacturing. Notable examples include CNC machining

[46], industrial robotics [20][34], piezolectric stage positioning [36], motor control [56],

and microdeposition [35]. However, the rise of automated systems outside factory

environments has led to preliminary applications of ILC for ground and air robotics

[10][65][76].

In the field of computer science, a technique widely used for training in auto-

mated systems is reinforcement learning. Reinforcement learning is similar to itera-

tive learning control in that an automated system overcomes uncertainty in the world

by gradually learning over multiple trials. However, iterative learning control algo-

rithms typically assume the system is modeled by a discrete (often linear) dynamic

system, with uncertainty in the form of an unknown but repeating disturbance. On

the other hand, reinforcement learning algorithms act on systems modeled by Markov

Decision Processes (MDPs), with the uncertainty typically in the form of unknown

state transition probabilities and rewards. Furthermore, iterative learning algorithms

attempt to gradually determine an input control signal to overcome the unknown

disturbance and provide accurate tracking of a reference trajectory. Reinforcement

learning algorithms are more general, and develop a policy that maps any state within

the MDP to an optimal action.

Like recent ILC research, reinforcement learning has also been widely investigated

for applications in ground and air robotics. In the field of UAV control, Ng et al.

presented a reinforcement learning algorithm to learn a controller for autonomous

inverted helicopter flight [62]. There have also been many publications in the area

of robotic motion control. For example, in a modification of reinforcement learning



CHAPTER 1. INTRODUCTION 12

known as “apprenticeship learning” Lee et al. presented research where a robot was

able to tie a knot after observing human-guided observations [69]. Finally, in the

area of autonomous vehicles, Lauer presented a reinforcement learning approach to

designing a steering controller for a 1:5 scale RC car [50].

In summary, iteration-based learning algorithms have a rich history of valida-

tion on manufacturing and robotic systems. Developing similar algorithms for an

autonomous race vehicle could therefore yield significant benefits. Even with a well-

designed trajectory planner and path-following controller, there will often be regions

of the race track where transient vehicle dynamics and unmodeled disturbances result

in poor tracking of the optimal trajectory. Furthermore, a major determinant of the

optimal trajectory is the friction coefficient between the road and the tires. In reality,

this is hard to know ahead of time beyond a reasonable estimate (e.g 0.95 ≤ µ ≤ 1.0).

However, at the limits of handling, small differences in the amount of grip between

the tires and road can result in significant lap time differences. Additionally, turns

before a long straight section of track must be driven more cautiously than series of

consecutive turns, because exceeding the friction limit can result in lower top speeds

on the fastest part of the track, significantly increasing lap times. Human drivers un-

derstand this effect well, especially for front-heavy vehicles, and use the term “slow-in,

fast-out” to describe their strategy on crucial turns before a long straight section. The

difficulty of precisely following a racing trajectory at the handling limits and deter-

mining the optimal acceleration limits points to the need for a learning approach that

can improve lap time performance over multiple laps of driving.

1.4 Research Contributions and Outline

Section 1.3 provided a brief overview of the state of the art for the three primary

tasks of trajectory planning, trajectory following and iteration-based learning. Op-

portunities for important further research in each task were articulated as well. This

section outlines the primary contributions of this doctoral work for each of these

racing-inspired research areas.
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Chapter 2: A Feedback-Feedforward Steering Controller for Accurate Path

Tracking and Stability at the Limits of Handling

Chapter 2 of this dissertation presents a feedback-feedforward steering controller that

maintains vehicle stability at the handling limits along with strong path tracking

performance where physically possible. The design begins by considering the perfor-

mance of a baseline controller with a lookahead feedback scheme and a feedforward

algorithm based on a nonlinear vehicle handling diagram. While this initial design

exhibits desirable stability properties at the limits of handling, the steady-state path

deviation increases significantly at highway speeds. Results from both linear and

nonlinear analyses indicate that lateral path tracking deviations are minimized when

vehicle sideslip is held tangent to the desired path at all times. Analytical results

show that directly incorporating this sideslip tangency condition into the steering

feedback dramatically improves lateral path tracking, but at the expense of poor

closed-loop stability margins. However, incorporating the desired sideslip behavior

into the feedforward loop creates a robust steering controller capable of accurate path

tracking and oversteer correction at the physical limits of tire friction. Experimental

data collected from an Audi TTS test vehicle driving at the handling limits (up to

9.5 m/s2) on a full length race circuit demonstrates the improved performance of the

final controller design.

Chapter 3: A Sequential Two-Step Algorithm for Fast Generation of

Vehicle Racing Trajectories

Chapter 3 presents an iterative algorithm that divides the path generation task into

two sequential subproblems that are significantly easier to solve than the fully nonlin-

ear lap time optimization. Given an initial path through the race track, the algorithm

runs a forward-backward integration scheme to determine the minimum-time longitu-

dinal speed profile, subject to tire friction constraints. With this speed profile fixed,

the algorithm updates the vehicle’s path by solving a convex optimization problem

that minimizes the curvature of the vehicle’s driven path while staying within track
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boundaries and obeying affine, time-varying vehicle dynamics constraints. This two-

step process is repeated iteratively until the predicted lap time no longer improves.

While providing no guarantees of convergence or a globally optimal solution, the

approach performs very well when validated on the Thunderhill Raceway course in

Willows, CA. The predicted lap time converges after four to five iterations, with each

iteration over the full 4.5 km race course requiring only thirty seconds of computation

time on a laptop computer. The resulting trajectory is experimentally driven at the

race circuit with an autonomous Audi TTS test vehicle, and the resulting lap time

and racing line are comparable to both a nonlinear gradient descent solution and a

trajectory recorded from a professional racecar driver. The experimental results in-

dicate that the proposed method is a viable option for online trajectory planning in

the near future.

Chapters 4 and 5: Iterative Learning Algorithms to Improve Autonomous

Driving Performance

This dissertation proposes two sets of learning algorithms that gradually refine the

driving performance of the autonomous race car over time. Chapter 4 presents an

iterative learning control (ILC) formulation to gradually determine the proper steering

and throttle input for transient driving maneuvers along the race track. Racing is

an ideal scenario for ILC because race cars drive the same sequence of turns while

operating near the physical limits of tire-road friction. This creates a difficult to

model, but repeatable, set of nonlinear vehicle dynamics and road conditions from

lap to lap. Simulation results are used to design and test convergence of both a

proportional-derivative (PD) and quadratically optimal (Q-ILC) iterative learning

controller, and experimental results are presented at combined vehicle accelerations

of up to 9 m/s2.

Chapter 5 focuses on determining the best value of the friction coefficient µ for

turn-by-turn trajectory planning on the track. Because the friction coefficient is

directly linked to the peak accelerations of the speed profile, locally varying µ for

each turn on the track is a way to tune the aggressiveness of the planned trajectory.

Rather than directly encoding the “slow-in, fast-out” heuristic that human drivers
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typically employ, a learning approach is used to automatically determine the fastest

strategy. A small but significant collection of data is gathered from the autonomous

vehicle driving different turns of the track with different values of µ assumed. From

this data, an A* search algorithm is devised that searches through the data and

finds the best value of µ for each portion of the track in order to globally minimize

the resulting lap time. Key developments of this algorithm include designing an

appropriate A* heuristic to minimize the needed computation time and designing the

cost function to account for the physical difficulty of altering the vehicle’s trajectory

while understeering or oversteering.



Chapter 2

Feedforward-Feedback Steering

Controller

A central control task in the operation of an autonomous vehicle is the ability to

maneuver along a desired path, typically generated by a high-level path planner. As

a result, a large research effort has been devoted to the subject of active steering

control for autonomous or semi-autonomous vehicles. Steering systems based on

feedback-feedforward (FB-FFW) control architectures have been a major focus of re-

search. Early work by Shladover et al. [72] described a FB-FFW controller where the

feedforward steering angle was determined from path curvature and longitudinal force

inputs, and the feedback gains were selected from a frequency shaped linear quadratic

regulator (FSLQR) designed to minimize path tracking error while maintaining good

ride quality at different frequencies. Nagai et al. [61] also used LQR to design two

feedback steering controllers for autonomous path following, with one controller using

steer angle as the control input and the other using steering torque.

Another simple but effective approach to feedback-feedforward steering control is

to design a controller with the objective of making the lateral tracking error zero

at a certain “lookahead” point in front of the vehicle. Minimization of a lookahead

objective was studied by Hingwe and Tomizuka [33]. A crucial result was the finding

that internal yaw dynamics can be damped at all longitudinal velocities by making

the lookahead point a quadratic function of the vehicle velocity. Rossetter [67] also

16
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studied lookahead feedback systems extensively, and derived a similar controller by

minimizing a quadratic potential function of the projected lookahead error.

While initial work was focused at driving well below the limits of tire friction,

several authors obtained respectable results by applying similar methods for more

aggresive maneuvers. Müller-Beßler applied a linear plant inversion method to deter-

mine feedforward commands for a Volkswagen Golf attempting an aggressive double

lane change maneuver [60]. Additionally, Thommyppillai et al. [82] and Sharp et al.

[71] used a linear preview controller to simulate path following of a virtual racecar

driver. The tendency for linear controller designs to work reasonably well at the lim-

its of handling was partially explained by Talvala et al. [77], who were able to find

a Lyapunov function demonstrating stability of lookahead steering feedback even in

the presence of significant front and rear tire saturation.

More recent work has focused on improving control performance by accounting

for the nonlinear effect of tire saturation at the handling limits. Kritiyikarana and

Gerdes [49] proposed a force-based FB-FFW controller with the feedforward steering

force determined by eliminating the error dynamics about the vehicle’s center of

percussion. The effect of tire saturation was accounted for by inverting a nonlinear

vehicle dynamics model to convert the desired steering force to a steer angle input.

Most recently, the emerging trend of model-predictive control has resulted in steering

controllers that attempt to track a path at the handling limits while also avoiding

obstacles. In 2013, Carvalho et al. [8] demonstrated a model predictive controller

(MPC) capable of steering an experimental passenger sedan around obstacles at high

speeds on an icy road. The controller was based on a nonlinear Ackermann model

that was iteratively linearized. A similar affine linearization MPC technique was

employed by Funke [21] to demonstrate a student-built vehicle tracking an oval path

at accelerations of 8.5 m/s2 while avoiding rapidly emerging obstacles.

In summary, there are a wide variety of published steering controllers with varying

levels of complexity. However, there is no single experimentally validated controller

that displays a well-understood combination of robust stability margins and low path

tracking error at the limits of handling. The stability properties of lookahead steering

below and at the handling limits are demonstrated by Rossetter [67] and Talvala [78],
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but with but no discussion of how path tracking behavior changes as the vehicle ap-

proaches the limits of handling. Work presented by Kritayakirana and Gerdes [49]

was validated experimentally and has desirable stability properties, but will exhibit

non-zero path tracking errors below the handling limits with perfect knowledge of the

vehicle dynamics. range of vehicle accelerations. Experimentally validated results

using model-predictive control [8][21] demonstrate the ability to balance competing

objectives of vehicle path tracking and stability when the front or rear tires are sat-

urated, but consist of complex optimization problems that make fundamental issues

such as stability and closed-loop tracking performance difficult to analyze mathemat-

ically or understand qualitatively.

This chapter therefore presents the design of a feedback-feedforward steering

controller that maintains vehicle stability at the handling limits along with strong

path tracking performance where physically possible. A baseline controller with looka-

head steering feedback and feedforward based on vehicle kinematics and steady-state

tire forces is presented in §2.2. By focusing on handling characteristics and vehicle

kinematics, the feedforward component is able to remain consistent with the looka-

head objective of the steering feedback. Section 2.3 uses steady-state simulation

results to show this baseline controller will exhibit significant path tracking errors

at both low and high vehicle lateral accelerations. In §2.4, we consider a modified

steering feedback that aims to keep the vehicle sideslip tangent to the desired path.

This approach results in a closed-loop steering response with zero steady-state lateral

path deviation, but at the cost of poor stability margins. A better design approach,

presented in §2.5, is to incorporate the desired sideslip behavior as a feedforward

input, which significantly improves path tracking while maintaining robust stabil-

ity margins. Section 2.6 provides experimental path tracking data collected on an

Audi TTS test vehicle at Thunderhill Raceway in Willows, California, with combined

lateral and longitudinal accelerations up to 9.5 m/s2.
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2.1 Path Description

The objective of the steering controller presented in this chapter is to follow a path

generated by a separate high level controller. While there are several ways to mathe-

matically represent the coordinates of a desired path, the controller design will assume

the desired trajectory is defined as a series of curvilinear (s, κ(s)) coordinates, where

s is the distance along the path and κ(s) is the instantaneous path curvature. This

coordinate system is chosen because the curvature of a path is very intuitive to map

into a desired lateral vehicle force, and ultimately a desired vehicle steering input.

The chosen path description is illustrated for a simple path in Figure 2.1.
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Figure 2.1: (a) A 500 meter path plotted in Cartesian coordinates. (b) Curvature
profile κ(s) as function of path length s for associated path. (c) Example velocity
profile (s, Udes

x (s)) for path.
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Additionally, given the speed dependence of an automobile’s steering dynamics,

the steering controller also requires knowledge of the desired speed profile (Figure

2.1(c)), which must also come from the high level trajectory planner. The speed

profile can be represented as a series of (s, Udes
x (s)) coordinates, where Udes

x (s) is the

desired speed at a given distance along the path.

2.2 Controller Architecture

A block diagram of a typical feedback-feedforward structure for steering control is

shown in Fig. 2.2. Inputs to the feedforward steering angle δFFW are the current path

curvature κ and forward velocity Ux. Inputs to the feedback steering angle δFB are

lateral path deviation e and path heading error ∆Ψ (Fig. 2.3). The total steering

command δ is the sum of the feedback and feedforward inputs.

Figure 2.2: Block diagram of feedback-feedforward steering controller.

2.2.1 Feedforward Steering Design

The objective of the steering feedforward is to provide an estimate of the steer an-

gle required to traverse a path with a known path curvature and velocity profile.

This minimizes the level of compensation required by the steering feedback, reducing

tracking errors and allowing for less overall control effort. To simplify the controller
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structure, the feedforward steering angle should depend only on the desired trajectory

and be independent of the actual vehicle states.

The proposed structure of the steering feedforward begins with the assumption

that vehicle dynamics are given by the planar “bicycle” model, with relevant vehicle

states and dimensions shown in Fig. 2.3 and described in Table 2.1. The planar

bicycle model makes the key assumption that the left and right tires act to produce a

single combined lateral force, resulting in just two lateral forces Fyf and Fyr acting at

the front and rear. Actuation of steer angle δ at the front tire results in generation of

the lateral tire forces through the tire slip angles αf and αr. The two resulting states

that evolve are vehicle yaw rate r, which describes the vehicle angular rotation, and

sideslip β, which is the ratio of lateral velocity Uy to longitudinal velocity Ux.

Table 2.1: Bicyle Model Definitions

Parameter Symbol Units
Front axle to CG a m
Rear axle to CG b m
Front Lateral Force Fyf N
Front Tire Slip αf rad
Rear Lateral Force Fyr N
Rear Tire Slip αr rad
Steer Angle Input δ rad
Yaw Rate r rad/s
Sideslip β rad
Lateral Path Deviation e m
Heading Deviation ∆Ψ rad
Longitudinal Velocity Ux m/s
Lateral Velocity Uy m/s

In addition to the two vehicle states β and r, two additional states are required

to describe the vehicle’s position relative to the desired path. These are also shown

in Fig. 2.3. The lateral path deviation, or lateral error, e, is the distance from the

vehicle center of gravity to the closest point on the desired path. The vehicle heading

error ∆Ψ is defined as the angle between the vehicle’s centerline and the tangent line

drawn on the desired path at the closest point. Note that the longitudinal dynamics



CHAPTER 2. FEEDFORWARD-FEEDBACK STEERING CONTROLLER 22

Desire
d Path

Fyr

e

Fyfa

b

β

Ux

Uy

ΔΨ

αf

αr

δ

r

Figure 2.3: Schematic of planar bicycle model.

of the vehicle are not explicitly modeled in this formulation. Instead of keeping the

longitudinal velocity Ux as a vehicle state, the longitudinal velocity is treated as a

time-varying parameter.

The problem of determining suitable feedforward lateral tire forces for autonomous

path following was studied by Krisada and Gerdes [49]. The (linearized) equations of

motion for the states shown in Fig. 2.3 are given by:

β̇ =
Fyf + Fyr

mUx
− r (2.1a)

ṙ =
aFyf − bFyr

Iz
(2.1b)

ė = Ux(β + ∆Ψ) (2.1c)

∆Ψ̇ = r − ṡκ (2.1d)

where m and Iz are the vehicle mass and out-of-plane rotational inertia, and s is the

distance along the desired path. Taking time derivatives of ė and ∆Ψ̇ and substituting

from (2.1a) and (2.1b) yields:
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ë =
Fyf + Fyr

m
− Uxκṡ (2.2a)

∆Ψ̈ =
aFyf − bFyr

Iz
− κs̈− κ̇ṡ (2.2b)

In general, the values chosen for the feedforward front and rear tire forces Fyf and

Fyr should bring ë and ∆Ψ̈ to zero. However, for a typical front-steer vehicle, direct

control is only available for the front steering force Fyf via command of the steering

input δ. The rear tire force depends indirectly on the steering angle via the build-up

of rear tire slip αr. It is therefore not possible to simultaneously eliminate both the

lateral tracking error and heading angle error.

An alternative is to consider eliminating a weighted combination of the two error

states by eliminating the lateral tracking error ep at a specified point xp in front of

the vehicle, as shown in Fig. 2.4. The error dynamics at this projected point are given

by:

ep = e+ xp∆Ψ (2.3a)

ëp =
Fyf + Fyr

m
− Uxκṡ+ xp

aFyf − bFyr

Iz
− xp(κs̈+ κ̇ṡ) (2.3b)

Kritayakirana and Gerdes [49] proposed the center of percussion xcop = Iz
bm

as a

convenient projection point for the feedforward steering. Substituting xp = xcop and

ëcop = 0 yields a simplified equation for the front tire force:

Fyf =
mb

L

(
U2
xκ+ xcop(κs̈+ κ̇ṡ)

)
(2.4)

The benefit of choosing the center of percussion becomes clear in (2.4). The error

dynamics at the center of percussion are independent of the rear tire force, which can

be highly transient when the vehicle is cornering near the limits of handling. This

leaves the only control input as Fyf , which can be directly manipulated by the front

wheel steering.



CHAPTER 2. FEEDFORWARD-FEEDBACK STEERING CONTROLLER 24

e

ΔΨ

xp

ep

Figure 2.4: Projection of lateral error at distance xp in front of the center of gravity.

A feedforward steering approach based on eliminating tracking error at the center

of percussion performed well experimentally at lateral accelerations up to 7-8 m/s2

[49]. However, at higher lateral accelerations, the closed-loop steering response be-

came underdamped, and the result was significant levels of yaw rate and steering

wheel oscillation. This was due to the difficulty of translating a desired front tire

force FFFW
yf into the required steering angle δFFW. In general, this relationship is

dependent on the vehicle yaw rate r and sideslip β:

δFFW =
Uxβ + ar

Ux
− f−1(FFFW

yf ) (2.5)

where f−1(Fy) is an inverse tire model relating tire force to tire slip. This raises

the question of whether to use actual vehicle states or predicted vehicle states from

the bicycle model. Using actual states results in undesirable coupling between the

feedback and feedforward controller and oscillations due to transient vehicle dynamics

and delays in the steering system, while using predicted states will result in inaccurate

tire forces if the vehicle deviates from the desired trajectory.

To eliminate yaw rate oscillation and the dependence on sideslip and yaw rate

states, we propose simplifying the feedforward tire forces by assuming steady-state

cornering conditions. Setting ṡ = Ux, s̈ = κ̇ = 0 in (2.4) and ṙ = 0 in (2.1) yields the

following front and rear tire forces:
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FFFW
yf =

mb

L
U2
xκ (2.6a)

FFFW
yr =

ma

L
U2
xκ (2.6b)

At steady-state conditions and assuming small angles, the feedforward steering

angle of the vehicle relates to the front and rear lateral tire slip αf and αr and path

curvature κ by vehicle kinematics:

δFFW = Lκ− αFFW
f + αFFW

r (2.7)

where αFFW
f and αFFW

r are the lumped front and rear feedforward tire slip angles.

Notice that (2.6) and (2.7) result in a vehicle feedforward based on a steady-state

force balance and vehicle kinematics as opposed to minimizing error about a point

such as the center of percussion (2.4). As a result, there are no compatibility issues

when combining the feedforward with a lookahead steering feedback.

The choice of feedforward tire slip angles is related to the tire forces in (2.6) via the

inverted tire model f−1(Fy). To account for saturation of tire force with increasing

tire slip magnitude, a single friction coefficient brush Fiala model [63] maps lateral

tire slip angles into tire force as follows:

Fy� =



−C� tanα� + C2
�

3µFz�
| tanα�| tanα�

− C3
�

27µ2F 2
z�

tan3 α�, |α�| < arctan
(

3µFz�
C�

)

−µFz�sgn α�, otherwise

(2.8)

where the symbol � ∈ [f, r] denotes the lumped front or rear tire, µ is the surface

coefficient of friction, and C� and Fz� are the corresponding cornering stiffness and

normal load parameters. The cornering stiffnesses and friction coefficient are de-

termined from experimental data taken from a ramp-steer maneuver, as shown in

Fig. 2.5.
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Figure 2.5: Nonlinear tire curves for FFW steering.

2.2.2 Feedback Steering Design

With the feedforward design complete, the remaining step is to design the feedback

controller. The goal of the feedback controller is to minimize a lookahead error eLA,

which is the vehicle tracking error projected a distance xLA in front of the vehicle

(Fig. 2.6).

The lookahead error and resulting feedback control law are given by:

eLA = e+ xLA∆Ψ (2.9a)

δFB = −kpeLA (2.9b)

with proportional gain kp. The control law (2.9) is a natural extension of potential

field lanekeeping, as described by Rossetter et al. in [67], which also provides heuristics

for selecting kp and xLA. Desirable stability properties of this feedback controller are

demonstrated in [77].
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Figure 2.6: Schematic of planar bicycle model showing projected lookahead error.

2.3 Predicted Steady-State Path Tracking Error

Simulation results provide useful insight about the steady-state path tracking behav-

ior of the baseline feedback-feedforward system. Linearized equations of motion for

the vehicle and error states can be written in state-space form, with state variable x

and control input δ defined as follows:

x = [e ∆Ψ r β]T (2.10a)

δ = δFB + δFFW (2.10b)

= [−kLK − kLKxLA 0 0]x+

(
L+

KugU
2
x

g

)
κ (2.10c)

where Kug is the vehicle understeer gradient, a parameter related to the front/rear

weight distribution of the vehicle. Note that δFB in (2.10b) depends on the state vari-

able, and δFFW depends on the path curvature. Rewriting the vehicle state equations

of motion using curvature as the input results in:
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ẋ = Ax+Bκ (2.11a)

A =


0 Ux 0 Ux

0 0 1 0
−akpCf

Iz

−akpxLACf

Iz

−(a2Cf+b
2Cr)

UxIz

bCr−aCf

Iz
−kpCf

mUx

−kpxLACf

mUx

bCr−aCf

mU2
x
− 1 −(Cf+Cr)

mUx

 (2.11b)

B =

[
0 − Ux

aCfGFFW

Iz

CfGFFW

mUx

]T
(2.11c)

where GFFW = (L + KugU2
x

g
) and Cf and Cr are the lumped front and rear cornering

stiffnesses. Fig. 2.7 shows results from using the linear model (2.11) to compute

steady-state path tracking errors at the vehicle center of gravity over a range of

vehicle speeds, given a constant lateral acceleration of ay = 3 m/s2. Additionally,

steady-state results from the nonlinear feedforward control law (2.7) are plotted for

the case where ay = 7 m/s2. For this high lateral acceleration case, the equations

of motion (2.1) and nonlinear Fiala tire model (2.8) are used to predict the steady-

state results. In general, steady-state lateral dynamics are reached within one second

for a constant lateral acceleration maneuver. At low lateral accelerations, when the

vehicle dynamics are dictated by linear equations of motion, the accumulated steady-

state tracking error is small (< 0.05 m) at highway speeds. However, when steering

at the limits of handling, Fig. 2.7 shows that the increased sideslip of the vehicle

results in higher steady-state tracking error, creating challenges for accurate driving

in safety-critical situations.

A qualitative explanation for this steady-state error is shown in Fig. 2.8. Since the

steering controller acts to eliminate a weighted sum of heading error ∆Ψ and lateral

path deviation e, the lookahead feedback is successful in minimizing the desired metric

eLA at the projected distance xLA in front of the vehicle. However, this still allows

for steady-state equilibria where values of e and ∆Ψ themselves are nonzero.
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Figure 2.7: Steady-state path tracking error e, sideslip β and heading deviation ∆Ψ as
a function of vehicle speed. Results are plotted for the linear model, with fixed lateral
acceleration ay = 3 m/s2, and for the nonlinear model, with fixed lateral acceleration
ay = 7 m/s2.
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Figure 2.8: Steady-state cornering where vehicle has lateral error but no lookahead
error.
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2.4 Incorporating Sideslip-Path Tangency into

Steering Feedback

An interesting observation from Fig. 2.7 is that the steady-state path deviation is

zero at a vehicle speed of around Ux=20 m/s for the linear model and Ux=17 m/s for

the nonlinear model. At these speeds, the steady-state vehicle sideslip is predicted to

be zero as well, and the vehicle heading Ψ naturally becomes tangent to the desired

path heading.

This observation motivates a second form of lookahead feedback where the feed-

back objective is to maintain the vehicle velocity vector U = 〈Ux Uy〉 tangent to the

desired path, as shown in Fig. 2.9. Since the direction of U is given by ∠U = Ψ + β,

the resulting control law is:

δFB = −kp (e+ xLA(∠U −Ψr)) (2.12a)

= −kp (e+ xLA(Ψ + β −Ψr)) (2.12b)

= −kp (e+ xLA(∆Ψ + β)) (2.12c)

Figure 2.9: Zero steady-state lateral deviation requires vehicle velocity vector to be
tangent to path.
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where Ψr is the heading of the desired vehicle path at a given point. The modified

control law can be modeled by reformulating the matrix A in (2.11) as:

A =


0 Ux 0 Ux

0 0 1 0
−akpCf

Iz

−akpxLACf

Iz

−a2Cf−b2Cr

UxIz

bCr−aCf(1−akpxLA)

Iz
−kpCf

mUx

−kpxLACf

mUx

−aCf−bCr

mU2
x
− 1 −(Cf(1+kpxLA)+Cr)

mUx

 (2.13)

Note that (2.13) is equal to (2.11b) with the exception of the last column, high-

lighted in bold. Fig. 2.10 shows the resulting steady-state behavior, and indicates

that lateral error e settles to zero for all velocities.

However, the disadvantage of directly adding vehicle sideslip into the feedback

control is reduced stability margins. Closed-loop eigenvalues of (2.11b) and (2.13)

are plotted in Fig. 2.11 as a function of increasing vehicle speed from 5 m/s to 25

m/s.
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Figure 2.10: Steady-state simulation results with sideslip added to feedback control,
using the nonlinear vehicle model with fixed lateral acceleration of 7 m/s2.
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The results indicate that the closed-loop steering response is well-damped (ζ =

0.9 at a vehicle speed of 25 m/s) with the original lookahead feedback controller.

However, when, the steering feedback acts to keep the vehicle sideslip tangent to

the desired path via (2.12), the closed-loop steering response becomes highly under-

damped (ζ= 0.2 at Ux = 25 m/s).
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Figure 2.11: Closed-loop pole locations for steering system as vehicle speed is varied
from 5 to 25 m/s. Damping ratio ζ and natural frequency ωn are shown for Ux = 25.
Root locus plots are shown for both the lookahead feedback controller (2.11) as well
as the feedback controller with added sideslip (2.13). Root locus moves in direction
of arrows as vehicle speed is increased.
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Note that the results shown in Fig. 2.11 are for a single vehicle and controller

parameterization (see Table 1). In general, the reduction in stability margin will

vary significantly depending on the vehicle understeer gradient and steering controller

gains, namely the lookahead distance. Fig. 2.12 shows the critical speed Vcr, beyond

which the closed-loop steering system becomes unstable, for neutral, understeering,

and oversteering configurations as a function of xLA. For an understeering vehicle,

lookahead feedback is always stable as long as the lookahead point xLA is above a

certain critical value (a conclusion derived in [67]). Even in situations where the
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Figure 2.12: Maximum speed for closed-loop stability for the original lookahead feed-
back and the modified feedback with sideslip tracking. Results are based on eigenvalue
computations of the A matrix of the linear vehicle model.
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vehicle is in a neutral steer or oversteer configuration, the critical speed for closed-

loop stability increases rapidly with lookahead distance. A different trend is present

when sideslip tracking is added to the steering feedback. Fig. 2.12 shows that the

critical speeds for stability increase very slowly as a function of lookahead distance.

2.5 Incorporating Sideslip Information Into

Steering Feedforward

Given the trade-off between path tracking and stability when sideslip-path alignment

is enforced via feedback, a promising approach is to replace vehicle sideslip β in

(2.12) with the predicted steady-state sideslip value βss for a given vehicle speed and

curvature.

The rear tire slip for a fixed track vehicle, assuming small angles, is given by

αr = β − br

Ux
(2.14)

At steady-state, αr = αFFW
r from (2.7) and r = κUx, yielding the following feedback

control law:

δFB = −kP (e+ xLA(∆Ψ + βss)) (2.15a)

βss = αFFW
r + bκ (2.15b)

The effect of this change is to remove the steering controller’s dependence on real-

time sideslip information. The steering controller will now act to align the vehicle’s

predicted steady-state sideslip along the desired path. Since the controller no longer

has feedback on vehicle sideslip, the state matrix equation A for the closed-loop system

dynamics is now once again given by (2.11b), which was shown to have desirable

stability properties as a function of Kug and xLA (Fig. 2.12). The sideslip now affects

the vehicle path tracking dynamics through the feedforward path, since the predicted

steady-state sideslip βss depends only on the desired speed Ux and curvature κ as well

as the feedforward tire model.
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The B matrix in (2.11) now becomes:

B =

[
0 − Ux

aCf(GFFW +Gβ)

Iz

Cf(GFFW +Gβ)

mUx

]T
(2.16a)

Gβ = U2
x

ma

L

kpxLA

Cr

(2.16b)

Assuming perfect knowledge of the feedforward tire model, the resulting steady-

state lateral path deviation will be zero at all vehicle speeds, as shown in Fig. 2.10.

However, error in the feedforward tire model will result in steady-state lateral path
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deviation. The effect of incorporating steady-state sideslip into the feedforward con-

trol is shown in Fig. 2.13. The feedforward steering command δFFW as a function of

path curvature and vehicle speed is plotted both for the original feedforward control

law (2.11c) as well as the sideslip-incorporating feedforward command (2.16).

2.6 Experimental Results

2.6.1 Experimental Setup

Experimental data was collected on “Shelley”, an Audi TTS equipped with an elec-

tronic power steering motor for autonomous steering and active brake booster and

throttle by wire for longitudinal control (Fig. 2.14). The testbed is also equipped

with an integrated Differential Global Positioning System (DGPS) and Inertial Mea-

surement Unit (IMU) in order to obtain global vehicle states. Mentioned previously

in §1.3.1, this is the same vehicle developed by Stanford and Audi to autonomously

drive the Utah Salt Flats and Pikes Peak Hill Climb [85].

Figure 2.14: Audi TTS used for experimental validation.
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Figure 2.15: Diagram showing controller setup.

The overall controller setup is shown in Fig. 2.15. At each time step, the differ-

ential GPS unit obtains precise ( < 2 cm) measurements of the vehicle global East

and North coordinates as well as the vehicle angular orientation Ψ. The controller

also has prior knowledge of the desired high level trajectory, consisting of the clothoid

curvature profile from Theodosis [81] and the speed profile from Kritayakirana [48].

Vehicle parameters for the Audi test vehicle and the lookahead feedback gains are

presented in Table 2.2.

Table 2.2: Vehicle Parameters

Parameter Symbol Value Units
Vehicle mass m 1500 kg
Yaw moment of inertia Iz 2250 kg ·m2

Front axle to CG a 1.04 m
Rear axle to CG b 1.42 m
Front cornering stiffness Cf 160 kN · rad−1

Rear cornering stiffness Cr 180 kN · rad−1

Lookahead Distance xLA 14.2 m
Lookahead Gain kp 0.053 rad/m
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The global East, North, and Ψ measurements are fed into a Newton-Raphson

localization algorithm, which finds the closest point from the vehicle center of gravity

to the path and outputs values of e and ∆Ψ. The resulting steering command is

generated using the feedback-feedforward control laws developed in this chapter. In

addition, to track the desired speed profile, a longitudinal force command is generated

with a basic proportional control law presented by Kritayakirana [48]. Finally, a

low level controller developed by Audi and Stanford maps the steer angle and force

command into the resulting throttle, brake, steering wheel torque, and gear shift

commands. The control loop operates at 200 Hz, with computations performed on a

dSPACE MicroAutobox real-time embedded computer.

The site for data collection was a 3.1 mile paved racing circuit (friction coefficient

µ ≈ 1) at Thunderhill Raceway Park in Willows, CA. Fig. 2.17 shows an overhead

plot of the race track as well as the desired racing line. The desired racing line is

parameterized as a curvature profile κ(s) that varies with distance along the path.

The curvature profile associated with the racing line is shown in Fig. 2.16 along with

a typical longitudinal velocity profile Ux from the path planner.

−0.02

0

0.02

0.04

P
a
th

 C
u
rv

a
tu

re
 

(1
/m

)

0 500 1000 1500 2000 2500 3000
10

20

30

40

D
e
s
ir
e
d
 V

e
lo

c
it
y

 (
m

/s
)

Distance Along Path (m)

Figure 2.16: Curvature and velocity profile inputs for steering controller as a function
of distance along racing line.



CHAPTER 2. FEEDFORWARD-FEEDBACK STEERING CONTROLLER 40

−400 −300 −200 −100 0 100 200 300 400
−300

−200

−100

0

100

200

300

400

500

600

700

East (m)

N
o
rt

h
 (

m
)
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2.7 Experimental Testing of Sideslip Feedback

Controller

The steering feedback controller with sideslip-path tangency presented in Section 2.4

offers very low path tracking error, but at the expense of reduced stability margins.

To test this controller safely at the limits of handling, experimental data was collected

on a constant radius turn in an open parking lot at two constant speeds. The results

of this test are shown in Fig. 2.18. As a baseline, the feedback controller with sideslip

(2.12) from Section 2.4 is compared to the original lookahead feedback controller

(2.9). The feedforward steering based on the nonlinear handling diagram (2.7) is

used in both cases. For the case where the speed is 10 m/s, the resulting steady-state

acceleration is 7 m/s2, and both steering controllers maintain stability of the vehicle.

In addition, incorporating sideslip-path tangency into the feedback control law results

in significantly lower path tracking errors compared to the baseline lookahead feedback

controller.

However, when the speed is increased to 13 m/s, the resulting steady-state lateral

acceleration is 9 m/s2, and the sideslip feedback controller becomes unstable, causing

the vehicle to spin out spin, as demonstrated by the plots of yaw rate and sideslip. For

the same conditions, the baseline lookahead controller remains stable. The issue with

the sideslip feedback controller is shown in the plot of vehicle sideslip and heading

error. As the vehicle heading error decreases and becomes unstable around s = 170

m, the feedback controller does not intervene because the vehicle’s velocity vector

remains tangent to the path (i.e. ∆Ψ + β = 0). A counter steering action is finally

provided at s = 190 m, but at this point the vehicle has already spun out.
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Figure 2.18: Parking lot test for constant radius turning at 10 m/s and 13 m/s.
Resulting steady-state accelerations are 7 m/s2 and 9 m/s2. Steering feedback with
sideslip is compared to original lookahead steering controller.
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2.8 Experimental Data from Racetrack

Fig. 2.19 shows experimental data taken over a 3 km subset of the entire racetrack,

excluding portions of the course where there is little vehicle cornering. The exper-

imental data is plotted for two separate steering controllers. The first controller is

the baseline controller described in §2.2, with the steering feedback provided by the

lookahead system and the feedforward steering given by the steady-state handling

diagram. The second controller uses the same lookahead feedback, but incorporates

the steady-state sideslip behavior into the feedforward steering to align the vehicle’s

velocity vector with the path heading (§2.5). Note that the controller where real-time

sideslip was incorporated into the steering feedback (§2.4) was not tested, as there

is a high likelihood of vehicle instability near the limits of handling given the results

from the previous parking lot test. The same longitudinal controller is used for both

cases in order to brake into the entry of turns and accelerate out of turn exits. For

this lap, the peak longitudinal deceleration is -8 m/s2 and peak lateral acceleration

is 8 m/s2.

The results in Fig. 2.19 show that lateral path deviation e is reduced when in-

corporating steady-state sideslip in the feedforward control law. This confirms the

expected results from the analysis performed in §2.3 and §2.5. Note that while the

lateral path deviation is smaller, the levels of vehicle heading error ∆Ψ remain roughly

the same. This matches the predicted result in Fig. 2.10. The steering controller will

align the vehicle’s velocity vector with the path, not the vehicle’s heading, and due to

a vehicle’s tendency to develop a steady-state sideslip angle, a non-zero heading error

∆Ψ is in general necessary for zero steady-state lateral path deviation, as shown by

the schematic in Fig. 2.8.

For a better comparison of the lateral path deviation, Fig. 2.20 shows histograms

of the lateral tracking error e for both controllers at three levels of peak lateral ac-

celeration. The baseline controller keeps the vehicle within 0.5 meters on either side

of the desired path, with a large amount of variation in the resulting histogram. An

interesting observation is that the histogram is not symmetric. In general, the race-

way has more left turns than right turns, and as Fig. 2.7 indicates, at high speeds the



CHAPTER 2. FEEDFORWARD-FEEDBACK STEERING CONTROLLER 44

−0.5

0

0.5
T

ra
c
k
in

g
 

E
rr

o
r 

(m
)

−2

0

2

H
e

a
d

in
g

 E
rr

o
r 

(d
e

g
)

−2

0

2

S
te

e
ri
n

g
 

F
B

 (
d

e
g

)

0 500 1000 1500 2000 2500 3000

−2

0

2

4

S
te

e
ri
n

g
 

F
F

W
 (

d
e

g
)

Distance Along Path (m)

With Sideslip FFW

Original Controller

Figure 2.19: Experimental data with combined acceleration magnitude 8 m/s2 over a 3
km stretch of Thunderhill Raceway Park. Results are shown for both the baseline FB-
FFW controller and the modified controller with sideslip tracking in the feedforward
loop.
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Figure 2.20: Histogram of path tracking error for six laps around the track. Left
column represents performance of controller with feedforward sideslip tracking, and
right column is baseline controller with feedforward from the steady-state handling
diagram. Path tracking error is in meters.

baseline controller will track toward the outside of the turn. This tendency is mani-

fested experimentally in the asymmetric nature of the histograms. The histograms for

the improved controller show a much tighter distribution on the lateral path tracking

error. The path tracking error generally remains within 10-15 cm on either side of the

lane boundary and contains less of a bias towards tracking on the outside of turns.

As the lateral acceleration increases beyond 0.8 g and the vehicle approaches the

handling limits, the steering controller remains stable and well-damped, although the

tracking performance begins to degrade. Fig. 2.21 shows experimental data for a lap

around Thunderhill Raceway park with peak lateral and longitudinal accelerations

of 0.95 g. At several points along the track, the tracking error increases above 0.5
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m, significantly higher than the levels of path deviation seen at 0.8 g of vehicle

acceleration. The reasons for this are three-fold.

First, the sharp drop in front tire slip from s = 300 to 400 meters indicates that

the lateral force demand for the front tires has exceeded the available friction at that

region of the track. As a result, the vehicle understeers heavily and tracks well to the

outside of the left-hand turn, resulting in a large negative tracking error. At this point,

there is nothing the steering controller can do to bring the vehicle back to the desired

path, and the vehicle must alter its desired trajectory to become less aggressive, either

by slowing down or reducing the turn curvature. Second, the steady-state feedforward

controller requires an accurate estimate of the vehicle parameters in order to estimate

the steady-state sideslip in (2.15a). From s = 700-800, 1300-1400, 1800-1900, and

2200-2300 meters along the track, there are observable discrepancies between the

predicted feedforward sideslip and the actual vehicle sideslip, as measured by the

GPS-INS. This plant-model mismatch results in significant path tracking errors at

those portions of the racing circuit. Finally, the feedforward model in (2.15a) assumes

steady-state conditions. As the vehicle approaches the limits of handling, transient

vehicle dynamics can result in larger path deviations as well.

The lap-to-lap learning algorithms presented in Chapter 4 focus on reducing the

latter two sources of error by gradually learning a better feedforward model of the

vehicle dynamics over time. For situations where a vehicle repeats a given trajectory

multiple times, iterative learning control (ILC) is a promising technique for refining

the feedforward input to improve the reference tracking performance of the controller.

Additionally, online estimation approaches can also be used to gradually improve

knowledge of difficult-to-measure parameters such as friction and vehicle cornering

stiffness.
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a 3 km stretch of Thunderhill Raceway Park.
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2.9 Conclusion

This chapter describes the design of a feedback-feedforward controller capable of

path tracking at the limits of handling. Desirable path tracking behavior occurs

when the vehicle sideslip is aligned with the desired path heading. However, directly

incorporating this behavior into a feedback steering control law results in a closed-

loop controller with poor stability margins. A better approach for combined path

tracking and stability is to align the steady-state vehicle sideslip with the desired

path heading through the feedforward steering command.

The benefit of the presented work is a controller design that provides low path

tracking error over a large range of vehicle lateral accelerations. More importantly,

the lateral path tracking improvement is achieved without sacrificing the robust sta-

bility properties of the lookahead steering feedback. Results from a histogram analysis

quantitatively indicate that the improved feedforward command reduces lateral path

deviation from the baseline controller by more than fifty percent. One potential

drawback is that this feedforward approach is sensitive to vehicle model uncertainty,

especially at the physical limits of handling where transient dynamics become preva-

lent. Chapter 4 will present iterative learning control algorithms to improve the

feedforward vehicle model and eliminate undesirable transient dynamics.

Note: This chapter reuses material previously published by the author in [40].



Chapter 3

Fast Generation Path Planning

Chapter 2 presented a steering controller capable of driving an aggressive trajectory

from a high level trajectory planner. Since the steering controller only requires the

curvature and velocity profile output, the details of the trajectory planner were not

considered for the controller design. However, for the purpose of race car driving,

the trajectory planning phase is just as important as the real-time path following.

This chapter therefore provides a novel approach for planning the trajectory of an

automated race vehicle. Because of the focus on racing, the primary consideration of

the trajectory generation algorithm will be minimizing the vehicle’s lap time.

The problem of calculating the minimum lap time trajectory for a given vehicle and

race track has been studied over the last several decades in the control, optimization,

and vehicle dynamics communities. Early research by Hendrikx et al. [31] in 1996

used Pontryagin’s minimum principle to derive coupled differential equations to solve

for the minimum-time trajectory for a vehicle lane change maneuver. A geometric

analysis was also presented by Gordon et al., where vector fields representing the

vehicle’s velocity were generated at every location on the road with the friction circle

used as a constraint on the field’s gradient [25]. In 2000, Casanova [9] published a

method to optimize both the path and speed profile for a fully nonlinear vehicle model

using nonlinear programming (NLP). Kelly [44] further extended the results from

Casanova by considering the physical effect of tire thermodynamics and applying more

robust NLP solution methods such as Feasible Sequential Quadratic Programming.

49
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More recently, Perantoni and Limebeer [64] showed that the computational expense

could be significantly reduced by applying curvilinear track coordinates, non-stiff

vehicle dynamics, and the use of smooth computer-generated analytic derivatives.

The primary focus of these NLP solutions was developing a simulation tool for For-

mula One race teams to analyze the lap time effects of subtle race car modifications.

As a result, experimental validation was not considered, and high computation times

were not a major issue. However, the development of autonomous vehicle technology

has led to research on optimal path planning algorithms that can be validated on

driverless cars. Theodosis and Gerdes published a gradient descent approach for de-

termining time-optimal racing lines, with the racing line constrained to be composed

of a fixed number of clothoid segments that are amenable for autonomous driving

[81]1. When driven autonomously using a closed-loop trajectory following controller

[40][49], the resulting lap times were within one second of lap times from a profes-

sional race car driver. However, the gradient descent method, like other nonlinear

programming techniques, took several hours of computation time to complete on a

standard desktop computer.

Given the computational expense of performing nonlinear optimization, there has

recently been an effort to find approximate methods that provide fast lap times. Tim-

ings and Cole [83] formulated the minimum lap time problem into a model predictive

control (MPC) problem by linearizing the nonlinear vehicle dynamics at every time

step and approximating the minimum-time objective by maximizing distance trav-

eled along the path centerline. The resulting racing line for a 90 degree turn was

simulated next to an NLP solution. Liniger et al. [51] presented both a receding hori-

zon and model predictive contour control approach for real-time autonomous racing.

Like [83], the guiding principle for both controllers was locally maximizing distance

traveled along the centerline. Gerdts et al. [24] proposed a similar receding horizon

approach, where distance along a reference path was maximized over a series of locally

optimal optimization problems that were combined with continuity boundary condi-

tions. One potential drawback of the model predictive control approach is that an

1The curvature and speed profile used for the controller validation in Chapter 2 came from the
racing trajectory generated by Theodosis and Gerdes.
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optimization problem must be reformulated and solved at every time step, which can

still be computationally expensive. For example, Timings and Cole reported a com-

putation time of 900 milliseconds per 20 millisecond simulation step with the CPLEX

quadratic program solver on a desktop PC. By shortening the lookahead horizon from

500 time steps to 50 time steps and approximating the function to calculate distance

traveled, Liniger et al. was able to demonstrate real-time autonomous racing on 1:43

scale RC cars [51].

In summary, due to the primary objective of minimizing lap time while staying on

the race track, constrained optimization is frequently used for planning a minimum-

time trajectory. The most common method is nonlinear programming, which provides

low lap-time trajectories, but at the expense of high computation times. The complex

nature of the minimum-time vehicle optimization problem is two-fold. First, two sets

of vehicle inputs, longitudinal and lateral, must be determined. Unfortunately, the

lateral and longitudinal dynamics become highly coupled and nonlinear at the limits of

handling. Second, directly minimizing lap time requires minimizing a non-convex cost

function (§3.3). Not only are non-convex optimization problems more expensive to

solve than their convex counterparts, but solution techniques are also only guaranteed

to converge to a local minima. While computation time is not an issue for simulation

tools, with the rapid progress in autonomous vehicle technology, there are significant

benefits to a trajectory generation algorithm that can rapidly approximate the fastest

racing trajectory for at least the next several turns of the race track (see §1.4).

This chapter therefore presents an experimentally validated algorithm that by-

passes the complexity of minimum-time vehicle optimization in order to generate

racing trajectories with low computational expense. To avoid the issue of coupled

control inputs, the combined lateral/longitudinal optimal control problem is replaced

by two sequential sub-problems that are solved iteratively. In the first sub-problem,

the minimum-time longitudinal speed inputs are computed given a fixed vehicle path.

In the second sub-problem, the vehicle path is updated given the fixed speed com-

mands. To avoid minimizing the non-convex lap time cost function, the vehicle path

is updated by solving a convex minimum curvature heuristic. The concept of solving

a coupled, non-convex optimization via sequential approximations is not new, and
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the proposed approach is inspired by the methodology used in sequential convex pro-

gramming (SCP) and the expectation/maximization (EM) algorithm [16][30].2 The

biggest potential drawback of these approaches is that the guarantee of convergence

to a globally optimal solution is lost, and the proposed method is therefore as sensitive

to initial conditions as any nonlinear optimization.

The following section presents a mathematical framework for the trajectory gen-

eration problem and provides a linearized five-state model for the planar dynamics of

a racecar following speed and steering inputs on a fixed path. This model is identical

to the model presented in Chapter 2, where the lateral vehicle dynamics are explicitly

modeled but the longitudinal speed Ux is treated as a time-varying parameter. Sec-

tion 3.2 describes the method of finding the minimum-time speed inputs given a fixed

path. While this sub-problem has been recently solved using convex optimization

[52], a forward-backward integration scheme based on prior work [75] is used instead.

Section 3.3 describes a method for updating the racing path given the fixed speed

inputs using convex optimization, where the curvature norm of the driven path is

explicitly minimized.

The complete algorithm is outlined in §3.4, and a trajectory is generated for the

Thunderhill Raceway circuit from Chapter 2. This trajectory is compared with a tra-

jectory recorded from a professional human driver and the gradient descent trajectory

from Theodosis [81]. In §3.5, the generated racing trajectory is validated experimen-

tally in the autonomous Audi TTS testbed using the path-following controller from

Chapter 2. The resulting lap time compares well with the lap times recorded for

the gradient descent trajectory and the human driver. However, there are particu-

lar sections of the track where minimizing the driven curvature does not provide a

fast trajectory. Section 3.7 therefore proposes a modified cost function for the path

update step that also incorporates the benefit of reducing the length of the racing

line. Section 3.8 concludes by discussing future implementation of the algorithm in a

real-time path planner.

2Sequential convex programming attempts to solve a nonconvex optimization problem by iter-
atively solving a convex approximation over a trust region that is modified after every iteration.
Expectation/Maximization determines maximum likelihood estimates in statistical models with un-
observed variables by repeatedly alternating between an expectation step and a maximization step.
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3.1 Path Description and Vehicle Model

Figure 3.1 describes the parameterization of the reference path that the vehicle will

follow. The reference path and road boundaries are most intuitively described in

Fig. 3.1(a) via Cartesian East-North coordinates. However, for the purposes of quickly

generating a racing trajectory, it is more convenient to parameterize the reference path

as a curvature profile κ that is a function of distance along the path s (Fig. 3.1(c)).

Additionally, it is convenient to store the road boundary information as two functions

win(s) and wout(s), which correspond to the lateral distance from the path at s to the

inside and outside road boundaries, respectively (Fig. 3.1(b)). This maximum lateral

distance representation will be useful when constraining the generated racing path to

lie within the road boundaries. The transformation from curvilinear s, κ coordinates

to Cartesian coordinates E, N are given by the Fresnel integrals:

E(s) =

∫ s

0

− sin(Ψr(z))dz (3.1a)

N(s) =

∫ s

0

cos(Ψr(z))dz (3.1b)

Ψr(s) =

∫ s

0

κ(z)dz (3.1c)

where Ψr(s) is the heading angle of the reference path and z is a dummy variable.

With the reference path defined in terms of s and κ, the next step is to define

the dynamic model of the vehicle. For the purposes of trajectory generation, we

assume the vehicle dynamics are given by the same planar bicycle model presented

in Chapter 2, with yaw rate r and sideslip β states describing the lateral dynamics.

Additionally, the vehicle’s offset from the reference path are again given by the path

lateral deviation state e and path heading error state ∆Ψ. Linearized equations

of motion for all four states are given by (2.1). Recall that that while the vehicle

longitudinal dynamics are not explicitly modeled, the bicycle model does allow for

time-varying values of Ux. This is a reasonable approximation because the vehicle

model will be used for the lateral path update step, whereas the longitudinal dynamics

will be treated separately in the velocity profile generation step.
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Figure 3.1: (a) View of a sample reference path and road boundaries, plotted in
the East-North Cartesian frame (b) Lateral distance from path to inside road edge
(positive) and outside road edge (negative) as a function of distance along path. (c)
Curvature as a function of distance along path.
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3.2 Velocity Profile Generation Given Fixed

Reference Path

Given a fixed reference path described by s and κ, the first algorithm step is to find the

minimum-time speed profile the vehicle can achieve without exceeding the available

friction. While finding the minimum-time speed profile for a fixed path was recently

solved as a convex problem by Lipp and Boyd [52], the algorithm presented in this

chapter directly uses the “three-pass” approach described by Subosits and Gerdes [75],

and originally inspired by work from Velenis and Tsiotras [86] and Griffiths [27]. Given

the lumped front and rear tires from the bicycle model, the available longitudinal and

lateral forces Fx and Fy at each wheel are constrained by the friction circle:

F 2
xf + F 2

yf ≤ (µFzf)
2 (3.2a)

F 2
xr + F 2

yr ≤ (µFzr)
2 (3.2b)

where µ is the tire-road friction coefficient and Fz is the available normal force. The

first pass of the speed profile generation finds the maximum permissible vehicle speed

given zero longitudinal force. For the simplified case where weight transfer and to-

pography effects are neglected, this is given by:

Ux(s) =

√
µg

|κ(s)|
(3.3)

where the result in (3.3) is obtained by setting Fyf = mb
a+b

U2
xκ and Fzf = mgb

a+b
. The

results of this first pass for the sample curvature profile in Fig. 3.2(a) are shown in

Fig. 3.2(b). The next step is a forward integration step, where the velocity of a given

point is determined by the velocity of the previous point and the available longitudinal

force Fx,max for acceleration. This available longitudinal force is calculated in [75] by

accounting for the vehicle engine force limit and the lateral force demand on all tires

due to the road curvature:

Ux(s+ ∆s) =

√
U2
x(s) + 2

Fx,accel,max

m
∆s (3.4)
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A key point of the forward integration step is that at every point, the value of Ux(s)

is compared to the corresponding value from (3.3), and the minimum value is taken.

The result is shown graphically in Fig. 3.2(c). Finally, the backward integration step

occurs, where the available longitudinal force for deceleration is again constrained by

the lateral force demand on all tires:

Ux(s−∆s) =

√
U2
x(s)− 2

Fx,decel,max

m
∆s (3.5)

The value of Ux(s) is then compared to the corresponding value from (3.4) for each

point along the path, and the minimum value is chosen, resulting in the final velocity

profile shown by the solid line in Fig. 3.2(d). While treatment of three-dimensional

road effects are not described in this chapter, the method described in [75] and used

for the experimental data collection determines the normal and lateral tire forces Fz

and Fy at each point along the path by accounting for weight transfer and bank/grade

of the road surface.
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Figure 3.2: (a) Sample curvature profile. (b) Velocity profile given zero longitudinal
force. (c) Velocity profile after forward pass. (d) Final velocity profile after backward
pass.
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3.3 Updating Path Given Fixed Velocity Profile

3.3.1 Overall Approach and Minimum Curvature Heuristic

The second step of the trajectory generation algorithm takes the original reference

path κ(s) and corresponding velocity profile Ux(s) as inputs, and modifies the reference

path to obtain a new, ideally faster, racing line. Sharp [70] suggests a general ap-

proach for modifying an initial path to obtain a faster lap time by taking the original

path and velocity profile and incrementing the speed uniformly by a small, constant

“learning rate.” An optimization problem is then solved to find a new reference path

and control inputs that allow the vehicle to drive at the higher speeds without driving

off the road. If a crash is detected, the speed inputs are locally reduced around the

crash site and the process is repeated.

However, one challenge with this approach is that it can take several hundred

iterations of locally modifying the vehicle speed profile, detecting crashes, and modi-

fying the reference path to converge to a fast lap time. An alternative approach is to

modify the reference path in one step by solving a single optimization problem. The

lap time t for a given racing line is provided by the following equation:

t =

∫ l

0

ds

Ux(s)
(3.6)

Equation (3.6) implies that minimizing the vehicle lap time requires simultane-

ously minimizing the total path length l while maximizing the vehicle’s longitudinal

velocity Ux. These are typically competing objectives, as lower curvature (i.e. higher

radius) paths can result in longer path lengths but higher vehicle speeds when the lat-

eral force capability of the tires is reached, as shown in (3.3). Since (3.6) is a nonconvex

cost function in the optimization variables, time-intensive nonlinear programming is

required to manage this curvature/distance trade-off and explicitly minimize the lap

time.

The proposed approach is therefore to simplify the cost function by only min-

imizing the norm of the vehicle’s driven curvature κ(s) at each path modification

step. Path curvature can be easily formulated as a convex function with respect to
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the vehicle state vector x, enabling the path modification step to be easily solved by

leveraging the computational speed of convex optimization.

However, minimizing curvature is not the same as minimizing lap time and pro-

vides no guarantee of finding the time-optimal solution. The proposed cost function

relies on the hypothesis that a path with minimum curvature is a good approximation

for the minimum-time racing line. Lowering the curvature of the racing line is more

important than minimizing path length for most race courses, as the relatively narrow

track width provides limited room to shorten the overall path length. Simulated and

experimental results in §3.4 and §3.5 will validate this hypothesis by showing similar

lap time performance when compared to a gradient descent method that directly min-

imizes lap time. However, a particular section of the race track where the minimum

curvature solution shows poor performance will be discussed as well, and improved

upon in §3.7.

3.3.2 Convex Problem Formulation

Formulating the path update step as a convex optimization problem requires an affine,

discretized form of the bicycle model presented earlier. The equations of motion in

(2.1) are already linearized, but the front and rear lateral tire forces become saturated

as the vehicle drives near the limits of tire adhesion. The well-known brush tire model

[63], also presented in Chapter 2, captures the effect of tire saturation:

Fy� =



−C� tanα� + C2
�

3µFz�
| tanα�| tanα�

− C3
�

27µ2F 2
z�

tan3 α�, |α�| < arctan
(

3µFz�
C�

)

−µFz�sgn α�, otherwise

(3.7)

where the symbol � ∈ [f, r] denotes the lumped front or rear tire, and C� is the

corresponding tire cornering stiffness.
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The linearized tire slip angles αf and αr are functions of the vehicle lateral states

and the steer angle input, δ:

αf = β +
ar

Ux
− δ (3.8a)

αr = β − br

Ux
(3.8b)

The brush tire model in (3.7) can be linearized at every point along the reference

path assuming steady state cornering conditions:

Fy� = F̃y� − C̃�(α� − α̃�) (3.9a)

F̃y� =
Fz�

g
U2
xκ (3.9b)

with parameters F̃y, α̃ and C̃ shown in Fig. 3.3.
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Figure 3.3: Nonlinear tire force curve given by Fiala model, along with affine tire
model linearized at α = α̃.
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The affine, continuous bicycle model with steering input δ is then written in state-

space form as:

ẋ(t) = A(t)x+B(t)δ + d(t) (3.10a)

x = [e ∆Ψ r β Ψ]T (3.10b)

where we have added a fifth state, vehicle heading angle Ψ, defined as the time

integral of yaw rate r. This makes explicit computation of the minimum curvature

path simpler. The state matrices A(t), B(t), and affine term d(t) are given by:

A(t) =



0 Ux(t) 0 Ux(t) 0

0 0 1 0 0

0 0 −a2C̃f(t)−b2C̃r(t)
Ux(t)Iz

bC̃r(t)−aC̃f(t)
Iz

0

0 0 bC̃r(t)−aC̃f(t)
mU2

x(t)
− 1 −C̃f(t)−C̃r(t)

mUx(t)
0

0 0 1 0 0


(3.11)

B(t) = [0 0
aC̃f(t)

Iz

C̃f(t)

mUx(t)
0]T (3.12)

d(t) =



0

−κ(t)Ux(t)
aC̃f(t)α̃f(t)−bC̃r(t)α̃r(t)+aF̃yf(t)−bF̃yr(t)

Iz
C̃f(t)α̃f(t)+C̃r(t)α̃r(t)+F̃yf(t)+F̃yr(t)

mUx(t)

0


(3.13)

With the nonlinear model approximated as an affine, time-varying model, updat-

ing the path is accomplished by solving the following convex optimization problem:
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minimize
δ, x

∑
k

(
Ψk −Ψk−1

sk − sk−1

)2

+ λ(δk − δk−1)2 (3.14a)

subject to xk+1 = Akxk +Bkδk + dk (3.14b)

wout
k ≤ ek ≤ win

k (3.14c)

x1 = xT (3.14d)

where k = 1 . . . T is the discretized time index, and Ak, Bk, and dk are discretized

versions of the continuous state-space equations in (3.10). The objective function

(3.14a) minimizes the curvature norm of the path driven by the vehicle, as path

curvature is the derivative of the vehicle heading angle with respect to distance along

the path s (3.1c). To maintain convexity of the objective function, the term sk − sk−1

is a constant rather than a variable, and is updated for the next iteration after the

optimization has been completed (see §3.4). Additionally, there is a regularization

term with weight λ added in the cost function to ensure a smooth steering profile for

experimental implementation.
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Figure 3.4: Path update for an example turn.
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The equality constraint (3.14b) ensures the vehicle follows the affine lateral dy-

namics. The inequality constraint (3.14c) allows the vehicle to deviate laterally from

the reference path to find a new path with lower curvature, but only up to the road

edges. Finally, the equality constraint (3.14d) is required for complete racing circuits

to ensure the generated racing line is a continuous loop. The results of running the

optimization are shown for an example turn in Fig. 3.4. The reference path starts out

at the road centerline, and the optimization finds a modified path that uses all the

available width of the road to lower the path curvature. Note that the available road

widths win and wout have an offset built in to account for the width of the vehicle.

3.4 Algorithm Implementation and Simulated

Results

3.4.1 Algorithm Implementation

The final algorithm for iteratively generating a vehicle racing trajectory is described

in Fig. 3.5. The input to the algorithm is any initial path through the racing circuit,

parameterized in terms of distance along the path s, path curvature κ(s), and the

lane edge distances win(s) and wout(s) from Fig. 3.1.

Given the initial path, the minimum-time speed profile Ux(s) is calculated using

the approach from §3.2. Next, the path is modified by solving the minimum curvature

convex optimization problem (3.14).

The optimization only solves explicitly for the steering input δ? and resulting

vehicle lateral states x? at every time step. Included within x? is the optimal vehicle

heading Ψ? and lateral deviation e? from the initial path. To obtain the new path in

terms of s and κ, the East-North coordinates (Ek, Nk) of the updated vehicle path

are updated as follows:
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1: procedure GenerateTrajectory(s0, κ0, w0
in, w

0
out)

2: path← (s0, κ0, w0
in, w

0
out)

3: while ∆t? > ε do
4: Ux ← calculateSpeedProfile(path)
5: path← minimizeCurvature(Ux, path)
6: t? ← calculateLapTime(Ux, path)
7: end while
8: return path, Ux
9: end procedure

Figure 3.5: Iterative algorithm for fast generation of vehicle trajectories. Each itera-
tion consists of a sequential two-step approach where the velocity profile is generated
given a fixed path and then the path is updated based on the solution from a convex
optimization problem.

Ek ← Ek − e?k cos(Ψr,k) (3.15a)

Nk ← Nk − e?k sin(Ψr,k) (3.15b)

where Ψr is the path heading angle of the original path. Next, the new path is given

by the following numerical approximation:

sk = sk−1 +
√

(Ek − Ek−1)2 + (Nk −Nk−1)2 (3.16a)

κk =
Ψ?
k −Ψ?

k−1

sk − sk−1

(3.16b)

Notice that (3.16) accounts for the change in the total path length that occurs when

the vehicle deviates from the original path. In addition to s and κ, the lateral dis-

tances to the track edges win and wout are different for the new path as well, and are

recomputed using the Cartesian coordinates for the inner and outer track edges and

(Ek, Nk). The two-step procedure is iterated until the improvement in lap time ∆t?

over the prior iteration is less than a small positive constant ε.
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Table 3.1: Optimization Parameters

Parameter Symbol Value Units

Regularization Parameter λ 1 1/m2

Stop Criterion ε 0.1 s
Vehicle mass m 1500 kg
Yaw Inertia Iz 2250 kg ·m2

Front axle to CG a 1.04 m
Rear axle to CG b 1.42 m
Front cornering stiffness Cf 160 kN · rad−1

Rear cornering stiffness Cr 180 kN · rad−1

Friction Coefficient µ 0.95 −
Path Discretization ∆s 2.75 m
Optimization Time Steps T 1843 -
Max Engine Force - 3750 N

3.4.2 Algorithm Validation

The proposed algorithm is tested by analyzing the lap time performance on the same

racing circuit and Audi TTS experimental test vehicle described in Chapter 2. The

vehicle parameters used for the lap time optimization are shown along with the opti-

mization parameters in Table 3.1. The initial path is obtained by collecting GPS data

of the inner and outer track edges and estimating the (s, κ, win, wout) parametrization

of the track centerline via a separate curvature estimation subproblem similar to the

one proposed in [64]. The algorithm is implemented in MATLAB, with the minimum

curvature optimization problem (3.14) solved using the CVX software package [26]

and the speed profile generation problem solved using a library from Subosits and

Gerdes [75].

3.4.3 Comparison with Other Methods

The generated racing path after five iterations is shown in Fig. 3.6. To validate the

proposed algorithm, the racing line is compared with results from a nonlinear gradient

descent algorithm implemented by Theodosis and Gerdes [81] and an experimental

trajectory recorded from a professional racecar driver in the experimental testbed
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Figure 3.6: Overhead view of Thunderhill Raceway park along with generated path
from algorithm. Car drives in alphabetical direction around the closed circuit. La-
beled regions a-h are locations of discrepancies between the two-step algorithm solu-
tion and comparison solutions.
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Figure 3.7: Lateral path deviation of racing line from track centerline as a function
of distance along the centerline. Note that upper and lower bounds on e are not
always symmetric due to the initial centerline being a smooth approximation. Re-
sults are compared with racing line from a nonlinear gradient descent algorithm and
experimental data recorded from a professional racecar driver.

vehicle. While time-intensive to compute, experimental lap times from the gradient

descent trajectory are within one second of lap times from professional racecar drivers.

To better visualize the differences between all three racing lines, Fig. 3.7 shows the

lateral deviation from the track centerline as a function of distance along the centerline

for all three trajectories. The left and right track boundaries win and wout are plotted

as well. The two-step iterative algorithm provides a racing line that is qualitatively

similar to the gradient descent and human driver racing lines. In particular, all three

solutions succeed at utilizing the available track width whenever possible, and strike

similar apex points for each of the circuit’s 15 corners.

However, there are several locations on the track where there is a significant dis-

crepancy (on the order of several meters) between the two-step algorithm’s trajectory

and the other comparison trajectories. These locations of interest are labeled a

through h in Fig. 3.6. Note that sections a , e , f , and g all occur on large,

relatively straight portions of the racing circuit. In these straight sections, the path
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Figure 3.8: Racing lines from the two-step fast generation approach, nonlinear gra-
dient descent algorithm, and experimental data taken from professional driver. Car
drives in direction of labeled arrow.

curvature is relatively low and differences in lateral deviation from the track centerline

have a relatively small effect on the lap time performance.

Of more significant interest are the sections labeled b , c , d , and h , which

all occur at turning regions of the track. These regions are plotted in Fig. 3.8 and

Fig. 3.9 for zoomed-in portions of the race track. While it is difficult to analyze a

single turn of the track in isolation, discrepancies can arise between the two-step fast

generation method and the gradient descent as the latter method trades off between

minimizing curvature and distance traveled. As a result, the gradient descent method

finds regions where it may be beneficial to use less of the available road width in order

to reduce the total distance traveled. In region b , for example, the fast generation

algorithm exits the turn and gradually approaches the left side in order to create space

for the upcoming right-handed corner. The nonlinear optimization, however, chooses

a racing line that stays toward the right side of the track. In this case, the behavior of

the human driver more closely matches that of the two-step fast generation algorithm.
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Figure 3.9: Racing lines from the two-step fast generation approach, nonlinear gra-
dient descent algorithm, and experimental data taken from professional driver. Car
drives in direction of labeled arrow.

The human driver also drives closer to the fast generation solution in h , while

the gradient descent algorithm picks a path that exits the corner with a larger radius.

In section c , the gradient descent algorithm again prefers a shorter racing line that

remains close the the inside edge of the track, while the two-step algorithm drives

all the way to the outside edge while making the right-handed turn. Interestingly,

the human driver stays closer to the middle of the road, but more closely follows the

behavior of the gradient descent algorithm. There are also regions of the track where

the computational algorithms pick a similar path that differs from the human driver,

such as region d .

3.4.4 Lap Time Convergence and Predicted Lap Time

Fig. 3.10 shows the predicted lap time for each iteration of the fast generation algo-

rithm, with step 0 corresponding to the initial race track centerline. The lap time

was estimated after each iteration by numerically simulating a vehicle following the
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Figure 3.10: Lap time as a function of iteration number for the two-step fast trajectory
generation method. Final lap time is comparable to that achieved with the nonlinear
gradient descent approach. Iteration zero corresponds to the lap time for driving the
track centerline.

desired path and velocity profile using a closed-loop controller. The equations of mo-

tion for the simulation were the nonlinear versions of (2.1) with tire forces given by

the brush tire model in (3.7).

Fig. 3.10 shows that the predicted lap time converges monotonically over four or

five iterations, with significant improvements over the centerline trajectory occuring

over the first two iterations. The predicted minimum lap time of 136.4 seconds is

similar to the predicted lap time of 136.7 seconds from the nonlinear gradient descent,

although in reality, the experimental lap time will depend significantly on unmodeled

effects such as powertrain dynamics.

The final curvature and velocity profile for the two-step method is compared with

the equivalent profiles for the gradient descent algorithm in Fig. 3.11. Notice that

the piecewise linear κ(s) for the gradient descent is due to the clothoid constraint

imposed by [81] for ease of autonomous path following.
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In general, the curvature and velocity profiles are very similar, although the fast

generation algorithm results in a velocity profile with slightly lower cornering speeds

but slightly higher top speeds. The predicted time difference between a car driving

both trajectories is shown in Fig. 3.11(a), with a negative value corresponding the

two-step algorithm being ahead.

Notice that in region c , the trajectory from the two-step algorithm performs

poorly, losing almost a half second of time to the nonlinear optimization over just

150 meters. Referring back to Fig. 3.8, region c is a sweeping right-hand turn that

comes after a very tight left-hand turn on the track, and both the human driver and

nonlinear optimization prefer to take a shorter path and stay closer to the inside

edge of the track. While this results in a higher curvature for the first turn, the

shorter path on the second turn creates a net time advantage. As a result, the

gradient descent optimization from Theodosis and Gerdes [81] retains an overall time

advantage from this turn on until losing ground in section g , where the two-step

method catches up and ultimately completes the lap with a 0.3 second time advantage.

The difference between the two techniques suggests that neither is a globally optimal

solution, since the minimum curvature heuristic proposed here and the restriction to

clothoid segments in [81] are not mutually exclusive and benefits of both could be

combined to further improve the lap time.
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Figure 3.11: (a) Predicted time difference between a car driving both trajectories, with
a negative value corresponding the two-step algorithm being ahead. (b) Curvature
profile κ(s) plotted vs. distance along the path s. (c) Velocity profile Ux(s) plotted
vs. distance along the path s for the two-step method and nonlinear gradient descent
method.
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3.5 Experimental Setup

While the two-step algorithm works well in simulation, the most critical validation

step is to have an autonomous race car drive the generated trajectory. This was

accomplished by collecting experimental data on the Audi TTS.

The experimental controller setup is shown in Fig. 3.12 and is very similar to that

presented in Chapter 2. The main two differences in the controller are highlighted in

red. Instead of using the piecewise linear clothoid curvature profile from Theodosis

and Gerdes [81], the trajectory from the presented algorithm is applied. This trajec-

tory is represented mathematically as an array of discrete points. This point cloud is

relatively dense, with each point spaced about 25 cm apart over the entire path.

Since the trajectory is now a set of discrete points rather than a piecewise linear

κ(s) function, the localization algorithm cannot rely on Newton-Raphson gradient

descent. Instead, a simple search algorithm iterates through the point cloud and

finds the closest two points to the vehicle’s center of gravity. Bisection is applied to

the find the closest distance between the vehicle and the line connecting these two

points on the point cloud. To save the expense of searching the entire point cloud on

every iteration, the localization starts the search algorithm where the last iteration

terminated and searches only a small region of the entire map.
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Figure 3.12: Diagram of controller setup.

3.6 Experimental Results

The resulting experimental lap time for the iterative two-step algorithm was 138.6

seconds, about 0.6 seconds faster than the experimental lap time for the gradient

descent algorithm (139.2 seconds). For safety reasons, the trajectories were generated

using a conservative peak road friction value of µ = 0.90, resulting in peak lateral

and longitudinal accelerations of 0.9g. In reality, the true friction value of the road

varies slightly, but is closer to µ = 0.95 on average. As a result, both of these lap

times are slightly slower than the fastest lap time recorded by a professional race car

driver (137.7 seconds) and the predicted lap times from Section 3.4. A summary of

all lap times is provided in Table 5.1.

Plots of the experimental data are shown in Fig. 3.13, with a negative time differ-

ence again corresponding to the two-step algorithm being ahead. The experimental

data generally matches the simulated results in Fig. 3.11. The simulation predicted

the trajectory from the iterative two-step algorithm would be 0.3 seconds shorter
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Simulation Experiment
Fast Generation 136.4 138.6

Gradient Descent 136.7 139.2
Human Driver N/A 137.7

Table 3.2: Lap Times in Seconds

than that of the nonlinear algorithm, compared to the 0.6 second speed advantage

observed experimentally. The simulation also predicted a relative time advantage

for the two-step algorithm from sections a to c and from e to h , a trend seen

in the experimental data as well. Additionally, the two-step algorithm has relatively

poor performance from sections c to d when compared to the nonlinear algorithm.

This experimental result confirms that the minimum curvature heuristic works well

for the majority of the track, but relatively poorly on particular “irregular” sequences

of turns such as region c . Section 3.7 will show the benefit of adding a term in the

convex optimization cost function to consider distance traveled in addition to path

curvature.

One reason for minor variations between the simulated and experimental time

difference plots is variation in speed tracking. The speed tracking error for both

racing lines is shown in Fig. 3.13(c). Interestingly, while the same speed tracking

controller was used to test both racing lines, the controller has slightly better speed

tracking performance when running the trajectory from the nonlinear optimization.

This is possibly due to the longitudinal controller gains being originally tuned on a

clothoid trajectory.
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Figure 3.13: Experimental data for an autonomous vehicle driving the trajectories
provided by the two-step fast generation and gradient descent algorithms.(a) Rela-
tive time difference between vehicle driving both trajectories, with a negative time
difference corresponding to the two-step algorithm being ahead. (b) Actual recorded
velocity of vehicle. (c) Difference between actual and desired speed. Large negative
values outside plotting range occur on straight sections of the track where the vehicle
is limited by engine power and speed tracking error is poorly defined. (d) Throttle
percentage and brake pressure, with brake pressures shown as negative.
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3.7 Incorporating the Effect of Distance Traveled

The performance of the presented trajectory generation approach can be further im-

proved by modifying the cost function (3.14) of the path update step. Instead of

only minimizing curvature, a new convex cost function is proposed3 that minimizes a

weighted sum of the distance traveled and the path curvature. While this also does

not directly minimize lap time, it does account for the incremental benefit provided by

a shorter path, which may be helpful in improving the performance of the algorithm

on particular turns such as region c .

A convex term for the total distance traveled by the race vehicle is derived as

follows. The instantaneous rate of progress of the vehicle along a fixed path is given

by:

ṡ =
Ux

1− ke
cos(∆Ψ + β) (3.17)

and the time to travel between two fixed points on the nominal path is given by:

tk =
sk − sk−1

ṡk
(3.18)

Since the path discretization sk− sk−1 and speed profile Ux are fixed during the path

update step , minimizing path length is equivalent to minimizing the sum over all tk:

∑
k

sk − sk−1

Uxk

(
1− κkek

cos(∆Ψk + βk)

)
(3.19)

Taking the Taylor series expansion in the optimization variables (e,∆Ψ, β) for the

path update step yields a convex approximation for minimizing the distance traveled

by the vehicle: ∑
k

∆sk
Uxk

(
−κkek + (∆Ψk + βk)

2
)

(3.20)

The first term −κkek in (3.20) rewards moving to the inside of curved sections, and

the second term (∆Ψk+βk)
2 represents the additional distance traveled when driving

at an angle to the original path.

3Special thanks to John K. Subosits for help deriving this modified cost function.
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Figure 3.14: Minimum distance path around Thunder Hill

3.7.1 Balancing Minimum Distance and Curvature

Minimizing (3.20) subject to the vehicle dynamics and road boundary constraints

from (3.14) results in the path shown in Fig. 3.14. As expected, the resulting path

simply clings to the inner edge of the track wherever possible. A simple glance shows

that entirely minimizing distance traveled generates an extremely poor racing line. In

fact, the resulting simulated lap times are over ten seconds slower than the minimum

distance solution!

There is clearly a need for a balance between minimizing distance and minimizing

curvature, weighted more significantly towards the latter. There have been several

prior attempts in the literature to perform this balance. Braghin [3] proposed finding
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Figure 3.15: A family of racing lines generated from linear combinations of minimum
distance and minimum curvature racing lines, with weighting parameter η.

the minimum distance and minimum curvature paths through a purely geometric

optimization, with no vehicle dynamics considered. Weighted combinations of these

basis paths were then generated and tested using a simple point mass model. For

example, let eD(s) denote the lateral offsets from the track centerline corresponding

to the minimum distance path. Then let eκ(s) be the corresponding offsets for the

minimum curvature path. A proposed racing line is then defined by:

e = (1− η)eκ + ηeD (3.21)

Where 0 ≤ η ≤ 1 is the weighting parameter. Figure 3.15 demonstrates this

concept for the Thunderhill Racing Circuit. Racing lines generated with η close to

0 are very similar to the minimum curvature path, while candidate solutions with η

close to 1 approximate the minimum distance path.

The issue with this approach is that a single weighting parameter η does not ade-

quately balance the tradeoff between minimizing distance and minimizing curvature.
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On most sections of a given track, the primary objective is simply to minimize cur-

vature. However, there are typically a small minority of turns (for example, region

c in our case) where minimizing distance traveled is relatively important. A better

method is therefore to have the weighting parameter η be a function η(s) that varies

along the track. This is exactly the approach suggested by Cardamone et al. [7], who

analyzed Braghin’s approach over a number of tracks and found that if only a single

weighting factor was chosen, the optimal solution was frequently just η = 0 (i.e. the

minimum curvature path).

Cardamone et al. suggested determining η(s) by applying a genetic algorithm to

choose a different weighting parameter between every intersection of the minimum

curvature and minimum distance paths. Similar approaches were also presented by

Gadola et al. [23] and Mühlmeier and Müller [58]. While this provided improved

lap times over the minimum curvature solution, genetic algorithms are typically slow

computationally, as every candidate solution η(s) must be simulated. The computa-

tional benefit over nonlinear programming that directly minimizes lap time is therefore

debatable.

3.7.2 Using Human Driver Data to Obtain Optimization

Weights

Using professional driver data as a baseline offers a simpler method to determine

parts of the track where minimizing distance is important. Fig. 3.16(a) shows ten

laps of human driver data on the Thunderhill racetrack overlaid onto Figure 3.15.

Fig. 3.16(b) shows the resulting weighting function η(s) obtained by averaging the

human data and finding the relative distance from the human centerline deviation

eH(s) to the minimum curvature and minimum distance solutions:

η(s) =
|eH(s)− eκ(s)|
|eH(s)− eD(s)|

(3.22)
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Figure 3.16: (a) Ten laps of professional human driver data overlaid over the minimum
distance and minimum curvature solutions eD(s) and eκ(s). The average of the human
driver data is shown in green, and the individual datasets are shown in light grey.
(b) Values of η(s) from human data, with low pass filter applied to eliminate rapid
changes. Values are also limited to range from 0 to 1.

This definition is only relevant if the human racing line is bounded by the minimum

distance and minimum curvature racing lines. Since this is frequently not the case in

Fig. 3.16(a), η(s) is set to 1 if eH(s) < eD(s) < eκ(s) or 0 if eH(s) < eκ(s) < eD(s).

Furthermore, a low-pass filter is also applied to Fig. 3.16(a) to eliminate rapid changes

in η(s).
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Fig. 3.16 shows that there are several regions of the track where the human drives

closer to to the minimum distance racing line (i.e. locations where η is significantly

greater than 0). Most of these are trivial, occurring in locations where the minimum

distance and minimum curvature racing lines are relatively close. However, in region

c , the professional human driver is on average about halfway between the minimum

distance and minimum curvature solutions, an interesting result. Furthermore, on

straight sections of the track such as a and g , the human driver appears to be

seeking a minimum distance path as well.

3.7.3 Combined Cost Function and Simulated Results

Using the information from Fig. 3.16, the combined cost function for the path update

step in (3.14) is given by:

minimize
δ, e,Ψ,∆Ψ, β

∑
k

(
Ψk −Ψk−1

sk − sk−1

)2

+ λ
∑
k

ηk∆sk
Uxk

(
−κkek + (∆Ψk + βk)

2
)

(3.23)

The first summation in (3.23) is the same curvature minimization term, while

the second summation represents the distance minimization term. The weights ηk

from Fig. 3.16(a) are used to determine how much of the minimum distance term

to use at each point along the track. This approach is fundamentally different from

the methods in [3] and [7]. The prior approaches search a space of solutions to find

the best linear combination of the pre-calculated minimum distance and minimum

curvature racing lines, with weights given by a constant η or function η(s). The

presented approach performs a single optimization for each path update step, with

the optimization weights given by ηk. As a result, there is an additional tunable

parameter λ in (3.23) with units of seconds, that ensures units of both summation

terms are the same.

There are several benefits of the proposed approach. First, since we obtained

η(s) from human driver data, simply applying a linear combination with weights

η(s) would trivially give back the averaged professional driver’s racing line. More
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importantly, however, using pure linear combinations of two precomputed solutions

provides excessive restrictions on the resulting racing lines. This is because the result-

ing solutions can never explore regions that are not contained within the minimum

curvature and minimum distance solutions. Furthermore, there is no guarantee the

resulting path will be experimentally drivable. Even if the minimum curvature and

distance paths come from an optimization with vehicle dynamics constraints, if the

weighting function η(s) is not sufficiently smooth, there will be discontinuities in

the resulting curvature profile. By using η(s) to instead guide the optimization, the

resulting curvature profile will always be smooth.

Fig. 3.17 shows simulation results when the fast generation method is run for

five iterations. The simulation compares the racing lines generated by the curva-

ture minimization cost function and the combined curvature-distance cost functions.

Unsurprisingly, the primary difference occurs at region c . With the combined cost

function, the resulting racing line takes a slightly higher curvature turn on the initial

left turn. While this initially loses time, the resulting solution can minimize distance

traveled on the next turn, resulting in an overall time advantage of 0.2 seconds.

The minimum distance, minimum curvature, and combined racing lines at region

c are shown in Fig. 3.18. The combined solution follows the minimum curvature

solution more closely for the initial left-hand turn, but the minimum distance solution

more closely for the second right-hand turn. Additionally, the racing line from the

dual cost function is not always inside the minimum distance and minimum curvature

racing lines. This demonstrates the advantage of a weighted cost function as opposed

to a linear combination of pre-calculated solutions.
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Figure 3.17: Simulation results comparing minimum curvature cost function with
weighted distance/curvature cost function (λ = 0.05 sec). (a) Time difference between
two solutions as a function of distance along centerline, with a negative time difference
corresponding to the weighted optimization being ahead. (b) Path curvature. (c)
Simulated velocities.
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Combined

Min Distance

Min Curvature

Pro Human (Avg)

Figure 3.18: Racing lines for minimum curvature, minimum distance, and combined
cost functions around region c. Notice that with the combined cost function, the
resulting racing line is not bounded by the minimum curvature and minimum distance
solutions. Averaged pro human racing line is shown as well.

3.8 Discussion and Future Work

The primary benefit of the proposed algorithm is not improved lap time performance

over the nonlinear algorithm but rather a radical improvement in computational sim-

plicity and speed. Each two-step iteration of the full course takes only 26 seconds on

an Intel i7 processor, whereas the nonlinear algorithm from [81] typically runs over

the course of several hours on the same machine. The most significant computational

expense for the proposed algorithm is solving the convex curvature minimization

problem for all 1843 discrete time steps T over the 4.5 km racing circuit.

Table 3.3: Iteration Computation Time

Lookahead (m) T Solve Time (s)
450 184 5
900 369 6
1800 737 12
4500 1843 26
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This computational efficiency will enable future work to incorporate the trajectory

modification algorithm as an online “preview” path planner, which would provide

the desired vehicle trajectory for an upcoming portion of the race track. Since the

computation time of the algorithm is dependent on the preview distance, the high-

level planner would not need to run at the same sample time as the vehicle controller.

Instead, the planner would operate on a separate CPU and provide a velocity profile

and racing line for only the next 1-2 kilometers of the race track every few seconds,

or plan a path for the next several hundred meters within a second.

Table 3.3 shows problem solve times for a varying range of lookahead lengths with

the same discretization ∆s, and shows that the runtime scales roughly linearly with

the lookahead distance. The above solve times are listed using the CVX convex opti-

mization solver, which is designed for ease of use and is not optimized for embedded

computing. Preliminary work has been successful in implementing the iterative two-

step algorithm into C code using the CVXGEN software tool [54]. When written in

optimized C code, the algorithm can solve the curvature minimization problem (3.14)

in less than 0.005 seconds for a lookahead distance of 650 meters.

The possibility of real-time trajectory planning for race vehicles creates several

fascinating areas of future research. An automobile’s surroundings are subject to both

rapid and gradual changes over time, and adapting to unpredictable events requires an

approximate real-time trajectory planning algorithm. On a short time scale, the real-

time trajectory planner could find a fast but stable recovery trajectory in the event

of the race vehicle entering an understeer or oversteer situation. On an intermediate

time scale, the fast executing two-step algorithm could continuously plan a racing line

in the presence of other moving race vehicles by constraining the permissible driving

areas to be collision-free convex “tubes” [17]. Finally, the algorithm could update

the trajectory given estimates of the friction coefficient and other vehicle parameters

learned gradually over time.
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3.9 Conclusion

This chapter demonstrates an iterative algorithm for quickly generating vehicle racing

trajectories, where each iteration is comprised of a sequential velocity update and path

update step. Given an initial path through the race track, the velocity update step

performs forward-backward integration to determine the minimum-time speed inputs.

Holding this speed profile constant, the path geometry is updated by solving a convex

optimization problem to minimize path curvature.

The primary benefit of the presented trajectory planner is computational speed.

Experimental data on an autonomous race vehicle over a three mile race course con-

firms that the trajectory generated by the algorithm provide comparable lap times to

that from a nonlinear gradient descent algorithm. However, the required computa-

tion time is at least two orders of magnitude faster. One drawback of the presented

approach is that lap time is not explicitly minimized, resulting in sub-optimal per-

formance on complex sequences of turns. A second analysis was therefore conducted

in simulation to show the benefit of adding a distance minimizing term to the con-

vex path update step. An exciting opportunity for future research is incorporating

the trajectory modification algorithm into an online path planner to provide racing

trajectories in real time.

Note: This chapter reuses material previously published by the author in [42].



Chapter 4

Iterative Learning Control

In Chapters 2 and 3, a steering controller and trajectory planning algorithm were

presented for an autonomous race car. One of the goals from the introduction was to

compare the resulting autonomous driving performance with that of a human driver.

While there are several metrics that could be used as a comparison, by far the easiest

to measure and most relevant for racing is lap time. Figure 4.1 shows lap times

recorded on the Audi TTS, both autonomously and from two human drivers. One of

the human drivers is a professional race driver, while the other is an expert amateur

driver.

While the lap times from the autonomous driver are comparable to the amateur

expert, they are about a second behind on average from the professional human driver.

There are several ways to analyze why this difference arises, but a simple insight that

makes the case for learning algorithms comes from viewing the trajectory tracking

performance and friction utilization of the controller, shown in Fig. 4.2.

Figure 4.1: Experimentally recorded lap times (in seconds).

88
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Figure 4.2: Controller tracking performance and tire slip norm on a test run at the
limits of handling (µ = 0.95).(a) Desired vs actual speed of the vehicle. (b) Lateral
tracking error and (c) tire slip norm as a function of distance along the path.
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One of the issues shown in Fig. 4.2 is the relatively poor controller tracking on a

few sections of the race track. While this is probably less significant for the lateral

speed tracking (sections 2 , 4 - 7 ), failing to drive as fast as the trajectory plans

(sections 1 , 2 , 7 ) results directly in a loss of lap time. The speed and lateral

path tracking will be improved in this chapter with the addition of iterative learning

control (ILC) algorithms.

The second issue shown in Fig. 4.2 is the inconsistent usage of the tire friction

capacity, as judged by the tire slip norm metric. The tire slip norm, formalized in

[48], is given by ζ:

ζ =

√(
α

αp

)2

+

(
σ

σp

)2

(4.1)

Where σ and α are the longitudinal and lateral tire slip for a given tire, and σp

and αp are empirically determined peak slip values resulting in maximum longitudinal

and lateral tire force generation. As a result, ζ < 1 corresponds to the tires having

excess force generation capacity, while ζ > 1 corresponds to tire saturation. There is

technically a ζ value for each tire, but the maximum ζ over all four tires is typically

used for conservatism.

Fig. 4.2 shows inconsistent usage of tire friction across many turns. On some

turns (sections 2 and 8 ), the vehicle significantly exceeds the limits of handling,

and the car’s stability control systems kick in to regain control, slowing the car down

in the process. On other turns (sections 3 , 5 , and 7 ), the vehicle uses only

a portion of the available tire force, indicating the vehicle can actually drive with

higher acceleration on the next lap. Learning from prior runs to find the optimal

acceleration (or µ parameter) for each part of the track will be accomplished in the

next chapter via a search algorithm.

Iterative Learning Control

Iterative learning control (ILC) is based on the notion that the performance of a

system that executes the same task multiple times can be improved by learning from

previous executions (trials, iterations, or in our case, laps of racing) [6]. On every
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iteration, a control signal is applied to a system in order to follow an ideal, unchanging

“reference trajectory”. The tracking error for that iteration is recorded, and a learning

algorithm is applied to improve the control signal and achieve more accurate system

performance on the next iteration. There are a variety of learning algorithms used,

but most attempt to correct the tracking error by using a model of the system to

determine the augmentation to apply to the prior control signal. This process is

repeated until the reference tracking performance becomes satisfactory. As noted by

Bristow et al., this approach is analogous to how a basketball player shooting a free

throw from a fixed position can improve her ability to score by practicing the shot

repeatedly, making adjustments to her shooting motion based on observations of the

ball’s trajectory [6].

Inspired by a series of papers published in 1984 [1][12][43], iterative learning con-

trol has become increasingly widespread. Because iterative learning control works

best when learning to follow the same reference trajectory under the same ambi-

ent conditions, the most common applications of ILC are in the field of automated

manufacturing. Notable examples include CNC machining [46], industrial robotics

[20][34], piezolectric stage positioning [36], motor control [56], and microdeposition

[35]. However, the rise of automated systems outside factory environments has led to

important applications of ILC for ground and air robotics. In 2006, Chen and Moore

[10] proposed a simple iterative learning scheme in 2006 to improve path-following of

a ground vehicle with omni-directional wheels. In 2011, Purwin and Andrea synthe-

sized an iterative controller using least-squares methods to aggressively maneuver a

quadrotor unmanned aerial vehicle (UAV) from one state to another [65]. As a novel

step, the authors then generalized the experience learned from the iterative learning

control in order to tune the parameters of the UAV model. In 2013, Sun et al. [76]

proposed an iterative learning controller for speed regulation of high-speed trains.

Given the high safety requirements of fast trains, the algorithm heavily penalized

train overspeeding and enabled the trains to learn how to maintain a safe following

distance.

Due to the nature of automotive racing, iterative learning control techniques are

a promising method to gradually eliminate the trajectory tracking errors described in
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Fig. 4.2. For this application of ILC, the repetitive trials are laps of racing, and the

reference trajectory is the optimal speed profile and curvature profile from Chapter 3.

This chapter will present adaptations of two established ILC methods (proportional-

derivative and quadratically optimal) for use in the Audi TTS racing system. Section

4.1 presents both coupled and decoupled models of the vehicle lateral and longi-

tudinal dynamics. These models are converted from state-space representations to

lifted domain representations required for iterative learning control in §4.2, and the

proportional-derivative and quadratically optimal ILC algorithms are presented in

§4.3 and §4.4. Section 4.5 presents simulated results of the ILC algorithms for a sam-

ple vehicle trajectory, and finally, experimental results showing a gradual reduction

of trajectory-following errors is presented in §4.6.

4.1 Dynamic System Model

The ILC algorithms we consider require the closed-loop system dynamics to be (a)

stable to any disturbance input, and (b) expressible as an affine discrete dynamical

system. In our case, we have two subsystems: the steering controller and the longi-

tudinal speed control. Stability of the steering controller under lanekeeping feedback

was shown in the linear case by [68] and in the saturated case by [77], and was also

discussed in Chapter 2. Similar analyses can be considered to show the stability of

the simple proportional speed-following controller.

The more difficult task is expressing the dynamics of the two subsystems using an

affine model, given the tendency for the vehicle tires to saturate at the limits. Chapter

2 presented the lateral vehicle dynamics obtained by neglecting longitudinal forces.

However, since we are modifying both the longitudinal force Fx and steer input δ on

each iteration, it may be important to account for the coupled lateral/longitudinal

dynamics of the vehicle. Nonlinear, coupled equations of motion are provided in

(4.2)-(4.6):
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de

dt
=
(
v + Udes

x (s)
)

(β + ∆Ψ) (4.2)

dv

dt
=
(
v + Udes

x (s)
)
βr +

Fx
m
− Fyf(αf , Fx)δ

m
(4.3)

dβ

dt
=
Fyf(αf , Fx) + Fyr(αr, Fx)

m (v + Udes
x (s))− r

(4.4)

dr

dt
=
aFyf(αf , Fx)− bFyr(αr, Fx)

Iz
(4.5)

d∆Ψ

dt
= r (4.6)

The system dynamics presented in (4.2) have five states, the original four from Chap-

ter 2 and a new state v, the speed tracking error of the system defined by:

v = Ux − Udes
x (4.7)

The two inputs to the nonlinear system are the steering angle δ and longitudinal

force Fx. In reality, the true longitudinal input is a brake pressure or throttle input,

but longitudinal force control is assumed for simplicity. The potential for coupling

between the subsystems is apparent from (4.2), not only directly from the state equa-

tions but also due to the complex nature of tire force generation at the handling

limits. As shown in Fig. 4.3, as longitudinal force Fx is distributed across the tires,

the available lateral force decreases. At the limits of handling, this derating of the

lateral force may become significant. As a result, we now model Fy as a function of

both lateral tire slip α and the applied longitudinal force Fx, using a modified form

of the Fiala equation presented in Chapter 2 [32]. Recall that the front and rear tire

slip are themselves functions of the vehicle state and are given by:

αf = β +
ar

Ux
− δ (4.8a)

αr = β − br

Ux
(4.8b)
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Figure 4.3: Lateral tire force curve as a function of longitudinal force Fx and lateral
tire slip α.

The next step is to break up the control inputs into the closed-loop feedback term

and the learned component that is modified on every lap by the ILC algorithm:

Fx = FFB
x + FL

x (4.9)

= −Kxv + FL
x (4.10)

δ = δFB + δL (4.11)

δ = −kp(e+ xLA∆Ψ) + δL (4.12)

where Kx is the proportional speed tracking gain and kp and xLA are the lookahead

gains discussed in Chapter 2. Note that (4.9) is similar to a feedback-feedforward

control formulation. In fact, iterative learning control achieves near-perfect reference

tracking by refining the feedforward control input to account for unmodeled dynamics

and repeating disturbances that affect the closed-loop controller performance.



CHAPTER 4. ITERATIVE LEARNING CONTROL 95

The closed loop system dynamics are now given by:

de

dt
=
(
v + Udes

x (s)
)

(β + ∆Ψ) (4.13)

dv

dt
=
(
v + Udes

x (s)
)
βr +

−Kxv + FL
x

m
− Fyf(αF , Fx)− kp(e+ xLA∆Ψ) + δL

m
(4.14)

dβ

dt
=
Fyf(αf , Fx) + Fyr(αf , Fx)

m (v + Udes
x (s))− r

(4.15)

dr

dt
=
aFyf(αf , Fx)− bFyr(αr, Fx)

Iz
(4.16)

d∆Ψ

dt
= r (4.17)

The nonlinear closed-loop dynamics must be converted into an affine, discrete-time

dynamical system to apply conventional iterative learning control algorithms. In our

case, we have two system outputs (y = [e v]T ) that are measured and two input

signals to learn (u = [δL FL
x ]T ). Since we run the iterative learning control algorithm

after seeing a trial of data, we can approximate the dynamics in (4.13) by linearizing

about the observed states and inputs xo, uo from the first lap. The affine model is

therefore given by: 

ė

β̇

ṙ

∆̇Ψ

v̇


=
[
A(t)

]


e

β

r

∆Ψ

v


+
[
B(t)

] [ δL
FL
x

]
+ d(t) (4.18)

[
ė

v̇

]
=

[
1 0 0 0 0

0 0 0 0 1

]
x (4.19)

The time-varying state space matrices where A(t) and B(t) are given by Jacobian

linearizations of the closed loop nonlinear dynamics f(x) (4.13) about the observed
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states and inputs xo(t), uo(t) from the last trial:

[
A(t)

]
=
∂f

∂x

∣∣∣
xo(t)

(4.20)[
B(t)

]
=
∂f

∂u

∣∣∣
uo(t)

(4.21)

While this multiple-input, multiple-output (MIMO) model captures the coupled be-

havior of the longitudinal and lateral inputs, it is tedious to compute, either nu-

merically or analytically. For the case where the longitudinal and lateral inputs are

decoupled, we obtain the same Chapter 2 linear state equations for the lateral dy-

namics:

β̇ =
Fyf + Fyr

mUx
− r ṙ =

aFyf − bFyr

Iz
(4.22a)

ė = Ux(β + ∆Ψ) ∆Ψ̇ = r − Uxκ (4.22b)

and the following first order equation for the longitudinal dynamics, assuming a simple

point mass model with proportional speed tracking feedback:

v̇ =
−Kxv + FL

x

m
(4.23)

The resulting state matrices A(t) and B(t) for (4.18) are then simply block diagonal

matrices consisting of the linearized lateral dynamics from Chapter 3 and the first

order longitudinal dynamics:
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A(t) =



0 Ux(t) 0 Ux(t) 0

0 0 1 0 0
−akpC̃f(t)

Iz

−akpxLAC̃f(t)

Iz

−a2C̃f(t)−b2C̃r(t)
Ux(t)Iz

bC̃r(t)−aC̃f(t)
Iz

0
−kpC̃f(t)

mUx(t)

−kpxLAC̃f(t)

mUx(t)
bC̃r(t)−aC̃f(t)
mUx(t)2

− 1 −C̃f(t)−C̃r(t)
mUx(t)

0

0 0 0 0 −Kx


(4.24)

B(t) =



0 0

0 0
aC̃f(t)
Iz

0
C̃f(t)
mUx(t)

0

0 1


(4.25)

The affine term d(t) is given by:

d(t) =



0

−κ(t)Ux(t)
aC̃f(t)α̃f(t)−bC̃r(t)α̃r(t)+aF̃yf(t)−bF̃yr(t)

Iz
C̃f(t)α̃f(t)+C̃r(t)α̃r(t)+F̃yf(t)+F̃yr(t)

mUx(t)

0

0


(4.26)

While (4.24) is written as a MIMO system for compactness, assuming decoupled

lateral and longitudinal dynamics provides two single-input, single-output (SISO)

systems.
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4.2 Lifted Domain Representation and ILC

Problem Statement

Whether the coupled (4.20) or decoupled (4.24) dynamics are assumed, the final

modeling step is to apply standard discretization techniques to obtain dynamics in

the following form:

xk+1 = Akxk +Bkuk + dk (4.27)

yk = Cxk (4.28)

For a given lap of racing j, sensor measurements provide N observations of both the

lateral path deviation e and longitudinal speed tracking error v. These measurements

can be stacked into a 2N × 1 array:

ej =
[
e1 . . . eN v1 . . . vN

]T
(4.29)

These measurement errors are related to the learned control inputs δL and FL
x as

follows:

ej = PuLj + w (4.30)

uLj =
[
δL1 . . . δLN FL

x1 . . . FL
xN

]T
(4.31)

The system dynamics modeled in the previous section are represented by the lifted-

domain dynamics matrix P , which is 2N × 2N and given by:

P =

[
Peδ PeF

Pvδ PvF

]
(4.32)

Where each submatrix in (4.32) is N ×N and represents the lifted-domain dynamics

from a given input to a given output. Individual terms of the sub-matrices are given

by:
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plk =


0 if l < k

CyBu(k) if l = k

CyA(l)A(l − 1) · · ·A(k)Bu(k) if l > k

(4.33)

Where Cy is the row of C in (4.27) corresponding to the desired output and Bu

the column of B in (4.27) corresponding to the desired input. Note that for the

case of uncoupled lateral and longitudinal dynamics, the off-diagonal sub-matrices of

P are [0] since we have two SISO systems. The term w in (4.30) is the unknown

disturbance. Iterative learning control relies on the assumption that this disturbance

is the underlying cause of the observed errors ej, and that the disturbance, while

unknown, is constant from lap to lap.

Given the error signal ej for a given lap j, the iterative learning problem is to

find the inputs uj+1 that will cancel out the tracking error on the next lap. The

learned inputs are then applied, the observed error ej+1 is recorded, and the process

is repeated until the tracking error falls to a desired level. There is a wide body of

literature on methods to determine uj+1 given P and ej, but this dissertation will

investigate the most common approach. We compute the ILC input for the next lap

with the following formulation:

uLj+1 = Q(uLj − Lej) (4.34)

where Q is the 2N × 2N filter matrix, and L is the 2N × 2N learning matrix. In

the following two sections, the matrices Q and L will be obtained by designing a

proportional-derivative (PD) iterative learning controller as well as a quadratically

optimal (Q-ILC) learning controller.
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4.3 Proportional-Derivative Controller

The proportional-derivative ILC computes the steering δL and force FL correction

for the current lap j based on the error and error derivative at the same time index

k from the previous lap:

δLj (k) = δLj−1(k)− kpδej−1(k)− kdδ(ej−1(k)− ej−1(k − 1)) (4.35)

FL
j (k) = FL

j−1(k)− kpFvj−1(k)− kdF (vj−1(k)− vj−1(k − 1)) (4.36)

where kpδ and kpF are proportional gains and kdδ and kdF are derivative gains. In the

lifted domain representation from (4.34), the resulting learning matrix L is given by

L =



−(kpδ + kdδ) 0 0 . . . 0

kdδ
. . .

...
. . .

...

0 kdδ −(kpδ + kdδ) 0 . . . 0

0 . . . 0 −(kpF + kdF ) 0
...

. . .
... kdF

. . .

0 . . . 0 0 kdF −(kpF + kdF )


(4.37)

The PD equation (4.35) determines δL only using lateral path deviation e and

FL
x using only the speed tracking error v. Since we have formulated the problem as

a MIMO system, it is possible to generalize and have both inputs depend on both

outputs, but this is not considered for simplicity of gain selection. The filter matrix

Q is obtained by taking any filter transfer function and converting into the lifted

domain via (4.33). An important design consideration in choosing the two kp and

kd gains is avoiding a poor lap-to-lap “transient” response, where the path tracking

error increases rapidly over the first several laps before eventually decreasing to a

converged error response e∞. This is a commonly encountered design requirement

for ILC systems, and can be solved by ensuring the following monotonic convergence

condition is met [6]:

γ , σ̄(PQ(I − LP )P−1) < 1 (4.38)
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where σ̄ is the maximum singular value. In this case, the value of γ provides an upper

bound on the change in the tracking error norm from lap to lap, i.e.

||e∞ − ej+1||2 ≤ γ||e∞ − ej||2 (4.39)

Fig. 4.4 shows values of γ for both an unfiltered PD controller (Q = I), and for a

PD controller with a 2 Hz, first order low pass filter. The γ values are plotted as a

contour map against the controller gains kpδ and kdδ. Addition of the low-pass filter

assists with monotonic stability by removing oscillations in the control input generated

when trying to remove small reference tracking errors after several iterations. Since

the filtering occurs when generating a control signal for the next lap, the filter Q can

be zero-phase. The plot shown in Fig. 4.4 is for the steering ILC design only, but

the same analysis is possible for the longitudinal ILC design as well. The stability

analysis in Fig. 4.4 assumes the P matrix is constant for all iterations and is generated

assuming decoupled vehicle dynamics for a straight-line trajectory at a constant speed

of 20 m/s. Because the P matrix in general can change from iteration to iteration

and will also change depending on the trajectory, making a general assertion or proof

about stability of the iterative learning controller is difficult.
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Figure 4.4: Values of convergence bound γ vs. kpδ and kdδ for PD iterative learning
controller with (top) no filtering and (bottom) with a 2 Hz low-pass filter. Lower
values of γ correspond to faster convergence. Shaded regions correspond to gains
that result in system monotonic stability.
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4.4 Quadratically Optimal Controller

An alternate approach to determining the learned steering and longitudinal force

input is to minimize a quadratic cost function for the next lap:

Jj+1 = eTj+1Tej+1 + uTj+1RuTj+1 + ∆T
j+1S∆j+1 (4.40)

where ∆j+1 = uLj+1 − uLj and the 2N × 2N matrices T , R, and S are weighting

matrices, each given by a scalar multiplied by the identity matrix for simplicity.

This formulation allows the control designer to weight the competing objectives of

minimizing the tracking errors e and v, control effort |δL| and |FL
x |, and change in the

control signal from lap to lap. While constraints can be added to the optimization

problem, the unconstrained problem in (4.40) can be solved analytically [5] to obtain

desired controller and filter matrices:

Q = (P TTP +R + S)−1(P TTP + S) (4.41a)

L = (P TTP + S)−1P TTP (T 1/2P )−1T 1/2 (4.41b)

An advantage of the quadratically optimal control design over the simple PD

controller is that the controller matrices Q and L take the linearized, time-varying

dynamics P into account. This allows the iterative learning algorithm to take into

account changes in the steering dynamics due to changes in vehicle velocity. Further-

more, if the fully coupled dynamics (4.20) are used, the iterative learning algorithm

also accounts for the second-order effect of steering on the longitudinal dynamics and

longitudinal force application on the lateral dynamics. However, a disadvantage is

that computing δL in (4.34) requires matrix multiplications with the typically dense

matrices Q and L for every lap, which can be computationally expensive for fast

sampling rates.
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4.5 Simulated Results

To test the feasibility of the PD and Q-ILC learning algorithms, the vehicle track-

ing performance over multiple laps is simulated using the path curvature and speed

profiles shown in Fig. 4.5. To test the performance of the controller at varying ac-

celerations, four speed profiles are tested. Each profile is generated with a different

level of peak combined longitudinal/lateral acceleration, ranging from 5 m/s2 (below

the limits) up to 9.5 m/s2 (close to exceeding the limits). For accurate results, simu-

lations were conducted using numerical integration with fully nonlinear equations of

motion (4.2)-(4.6) and coupled lateral/longitudinal dynamics [32].
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Figure 4.5: (a) Curvature profile used for ILC simulation. (b) Velocity profiles gen-
erated for four different levels of longitudinal/lateral acceleration.



CHAPTER 4. ITERATIVE LEARNING CONTROL 105

Simulated results for the root-mean-square (RMS) lateral path deviation is shown

in Fig. 4.6. The results show the change in RMS error as the number of ILC it-

erations increase. Three different ILC controllers are tested. The first controller is

the simple PD controller with low-pass filter (4.35), and the second controller is the

quadratically optimal ILC algorithm (4.41) assuming fully coupled dynamics (4.20)

in the plant matrix P (i.e. the full MIMO system). The third controller is also the

quadratically optimal ILC algorithm, but the P matrix used in the optimization as-

sumes decoupled dynamics (4.24) and therefore solves the lateral and longitudinal

SISO problems separately.
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Figure 4.6: Simulated results for root-mean-square path tracking error at several
values of vehicle acceleration, with T = R = I and S = 100I. Results are plotted on
a log scale.
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Fig. 4.6 shows that both quadratically optimal ILC algorithms exponentially re-

duce the lateral path tracking error as the number of learning iterations is increased.

Overall, the RMS lateral tracking performance is better at lower vehicle accelerations.

This is unsurprising for two reasons. In Chapter 2, we discovered that lateral path

deviation in general increases for the lookahead steering feedback at higher accel-

erations. Second, our estimate of the vehicle dynamics contained in P is based on

linearization, and the vehicle dynamics at lower accelerations are mostly linear.

Fig. 4.7 shows the same results as Fig. 4.6, but for the speed tracking performance.

The overall trends are very similar. In both plots, there is very little difference between

the coupled MIMO formulation and decoupled SISO formulation at low accelerations.

This is expected, as the longitudinal and lateral dynamics are independent when the

vehicle tires are not saturated. At higher accelerations, there are small differences,

but the overall RMS errors are still quite similar. A reason for this is the nature of

the speed profiles in Fig. 4.5. The vehicle spends the majority of time either fully

braking/accelerating or turning at a constant velocity. There are only a few small

transient regions where the vehicle needs significant amounts of both lateral and

longitudinal acceleration. As a result, the need to account for the coupled dynamics

may not be important in practice, especially given the larger computation time needed

when P is dense and not block-diagonal.

A final comment is that the proportional-derivative ILC algorithm performs rel-

atively poorly. At low accelerations, the speed and path tracking performance both

improve initially, but fail to improve after the second learning iteration. At high

lateral and longitudinal accelerations, the tracking performance becomes even worse

for the steering ILC in Fig. 4.6. This is unsurprising given that the linearized plant

dynamics P are not explicitly accounted for in the selection of the PD gains. While

the point mass model for the longitudinal dynamics is a relatively simple first order

model, the lateral dynamics are fourth order and highly speed dependent. A simple

PD approach for learning control is likely insufficient at the limits of handling without

a more sophisticated set of PD gains for different vehicle speeds.
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4.6 Experimental Results

Experimental data for iterative learning control was collected over four laps at Thun-

derhill Raceway with the autonomous Audi TTS setup described in Chapters 2 and

3. The experimental controller setup is shown in Fig. 4.8, and controller parameters

are shown in Table 4.1.
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Figure 4.8: Controller setup for experimental testing of iterative learning control.
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Table 4.1: Vehicle Parameters

Parameter Symbol Value Units
Lookahead Distance xLA 15.2 m
Lanekeeping Gain kLK 0.053 rad m−1

Lanekeeping Sample Time ts 0.005 s
ILC Sample Time Ts 0.1 s
Speed Tracking Gain Kx 2500 Nsm−1

Q-ILC Matrix (Path) T and R I -
Q-ILC Matrix (Path) S 100 I -
Q-ILC Matrix (Speed) T I -
Q-ILC Matrix (Speed) R 0 -
Q-ILC Matrix (Speed) S 1e-7 I -

The key difference between the controller setup from Chapter 3 is the inclusion

of the learning inputs δL and FL
x . To save computation time, these are calculated at

a 10 Hz update rate at the end of every race lap and stored as lookup tables in the

controller. Since the the real-time control occurs at 200 Hz, at every time step the

controller interpolates the lookup table and applies the correct force and steer angle

correction. One key difference between the simulation and the experiment is that

the simulation only applied the learning correction to the closed-loop path tracking

controller. In the experiment, the steady-state feedforward control laws from Chapter

2 are also applied to keep the tracking error on the first lap below 1 m for safety.

Fig. 4.9 shows the applied iterative learning signals and resulting path tracking

error over four laps using the SISO quadratically optimal learning algorithm. The

car is driven aggressively at peak lateral/longitudinal accelerations of 8 m/s2. On the

first lap, despite the incorporation of a feedforward-feedback controller operating at a

high sampling rate, several spikes in tracking error are visible due to transient vehicle

dynamics neglected by the feedforward controller design from Chapter 2.

However, the iterative learning algorithm is able to significantly attenuate these

transient spikes after just two or three laps. One of the most important features of

the time series plot is that the learned steering corrections are applied slightly before

a lateral path deviation was observed the prior lap (i.e. the steering corrections lead
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the observed error). This is because the learning algorithm has knowledge of the

system model and knows that a steering correction must be applied a few meters

early to cancel a path deviation further down the road.
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Figure 4.9: Experimental results for path tracking error with Q-SISO learning
controller, at peak lateral accelerations of 8 m/s2.
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Figure 4.10: Experimental results for speed tracking error with Q-SISO learning
controller, at peak lateral accelerations of 8.5 m/s2.

Fig. 4.10 shows the iterative learning signals for the longitudinal speed control

at a slightly higher acceleration of 8.5 m/s2. Again, in just two to three iterations,

significant lags in the speed tracking are attenuated from s = 800 − 900 meters and

s = 1200 − 1300 meters. Additionally, the controller also acts to slow the car down

when v > 0 and the vehicle exceeds the speed profile. This is also desirable from

a racing perspective as it it prevents the vehicle from exceeding the friction limit.

Oscillations in speed tracking performance are visible in Fig. 4.9(a) from 900 - 1100

meters and 1300 - 1400 meters. These are generally undesirable, and further tuning

of the filter matrix Q is possible to remove rapid changes in the learned force input.
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Notice that Fig. 4.10 has several regions where the speed error v << 0. These

are straight regions of the track where is no true planned speed because the desired

longitudinal action is to fully apply the throttle and go as fast as physically possible.

For convenience, the ILC is programmed to saturate the longitudinal learning signal

to 8000 Newtons, although a more elegant solution is to switch the ILC controller off

on straight portions of the track.

In Fig. 4.11, root-mean-square tracking results are shown for a range of peak ve-

hicle accelerations. The results show that at lower vehicle accelerations, the initial

speed and lateral tracking errors (Iteration 0) are smaller, as the built-in feedback-

feedforward controller performs better. However, as the speed profile becomes more

aggressive, the path and speed tracking degrades in the presence of highly transient

tire dynamics. Regardless of the initial error, application of iterative learning control

reduces the trajectory tracking errors significantly over just 2 or 3 laps. At an acceler-

ation of 8.5 m/s2, for example, the RMS lateral tracking error is around 3 cm, on the

order of the expected RMS error from the GPS position sensor! On some tests, the

RMS tracking error occasionally increases slightly from Lap 2 to Lap 3, and for the

case where vehicle acceleration is 9 m/s2, the lateral tracking error is constant from

Lap 1 to Lap 2 before decreasing further in Lap 3. While not predicted in simulation,

this behavior likely occurs because the repeating disturbance from lap-to-lap is not ex-

actly constant, especially as the vehicle approaches the handling limits. More refined

tuning of the gain matrices may be able to prevent this RMS error increase, or the

ILC algorithm can be stopped after several iterations once the tracking performance

is acceptable.

Experimental results in this section were only given for the quadratically optimal

controller with decoupled (SISO) dynamics. The PD iterative learning controller was

not tested due to the relatively worse simulation performance, and the quadratically

optimal controller with coupled dynamics provided no clear benefit in simulation but

a much longer computation time.
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Figure 4.11: Experimental RMS tracking error for the Q-SISO learning controller at
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4.7 Conclusion

This chapter demonstrated the application of iterative learning control (ILC) meth-

ods to achieve accurate trajectory following for an autonomous race car over multiple

laps. Two different algorithms, proportional-derivative (PD) and quadratically opti-

mal (Q-ILC) learning control are tested in simulation and then used to experimentally

eliminate path tracking errors caused by the transient nature of the vehicle dynamics

near the limits of friction.

The primary significance of this work is improved racing performance of the au-

tonomous vehicle over time. Because the vehicle lateral and longitudinal dynamics

become difficult to accurately model at the limits of handling, following a minimum-

time speed and curvature profile is difficult to achieve over one lap with a standard

feedback control system. However, because the desired trajectory and vehicle condi-

tions are relatively unchanged on each subsequent lap, the presented ILC algorithms

ensure accurate tracking of the minimum-time trajectory after just two or three laps

of learning.

One drawback with iterative learning control is that applying a steering wheel

input to eliminate lateral errors will work only if the vehicle is near the limits of

handling, but has not fully saturated the available tire forces on the front axle and

entered a limit understeer condition. Recall from §1.1.1 that since the steering actu-

ator of a vehicle only has direct control of the front tire forces, additional turning of

the steering wheel cannot reduce the vehicle’s turning radius when the front axle is

saturated. In the next chapter, a separate learning algorithm is developed to learn the

best velocity profile that minimizes lap time by maximizing the available tire friction

on all turns of the track.

Note: This chapter reuses material previously published by the author in [41].



Chapter 5

Learning the Optimal Speed Profile

The iterative learning algorithms presented in Chapter 4 can help an autonomous

vehicle follow a desired trajectory more precisely over several laps of driving. However,

the ILC algorithms do not alter the trajectory itself, only the input signals that

attempt to track the trajectory. This will not be sufficient at the limits of handling.

Consider Fig. 4.2, reprinted below. The speed profile was generated assuming a tire-

road friction value of µ = 0.94. Since peak vehicle acceleration is given by µg, this

corresponds to maximum lateral and longitudinal acceleration values of 9.4 m/s2.

While this is a reasonable assumption overall, there are several parts on the track

where the vehicle exceeds the available friction and begins to understeer. Region

2 is one example. The tire slip norm ζ (4.1) climbs above one, and as a result,

the vehicle begins to slide off the track, resulting in the large negative tracking error

spike in Fig. 5.1(b). The vehicle’s stability algorithms (not discussed in this thesis, see

[48]) kick in and slow the vehicle down, which results in the speed tracking error seen

in Fig. 5.1(a). In this situation, iterative learning control will be unable to achieve

better speed tracking and lateral tracking performance. The tires are saturated and

the car is slowly beginning to careen off the track. Simply steering more on the next

lap will not achieve better tracking performance due to the saturation of the steering

actuator. In order to recover, the vehicle must deviate from the planned trajectory,

either by slowing down or by taking a wider radius turn.

115
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Figure 5.1: Reprint of Fig. 4.2. Controller tracking performance and tire slip norm
on a test run at the limits of handling (µ = 0.95).

As another situation, consider region 3 . While the vehicle exceeds the friction

limit on the prior section of the track, here the vehicle does not appear close to the

limits at all, with ζ ≈ 0.6. A professional human driver would feel the vehicle being

below the limits of handling and would increase her speed to decrease the time through

the turn. However, ILC is only concerned with trajectory tracking, and would not

raise the speed above the planned trajectory.

These two situations demonstrate the need for separate algorithms that learn from

data in order to modify the desired trajectory itself as opposed to just the control

signals that attempt to track it. Trajectory modification algorithms previously inves-

tigated in the literature have focused on modifying the lateral trajectory by altering
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the curvature profile as the vehicle understeers or oversteers. For example, Theo-

dosis presented an algorithm to gradually widen the radius of a turn in response to a

detected understeer [80]. The algorithm was validated experimentally, but assumed

sufficient availability of road width. Klomp and Gordon also developed a strategy

for recovering from vehicle understeer by solving for an optimal emergency braking

profile to minimize deviation from the desired path [47]. Funke et al. [22] presented

a model predictive control (MPC) approach that generally aimed to follow a planned

vehicle trajectory at the limits. However, if the vehicle was at risk of understeering or

oversteering, the MPC algorithm would deviate laterally from the planned trajectory

in order to maintain stability of the vehicle without driving off the road.

This chapter presents an algorithm that takes a different approach. Instead of

modifying the curvature profile, an A* search algorithm is presented that modifies

portions of the velocity profile to be more conservative if a stability violation is en-

countered on a prior lap. This is accomplished by generalizing the speed profile such

that each part of the track can be driven with a different assumed value of friction µ

and therefore a different maximum acceleration. Since this dissertation is concerned

with racing as well, the algorithm also modifies the velocity profile to be more ag-

gressive if the tires are not being driven at the limits. Finally, instead of acting as a

stability controller that modifies the trajectory in real time, the presented algorithm

relies on a previously implemented controller [48] for real-time stabilization and fo-

cuses on learning the time-optimal friction profile µ?(s) by searching through datasets

obtained over multiple laps.

5.1 Effect of Tire Slip Norm on Lap Time

Fig. 5.2 shows the complicated effect of driving at different levels of lateral and longi-

tudinal acceleration for region 2 in Fig. 5.1. Recall that the speed profile is generated

by assuming a global value of tire friction µ, which is directly related to the accel-

eration norm of the desired speed profile (
√
a2
x + a2

y) by a factor of g = 9.81 m/s2.

Fig. 5.2(a) confirms that higher levels of µ result in strictly faster speed profiles for

the same turn.
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However, selecting a more aggressive value of µ does not necessarily entail a faster

experimental lap time. Consider the actual speeds of the vehicle in Fig. 5.2(b) when

trying to experimentally follow three different speed profiles. For the case where

µ = 0.9, the vehicle completes the turn without fully utilizing the tire’s capability

and achieves relatively low velocities. For the extreme case where µ = 0.95, the

vehicle enters the turn at a high speed but then begins to slide as ζ = 1.6. While not

shown in the plot, the saturation is occurring primarily at the front tires, causing an

understeer that can cause the car to skid off the track. Completing the lap therefore

requires a stabilizing action from the stability controller to slow the car down and

regain control of the vehicle. As a result, when the vehicle accelerates at the end of

the turn, the actual vehicle speed at µ = 0.95 is significantly slower than the case

where µ = 0.9! A final “just right” value of µ = 0.93 was also tested experimentally

for this turn, and while the car does slide a bit at this level of driving (peak ζ = 1.3),

the needed stabilizing action is significantly smaller and the vehicle exits the turn

with the highest speed.

Unfortunately, the best value of µ is not constant throughout the track. Fig. 5.3

shows the same data plotted for region 3 of the Thunderhill Raceway. In this case,

even with an atypically high value of µ = 0.97, the slip norm of the vehicle tires is

relatively low, and the value of µ that optimizes the completion time for this turn

could be even larger.
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Figure 5.3: (a) Desired speed for varying levels of µ. (b) Actual speed for varying
levels of µ. Asterisks correspond to regions where ζ > 1. (c) Tire slip norm for
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5.2 Naive Method: Greedy Algorithm

Section 5.1 shows that to minimize the overall lap time, there is a need to generalize

the speed profile such that different portions of the track can be driven with different

values of µ. In other words, the problem is to learn the “friction profile” µ?(s)

along the path that minimizes the experimental vehicle lap time.

The simplest approach to finding µ(s) is a greedy algorithm where a set of experi-

mental data is collected for a variety of different speed profiles, each corresponding to

a different value of µ and therefore a different acceleration level. The greedy approach

is then to discretize the track into a number of small sections and pick the value of

µ for each section that corresponds to the highest observed experimental velocity.

The final desired velocity profile is then generated using the numerical integration

approach presented in §3.2. This method does not require a single value of friction

across the whole track, and generates a smooth velocity profile even when the peak

acceleration limits vary from point to point.

A plot showing the results of applying the greedy algorithm for section 2 is shown

in Fig. 5.4. The flaw in simply selecting µ based on the highest speeds is apparent at

s = 1050m. The greedy algorithm suggests the vehicle mostly drive at µ = 0.95, but

then switch to driving at µ = 0.93 as soon as the vehicle begins to slide. Switching

to a less aggressive velocity profile at this point is impossible to achieve in practice,

because the vehicle is already fully sliding and has no control until the vehicle slows

down. As a result, the greedy algorithm fails to capture the hidden cost of a large

understeer, which results in a period of time where the speed must inevitably drop.
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5.3 Framing Trajectory Learning as Search

Problem

Given the inadequacy of the greedy algorithm, a more sophisticated approach is

necessary to learn µ?(s) from experimentally observed data. This section frames the

desire to find the minimum time µ?(s) as a tree search problem. Consider discretizing

the racing path into N evenly spaced segments. For example, on the Thunderhill

Raceway with ∆s = 5m, s = [0 5 . . . sk . . . 4495 4500] for k = 0 . . . N , with N = 901.

For each path distance sk, there are Mk velocity and Mk tire slip observations from

experimental data, each corresponding to a different µ. For example, looking at

Fig. 5.2, if k = 191, sk = 950m, Mk = 3, the velocity and slip norm ζ observations

Uk(µ) and Zk(µ) are as follows:

Table 5.1: Uk(µ) and Zk(µ) for k = 191

µ Ux(m/s) ζ
0.9 28.42 0.55
0.93 28.91 0.63
0.95 29.14 0.66

Mk is not necessarily the same for all k to account for experimental trials that do

not cover the full lap. For safety and time reasons, some parts of the track will only

have experimental data collected at two different friction values, while others may

have five or six.

Nodes of the search tree are then defined as a two-element state tuple, with the first

state element being sk and the second element being the current friction coefficient

µk. Since the car must start from the beginning of the path, the first state has

s0 = 0. The Mk edges from a given node correspond to actions that the car can take

at s = sk. In this case, the “action” is the next value of µ, and the successor states

are (sk+1, µ1)...(sk+1, µMk
). A diagram of the search tree is shown in Fig. 5.5.
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Figure 5.5: Sample search tree for Thunderhill race track where there are only 3
experimentally observed full laps at µ = 0.9, 0.93, 0.95.
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Figure 5.6: Illustration of travel cost. Current state is (855, 0.9). Assuming ∆s is
15 meters, cost is time to travel from this node to one of the three possible successor
nodes, depending on the action taken.

Each edge is associated with a travel cost ct. The travel cost for a given edge is the

amount of time it takes to go from s = sk to s = sk+1 driving at the friction coefficient

µ associated with that edge. As illustrated in Fig. 5.6, the cost is estimated from the

experimentally observed data assuming linear acceleration between points. The travel

cost from node (sk, µk) to (sk+1, µk+1) can therefore be expressed mathematically with

trapezoidal integration of the straight-line velocity profile:

ct(sk, sk+1, µk, µk+1) = ln
ax(∆s) + Uk(µk)

ax
− ln

Uk(µk)

ax
(5.1)

ax =
Uk+1(µk+1)− Uk(µk)

∆s
(5.2)
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In addition to the travel cost, there is also a switching cost cs associated with

switching to a different value of µ. These are determined by the observed tire slip

norm measurements Zk(µ). The switching cost is expressed mathematically as:

cs(sk, sk+1, µk, µk+1) = 1 (µk+1 6= µk) (λ+∞× 1 (Zk(µk) > 1)) (5.3)

Where 1 is the indicator function. The switching cost function (5.3) implies that

an action will never incur a switching cost if the selected value of µ is unchanged

from the previous selection. If the value of µ does change, there is a small switching

penalty λ, chosen by trial and error to discourage the search algorithm from changing

the friction profile to gain a trivial decrease in lap time. Additionally, there is a

very large (infinite) switching penalty if the search algorithm attempts to change the

friction profile while the vehicle’s tires are saturated (ζ > 1). This reflects the physical

inability of the car to control its trajectory while sliding and is what separates the

search algorithm from the greedy algorithm. A diagram demonstrating (5.3) is shown

in Fig. 5.7.
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Figure 5.7: (a) Costs when vehicle currently is not sliding. The vehicle can switch to
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on the current profile. (b) Costs when vehicle is currently sliding. Vehicle has no
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5.4 A* Search Algorithm and Heuristic

Once the tree is mathematically defined in terms of the start state, nodes, edges, and

costs, the search problem is to find the sequence of actions from the start node to any

terminal node that minimizes the total cost. In our case, the start state, nodes, edges

and costs were defined in the previous section, and a terminal node is any node at

the end of the path (i.e. k = N). The sequence of actions in our case is the friction

profile µ = [µ1 . . . µk . . . µN ], which determines how aggressively the vehicle will drive

on every part of the track. The total cost is the sum of all individual travel costs ct

and switching costs cs, and has intuitive units of time.

Minimum-cost tree spanning algorithms (e.g. breadth-first search, Dijkstra’s al-

gorithm, etc.) are a well known subject and a thorough description can be found

in [74]. For the purpose of solving this search problem, the A* search algorithm is

used. Like breadth-first search, the A* algorithm is guaranteed to find the lowest

cost path from a start node to a goal node, but uses a priority queue data structure

to more efficiently explore the search tree. Frontier leaf nodes n being considered for

exploration are ranked according to the following modified cost:

f(n) = g(n) + h(n) (5.4)

where g(n) is the true cost to go from the start node to node n. The function h(n)

is a heuristic estimate of the cost to get from node n to any goal state (i.e. to the

end of the path). For A* to be guaranteed to find the shortest path, h(n) must be

admissible, meaning that h(n) must underestimate the true cost of getting to the end

of the path.

In our case, we have a very intuitive heuristic function h(n) for the A* implemen-

tation. In Sec. 5.2, the greedy approach was discussed. Define

Ug = [Ug(1) . . . Ug(k) . . . Ug(N)] to be the highest observed experimental speed for

each index sk. Because we know tracking this greedy profile is physically impossible

due to vehicle sliding, time estimates from this profile will always underestimate the

true cost. We therefore define h(n) as follows:
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h(n) =

∫ sN

sn

1

Ug(s)
ds (5.5)

where sn is the value of s corresponding to node n and sN is the total length of the

track. While (5.5) is an integral equation, it can be solved for the discrete array Ug

via trapezoidal numerical integration.

5.5 A* Implementation and Results

Because the A* algorithm relies on experimental observations to learn µ?(s), exper-

imental data was collected over several trials, with each trial consisting of a speed

profile generated with a constant µ value over the track. The µ values chosen for

experimental data collection were 0.85, 0.9, 0.92, 0.93, 0.94, 0.95, and 0.97. Ideally,

each speed profile would be tested experimentally for a full lap at high speed. How-

ever, due to safety and time constraints associated with collecting high speed race

data, only the speed profiles corresponding to µ = 0.92 and µ = 0.94 were observed

over the whole track. The other speed profiles were only tested on sections of the

track. Fig. 5.8 shows the experimental data coverage.

Table 5.2: Search Algorithm Information

Parameter Symbol Value Units
Track Length L 4500 m
Discretization Length ∆s 5 m
Number of Points N 901 -
Switching Cost λ 0.05 s
CPU Solution Time 70 s
Nodes Explored 6887 -

After collecting the experimental data, the A* algorithm was applied to learn the

optimal friction profile µ?(s). Parameters for the algorithm are shown in Table 5.2.

To interface more efficiently with experimental data files, the search algorithm was

implemented in MATLAB using custom code instead of a standard search algorithm
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Figure 5.8: Coverage of experimental data. For speed profiles corresponding to µ =
0.92 and µ = 0.94, experimental data of the autonomous race vehicle was observed
over the whole track. For safety and time constraints, the other speed profiles were
only tested on sections of the track.

library. The entire search process took approximately 70 seconds on a core i7 lap-

top machine, exploring 6887 nodes in the process. However, since MATLAB is not

designed for computational efficiency in tree-based search algorithms, a C++ imple-

mentation would likely be several orders of magnitude faster.

The resulting µ?(s) profile associated with the minimum lap time on Thunderhill

Raceway is shown in Fig. 5.9. For comparison, the A* solution is plotted against

the greedy algorithm solution. Because of the incorporation of switching costs, the

A* algorithm switches µ values only when necessary to achieve a nontrivial increase

in lap time, and only switches µ when the vehicle is not sliding. The same results

are plotted on a map of the track in Fig. 5.10. A satisfying observation is that the

optimal profile reduces µ to 0.93 in section 2 to be more conservative and increases

µ to 0.97 in section 3 to be more aggressive. This matches our observations about

tire slip norm ζ in Sec. 5.1.
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Figure 5.9: Minimum time µ(s) profile for Thunderhill, for both the A* solution and
greedy algorithm solution.

Predicted lap time results are shown in Table 5.3. Notice that the A* predicted

lap time is slightly slower than the greedy algorithm prediction, which is expected

given the physical infeasability of the greedy algorithm assumptions. The results

also indicate that a significant lap time improvement can be expected over a velocity

profile generated with a constant µ. In fact, experimentally driving at µ?(s) could

even result in a lap time faster than a professional human driver.

Table 5.3: Lap Times

Driver Lap Time
Constant µ(s) = 0.94 139.2
Constant µ(s) = 0.92 139.4
Pro Driver (Best Lap) 137.7
Greedy µg(s) (Prediction) 136.4
A* µ∗(s) (Prediction) 136.8

Fig. 5.10 provides interesting insights about what the A* algorithm is learning.

Section 2 is a long, sweeping turn with mostly steady-state cornering dynamics,

so the optimal friction value of .93 is in the middle of the range of possible values

and representative of the average friction between the tires and the track. Sections
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Figure 5.10: Minimum time µ?(s) profile from A* algorithm plotted on map of Thun-
derhill.

3 and 7 represent short turns followed by a turn in the opposite direction. For

these turns, the algorithm has learned it is better to drive a little faster than the true

friction limit would dictate, because by the time the vehicle begins to understeer,

the turn is already complete and the vehicle can reverse the steering quickly while

following the desired path. Section 8 occurs before a long straight section of the

track where recovering from an understeer would result in a significantly lower speed

on the fastest part of the track. As a result, the algorithm’s planned acceleration

is more conservative. Finally, the section with the lowest µ(s) occurs on a part of

the track with significant lateral weight transfer. In general, lateral weight transfer

reduces the cornering forces available to the vehicle, but this effect was not captured
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in the trajectory planning phase, which assumed a planar model with coupled left

and right tires. In summary, the A* algorithm allows the car to learn subtle but

important driving behaviors that are not easily captured through simulation.

5.6 Experimental Validation

The best validation of the A* algorithm is to experimentally drive the optimal velocity

profile U?
x(s) generated from µ?(s). From Fig. 5.9, this velocity profile will have

accelerations as low as 9.0 m/s2 on some turns, and as high as 9.7 m/s on others.

Fig. 5.11 shows autonomous experimental data from driving µ?(s) compared to two

other experiments1. The first experiment is a full autonomous test with a constant µ =

0.94, and the second experiment is the fastest single lap recorded by the professional

race car driver in Fig. 4.1.

The experimental results show solid performance of the learned friction profile

µ?(s). From Fig. 5.11(a), the lap time using the learned friction profile is roughly

1.5 seconds faster than the lap time from the constant friction profile. The lap time

is also comparable to the fastest recorded lap time of the pro driver. A significant

part of this improved performance comes through more efficient friction usage. For

example, in sections 2 and 8 , learning to drive more cautiously enables the tire

slip norm ζ to drop closer to 1, avoiding a costly understeer. In sections 3 and 7 ,

the A* algorithm has learned that more aggressive driving is possible, increasing ζ

closer to 1 and matching the tire slip norm of the professional driver.

However, there are several caveats associated with Fig. 5.11 to disclose. Due

to time constraints, the three datasets were all taken on different dates, meaning

that weather, tire conditions, etc. were different for each test. Second, the two

autonomous datasets were taken nearly a year apart, and as a result, there were

independent improvements made to the vehicle controllers that also contribute to the

1.5 second experimental lap time improvement. For example, the higher speed in

1There was a minor change between the optimal µ profile from Fig. 5.9 and what was tested

experimentally. For section 2 , the value of µ was set to 0.92 as opposed to 0.93. This was a safety
measure taken based on preliminary testing.
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section 1 (see Fig. 5.11(a)) was due to a more tightly tuned longitudinal controller

and not a difference in the desired speed profile. Finally, because autonomous racing

is performed with nobody in the vehicle, the human driver has the disadvantage of

both his added mass and the added mass of a graduate student. Since the available

engine force is limited, this decreases the available acceleration on straight sections

of the track by roughly 10%. This gives a time boost for any autonomous lap over a

human-driving lap, as seen by the higher top speeds in Fig. 5.11(b).
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Figure 5.11: (a) Time difference between experimental dataset collected with A*
result µ∗(s) and dataset from professional driver. Also included is comparison with
constant friction velocity profile at µ = 0.94. Negative time distance corresponds to
A* result being ahead. (b) Experimental velocities between all three experimental
datasets. (c) Tire slip norm measurements for all three datasets.
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5.7 Future Work

There are a several next steps to improve the preliminary research presented in this

chapter. First, the algorithm presented here assumes the availability of pre-existing

data. For a track where existing data at the handling limits is unavailable, the

algorithm should be modified so that laps are driven at a low assumed friction value

(i.e. µ = 0.9) and slowly ramped up, with the A* algorithm used after every lap

to find portions on the track where the vehicle could benefit from a more aggressive

acceleration profile.

Finally, the algorithm makes the key assumption that observations made on prior

laps will hold for upcoming laps. However, when data is collected for the same

velocity profile multiple times, the resulting observed speeds and tire slips will vary.

Furthermore, the tire slip norm ζ, defined in Chapter 4, is a noisy empirical estimate of

whether the vehicle is actually sliding. Further work is necessary to add uncertainty to

the model. For example, preliminary work is underway to treat experimental tire slip

measurements as noisy indicators of whether the vehicle has exceeded the limits. This

would complement the existing literature for real-time vehicle decision making under

uncertainty, which has considered uncertainty in sensor noise, perception constraints,

and the behavior of surrounding vehicles and pedestrians [4][84][89]. Accounting

for state uncertainty by developing a Partially Observable Markov Decision Process

(POMDP) is therefore a promising avenue for future work.
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5.8 Conclusion

This chapter presented an algorithm to improve the experimental lap time of an

autonomous race car by learning the optimal friction profile, and therefore the optimal

desired speed and acceleration profiles. The approach works by searching through a

tree built up from experimentally collected observations and finding the fastest speed

profile via an A* implementation. Edge costs for this tree are given by travel time

calculations and a switching cost that accounts for the difficulty of speed control while

the vehicle is understeering or oversteering. The results compared well experimentally

to an autonomous dataset from a uniform µ profile and against an experimentally

recorded dataset from a professional driver.

The significance of this work is that the autonomous race vehicle is no longer

required to race with a single predetermined estimate of the tire-road friction. Ex-

perimental data indicates that in reality, each turn on the track has a slightly different

acceleration limit that enables the autonomous vehicle to minimize travel time with-

out sliding off the track. Instead of naively guessing an average friction/acceleration

limit for the entire racing circuit, the presented algorithm allows the vehicle to search

through data obtained from previous laps and find an optimal friction profile that

varies along the track.



Chapter 6

Conclusion

Inspired by automobile racing, this dissertation documented several contributions for

trajectory planning and control at the limits of handling. Chapter 2 presented a

feedback-feedforward steering controller that simultaneously maintains vehicle stabil-

ity at the limits of handling while minimizing lateral path deviation. Section 2.2.1

presented an initial baseline steering controller based on lookahead steering feedback

and feedforward based on vehicle kinematics and steady-state tire forces. In §2.4,

analytical results revealed that path tracking performance of the baseline controller

could be improved if the vehicle sideslip angle is held tangent to the desired path.

This desired sideslip behavior was incorporated into the feedforward control loop to

create a robust steering controller capable of accurate path tracking and oversteer

correction at the physical limits of tire friction (§2.5). Experimental data collected

from an Audi TTS test vehicle driving at the handling limits on a full length race

circuit (§2.6) demonstrated the desirable steering performance of the final controller

design.

Chapter 3 presented a fast algorithm for minimum-time path planning that di-

vided the path generation task into two sequential lateral and longitudinal subprob-

lems that were solved repeatedly. The longitudinal subproblem, described in §3.2,

determined the minimum-time velocity profile given a fixed curvature profile. The

lateral subproblem updated the path given the fixed speed profile by solving a convex

optimization problem that minimized the curvature of the vehicle’s driven path while

138
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staying within track boundaries and obeying discretized equations of motion (§3.3).

Experimental lap times and racing lines from the proposed method were shown to be

comparable to both a nonlinear gradient descent solution and a trajectory recorded

from a professional racecar driver (§3.6). The cost function for the path update sub-

problem was also improved by incorporating a distance minimization term in §3.7.

Finally, Chapters 4 and 5 presented two approaches to gradually refine the driving

performance of the autonomous race car over time. Chapter 4 developed two iterative

learning control (ILC) formulations that gradually determined the proper steering and

throttle inputs to precisely track the desired racing trajectory. In §4.1, simulation and

analytical results were used to design and test convergence of proportional-derivative

(PD) and quadratically optimal (Q-ILC) iterative learning controllers. Experimental

results at combined vehicle accelerations of 9 m/s2 indicate that the proposed algo-

rithm can rapidly attenuate trajectory following errors over just two or three laps of

racing (§4.6). Chapter 5 presented a tree-search algorithm to minimize experimental

lap times by learning different acceleration limits for each turn on the track. An A*

search algorithm was devised in §5.3 to search through experimental data and find

the best value of µ for each portion of the track in order to globally minimize the

resulting lap time. Key developments of this algorithm include designing an appro-

priate A* heuristic (§5.4) to minimize the needed computation time and designing the

cost function to account for the physical difficulty of altering the vehicle’s trajectory

while understeering or oversteering.

6.1 Future Work

The dissertation concludes with a discussion of both future work and applications of

the research to commercial automotive safety systems.

Feedback-Feedforward Steering Controller

One drawback of the feedback-feedforward steering controller in Chapter 2 is the re-

liance on steady-state feedforward estimates of vehicle states. This will cause issues for

tracking highly transient trajectories, such as those encountered in obstacle avoidance
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maneuvers [21]. Furthermore, because the sideslip dynamics are captured only at the

feedforward level to ensure robust stability margins, the steering controller becomes

sensitive to modeling errors between the actual vehicle system and the steady-state

model.

There are several avenues for future work to improve the path tracking perfor-

mance of the steering controller. One possibility to improve robustness to plant

modeling errors is to come back to the feedback controller that directly incorporates

vehicle sideslip measurements in the feedback control law (2.12). This controller was

shown to have excellent path tracking characteristics. However, the controller suffered

from poor stability margins at the handling limits, and a compromise was ultimately

selected where steady-state predictions of the vehicle sideslip were used instead. A

promising solution is to use a blend of measured and predicted sideslip values. For

example, a higher level controller could transition between measured or estimated

vehicle sideslip in (2.12) depending on whether there is significant risk of the vehicle

approaching the handling limits.

A second avenue for future work is to eliminate transient path tracking errors by

tightening the lanekeeping controller gains. Funke [21] noted that transient dynam-

ics become significant when avoiding obstacles at the limits of handling. An LQR

approach for gain selection revealed that tighter path tracking is possible if the gain

on heading error ∆Ψ is significantly shortened. Understandably, the drawback of

this tighter path tracking is higher levels of steering input, typically resulting in high

frequency twitches of the steering wheel. Again, an MPC controller could manage

this tradeoff between smoother steering inputs and path tracking error. More of the

standard lookahead controller could be used in normal steady-state driving situa-

tions, and tighter path tracking gains would be used in transient obstacle avoidance

scenarios.

Rapid Path Generation

The primary difficulty with the trajectory generation method from Chapter 3 is the

need to balance minimizing path curvature and path length. Without the computa-

tional expense of directly minimizing lap time or applying a trial-and error method, it
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is difficult to determine the areas of the track where minimizing distance is important.

The presented method of learning optimization weights from human data provides a

quick solution, but professional driver data is not always available for a given racing

circuit. To manage the tradeoff, it may be beneficial to develop an anytime algorithm

that starts by globally minimizing curvature with a cheap convex optimization step,

and then uses the remaining computational time to refine specific turns where mini-

mizing curvature is unlikely to be the best approach. This would most likely rely on

general heuristics learned for racing in general, and not just for a specific track. For

example, on sequences of alternating left/right turns, only minimizing curvature may

not be the best approach.

The second area for future work is transferring the presented algorithm onto an

embedded computer for real-time trajectory planning. This enables the controller

to account for real-time changes such as competing race vehicles and updated esti-

mates of tire friction. This requires two steps. First, the convex optimization code

for the path update step must be written in a language such as CVXGEN [54] that

is suitable for real-time computing. Second, given hardware restrictions on the size

of optimization problems for embedded computing, the optimization algorithm must

be modified into a “preview” controller that optimizes the next several turns instead

of the entire track. The feasibility of this approach has been confirmed with a pre-

liminary analysis, which showed that an optimization over 500 meters of track could

be completed on the order of milliseconds using CVXGEN.

Iterative Driving Improvement

Chapters 4 and 5 presented two interesting preliminary methods for an autonomous

race car to learn how to drive better. Chapter 4 focused on improving tracking of a

desired trajectory via iterative learning control, while Chapter 5 focused on modifying

the longitudinal component of the planned trajectory based on experimental observa-

tions of tire utilization and vehicle speeds. These two approaches should be combined

and tested together, so that the vehicle begins with a preliminary trajectory planned

with a conservative assumed friction value, and then slowly learns how to track that

trajectory while simultaneously making the trajectory faster on the turns where tire
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slips are lower than predicted.

A key prerequisite for achieving this is the ability to perform the learning algo-

rithms in real time. Both learning algorithms currently operate offline after a lap

(or several laps) have already been recorded, and typically take 30 - 60 seconds of

computing time in MATLAB. C++ implementation of the algorithms, particularly

the tree-search approach from Chapter 5, could provide a significant computational

speedup. Improvements in algorithm efficiency and parallelization would enable a

system where learning is continuously performed on a separate processor during the

autonomous run itself. This would enable a futuristic system where the autonomous

race vehicle could run uninterrupted for five or ten laps, improving the lap time each

lap through iterative learning control and trajectory modification.

6.2 Applications for Future Automotive Safety

Systems

Automobile racing is a fascinating subject, and the quest for an autonomous vehicle

that can compete with the best human drivers is akin to to the search for chess

algorithms in the 1970’s and 80’s that could defeat a grandmaster. While automobile

racing occurs at accelerations that are much higher than those seen on passenger

highways, trajectory planning and control algorithms for an autonomous race car have

significant potential benefits for future autonomous passenger vehicles. In the same

way that the race to beat the best human chess players inspired a new generation of

broadly applicable artificial intelligence techniques, designing a fast race vehicle offers

a new generation of technology for future passenger safety systems. In fact, transfer

of technology from the race car to the passenger automobile is nothing new, and

everyday automotive technology ranging from direct-shift gearboxes to the modern

disc brake can be traced to innovations in race technology [15].
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Steering Controller

The presented feedback-feedforward steering controller is immediately ready for ap-

plication in commercial autonomous driving features. The required inputs of the

algorithm are relatively simple to obtain. The controller requires knowledge of a de-

sired speed and curvature profile, available from any high level trajectory planner that

computes smooth driving profiles, such as the high level planner for Stanford’s 2008

“Junior” DARPA Urban Challenge Vehicle [57]. Additionally, the controller requires

knowledge of the vehicle error states, namely the deviation from the desired path and

the heading error from the desired path. While the Audi TTS used for experimental

validation obtains these precisely from DGPS technology, this technology is not viable

for commercial driving. However, there has been a large research effort on vehicle lo-

calization relative to a known map via sensor fusion of commercially available sensors

such as standard GPS/INS, LIDAR, and cameras, resulting in localization accuracy

suitable for autonomous driving [38].

If incorporated in a passenger automobile, the feedback-feedforward algorithm

would be able to achieve accurate and smooth driving in non-emergency situations.

Common issues frequently reported on autonomous vehicles such as steering wheel

twitches could be avoided along with significant lateral path deviation. Most impor-

tantly, in the event of an autonomous safety maneuver at the handling limits, the

controller could follow an emergency trajectory without losing stability or deviat-

ing off the desired trajectory into an obstacle. Furthermore, the steering response

would be smooth and non-oscillating, giving the human passengers confidence in the

capability of their vehicle.

Rapid Trajectory Planner

The rapid trajectory planner in Chapter 3 also offers potential for a commercial

autonomous safety system. The algorithm could be reformulated as a high level tra-

jectory planner for the next several hundred meters of open road instead of over an

entire closed-circuit race track. Combined with LIDAR or other sensor information on
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the presence of obstacles, the objective of the lateral planner could be to avoid an up-

coming obstacle while staying on the road, a framework first proposed by Erlien et al.

[18] for shared human/computer control. However, instead of a shared controller min-

imizing deviation from the driver’s steering command, this trajectory planner would

autonomously avoid obstacles while attempting to maintain a minimum curvature

path. The benefit of minimum-curvature obstacle avoidance is increased safety mar-

gins. By maximizing the permissible collision-free speeds the car can safely drive at,

the envelope of safe driving trajectories is increased. Furthermore, in non-emergency

scenarios, the trajectory planner can plan driving paths below the limits by driving

through desired waypoints on the road with minimum curvature for driver comfort.

Lap-to-Lap Learning

The algorithms for iteratively improving autonomous driving performance will be

more difficult to apply in real-world situations, simply because most passenger driving

doesn’t occur over the same closed-circuit race course. However, there is an emerging

trend towards automation in all aspects of society, and several industrial companies

have expressed interest in iterative learning algorithms for repetitive driving maneu-

vers. For example, manufacturers of agricultural equipment have sponsored iterative

learning research for heavy vehicles that can precisely repeat the same driving pat-

tern for applications such as fertilizer and seed deployment [53]. Beyond agriculture,

similar applications for iterative learning could include autonomous tour vehicles or

industrial vehicles for applications such as mining. Additionally, many drivers travel

on similar roads every day for commuting or other routine trips. Iterative learning

controllers could therefore be generalized for a network of cars to quickly detect im-

portant information about the road (e.g. path curvature, friction conditions) that

could be communicated back to upcoming vehicles. Advances in iterative learning

could also enable applications where an automated system detects a routine commute

and learns from human driver data in order to replicate the driving style of a specific

passenger over time. This would be a vital step in gaining acceptance of autonomous

vehicles as passengers would be more comfortable with a self-driving car that matches

their own driving style.
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