

Series

TWO-STAGE INDOOR AND OUTDOOR SPLIT EARTHPURE® SYSTEMS SIZES 026 - 064 [7.0 - 19.3 kW]

Table of Contents

What's New with ClimateMaster's Tranquility® Digital Split Systems?3
iGate® Communicating Controls4
vFlow® Internal Variable Water Flow Control5
How to Use This Catalog6
Tranquility® TES/TEP Design Features8
Tranquility® TAC Design FeaturesI I
Tranquility® TAH Design Features12
Unit Model Key14
Model Key, Reference Calculations & Legend
About AHRI/ISO/ASHRAE 13256-116
AHRI/ISO/ASHRAE/ANSI 13256-1 Performance17
Full Load Correction Factors

Part Load Correction Factors	19
Performance Data Selection Notes – vFlow	20
Performance Data	22
Physical Data	30
Electrical Data	31
Dimensional Data	33
Electrical Wiring Diagrams	37
Submittal Data	40
Accessories & Options	41
Warranty Information	41
Revision History	44

What's New with ClimateMaster's Tranquility® Digital Split Systems?

ClimateMaster has invested years of experience, research and development into new technologies that set the Tranquility® Digital Split systems apart from the rest by delivering higher cost savings, more reliability and unparalleled comfort.

Building on the new Digital packaged line of products with iGate® and vFlow® technology, the Tranquility® Digital split system uses the same components in a more flexible configuration. The Tranquility Digital split system compressor section can be coupled with Tranquility Digital Air Handlers (TAH) and Tranquility (TAC) furnace coils to achieve ultra-high efficiencies, while still providing the flexibility of an all-electric or dual fuel system and a remote compressor section location. Split systems are often used in areas where it would be difficult to install a packaged unit, such as in an attic, crawl space or even outdoors.

High Efficiency = Low Operating Cost

Tranquility Digital split systems break new ground in efficiency by approaching 25.6 EER part load cooling and 4.3 COP part load heating for ground loop applications. Leveraging the next generation Copeland scroll compressor, variable speed ECM motor, low pressure- drop water-to-refrigerant heat exchanger and variable-speed internal pump / modulating valve, the Tranquility Digital split systems have been optimized for maximum operating efficiency and lowest operating cost. The Hot-Water Generator further increases operating cost savings by pre-heating hot water for domestic use. Tranquility Digital Split systems are one of the highest efficiency split heating and cooling systems you can buy.

iGate® - Digitally Monitor, Control and Diagnose the System

With ground-breaking iGate

-information gateway- as a standard feature on every unit, Tranquility Digital Split systems represent a significant breakthrough in monitoring, controlling and diagnosing systems, leveraging the power of 2-way communication with four-wire connections.

The new DXM2 control - the brain of the system - takes input from sensors and smart components to "calculate and communicate to" the system how to operate. Since it is exchanging information instead of just signals, it displays information in plain English on a thermostat/ service tool. Compared to old systems with antiquated settings / monitoring using switches/ LEDs, iGate represents a quantum leap in access to information and control of the system.

The iGate system uses a four-wire connection to connect the compressor section to the communicating thermostat AND Tranquility Air Handler's AXM controls. This allows airflow configuration through the communicating thermostat and the ability to diagnose the system through the DXM2 or AXM controls.

In service mode, the system communicates not only the fault and possible causes, it also displays the operating conditions of the unit at the time of the fault, to aid in diagnosis.

vFlow® Variable Water Flow

Built-in vFlow is enabled by iGate, which facilitates intelligent communication between the thermostat, DXM2 control, sensors and internal

water pump/valve to make true variable water flow a reality for the first time in geothermal units. Built-in water flow components means quicker, simpler, single and multi-unit installations.

In closed loop applications, vFlow with variable speed pump saves 70-80% watts in part load compared to single speed water circulators. In open loop applications, vFlow with motorized modulating valve also saves watts off the well pump by limiting the flow to the required amount.

System reliability is significantly improved by varying the Waterflow to optimize extraction / absorption of heat and thus better maintaining refrigerant pressures.

ENERGY STAR® Most Efficient – Communicating AND Efficient (Application Pending)

Tranquility Digital Split systems (TEP/TEP) have been recognized as ENERGY STAR Most Efficient 2018 for exceeding stringent efficiency requirements AND for meeting smart communication requirements. With these systems the customer is getting an EFFICIENT system and an INTELLIGENT system – buying a system can't get SMARTER than that!

Easy to Install, Easy to Service – A Technician's Dream Machine

Installations are easier and quicker with Tranquility Digital Split systems with (1) vFlow built-in water flow vs. bulky external flow controllers / water flow components (2) iGate 4-wire connection between the compressor section, air handler and thermostat ; Also, system configuration (airflow, water ΔT , acces-

sories) on the thermostat and (3) iGate Manual Operation from thermostat at start up to verify proper operation.

Service is even easier with (1) iGate Service Warning on the thermostat for homeowners to call the dealer with fault information (2) iGate Service Mode for dealers to see conditions (temperature, flow, input/output, configuration) at the time of fault, for better, quicker diagnosis (3) Easy Access to components with swing-out control board, easy-access panels, refrigerant/ water pressure Schrader ports at the front of the unit.

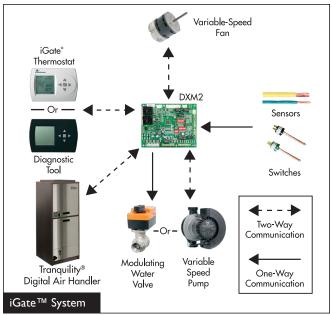
ClimateMaster has designed and built the EASIEST geothermal unit to install and service, period.

iGate® Communicating Controls

iGate[®] Information gateway to monitor, control and diagnose your system

The Tranquility® Digital Split Units are equipped with industry-first, iGate® – Information Gateway – a 2-way communicating system that allows users to interact with their geothermal system in plain English AND delivers improved reliability and efficiency by precisely controlling smart variable speed components. iGate™ makes the Tranquility Digital series the easiest geothermal products to install and service.

Monitor/Configure – Installers can configure Tranquility Digital Split Units from the thermostat, including: Air flow, loop ΔT , waterflow option configuration, unit configuration, accessory configuration, and demand reduction (optional, to limit unit operation during peak times). Users can look up the current system status: temperature sensor readings and operational status of the blower and pump.


Precise Control -The new DXM2 board enables intelligent, 2-way communication between the DXM2 board and smart components like the communicating thermostat, fan motor, and water pump. The DXM2 control can also directly control the modulating valve and accepts various feedback/input. The Intelligent DXM2 board uses information received from the smart components and sensors to precisely control operation of the variable-speed fan and variable-speed water pump (or modulating valve) to deliver higher efficiency, reliability and increased comfort.

Diagnostics – iGate takes diagnosing geothermal units to the next level of simplicity, by providing a dashboard of system and fault information, in plain English, on the iGate thermostat/ service tool.

iGate Service Warning warns the homeowner of a fault and displays dealer information (if programmed), fault descriptions, possible causes and current system status (temperature readings, fan RPM and water flow status) to provide to a dealer on the phone.

In iGate Service Mode, the service personnel can access fault descriptions, possible causes and most importantly, the conditions (temp, flow, i/o conditions, configuration) at the time of the fault and at the time of the call. Manual Operation mode allows the service personnel to manually command operation for any of the thermostat outputs, blower speed, as well as pump speed or valve position from the thermostat, to help troubleshoot specific components.

With the iGate communicating system, consumers and contractors have a gateway to system information never before available.

AIRFLOW SELECTION	
	CFM
HEAT STAGE 1	600
HEAT STAGE 2 AUXILIARY HEAT EMERGENCY HEAT COOL STAGE 1 COOL STAGE 2 COOL DEHUMID 1 COOL DEHUMID 2 CONTINUOUS FAN HEAT OFF DELAY COOL OFF DELAY	750 850 850 850 525 700 425 550 350 60
◆PREVIOUS	NEXT▶

POSSIBLE FAULT CAUSES
LOW WATER COIL TEMP

LOW WATER TEMP - HTG

LOW WATER FLOW - HTG

LOW REFRIG CHARGE - HTG

INCORRECT LT1 SETTING

BAD LT1 THERMISTOR

PREVIOUS

FAULT TEMPERATURE CONDITIONS LT1 LOW WATER TEMP HEAT 1 11:11 AM 11/14	
LT2 TEMP HOT WATER EWT 1 COMP DISCHARGE 1 LEAVING AIR LEAVING WATER ENTERING WATER	28.1 97.3 21.5 57.7 92.7 34.9 42.1 26.4
◆PREVIOUS	

vFlow® Internal Variable Water Flow Control

vFlow® Internal Variable Water Flow

Industry-first, built-in vFlow® replaces a traditionally inefficient, external component of the geothermal system (water circulation) with an ultra-high-efficient, variable speed, internal water flow system. This saves homeowners 70-80% on operating water circulator vs traditional single speed pump systems. It saves installers time and labor by avoiding installing bulky external flow centers or flow regulators. Multi-unit installations are also much simpler with vFlow systems, as the units automatically adjust water flow across the system.

vFlow is enabled by iGate®, which facilitates intelligent communication between the thermostat, DXM2 control, sensors and internal water pump/valve to make true variable water flow a reality.

vFlow® is available for three applications:

- Closed loop individual unit pumping: vFlow Internal Flow Controller model ("2" in Position 11 of the unit model number) would be used. This includes variable speed pump, flushing ports, 3 way flushing valves and expansion tank. Copper water coil is standard with this option.
- Closed loop multi unit / central pumping: vFlow Internal Low Pressure Drop (high Cv) Motorized Modulating Valve ("5" in Position 11 of the unit model number) would be used. Copper water coil is standard with this option. Not available in Outdoor Digital Split (TEP).
- 3) Open loop: vFlow Internal Motorized Modulating Valve ("6" in Position 11 of the unit model number) would be used. Cupro-Nickel water coil is standard with this option. Valves in open loop models have higher pressure drop than the valves in the closed loop (modulating valve) models for better flow control when used in systems with higher pressure water supply pumps, and are not recommended for closed loop applications. Not available in Outdoor Digital Split (TEP).

vFlow® delivers three main benefits:

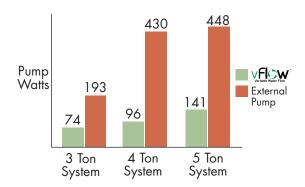
- Easier and quicker unit installation as the flow control is built in to the unit.
- 2) Superior reliability by varying the water flow to deliver more stable operation.
- 3) Higher cost savings by varying the flow (and pump watt consumption) to match the unit's mode of operation.

Internal components

Tranquility® Digital Split Units can be installed more easily and compactly than their predecessors because water-flow components are internal to the unit. It also saves installing contractors labor and time by eliminating the need for an external flow regulator or a bulky external pumping module.

Variable flow

vFlow technology enables variable water flow through the unit, with the DXM2 control adjusting the pump speed to maintain an installer-set loop ΔT . By controlling the water flow, the system is able to operate at its optimal capacity and efficiency. vFlow provides a lower flow rate for part load where units typically operate 80% of the time and a higher, more normal flow rate for full load operation.



Energy Savings with water circulation control

Units with vFlow deliver higher operating cost savings by varying the water flow to match the unit's operation (ex: lower water flow when unit is in part load operation). Lowering the flow results in lower energy consumption by the water pump (=higher cost savings) in vFlow units (whether internal or external pump).

In closed loop applications, using vFlow with an internal variable-speed (ECM) flow controller, the ECM pump uses fewer watts than a fixed speed (PSC) pump, even at full load (see chart). The ECM pump excels in energy savings in part load, saving 70-80% watts compared to fixed speed pumps (see chart). The ECM pump can operate with independent flow rates for heating and cooling, further saving even more energy.

In open loop applications, when the motorized modulating valve slows down the water flow during part load operation, the external pump consumes fewer watts, thus saving more energy.

How to Use this Catalog

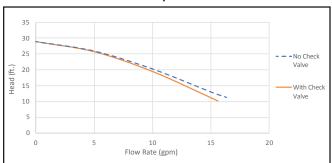
As with any unit selection the first step is to perform a proper load calculation. Once the design cooling and heating loads are known the predominant load can be used to select the appropriate unit. In northern climates the heating load may be used to select the unit, whereas in southern climates the cooling load may be used. Likewise, the anticipated maximum EWT should be used for the cooling mode and the minimum anticipated EWT should be used when selecting for the heating mode. These EWTs may be the same temperature in the case of a ground water application.

Use the Full Load performance pages to select the unit size. Once the unit size is determined read the associated flow rate (gpm) for the needed capacity. Typically this is 1.5-2 gpm/nominal ton for ground water applications and 2.25-3 gpm/ton for ground loop applications.

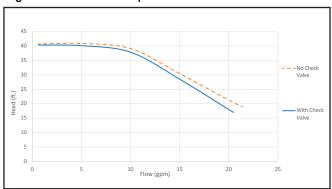
For Closed Loop Applications

For closed loop systems where an internal circulating pump is desired, Tranquility® Digital Split Units can be ordered with an internal, variable speed loop circulator. This would typically be for a ground loop or secondary pumping application. The internal loop circulator is available in a high head version for all unit sizes and in a standard head version for unit sizes 026 and 038. Units with the standard head pump should not be combined with units with high head pumps on the same loop. Standard head pumps are best suited for small applications with a single unit. The maximum possible pump curve is shown in the tables below. The pumps can also operate at any point below the curve as a "partial load" pumping condition. The designer/installer should use the information presented in this catalog to determine the available pump head for any external piping/accessories and ground loop (if applicable). This can be done in the following manner:

- Determine the desired flow rate through Tranquility Digital Split Units from the performance pages (as described above). Read the associated pressure drop in feet of head for the worst case condition (lowest anticipated entering water temperature) at the required flow rate.
- 2. Determine the maximum pump head from the pump curve associated with the required flow rate from step I.
- 3. Subtract the unit pressure drop (from step 1) from the maximum available pump head (from step 2).
- 4. The remainder is the available pump head to overcome any external piping/accessories and the ground loop.


If the available pump head is equal to or greater than the calculated external piping and loop pressure drop, no other steps are required. If the available pump head is less than the calculated pressure drop of all external piping and the loop, then changes to the loop design should be considered.

Typically residential loops consist of ¾" circuit piping and I¼" supply and return piping. If the available pump head is less than the calculated pressure drop of all external piping and the loop, it is recommended that larger pipe sizes be investigated such as I" circuit piping and/or I½" or 2" supply and return piping. This will significantly reduce system pressure drop with little change in Reynolds number. If this causes the Reynolds number to fall to an unacceptable level, try reducing the overall number of circuits. This will increase the flow rate through each circuit, increasing the Reynolds number.


Another solution might be to allow the system flow rate to be reduced. Typical geothermal flow rates are between 2.25 and 3 gpm/ton. As long as the system flow rate using the internal variable speed circulator is at or above 2.25 gpm/ton it is safe to operate the system. A quick review of the unit performance tables will show that this causes very little change in unit performance.

ClimateMaster's Pressure Drop Software can be used in conjunction with the pump performance information presented here to determine actual flow rate when the internal circulator is not able to provide the desired design flow rate.

Standard Head Variable Pump

High Head Variable Pump

How to Use this Catalog

For secondary pumping applications follow the above steps except do not consider the pressure drop of the loop. The internal circulator will only need to overcome the pressure drop of the unit and any piping connecting the unit to the primary loop.

Tranquility Digital Split Units can also be ordered with an internal modulating water control valve for closed loop systems with multiple units and a central pump. In this case the modulating water valve will stop water flow through the unit when the unit is not operating and control the flow rate through the unit during operation, saving pumping energy in both cases.

When using an internal modulating water valve the central pump must be able to overcome the pressure drop of the valve in addition to the pressure drop of the unit. Because of this, internal modulating valves for closed loop systems are designed with a low pressure drop in mind. The minimum pressure drop for the internal closed loop valve is shown in the 'Modulating Valves for Closed Loop Applications' table below. This pressure drop should be added to the unit pressure drop when determining system pressure drop for central pump selection.

For Open Loop Applications

Tranquility Digital Split Units can also be ordered with the internal modulating water control valve for open loop systems with an external well pump. In this case the modulating water valve will stop water flow through the unit when the unit is not operating and act as a flow control device to control the flow rate through the unit during operation.

When using an internal modulating water valve the external pump must be able to overcome the minimum pressure drop of the valve in addition to the pressure drop of the unit. The minimum pressure drop for the open loop internal valve is shown in the 'Modulating Valves for Open Loop Applications' table below. This pressure drop should be added to the unit pressure drop when determining overall equipment pressure drop.

Modulating Valves for Closed Loop Applications

TES/P026				
	Valve Cv =	4.7		
	60°F \	Nater		
	Valve ∆P	Valve ∆P		
GPM	@ GPM	@ GPM		
	(psi) (ft hd)			
2.0	0.181 0.4			
3.0	0.407	0.9		
4.0	0.724	1.7		
5.0	1.132	2.6		
6.0	1.630	3.8		

TES/P038				
	Valve Cv =	7.4		
	60°F	Water		
	Valve ∆P	Valve ∆P		
GPM	@ GPM	@ GPM		
	(psi) (ft hd)			
3.0	0.2	0.4		
4.0	0.3 0.7			
5.0	0.5 1.1			
6.0	0.7 1.5			
7.0	0.9	2.1		
8.0	1.2 2.7			
9.0	1.5	3.4		

TES/P049				
	Valve Cv =	10		
	60°F	Water		
	Valve ∆P	Valve ∆P		
GPM	@ GPM	@ GPM		
	(psi)	(ft hd)		
4.0	0.2 0.4			
5.0	0.3	0.6		
6.0	0.4	0.8		
7.0	0.5	1.1		
8.0	0.6 1.5			
9.0	0.8 1.9			
10.0	1.0	2.3		
11.0	1.2 2.8			
12.0	1.4	3.3		

TES/P064		
\	/alve Cv =	19
	60°F \	Nater
	Valve ∆P	Valve ∆P
GPM	@ GPM	@ GPM
	(psi)	(ft hd)
6.0	0.1	0.2
7.0	0.1	0.3
8.0	0.2	0.4
9.0	0.2	0.5
10.0	0.3	0.6
11.0	0.3	0.8
12.0	0.4	0.9
13.0	0.5	1.1
14.0	0.5	1.3
15.0	0.6	1.4
16.0	0.7	1.6
17.0	0.8	1.8

Modulating Valves for Open Loop Applications

TES/P026, 038 & 049		
	Valve Cv =	4.7
	60°F	Water
GPM	Valve ∆P @	Valve ΔP @
GFIVI	GPM (psi)	GPM (ft hd)
2.0	0.2	0.4
3.0	0.4 0.9	
4.0	0.7 1.7	
5.0	1.1 2.6	
6.0	1.6	3.8
7.0	2.2 5.1	
8.0	2.9 6.7	
9.0	3.7 8.5	
10.0	4.5	10.5
11.0	5.5 12.7	
12.0	6.5	15.1

TES/P064		
	Valve Cv =	7.4
	60°F	Water
GPM	Valve ∆P @	Valve ΔP @
OI W	GPM (psi)	GPM (ft hd)
6.0	0.7	1.5
7.0	0.9	2.1
8.0	1.2 2.7	
9.0	1.5	3.4
10.0	1.8	4.2
11.0	2.2 5.1	
12.0	2.6 6.1	
13.0	3.1	7.1
14.0	3.6	8.3
15.0	4.1	9.5
16.0	4.7	10.8
17.0	5.3	12.2

Tranquility® Digital Split (TES/TEP) Design Features

The Tranquility® Digital Series Split system compressor sections (indoor / outdoor) have abundant features and ultra high efficiency.

Application Flexibility

- Four Capacities 026, 038, 049, and 064.
- Ideal for remote applications like 2nd floor or crawl space areas.
 Indoor and outdoor models available.
- Can be used as a total electric heat pump or add on heat pump with fossil fuel backup.
- Ideal for unit replacement market, designed for quiet outdoor installations with weather tight cabinet (outdoor model).
- Ground breaking iGate® communicating controls Configure, monitor, control and Diagnose from the thermostat
- 4-wire connection between Tranquility Air Handler, Tranquility Digital Split and communicating (ATC32U) thermostat

 Difficulty of the Conference of
- Built-in industry first vFlow® Variable Waterflow for 60-80% savings in pumping watts (VS pump models)
- Internal Flow Controls-Closed loop models include VS pump, flushing valves, expansion tank and copper water coil
- Motorized Modulating valve-Closed loop models include Motorized Modulating valve, Copper water coil
- Motorized Modulating valve-Open loop models include Motorized Modulating valve, Cupro-Nickel water coil (indoor split only)
- Extended range operation (20-120°F EWT) and flow rates directly controlled by DXM2 control based on ΔT
- Circuit breaker protected loop and hot water generator pumps (indoor model).
- Field selectable low-temperature protection setting for GWHP or GLHP (indoor model).
- Open service-friendly cabinet (i.e., all components in compressor section can be serviced from the front).
- Pre-charged compressor section with back-seating refrigerant service valves for quick installation.
- AHRI matched and rated with Tranquility Cased coil and Air Handler products.
- Exceeds ASHRAE 90.1 and Energy Star 3.0 efficiencies.*
- Thru-the-Bottom loop access (outdoor model).
- * When installed with a ClimateMasterTAC orTAH product.

Operating Efficiencies

- Exceeds ASHRAE 90.1 and Energy Star Tier 3 efficiency levels
- Energy Star® Most Efficient
- EarthPure® HFC-410A zero ozone depletion refrigerant.
- Among the highest efficiencies in AHRI/ISO/ASHRAE/ANSI I 3256-I ratings for heating COPs, cooling EERs with low water flow rates.
- 25.6 EER/4.3 COP.
- Rugged and highly efficient next generation Copeland UltraTech scroll compressors provide Two-stage operation for ultra-high efficiencies and unsurpassed comfort with reduced cycling losses.
- Optional hot water generator generates hot water at considerable savings.
- Oversized coaxial tube water-to-refrigerant heat exchangers operate at low liquid pressure drop.

Service & Installation Advantages

- ClimateMaster's Tranquility Digital Split series incorporates features that are industry firsts, which make it extremely easy to install:
- Ease of installation:
 - vFlow with the industry exclusive features, these units are ready to install out of the box with no requirement for external pumps, expansion tanks, or valves for the ground loop removing a lot of the complexity of installation.
 - 2) Full digital iGate controls that communicate with the thermostat and Communicating Tranquility Air Handler over 4 wires, allowing all unit configuration from the thermostat... the easiest installation setup for any level of installer. Far simpler than the use of dip-switches on the unit control board.
- Tranquility Digital Split Units only requires 4 wires between the communicating air handler (TAH), communicating thermostat (ATC32) and the unit. Others require up to 9 or 14 wires for full functionality. This is achieved by leveraging the full power of the microprocessor on the control.
- Internal variable speed circulator includes an internal check valve for multiple unit/ shared loop installations.
- Standard corner-post schreader ports provide access to source pressure drop across unit coaxial heat exchanger.
- The communicating iGate DXM2 control board diagnostic and communicating thermostat features allow the home owner to tell the service technician what is wrong with the unit before the technician leaves the shop.
- The two-section swing-out and removable control box design provides wide-open service access to the compressor section.
- Multiple unit access panels allow technicians to access any side of the cabinet.
- Service friendly highly accessible high/low refrigerant pressure ports are located on a service bracket at the front of the unit. No other product / manufacturer in the geothermal segment offer this convenience.
- An innovative two-section electrical control box design that tucks
 the stationary line voltage components safely behind a swing-out
 low voltage control panel to provide clear service access through
 the front of the unit. The low voltage panel can even be quickly
 pulled off the hinges and removed. Harness connections make
 controller replacement a snap.
- MPT condensate connection directly from condensate drain pan eliminates internal plastic drain tubing that is subject to clogging and avoids the need for a fitting that reduces the drain opening size.
- Diagnostic display of system inputs, outputs, and configuration settings at thermostat or Configuration/Diagnostic tool.
- Diagnostic display of system temperatures at thermostat
- (ATC32U**):
 - Geo source in and out
 - Compressor discharge line
 - LTI and LT2 Refrigerant Line Temperature Sensors
 - Leaving air
 - Entering potable hot water to HWG
- Immediate manual control of all DXM2 outputs is available at the thermostat (ATC32U**) or Configuration/Diagnostic tool (ACDU**) for rapid troubleshooting.

Tranquility® Digital Split (TES/TEP) Design Features

- Expansion tank eliminates "flat loop callbacks" by working to maintain steady loop pressure.
- Brass swivel geo and hot water connections for quick connection and elimination of wrenches or sealants during installation.
- Intelligent fault retry with history retention.
- Two configurable auxiliary relays for low voltage control of accessories.
- UPS (Unit Performance Sentinel) provides early warning of inefficient operation.

Factory Quality & Industry Certifications

All units are built and factory run tested on our Integrated Process Control Assembly System (IPCS). The IPCS is a unique state of the art manufacturing system that is designed to assure quality of the highest standards of any manufacturer in the water-source industry. Our IPCS system:

- Verifies that the correct components are being assembled.
- Automatically performs special leak tests on all joints
- Conducts pressure tests
- Performs detailed run test
- Automatically disables packaging for a "failed" unit
- Creates computer database for future service analysis and diagnostics from run test results
- All refrigerant brazing is done in a nitrogen atmosphere
- All units are deep evacuated to less than 100 microns prior to refrigerant charging
- All joints are both helium and halogen leak tested to insure annual leak rate of less than ¼ ounce
- AHRI/ASHRAE/ANSI/ISO 13256-1 certified.
- FTI listed
- US EPA "Energy Star" Tier 3 certified

Advanced Controls

iGate communicating control provides advanced unit functionality and comprehensive configuration, monitoring and diagnostic capabilities through digital communication links with the variable-speed fan motor (on TAH), variable-speed source pump (or modulating valve) and communicating thermostat or Configuration/Diagnostic tool.

- 7 temperature sensor inputs for system protection and control
- Anti-short cycle and over/under voltage protection
- High pressure, loss of charge, and condensate overflow protection
- · LED fault and status indication at controller
- · Service tool port for optional setup and diagnostics at unit

Factory Options & Accessories

 Hot water generator with internally mounted pump and advanced logic control

Field Installed Accessories

- iGate Communicating, Programmable Thermostat (ATC32U**)
- Auxiliary Electric Heater
- EarthPure Polarized Media Electric Air Cleaner
- Communicating Configuration / Diagnostic Tool (ACDU**)
- Outdoor/Remote Temperature Sensor (AST008)
- Anti Scald Valve (AVAS4)

- Secure Start Compressor Soft Start Kit (13B0045N01)
- Unit Vibration Isolation Pad
- Unit Stand

Warranty

- ClimateMaster residential class heat pumps are backed by a ten-year limited warranty on all unit parts, including the following accessories when installed with ClimateMaster units: Flow Controllers, Thermostats & Electric Heaters.
- ClimateMaster goes even further to back up its commitment to quality by including a service labor allowance for the first five years on unit parts and thermostats, auxiliary electric heaters and geothermal pumping modules.
- The Optional Extended Factory Service Labor Allowance Warranty offers additional length of term protection to the consumer by offsetting service labor costs for 10 years.

Tranquility® Digital Indoor (TES) and Outdoor (TEP) Split Design Features

- vFlow® Internal Variable Water Flow System with Internal Flow Center or Internal Motorized Modulating Valve for optimized efficiency and reliability
- Next generation Copeland™ Ultra-Tech™ Two-Stage Scroll Compressor with dual-level isolation for ultra-quiet and higherficiency operation
- Two-Section Swing-out Control Box design provides wide-open service access
- Water Schrader Ports located on corner post to easily read pressure drop across water heat exchanger for easy troubleshooting
- Heavy Gauge Galvanized Steel Cabinet is epoxy powder-coated in a durable and attractive black matte finish with stainless steel front access panels

- Exclusive iGate® Two-Way Communicating Control to configure, monitor and diagnose ATTHERMOSTAT
- vFlow Internal Variable Water Flow System with Internal Flow Center or Internal Motorized Modulating Valve for optimized efficiency and reliability
- Next generation Copeland™ Ultra-Tech™ Two-Stage Scroll Compressor with dual-level isolation for ultra-quiet and highefficiency operation
- 4 Fully Insulated Water and Refrigerant Lines
- 5 Large Easily Accessible Control Box
- 6 Backseating Brass Service Valves with Service Port
- 7 Stainless Steel Braided Hoses for Easy Connection to Loop Piping

Tranquility® Cased Coil (TAC) Design Features

The Tranquility® Cased Coil (TAC) Series has abundant features and industry leading efficiency.

Application Flexibility

- Four Capacities 026, 038, 049, & 064.
- Fully convertible vertical upflow or downflow, and horizontal left or horizontal right airflow.
- Thermoset plastic drain pan.
- AHRI matched and rated with TEP and TES products.
- Easily connects to a new or existing fossil fuel furnaces.
- Large removable access panel provide an open servicefriendly cabinet.
- Heavy gauge galvanized steel construction with attractive grey powder coat finish.

Operating Efficiencies

- EarthPure® HFC-410A zero ozone depletion refrigerant.
- Highest efficiencies in AHRI/ISO/ASHRAE/ANSI 13256-1 ratings for heating COP's, cooling EER's with low water flow rates when matched with TEP/TES models.
- Exceeds ASHRAE 90.1 and Energy Star 3.0 efficiencies.*

Service & Installation Advantages

- Large removable access panels.
- Bi-directional thermal expansion valve (TXV).
- · Fully convertible.

Factory Quality & Industry Certifications

- All units are built on our Integrated Process Control
 Assembly System (IPCS). The IPCS is a unique state of the art
 manufacturing system that is designed to assure quality of the
 highest standards of any manufacturer in the water-source
 industry. Our IPCS system:
 - Verifies that the correct components are being assembled.
 - · Automatically performs special leak tests on all joints.
 - Conducts pressure tests.
- All refrigerant brazing is done in a nitrogen atmosphere.
- All joints are both helium and halogen leak tested to insure annual leak rate of less than 1/4 ounce.
- Refrigerant suction lines are fully insulated to eliminate condensation problems in low temperature applications.
- Standard 10-year limited warranty on all parts with 5-year labor allowance; Optional additional extended 5-year limited labor allowance available.
- AHRI/ASHRAE/ANSI/ISO 13256-1 certified.
- NRTL & ETL listed.
- US EPA "Energy Star" certified

Features

 Fully convertible vertical upflow or downflow, and horizontal left or horizontal right airflow.

Thermoset plastic drain pan

Large easily removable access panel provide an open service-friendly cabinet

Heavy gauge galvanized steel construction with attractive grey powder coat finish

^{*}When matched with a ClimateMasterTranquility split compressor sections.

Tranquility® Digital Air Handler (TAH) Design Features

The Tranquility® Digital Air Handler (TAH) Series has abundant features and industry leading efficiency.

Application Flexibility

- Four Capacities 026, 038, 049, & 064.
- State-of-the-Art Variable Speed Blower Motor.
- Variable speed ECM fan motor adapts to various duct systems.
- · Condensate over-flow protection.
- 230v and 115v field convertible
- Fully field convertible for vertical upflow, downflow, horizontal left and horizontal right airflow.
- Foil faced insulation.
- Less than 2% air leakage.
- AHRI matched and rated with TEP and TES products.
- Three cabinet foot prints: 026 18" wide, 026-049 22.5" wide, & 038-064 25.5" wide.
- Ideal for remote applications like a 2nd floor, crawl spaces, and attics.
- Dehumidification mode for high latent cooling (when matched with ATP32U04Thermostat)
- I or 2" compatible filterbase.

Operating Efficiencies

- EarthPure® HFC-410A zero ozone depletion refrigerant.
- Large low RPM blowers with variable speed fan motors provide quiet, efficient air movement with high static capability.
- Exceeds ASHRAE 90.1 and Energy Star 3.0 efficiencies.*
- Highest efficiencies in AHRI/ISO/ASHRAE/ANSI 13256-1 ratings for heating COP's, cooling EER's with low water flow rates when matched with TEP/TES models.

TAH Service & Installation Advantages

- Low profile control box grants easy access to all internal components.
- Bi-directional thermal expansion valve (TXV).
- Circuit breaker protected 75VA control transformer.
- Fan motors have quick attach wiring harness for fast removal.
- · Internal dropout blower for easy servicing.
- Accurate refrigerant sensing low-temperature protection.
- Intelligent fault retry -condensate overflow protection.
- $\bullet \quad \mbox{Air coil low temperature cut-out using high accuracy thermistor.}$
- 24vac accessory relays.
- The communicating DXM2 control board diagnostic and communicating thermostat features allow the home owner to tell the service technician what is wrong with the unit before the technician leaves the shop.
- Large removable access panel provides an open servicefriendly cabinet.

Factory Quality & Industry Certifications

- All units are built on our Integrated Process Control
 Assembly System (IPCS). The IPCS is a unique state of the art
 manufacturing system that is designed to assure quality of the
 highest standards of any manufacturer in the water-source
 industry. Our IPCS system:
 - Verifies that the correct components are being assembled.
 - Automatically performs special leak tests on all joints.
 - Conducts pressure tests.
 - Performs highly detailed acceptance test unparalleled in the HVAC industry.
 - Automatically disables packaging for a "failed" unit.
 - Creates computer database for future service analysis and diagnostics from run test results.
- Heavy gauge galvanized steel cabinets are epoxy powder coated for durable and long-lasting finish.
- All refrigerant brazing is done in a nitrogen atmosphere.
- All joints are both helium and halogen leak tested to insure annual leak rate of less than 1/4 ounce.
- ClimateMaster residential class heat pumps are backed by a ten-year limited warranty on all unit parts, including the following accessories when installed with ClimateMaster units: Flow Controllers, Thermostats & Electric Heaters.
- ClimateMaster goes even further to back up its commitment to quality by including a service labor allowance for the first five years on unit parts and thermostats, auxiliary electric heaters and geothermal pumping modules.
- AHRI/ASHRAE/ANSI/ISO 13256-1 certified.
- ETL listed.
- US EPA "Energy Star" certified.

Options & Accessories

- iGate® Communicating, Programmable Thermostat (ATC32U**)
- Electronic communicating auto-changeover thermostat with 3-stage heat, 2-stage cool and indicator LED's.
- The Optional Extended Factory Service Labor Allowance Warranty offers additional length of term protection to the consumer by offsetting service labor costs for 10 years.• Internal Electric Heat for Easy Field Installation.
- Dehumidification mode for high latent cooling (when matched with ATP32U04/ATC32U03 thermostat).

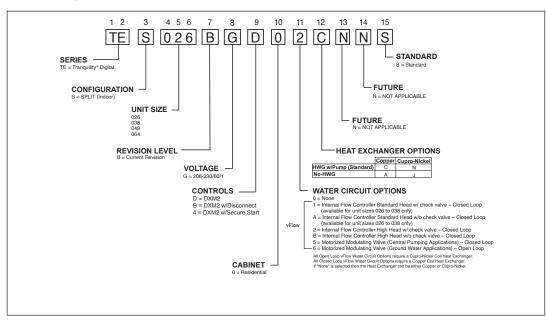
 $[\]ensuremath{^{*}}\xspace$ When matched with a ClimateMasterTranquility $\ensuremath{^{\!9}}\xspace$ split compressor sections.

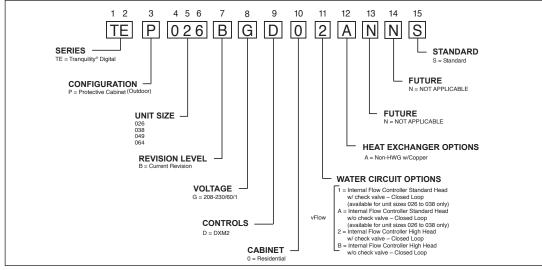
Tranquility® Digital Air Handler (TAH) Design Features

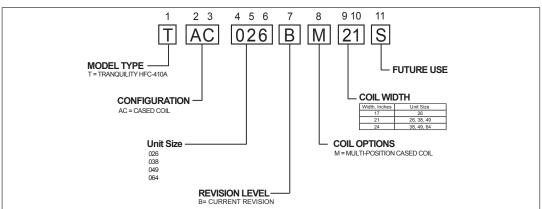
(2) Fully field convertible

Two Lift-out Service Access Panels with Stainless Steel Front Panels

4 LT2 sensor factory mounted

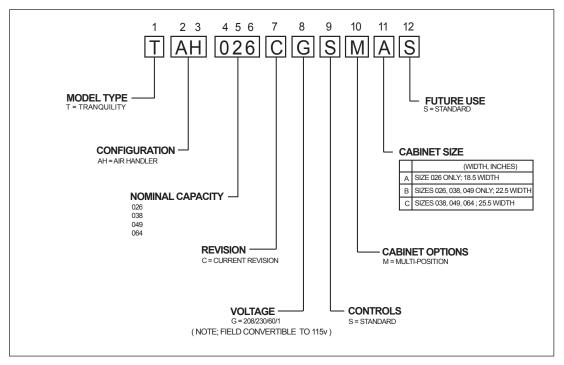

Heavy gauge galvanized steel construction with attractive pewter epoxy powder coat paint and stainless steel service access panels

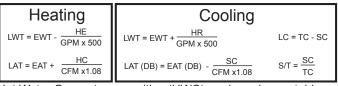

6 Condensate over-flow protection



Model Key

Unit Model Key





Model Key, Reference Calculations & Legend

Unit Model Key

Hot Water Generator capacities (HWC) are based on potable water flow rate of 0.4 gpm per nominal equipment ton and 90°F entering potable water temperature.

KW = total power unit input, KiloWatts HR = total heat of rejection, Mbtuh LAT = leaving air temperature, 'F LC = latent cooling capacity, Mbtuh S/T = sensible to total cooling ratio		 entering water temperature, °F water flow in US gallons/minute entering air temperature, Fahrenheit (dry bulb/wet bulb) air heating capacity, Mbtuh total cooling capacity, Mbtuh sensible cooling capacity, Mbtuh total power unit input, KiloWatts 	0 1 2
--	--	--	-------

About AHRI/ISO/ASHRAE 13256-1

About AHRI/ISO/ASHRAE 13256-I

AHRI/ASHRAE/ISO 13256-1 (Air-Conditioning and Refrigeration Institute/American Society of Heating, Refrigerating and Air Conditioning Engineers/International Standards Organization) is a certification standard for water-source heat pumps used in the following applications:

- WLHP (Water Loop Heat Pump Boiler/Tower)
- GWHP (Ground Water Heat Pump Open Loop)
- GLHP (Ground Loop Heat Pump Geothermal)

The directory at http://www.ahrinet.org/ is constantly being updated and immediately available on the Internet. All ratings are submitted by the manufacturer for certification, and must be approved by AHRI. Therefore, there is a significant difference between AHRI "certified" and AHRI "rated." Thirty percent of a manufacturer's basic models must be tested each year. AHRI selects models at random from stock for testing on the basis of its evaluation of a participant's certification data.

Units that fail one or more certified test (90% of declared performance or lower) may be declared defective. If the initial failure is a performance test, the manufacturer must obsolete all units within the same basic model group or elect to have a second sample tested. If the second unit fails a performance test, it must be obsoleted, together with all units within the same basic model group. ClimateMaster takes certification seriously. We were recently awarded a certificate for consecutive years of no AHRI failures.

Temperatures used in AHRI certification standards are S.I. (Système International – metric) based. For example, typical catalog data for cooling is shown at 80°F DB/67°F WB [26.7°C DB/19.4°C] entering air temperature, but the AHRI standard for cooling is 80.6°F DB/66.2°F WB [27°C DB/19°C], since it is based upon whole numbers in degrees Celsius. Water and air temperatures for the standard are shown below.

Test Condition Comparison Table

	WLHP	GWHP	GLHP
Cooling Entering Air Temperature - DB/WB °F [°C] Entering Water Temperature - °F [°C] Fluid Flow Rate	80.6/66.2 [27/19]	80.6/66.2 [27/19]	80.6/66.2 [27/19]
	86 [30]	59 [15]	77 [25]
	*	*	*
Heating Entering Air Temperature - DB/WB °F [°C] Entering Water Temperature - °F [°C] Fluid Flow Rate	68 [20]	68 [20]	68 [20]
	68 [20]	50 [10]	32 [0]
	*	*	*

^{*}Flow rate is specified by the manufacturer

Data certified by AHRI include heating/cooling capacities, EER (Energy Efficiency Ratio – Btuh per Watt) and COP (Btuh per Btuh) at the various conditions shown above. Pump power correction is calculated to adjust efficiencies for pumping Watts. Within each model, only one water flow rate is specified for all three groups, and pumping Watts are calculated using the formula below. This additional power is added onto the existing power consumption.

• Pump power correction = (gpm x 0.0631) x (Press Drop x 2990)/300

Fan power is corrected to zero external static pressure using the equation below. The nominal airflow is rated at a specific external static pressure. This effectively reduces the power consumption of the unit and increases cooling capacity but decreases heating capacity.

• Fan Power Correction = $(cfm \times 0.472) \times (esp \times 249)/300$

Capacities and efficiencies are calculated using the following equations:

- ISO Cooling Capacity = Cooling Capacity (Btuh) + [Fan Power Correction (Watts) x 3.412]
- ISO EER Efficiency (Btuh/W) =
 - ISO Cooling Capacity (Btuh)/[Power Input (Watts) Fan Power Correction (Watts) + Pump Power Correction (Watts)]
- ISO Heating Capacity = Heating Capacity (Btuh) [Fan Power Correction (Watts) x 3.412]
- ISO COP Efficiency (Btuh/Btuh) =
 - ISO Heating Capacity (Btuh) × 3.412/[Power Input (Watts) Fan Power Correction (Watts) + Pump Power Correction (Watts)]

AHRI/ISO/ASHRAE/ANSI 13256-1 Performance

ASHRAE/AHRI/ISO 13256-1. TES/TEP with Tranquility® Air Handler

	Gr	ound Water	Heat Pump		G	round Loop F	leat Pump	
Model	Cooling	g 59°F	Heating	50°F	Full Co Part Co	ol 77°F ol 68°F	Full Heat : Part Heat	المستخلصة
	Capacity Btuh	EER Btuh/W	Capacity Btuh	COP	Capacity Btuh	EER Btuh/W	Capacity Btuh	COP
*TES/P026 Part	20,400	27.8	18,700	4.8	20,900	24.0	15,300	4.0
*TES/P026 Full	25,600	22.4	24,900	4.5	25,800	17.7	18,800	3.6
**TES/P*026 Part	21,500	30.9	17,700	4.9	20,500	25.6	15,500	4.3
**TES/P026 Full	27,300	24.0	22,800	4.4	24,900	18.3	18,700	3.8
TES/P038 Part	28,800	29.7	23,700	4.8	28,200	24.7	21,000	4.3
TES/P038 Full	40,500	23.4	32,700	4.5	38,100	17.8	26,200	3.8
TES/P049 Part	40,700	29.4	34,300	4.6	39,500	23.8	29,600	4.0
TES/P049 Full	52,800	23.0	45,900	4.2	49,200	16.9	35,900	3.5
TES/P064 Part	48,100	26.0	41,700	4.3	46,000	21.7	35,900	3.8
TES/P064 Full	62,400	20.3	56,600	4.0	57,800	15.5	44,300	3.4

Cooling capacities based upon 80.6°F DB, 66.2°F WB entering air temperature Heating capacities based upon 68°F DB, 59°F WB entering air temperature Ground Loop Heat Pump ratings based on 15% methanol antifreeze solution All ratings based upon operation at lower voltage of dual voltage rated models * w/17" wide coil

ASHRAE/AHRI/ISO 13256-1. TES/TEP with Tranquility® Cased Coil

	Gr	ound Water	Heat Pump		G	round Loop H	leat Pump	
Model	Coolin	g 59°F	Heating	50°F		ol 77°F ol 68°F	Full Heat : Part Heat	
	Capacity Btuh	EER Btuh/W	Capacity Btuh	COP	Capacity Btuh	EER Btuh/W	Capacity Btuh	СОР
*TES/P026 Part	20,100	7, 11					15,800	4.4
*TES/P026 Full	25,200	22.4	22.4	4.5	24,000	17.4	18,800	3.9
**TES/P*026 Part	21,100	28.8	28.8	4.9	21,000	24.8	15,500	4.3
**TES/P026 Full	26,400	22.5 22.5 4.5		26,000	18.0	18,600	3.8	
TES/P038 Part	29,300	28.2	28.2	4.6	28,500	23.5	21,400	4.1
TES/P038 Full	40,200	22.3	22.3	4.4	38,000	17.3	26,600	3.7
TES/P049 Part	41,300	27.9	27.9	4.5	38,400	22.2	30,000	4.0
TES/P049 Full	52,000	21.3	21.3	4.2	48,400	16.4	36,000	3.5
TES/P064 Part	45,000	23.7	23.7	4.1	44,200	20.5	36,400	3.8
TES/P064 Full	58,700	19.3	19.3	3.8	54,500	15.2	44,000	3.4

Cooling capacities based upon 80.6°F DB, 66.2°F WB entering air temperature Heating capacities based upon 68°F DB, 59°F WB entering air temperature Ground Loop Heat Pump ratings based on 15% methanol antifreeze solution All ratings based upon operation at lower voltage of dual voltage rated models * w/17" wide coil ** w/21" wide coil

^{**} w/21" wide coil

Full Load Correction Factors

Air Flow Correction Table

Airflow		Hea	ating			Со	oling	
% of Nominal	Htg Cap	Power	Heat of Extraction	Total Cap	Sens Cap	S/T	Power	Heat of Rejection
60.00	0.946	1.153	0.896	0.925	0.788	0.852	0.913	0.922
68.75	0.959	1.107	0.924 0.946		0.829	0.876	0.926	0.942
75.00	0.969	1.078	0.942	0.960	0.861	0.897	0.937	0.955
81.25	0.977	1.053	0.959	0.972	0.895	0.921	0.950	0.968
87.50	0.985	1.032	0.974	0.983	0.930	0.946	0.965	0.979
93.75	0.993	1.014	0.988	0.992	0.965	0.973	0.982	0.990
100.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
106.25	1.006	0.989	1.011	1.007	1.033	1.027	1.020	1.009
112.50	1.012	0.982	1.019	1.012	1.064	1.052	1.042	1.018
118.75	1.018	0.979	1.027	1.016	1.092	1.075	1.066	1.025
125.00	1.022	0.977	1.033	1.018	1.116	1.096	1.091	1.032
130.00	1.026	0.975	1.038	1.019	1.132	1.110	1.112	1.037

Entering Air Correction Table

Full L	oad Heatir	ng Corre	ections			
Entering Air DB°F	Heating Capacity	Power	Heat of Extraction			
40	1.052	0.779	1.120			
45	1.043	0.808	1.102			
50	1.035	0.841	1.084			
55	1.027	0.877	1.065			
60	1.019	0.915	1.045			
65	1.010	0.957	1.023			
68	1.004	0.982	1.010			
70	1.000	1.000	1.000			
75	0.989	1.045	0.974			
80	0.976	1.093	0.946			

 $^{^\}star$ = Sensible capacity equals total capacity AHRI/ISO/ASHRAE 13256-1 uses entering air conditions of Cooling - 80.6°F DB/66.2°F WB, 1 and Heating - 68°F DB/59°F WB entering air temperature

						Coo	ling						
Entering Air	Total		;	Sensible	Cooling	Capacity	Multiplie	er - Enter	ng DB °F	=		Power	Heat of
WB°F	Capacity	60	65	70	75	80	80.6	85	90	95	100	1 OWCI	Rejection
45	0.832	1.346	1.461	1.603	*	*	*	*	*	*	*	0.946	0.853
50	0.850	1.004	1.174	1.357	*	*	*	*	*	*	*	0.953	0.870
55	0.880	0.694	0.902	1.115	1.331	*	*	*	*	*	*	0.964	0.896
60	0.922		0.646	0.875	1.103	1.329	1.356	*	*	*	*	0.977	0.932
65	0.975			0.639	0.869	1.096	1.123	1.320	*	*	*	0.993	0.979
66.2	0.990			0.582	0.812	1.039	1.066	1.262	1.482	*	*	0.997	0.991
67	1.000			0.545	0.774	1.000	1.027	1.223	1.444	*	*	1.000	1.000
70	1.040				0.630	0.853	0.880	1.075	1.297	1.517	*	1.011	1.035
75	1.117					0.601	0.627	0.821	1.046	1.275	1.510	1.033	1.101

^{*} Sensible capacity equals total capacity.

Part Load Correction Factors

Air Flow Correction Table

Airflow		Hea	ating			Co	oling	
% of Nominal	Htg Cap	Power	Heat of Extraction	Total Cap	Sens Cap	S/T	Power	Heat of Rejection
60.00	0.946	1.153	0.896	0.925	0.788	0.852	0.913	0.922
68.75	0.959	1.107	0.924	0.946	0.829	0.829 0.876		0.942
75.00	0.969	1.078	0.942	0.960	0.861	0.897	0.937	0.955
81.25	0.977	1.053	0.959	0.972	0.895	0.921	0.950	0.968
87.50	0.985	1.032	0.974	0.983	0.930	0.946	0.965	0.979
93.75	0.993	1.014	0.988	0.992	0.965	0.973	0.982	0.990
100.00	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
106.25	1.006	0.989	1.011	1.007	1.033	1.027	1.020	1.009
112.50	1.012	0.982	1.019	1.012	1.064	1.052	1.042	1.018
118.75	1.018	0.979	1.027	1.016	1.092	1.075	1.066	1.025
125.00	1.022	0.977	1.033	1.018	1.116	1.096	1.091	1.032
130.00	1.026	0.975	1.038	1.019	1.132	1.110	1.112	1.037

Entering Air Correction Table

Full L	oad Heatir	ng Corre	ections
Entering Air DB°F	Heating Capacity	Power	Heat of Extraction
40	1.084	0.732	1.161
45	1.073	0.764	1.140
50	1.060	0.802	1.117
55	1.046	0.846	1.090
60	1.031	0.893	1.061
65	1.016	0.945	1.031
68	1.006	0.978	1.013
70	1.000	1.000	1.000
75	0.984	1.058	0.968
80	0.968	1.117	0.936

^{* =} Sensible capacity equals total capacity AHRI/ISO/ASHRAE 13256-1 uses entering air conditions of Cooling - 80.6°F DB/66.2°F WB, 1 and Heating - 68°F DB/59°F WB entering air temperature

						Coo	ling						
Entering Air	Total		;	Sensible	Cooling	Capacity	Multiplie	r - Enteri	ng DB °F	=		Power	Heat of
WB°F	Capacity	60	65	70	75	80	80.6	85	90	95	100	1 OWC	Rejection
45	0.876	1.286	1.302	1.389	*	*	*	*	*	*	*	0.981	0.895
50	0.883	1.002	1.099	1.241	*	*	*	*	*	*	*	0.985	0.901
55	0.903	0.706	0.871	1.060	1.271	*	*	*	*	*	*	0.989	0.918
60	0.935		0.617	0.844	1.079	1.319	1.349	*	*	*	*	0.993	0.945
65	0.979				0.849	1.096	1.128	1.342	*	*	*	0.998	0.982
66.2	0.991			0.531	0.789	1.040	1.070	1.284	1.522	*	*	0.999	0.993
67	1.000			0.486	0.747	1.000	1.030	1.245	1.481	*	*	1.000	1.000
70	1.035				0.583	0.842	0.873	1.090	1.327	1.552	*	1.003	1.030
75	1.105	0.552 0.584 0.811 1.057 1.290 1.510							1.510	1.008	1.086		

^{*} Sensible capacity equals total capacity.

Performance Data Selection Notes – vFlow Models

Operation in Shaded Area: Closed Loop Application

For operation in the shaded area, appropriate levels of a proper antifreeze should be used in systems with leaving water temperatures of 40°F or below and the JW3 jumper should be clipped. This is due to the potential of the refrigerant temperature being as low as 32°F [0°C] with 40°F [4.4°C] LWT, which may lead to a nuisance cutout due to the activation of the Low Temperature Protection. JW3 should never be clipped for systems without antifreeze.

Open Loop Application:

For operation in shaded area (below 40°F LWT) in open loop applications, ΔT (on DXM2) should be set such that the LWT (=EWT - ΔT) doesn't drop below 40°F. JW3 should NEVER be clipped for systems without antifreeze.

						_	\			
		omme	nded in	this ran	ge. Also	Clip JW	3 on DX	M2 box		
			Heatir	ng - EA	AT 70°I	F				
	р БТ	CFM	НС	kW	СОР	HE	LAT	LWT	HWC	\
5 .5 .7	5.8	725 850	11.3 11.5	1.1 1.1	2.9 3.1	7.4 7.7	84 82	16.7 16.6	1.2	\
.5 .7 .7 .3 .3 0	5.8 1.7 1.7 3.0 3.0 4.6 4.6 1.2 1.2 2.4 9.4	725 850 725 850 725 850 725 850 725 850 725 850 725	12.5 12.7 13.1 13.2 13.4 13.5 14.5 14.7 15.2 15.4 15.6 15.8	1.1 1.1 1.1 1.1 1.1 1.2 1.1 1.2 1.1 1.2 1.1	3.2 3.4 3.3 3.5 3.4 3.6 3.7 3.9 4.1 4.0 4.2	8.6 8.9 9.1 9.5 9.4 9.8 10.6 10.9 11.3 11.7 11.7 12.1	86 84 87 84 87 85 89 86 89 87 90 87	22.4 22.1 24.6 24.4 25.8 25.7 30.6 30.3 33.4 33.1 34.8 34.6	1.2 1.4 1.3 1.4 1.4 1.4 1.6 1.5 1.6	
			16.8	1.1	4.4 4.4 4.7	13.0 13.5	88			

Performance Data Selection Notes - Models without vFlow™

For operation in the shaded area when water is used in lieu of an antifreeze solution, the LWT (Leaving Water Temperature) must be calculated. Flow must be maintained to a level such that the LWT is maintained above 40°F [4.4°C] when the JW3 jumper is not clipped (see example below). Otherwise, appropriate levels of a proper antifreeze solution should be used in systems with leaving water temperatures of 40°F [4.4°C] or below and the JW3 jumper should be clipped. This is due to the potential of the refrigerant temperature being as low as 32°F [0°C] with 40°F [4.4°C] LWT, which may lead to a nuisance cutout due to the activation of the Low Temperature Protection. JW3 should never be clipped for standard range equipment or systems without antifreeze.

Example:

At 50°F EWT (Entering Water Temperature) and 1.5 gpm/ton, a 3 ton unit has a HE of 22,500 Btuh. To calculate LWT, rearrange the formula for HE as follows:

 $HE = TD \times GPM \times 500$, where HE = Heat of Extraction (Btuh); TD = temperature difference (EWT - LWT) and GPM = U.S. Gallons per Minute.

 $TD = HE / (GPM \times 500)$

 $TD = 22,500 / (4.5 \times 500)$

 $TD = 10^{\circ}F$

LWT = EWT - TD

LWT = 50 - 10 = 40°F

			/				
			Н	eating -	EAT 70)°F	
	€R	Airflow CFM	НС	kW	HE	LAT	СОР
		825 710	11.7 13.6	1.02 1.09	8.4 10.1	83.2 87.8	3.38 3.66
	38.3 39.2	825 710	13.8 14.2	1.06 1.09	10.3 10.7	85.5 88.5	3.81 3.81
	39.2 39.8	825 710	14.4 14.4	1.06 1.09	10.9 10.9	86.1 88.8	3.97 3.86
l	39.8	825	14.6	1.06	11.1	86.3	4.02
\vdash	35.3 35.3	710 825	16.1 16.2	1.15 1.12	12.3 12.6	90.9 88.2	4.08 4.25
\	37.9 37.9	710 825	16.7 16.9	1.15 1.12	13.0 13.3	91.8 89.0	4.25 4.42
\	38.3 38.3	710 825	16.9 17.1	1.16 1.12	13.2 13.5	92.1 89.2	4.30 4.47
	30.7	710	18.3	1.18	14.5	93.9	4.56
	30.7 8.4	825 710	18.5 19.1	1.14 1.18	14.8 15.2	90.8 94.8	4.75 4.73
	X	825 710	19.3 19.3	1.15 1.18	15.5 15.4	91.6 95.1	4.93 4.78
	`	825	19.5	1.15	15.7	91.9	4.98
		10	20.4	1.21 1.18	16.5 16.8	96.6 93.2	4.0
				1.22	17.3	92.2	

In this example, as long as the EWT does not fall below 50°F, the system will operate as designed. For EWTs below 50°F, higher flow rates will be required (open loop systems, for example, require at least 2 gpm/ton when EWT is below 50°F).

Performance Data Selection Notes – vFlow Models

Antifreeze Correction Table

			Cooling		Hea	ting	WPD
Antifreeze Type	Antifreeze %		EWT 90°F		EWT	30°F	Corr. Fct.
		Total Cap	Sens Cap	Power	Htg Cap	Power	EWT 30°F
Water	0	1.000	1.000	1.000	1.000	1.000	1.000
	5	0.995	0.995	1.003	0.989	0.997	1.070
Propylene Glycol	15	0.986	0.986	1.009	0.968	0.990	1.210
	25	0.978	0.978	1.014	0.947	0.983	1.360
	5	0.997	0.997	1.002	0.989	0.997	1.070
Methanol	15	0.990	0.990	1.007	0.968	0.990	1.160
	25	0.982	0.982	1.012	0.949	0.984	1.220
	5	0.998	0.998	1.002	0.981	0.994	1.140
Ethanol	15	0.994	0.994	1.005	0.944	0.983	1.300
	25	0.986	0.986	1.009	0.917	0.974	1.360
	5	0.998	0.998	1.002	0.993	0.998	1.040
Ethylene Glycol	15	0.994	0.994	1.004	0.980	0.994	1.120
	25	0.988	0.988	1.008	0.966	0.990	1.200

Performance Data — TES/TEP026 Part Load With vFlow

950 CFM Nominal Airflow Heating, 850 CFM Nominal Airflow Cooling

Performance capacities shown in thousands of Btuh

950 CFM	60 CFM Nominal Airflow Heating, 850 CFM Nominal Airflow Cooling												Performance capacities shown in thousands of Btuh											
	Cooling - EAT 80/67°F												Heating - EAT 70°F											
°F	GPM	PSI	PD FT	CFM	тс	sc	kW	HR	EER	LWT	TTS HWC	TTP HWC	GPM	PSI	PD FT	CFM		kW	HE	СОР	LAT	LWT	TTS HWC	TTP HWC
20	1.0 1.0	0.4 0.4	1.0 1.0	590 725	23.1	14.7 16.4	0.81	25.9	29.2 28.5	70.0 70.0	0.9 0.9	0.8	4.5 4.5	2.5 2.5	5.8 5.8	670 825	11.4 11.7	1.15	7.7	2.8 3.0	85.8 83.1	16.8 16.6	1.1 1.2	1.1 1.1
30	1.3 1.3 1.3 1.3 1.3	0.3 0.3 0.3 0.3 0.3 0.3	0.7 0.7 0.7 0.7 0.7 0.7	590 725 590 725 590 725	23.1 22.5 23.1 22.5 23.1		0.81 0.77 0.81 0.77 0.81	25.9 25.1 25.9 25.1 25.9		70.0 70.0 70.0 70.0 70.0 70.0	0.9 0.9 0.9 0.9 0.9	0.8 0.9 0.8 0.9 0.8 0.9	2.3 2.3 3.4 3.4 4.5 4.5	0.7 0.7 1.3 1.3 2.0 2.0	1.7 1.7 3.0 3.0 4.6 4.6	670 825 670 825 670 825	13.0 13.3 13.6 14.0 14.0 14.4	1.14 1.20 1.14 1.20 1.14	9.4 9.5 10.1 9.9 10.5		87.9 84.9 88.9 85.7 89.4 86.1	22.3 21.8 24.4 24.1 25.6 25.4	1.3 1.3 1.4 1.4 1.3	1.2 1.2 1.3 1.3 1.3
40	1.7 1.7 1.7 1.7 1.7	0.3 0.3 0.3 0.3 0.3 0.3	0.8 0.8 0.8 0.8 0.8	590 725 590 725 590 725	23.1 22.5 23.1 22.5	14.7 16.4 14.7	0.81 0.77 0.81 0.77	25.9 25.1 25.9 25.1	29.2 28.5 29.2	70.0 70.0 70.0 70.0 70.0 70.0	0.9 0.9 0.9 0.9 0.9	0.8 0.9 0.8 0.9 0.8 0.9	2.3 2.3 3.4 3.4 4.5 4.5	0.5 0.5 1.0 1.0 1.6 1.6	1.2 1.2 2.4 2.4 3.8 3.8	670 825 670 825 670 825	15.3 15.7 16.2 16.6 16.7 17.1	1.14 1.21 1.15 1.21	11.8 12.1 12.6 12.5	4.0 3.9 4.2 4.0	91.2 87.6 92.4 88.6 93.0 89.2	30.2 29.7 32.9 32.6 34.4 34.2	1.5 1.5 1.5 1.6 1.6	1.4 1.4 1.5 1.5 1.5
50	2.3 2.6 2.6 2.6 2.6 2.6	0.5 0.5 0.6 0.6 0.6 0.6	1.0 1.3 1.3 1.3 1.3	590 725 590 725 590 725	22.9 22.5 23.1 22.5	14.7 16.4 14.7 16.4 14.7 16.4	0.83 0.77 0.81 0.77	25.7 25.1 25.9 25.1	28.2 27.6 29.2 28.5 29.2 28.5	71.7 72.4 70.0 70.0 70.0 70.0	1.1 1.1 0.9 0.9 0.9 0.9	1.0 1.0 0.8 0.9 0.8 0.9	2.3 2.3 3.4 3.4 4.5 4.5	0.4 0.4 0.9 0.9 1.4 1.4	1.0 1.0 2.0 2.0 3.2 3.2	670 825 670 825 670 825	17.7 18.1 18.7 19.1 19.3 19.7	1.15 1.21 1.15 1.21	14.2 14.6 15.2 15.1	4.6 4.5 4.9 4.7	94.5 90.3 95.9 91.5 96.6 92.1	38.2 37.6 41.4 41.0 43.3 43.0	1.6 1.7 1.7 1.8 1.7 1.8	1.5 1.6 1.6 1.7 1.7
60	2.3 2.3 3.4 3.4 4.5 4.5	0.4 0.4 0.8 0.8 1.3	1.0 1.0 1.8 1.8 2.9 2.9	590 725 590 725 590 725	22.0 22.0 22.7 22.3	16.0 14.6 16.3 14.7	0.95 0.82 0.86 0.78	24.4 25.2 24.8 25.6 25.0 25.8	23.1 27.0 26.4 28.7	81.3 81.9 74.6 75.1 71.1 71.5	1.5 1.5 1.2 1.2 1.0 1.0	1.4 1.4 1.1 1.1 0.9 1.0	2.3 2.3 3.4 3.4 4.5 4.5	0.4 0.4 0.8 0.8 1.3	1.0 1.0 1.8 1.8 2.9 2.9	670 825 670 825 670 825	20.0 20.5 21.1 21.6 21.7 22.2	1.16 1.22 1.16 1.23	17.0 17.7 17.5	5.2 5.1 5.5 5.2	97.7 93.0 99.2 94.3 100.0 95.0		1.8 1.9 1.9 1.9 1.9 2.0	1.7 1.8 1.8 1.8 1.8 1.9
70	2.3 2.3 3.4 3.4 4.5 4.5	0.5 0.5 0.8 0.8 1.2 1.2	1.1 1.1 1.8 1.8 2.7 2.7	590 725 590 725 590 725	20.3 20.9 21.1 21.7 21.4	13.9 15.6 14.2 15.9 14.4	1.04 1.09 0.94 0.99 0.89	23.8	19.6 19.2 22.4 21.9 24.0	90.7 91.4 84.3 84.7 80.9 81.2	1.9 2.0 1.5 1.6 1.4	1.8 1.9 1.5 1.5 1.3	2.3 2.3 3.4 3.4 4.5 4.5	0.4 0.4 0.8 0.8 1.2 1.2	1.0 1.0 1.8 1.8 2.7 2.7	670 825 670 825 670 825	22.2 22.7 23.4 23.9 24.0 24.5	1.23 1.17 1.23 1.17 1.24	18.0 18.7 19.2 19.9 19.7	5.3 5.7 5.6 6.0 5.7	100.7 95.5 102.3 96.8 103.1 97.5	53.7 58.7 58.3	2.0 2.0 2.0 2.1 2.1 2.2	1.9 1.9 1.9 2.0 2.0 2.1
80	2.3 2.3 3.4 3.4 4.5 4.5	0.5 0.5 0.8 0.8 1.2 1.2	1.2 1.8 1.8 2.7 2.7	590 725 590 725 590 725	19.1 19.7 19.9 20.5 20.3	13.5 15.1 13.8 15.4 14.0	1.19 1.25 1.08 1.14 1.04	23.2 24.0	16.1 15.8 18.4 18.0 19.6	100.2 100.8 93.9 94.4 90.6 91.0	2.6	2.5 2.6 2.0 2.1 1.8 1.9	2.3 2.3 2.9 2.9 2.9 2.9	0.5 0.5 0.6 0.6 0.6 0.6	1.1 1.5 1.5 1.5 1.5	670 825 670 825 670 825	24.2 24.8 24.9 25.5 24.9 25.5	1.24 1.18 1.25 1.19 1.25	20.0 20.8 20.6 21.4 20.6	5.7 6.2 5.8 6.3 5.8		62.6 61.9 65.0 65.0	2.1 2.2 2.2 2.2 2.2 2.2	2.0 2.1 2.1 2.1 2.1 2.1 2.1
90	2.3 2.3 3.4 3.4 4.5 4.5	0.5 0.5 0.8 0.8 1.2 1.2	1.2 1.2 1.9 1.9 2.7 2.7	590 725 590 725 590 725 590 725	18.0 19.3 18.8 19.3 19.2	13.0 14.9 13.3 14.9 13.5	1.36 1.31 1.24 1.31 1.19	22.6 23.8 23.0 23.8 23.2	13.2 14.7 15.1 14.7	109.7 110.3 103.5 104.0 100.3	3.4 2.9 2.8 2.9 2.6	3.2 2.8 2.7 2.8 2.5 2.5	1.7 1.7 1.7 1.7 1.7	0.4 0.4 0.4 0.4 0.4 0.4	1.0 1.0 1.0 1.0 1.0 1.0	670 825 670 825 670 825	24.9 25.5 24.9 25.5 24.9 25.5 24.9	1.25 1.19 1.25 1.19 1.25	20.6 21.4 20.6 21.4 20.6	5.8 6.3 5.8 6.3 5.8	104.4 98.6 104.4 98.6 104.4 98.6	65.0 65.0 65.0 65.0	2.2 2.2 2.2 2.2 2.2 2.2 2.2	2.1 2.1 2.1 2.1 2.1 2.1 2.1
100	2.3 2.3 3.4 3.4 4.5 4.5	0.5 0.5 0.8 0.8 1.2 1.2	1.2 1.2 1.9 1.9 2.7 2.7	590 725 590 725 590 725	17.4 17.6 18.1 18.0	14.2 12.9 14.4 13.0	1.64 1.43 1.50 1.37	23.0 22.5 23.2 22.6	10.8 10.6 12.3 12.1 13.1 12.8	120.0 113.2 113.7 110.1	4.4 3.7 3.8 3.4	4.0 4.2 3.5 3.6 3.2 3.3	1.2 1.2 1.2 1.2 1.2 1.2	0.4 0.4 0.4 0.4 0.4 0.4	0.9 0.9 0.9 0.9 0.9	670 825 670 825 670 825	24.9 25.5 24.9 25.5 24.9 25.5	1.19 1.25 1.19 1.25	21.4 20.6 21.4 20.6	6.3 5.8 6.3 5.8	104.4 98.6 104.4	65.0	2.2 2.2 2.2 2.2 2.2 2.2	2.1 2.1 2.1 2.1 2.1 2.1
110	2.3 2.3 3.4 3.4 4.5 4.5	0.8 0.8 1.1 1.1	1.1 1.8 1.8 2.6 2.6	590 725 590 725	16.5 16.6 17.0 16.9 17.4	13.9 12.6 14.0 12.7 14.1	1.86 1.62 1.71 1.56 1.64	22.9 22.2 23.0	8.8 10.2 10.0 10.8 10.6	123.0 123.5 119.9 120.2	5.5 4.6 4.8 4.4 4.5	5.1 5.2 4.4 4.6 4.1 4.3	1.0 1.0 1.0 1.0 1.0 1.0	0.3 0.3 0.3 0.3 0.3 0.3	0.7 0.7 0.7 0.7 0.7 0.7	825 670 825	24.9 25.5 24.9 25.5 24.9 25.5	1.19 1.25 1.19 1.25 1.19	21.4 20.6 21.4 20.6 21.4	6.3 5.8 6.3 5.8 6.3	104.4 98.6 104.4 98.6	65.0 65.0 65.0 65.0 65.0	2.2 2.2 2.2 2.2 2.2 2.2	2.1 2.1 2.1 2.1 2.1 2.1
120	2.3 2.3 3.4 3.4 4.5 4.5	0.7 0.7	0.8 0.8 1.5 1.5 2.4 2.4	590 725 590	15.8 15.7 16.2 16.0	13.9 12.4 13.9 12.4	2.11 1.85 1.95 1.78	22.0 22.8 22.0	7.5 8.5 8.3	139.3 140.0 133.0 133.4 129.8 130.1	6.8 5.8 6.0 5.4	6.3 6.5 5.5 5.7 5.1 5.3	0.8 0.8 0.8 0.8 0.8 0.8	0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.2 0.2 0.2 0.2 0.2	670	24.9 25.5 24.9 25.5 24.9 25.5	1.19 1.25 1.19 1.25	21.4 20.6 21.4 20.6	6.3 5.8 6.3	98.6 104.4 98.6 104.4	65.0 65.0	2.2 2.2 2.2 2.2 2.2 2.2	2.1 2.1 2.1 2.1 2.1 2.1

Interpolation is permissable, extrapolation is not.

All performance data is based upon the lower voltage of dual voltage rated units See performance correction tables for operating conditions other than those listed above. Flow is controlled to maintain minimum LWT 70 $^{\circ}$ F in cooling and maximum LWT 65 $^{\circ}$ F in heating. Contact factory for performance data of non-vFlow units.

For operation in the shaded areas, please see the Performance Data Selection Notes page. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. Operation at or below 40° F EWT is based on 15% methanol antifreeze solution.

Performance Data — TES/TEP026 Full Load With vFlow

950 CFM Nominal (Rated) Airflow Heating, 850 CFM Nominal (Rated) Airflow Cooling

Performance capacities shown in thousands of Btuh

950 CFIV	Nomir	nal (Rated) A	irflow H	eating	, 850	CFM N	Nomina	al (Rate	d) Airfl	ow Coo	ing			Perfo	rmance	capad	cities s	shown	in thou	sands	of Btuh		
EWT			(Coolir	ng - I	EAT	80/67	7°F								Hea	ting	- EA	T 70°F	=			
°F	GPM	WPD	CFM	TC	SC	1/1/1	μр	EER	I VA/T	TTS	TTP	GPM	W	PD	CFM	ПС	L\\/	HE	СОР	LAT	LWT	TTS	TTP
	OI IVI	PSI FT	CI IVI	TC	30	kW	HR		LVVI	HWC	HWC	OI IVI	PSI	FT	CI IVI	HC	kW			LAI	LVVI	HWC	HWC
20	1.4	0.6 1.4	690					25.0	70.0	1.4	1.3	6.0	3.7	8.6	770		1.54		3.0	89.0	16.5	1.5	1.5
20	1.4 1.7	0.6 1.4 0.5 1.1	850 690				33.9	24.4 25.0	70.0 70.0	1.4 1.3	1.3 1.3	6.0 3.0	3.7 1.1	8.6 2.5	950 770		1.46		3.2	85.7	16.3 21.6	1.6 1.6	1.5 1.6
	1.7	0.5 1.1	850			1.16 1.22	33.9		70.0	1.4	1.3	3.0	1.1	2.5	950		1.58 1.50		3.3 3.6	91.6 88.0	21.0	1.7	1.6
30	1.7	0.5 1.2	690	28.9	17.9	1.16	32.9	25.0	70.0	1.3	1.3	4.5	2.0	4.6	770	19.1	1.59	13.6	3.5	92.9	23.9	1.8	1.7
00	1.7 1.7	0.5 1.2 0.5 1.2	850 690				33.9 32.9		70.0 70.0	1.4 1.3	1.3 1.3	4.5 6.0	2.0	4.6 7.1	950 770	19.5 19.6	1.51		3.8 3.6	89.0 93.6	23.6 25.3	1.9 1.8	1.8 1.7
	1.7	0.5 1.2	850				33.9		70.0	1.4	1.3	6.0	3.1	7.1	950		1.52		3.9	89.6	25.0	1.9	1.8
	2.3	0.5 1.2	690			1.16			70.0	1.3	1.2	3.0	0.9	2.0	770		1.62		3.8	95.5	29.6	2.0	1.9
	2.3 2.3	0.5 1.2 0.5 1.2	850 690				33.9 32.9		70.0 70.0	1.4 1.3	1.3 1.2	3.0 4.5	0.9 1.6	2.0 3.8	950 770		1.54 1.64		4.1 4.0	91.1 96.9	29.0 32.6	2.1 2.1	2.0 2.0
40	2.3	0.5 1.2	850				33.9		70.0	1.4	1.3	4.5	1.6	3.8	950		1.56		4.3	92.3	32.2	2.2	2.1
	2.3	0.5 1.2	690				32.9		70.0	1.3	1.2	6.0	2.6	6.0	770		1.65		4.1	97.6	34.2	2.2	2.1
	3.0	0.5 1.2 0.7 1.6	850 690				33.9 32.8		70.0 71.8	1.4 1.5	1.3 1.4	6.0 3.0	2.6 0.7	6.0 1.6	950 770		1.57 1.67		4.4 4.2	92.9 98.9	34.0 37.8	2.3	2.2
	3.0	0.7 1.6	850	29.5	19.9	1.26	33.8	23.4	72.5	1.5	1.4	3.0	0.7	1.6	950	24.6	1.59	19.1	4.5	93.9	37.2	2.5	2.4
50	3.4 3.4	0.8 1.8 0.8 1.8	690 850				32.9 33.9		70.0 70.0	1.3 1.4	1.3 1.3	4.5 4.5	1.4 1.4	3.2 3.2	770 950		1.70 1.61		4.3 4.7	100.2 95.1	41.4 41.0	2.5 2.6	2.4 2.5
	3.4	0.8 1.8	690				32.9		70.0	1.3	1.3	6.0	2.3	5.2	770		1.68		4.2	99.3	43.8	2.6	2.5
	3.4	0.8 1.8	850			1.22		24.4	70.0	1.4	1.3	6.0	2.3	5.2	950		1.60		4.6	94.3	38.5	2.7	2.6
	3.0 3.0	0.7 1.6 0.7 1.6	690 850			1.32		20.9 20.4	81.4 82.1	1.8 1.9	1.7 1.8	3.0 3.0	0.7 0.7	1.5 1.5	770 950		1.73 1.64		4.5 4.8	101.8 96.4	46.3 45.7	2.7 2.8	2.6 2.7
60	4.5	1.3 3.0	690					23.2	74.5	1.5	1.5	4.5	1.3	2.9	770		1.75		4.6	103.1	50.4	2.9	2.8
60	4.5	1.3 3.0	850					22.7	75.0	1.6	1.5	4.5	1.3	2.9	950		1.66		5.0	97.5	50.0	3.0	2.9
	6.0 6.0	2.0 4.6 2.0 4.6	690 850				32.8 33.9		70.9 71.3	1.4 1.4	1.3 1.3	6.0 6.0	2.0	4.7 4.7	770 950		1.76 1.67		4.7 5.1	103.8 98.0	52.6 52.3	3.0 3.1	2.9 2.9
	3.0	0.6 1.4	690				31.3		90.9	2.3	2.2	3.0	0.6	1.5	770		1.77		4.7	104.4		3.1	2.9
	3.0 4.5	0.6 1.4 1.2 2.8	850 690				32.4 31.9	17.5	91.6 84.2	2.4 1.9	2.3 1.8	3.0 4.5	0.6 1.2	1.5 2.7	950 770		1.68 1.80		5.1 4.8	98.5 105.7	54.3	3.2 3.3	3.0 3.1
70	4.5	1.2 2.8	850					19.6	84.6	2.0	1.9	4.5	1.2	2.7	950		1.71		5.2	99.6	59.1	3.4	3.1
	6.0	1.9 4.4	690					21.1	80.7	1.8	1.7	6.0	1.9	4.4	770		1.81		4.9	106.4		3.4	3.2
	3.0	1.9 4.4 0.7 1.6	850 690					20.7 15.2	81.1 100.4	1.9 3.0	1.8 2.9	6.0 3.0	1.9 0.7	4.4 1.5	950 770		1.72 1.82		5.3 4.9	100.2 106.7		3.5	3.3
	3.0	0.7 1.6	850			1.73		14.8	101.0	3.1	2.9	3.0	0.7	1.5	950		1.73		5.3	100.5		3.5	3.3
80	4.5	1.2 2.8 1.2 2.8	690				31.1		93.8	2.5 2.6	2.4 2.5	3.4 3.4	0.8	1.8 1.8	770 950		1.83		5.0	107.2		3.5	3.3
	4.5 6.0	1.2 2.0	850 690					16.7 18.2	94.3 90.5	2.3	2.2	3.4	8.0 8.0	1.8	770		1.74 1.83		5.3 5.0	100.9 107.2		3.6 3.5	3.4 3.3
	6.0	1.8 4.2	850					17.8	90.8	2.4	2.3	3.4	0.8	1.8	950	31.7	1.74	25.8	5.3	100.9		3.6	3.4
	3.0 3.0	0.7 1.6 0.7 1.6	690 850				29.9 31.4	12.8 14.1	110.0	3.7 3.3	3.5 3.1	2.1 2.1	0.5 0.5	1.2 1.2	770 950		1.83 1.74		5.0 5.3	107.2 100.9		3.5 3.6	3.3 3.4
90	4.5	1.2 2.8	690			1.70			103.5	3.2	3.0	2.1	0.5	1.2	770		1.83		5.0	107.2		3.5	3.3
90	4.5	1.2 2.8	850					14.1			3.1	2.1	0.5	1.2	950		1.74		5.3	100.9		3.6	3.4
	6.0 6.0	1.8 4.2 1.8 4.2	690 850			1.63 1.72		15.3 15.0	100.2 100.5		2.8 2.9	2.1 2.1	0.5 0.5	1.2 1.2	770 950		1.83 1.74		5.0 5.3	107.2 100.9		3.5 3.6	3.3 3.4
	3.0	0.7 1.6	690					10.8			4.2	1.5	0.4	0.9	770		1.83			107.2		3.5	3.3
	3.0 4.5	0.7 1.6 1.2 2.8	850 690					10.6 12.2			4.4 3.7	1.5 1.5	0.4 0.4	0.9		31.7 31.0			5.3	100.9 107.2		3.6 3.5	3.4
100	4.5	1.2 2.8 1.2 2.8						11.9			3.8	1.5	0.4	0.9		31.7				107.2		3.6	3.3 3.4
	6.0	1.8 4.2	690	23.7	15.9	1.83	29.9	12.9	110.0	3.7	3.5	1.5	0.4	0.9	770	31.0	1.83	24.7	5.0	107.2	65.0	3.5	3.3
	6.0 3.0	1.8 4.2 0.7 1.6	850 690				31.0 29.8	12.6 9.2	110.3 129.9		3.6 5.1	1.5 1.1	0.4	0.9	950 770	31.7 31.0				100.9 107.2		3.6 3.5	3.4
	3.0	0.7 1.6						9.0			5.2	1.1	0.3	0.7		31.7	1.74	25.8	5.3	100.9		3.6	3.4
110	4.5	1.1 2.5	690					10.3			4.5	1.1	0.3	0.7	770	31.0				107.2		3.5	3.3
	4.5 6.0	1.1 2.5 1.7 3.9						10.0 10.9			4.7 4.2	1.1 1.1	0.3	0.7 0.7	950 770	31.7 31.0				100.9 107.2		3.6 3.5	3.4 3.3
	6.0	1.7 3.9	850	23.2	17.2	2.18	30.6	10.6	120.2	4.6	4.4	1.1	0.3	0.7	950	31.7	1.74	25.8	5.3	100.9	65.0	3.6	3.4
	3.0	0.5 1.2						7.9 7.8			6.0	0.9	0.1	0.2		31.0				107.2 100.9		3.5	3.3
400	3.0 4.5	0.5 1.2 1.0 2.3						7.8 8.8			6.2 5.3	0.9 0.9	0.1 0.1	0.2	950 770	31.7 31.0				100.9		3.6 3.5	3.4 3.3
120	4.5	1.0 2.3	850	22.3	16.7	2.60	31.1	8.6	133.8	5.8	5.5	0.9	0.1	0.2	950	31.7	1.74	25.8	5.3	100.9	65.0	3.6	3.4
	6.0 6.0	1.7 3.9 1.7 3.9						9.2			5.1 5.2	0.9	0.1	0.2		31.0				107.2		3.5 3.6	3.3
	0.0	1.1 3.9	000	22.4	10.8	∠.4ŏ	JU.9	9.0	130.3	ე.ე	5.2	0.9	0.1	U.Z	900	S1./	1./4	∠ე.გ	5.3	100.9	03.0	ა.ნ	3.4

Interpolation is permissable, extrapolation is not. All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above. Data shown is for units equipped with vFlow technology, flow is controlled to maintain a minimum LWT 70 F degrees in cooling and maximum 65 F degrees in heating. Contact the factory for performance data of non-vFlow units. Operation at or below 40° F EWT is based on 15% methanol antifreeze solution.

Flow is controlled to maintain minimum LWT 70° F in cooling and maximum LWT 65° F in heating. Contact factory for performance data of non-vFlow units.
For operation in the shaded areas, please see the Performance Data Selection Notes page.

Table does not reflect fan or pump power corrections for AHRI/ISO conditions.

Performance Data — TES/TEP038 Part Load With vFlow

1000 CF	M Nom	inal Airflo	ow H	leating,	1000	CFM I	Nomin	al Airfl	ow Coo	oling			Per	formar	ice cap	pacities :	shown	in the	usan	ds of Btu	uh			
		Cooling - EAT 80/67°F WPD CEM TO SO KW HB EER LWT T															Hea	ting	- EA	T 70°F	=			
EWT		WPD)								TTS	TTP		W	PD								TTS	TTP
,	GPM	PSI I	FT	CFM	TC	SC	kW	HR	EER	LWT	HWC	HWC	GPM	PSI	FT	CFM	HC	kW	HE	COP	LAT	LWT	HWC	HWC
20	1.4 1.4		2.3	810 1000		18.6 20.8		33.2	31.2 30.5	70.0 70.0	1.2 1.2	1.1 1.1	6.0 6.0	4.9 4.9	11.2 11.2	810 1000	15.9 16.3			3.0 3.2	88.2 85.1	16.5 16.3	1.6 1.7	1.6 1.6
	1.7		1.6	810				33.2		70.0	1.2	1.1	3.0	1.5	3.4	810	17.7			3.3	90.2	21.8	1.7	1.7
	1.7		1.6	1000		20.8			30.5	70.0	1.2	1.1	3.0	1.5	3.4	1000	18.1			3.6	86.8	21.3	1.8	1.7
30	1.7 1.7		1.6 1.6	810 1000	29.9 30.8	18.6		33.2 34.2	31.2 30.5	70.0 70.0	1.2 1.2	1.1 1.1	4.5 4.5	2.6 2.6	6.0 6.0	810 1000	18.6 19.0			3.5 3.7	91.2 87.6	24.1 23.8	1.8 1.9	1.7 1.8
	1.7		1.6	810		18.6			31.2	70.0	1.2	1.1	6.0	3.8	8.9	810	19.0			3.5	91.8	25.4	1.9	1.8
	1.7	0.7 1	1.6	1000	30.8	20.8	1.01	34.2	30.5	70.0	1.2	1.1	6.0	3.8	8.9	1000	19.5	1.50	14.4	3.8	88.1	25.2	2.0	1.9
	2.3 2.3		1.6 1.6	810 1000		18.6			31.2	70.0 70.0	1.2 1.2	1.1	3.0	1.1	2.5	810 1000	20.5 21.0			3.8	93.4	30.0 29.4	2.0 2.1	1.9
40	2.3		1.6	810				34.2 33.2		70.0	1.2	1.1 1.1	3.0 4.5	1.1 2.0	4.7	810	21.5			4.1 4.0	89.4 94.6	32.9	2.1	2.0 2.0
40	2.3		1.6					34.2		70.0	1.2	1.1	4.5	2.0	4.7		22.0				90.4	32.5	2.2	2.1
	2.3		1.6	810				33.2		70.0	1.2	1.1	6.0	3.1	7.2	810	22.1			4.1	95.2	34.5	2.2	2.1
	3.0		1.6 2.0	1000 810		18.6		34.2	30.5 29.8	70.0 72.1	1.2 1.3	1.1 1.2	6.0 3.0	3.1 0.9	7.2 2.0	1000 810	22.6			4.4 4.2	90.9 96.5	34.2	2.3	2.2
	3.0		2.0			20.8			29.1	72.8	1.3	1.2	3.0	0.9	2.0	1000	23.7			4.6	92.0	37.7	2.4	2.3
50	3.4		2.4	810				33.2		70.0	1.2	1.1	4.5	1.7	3.9	810	24.3			4.4	97.8	41.6	2.4	2.3
	3.4 3.4		2.4 2.4	1000 810				34.2 33.2		70.0 70.0	1.2 1.2	1.1 1.1	4.5 6.0	1.7 2.7	3.9 6.2	1000 810	24.9 24.9			4.8 4.5	93.0 98.5	41.3 43.5	2.5 2.5	2.4 2.4
	3.4		2.4	1000		20.8			30.5	70.0	1.2	1.1	6.0	2.7	6.2	1000	25.5			4.9	93.6	43.2	2.6	2.5
	3.0		1.8	810				32.7		81.8	1.8	1.7	3.0	0.8	1.8	810	25.8				99.4	46.5	2.6	2.5
	3.0 4.5		1.8 3.5	1000 810				33.7 33.0		82.5 74.7	1.9 1.4	1.8 1.3	3.0 4.5	0.8 1.5	1.8 3.5	1000 810	26.4 27.0			5.0 4.9	94.4 100.9	45.9 50.4	2.7 2.7	2.6 2.6
60	4.5		3.5					34.1		75.1	1.4	1.3	4.5	1.5	3.5		27.7				95.6	50.4	2.7	2.7
	6.0	2.4 5	5.5	810	29.8	18.6	0.98	33.1	30.5	71.0	1.3	1.2	6.0	2.4	5.6	810	27.7	1.63	22.1	5.0	101.7	52.6	2.8	2.7
	6.0		5.5					34.2		71.4	1.3	1.2	6.0	2.4	5.6	1000	28.4			5.4	96.3	52.3	2.9	2.8
	3.0 3.0		1.9 1.9	810 1000		18.0 20.1			20.4 19.9	91.4 92.1	2.6 2.7	2.5 2.6	3.0 3.0	8.0 8.0	1.9 1.9	810 1000	28.3 29.0			5.1 5.5	102.4 96.8	54.8 54.2	2.8 2.9	2.7 2.8
70	4.5		3.4	810		18.3			23.6	84.5	2.0	1.9	4.5	1.5	3.4	810	29.7			5.3	104.0		2.9	2.8
70	4.5		3.4					33.6		84.9	2.1	2.0	4.5	1.5	3.4	1000	30.4			5.7	98.2	58.8	3.0	2.9
	6.0 6.0		5.2 5.2	810 1000		18.4 20.6		33.8	25.3 24.7	80.9 81.3	1.7 1.8	1.7 1.7	6.0 6.0	2.3	5.3 5.3	810 1000	30.5 31.2			5.4 5.9	104.9 98.9	61.4	3.0 3.1	2.9 2.9
	3.0		2.0	810		17.4			16.8	101.0		3.4	3.0	0.9	2.0	810	30.9			5.5	105.3		3.0	2.9
	3.0		2.0			19.5			16.4	101.7	3.7	3.5	3.0	0.9	2.0	1000	31.6			5.9	99.2	62.5	3.1	2.9
80	4.5 4.5		3.4 3.4	810 1000	28.0	17.8 19.9			19.3 18.9	94.2 94.7	2.8 2.9	2.7 2.8	3.6 3.6	1.1 1.1	2.5	810 1000	31.6 32.4			5.6 6.0	106.1 100.0		3.1 3.2	2.9 3.0
	6.0		5.2	810				32.2		90.7	2.5	2.4	3.6	1.1	2.5	810	31.6			5.6	106.1		3.1	2.9
	6.0		5.2			20.1			20.3	91.1	2.6	2.5	3.6	1.1	2.5	1000	32.4			6.0	100.0		3.2	3.0
	3.0 3.0		2.1 2.1	810 1000		16.8 19.3			13.7 15.5	110.5 111.2	4.7 4.0	4.5 3.8	2.2	0.7 0.7	1.6 1.6	810 1000	31.6 32.4			5.6 6.0	106.1 100.0		3.1 3.2	2.9 3.0
00	4.5		3.5	810		17.3			15.8	103.9		3.7	2.2	0.7	1.6	810	31.6			5.6	106.1		3.1	2.9
90	4.5		3.5		26.5					104.4		3.8	2.2	0.7	1.6	1000	32.4			6.0	100.0		3.2	3.0
	6.0 6.0		5.2 5.2	810 1000		17.5			17.1 16.7	100.5 100.9		3.3 3.4	2.2	0.7 0.7	1.6 1.6	810 1000	31.6 32.4			5.6 6.0	106.1 100.0		3.1 3.2	2.9 3.0
	3.0		2.1						11.2			5.8	1.5	0.5	1.1	810	31.6				106.1		3.1	2.9
	3.0	0.9 2	2.1	1000	23.6	18.0	2.16	31.0	10.9	120.7	6.3	6.0	1.5	0.5	1.1	1000	32.4	1.57	27.0	6.0	100.0	65.0	3.2	3.0
100	4.5 4.5		3.4						12.9 12.6			4.8	1.5	0.5 0.5	1.1	810 1000	31.6				106.1		3.1 3.2	2.9 3.0
	6.0		3.4 5.1						13.9			4.9 4.4	1.5 1.5	0.5	1.1 1.1	810					100.0 106.1		3.2	2.9
	6.0		5.1						13.6			4.6	1.5	0.5	1.1	1000					100.0		3.2	3.0
	3.0		1.8					29.1		129.4		7.3	1.2	0.2	0.6		31.6				106.1		3.1	2.9
	3.0 4.5		1.8 3.2						9.0 10.5			7.5 6.2	1.2 1.2	0.2	0.6 0.6	1000 810					100.0 106.1		3.2 3.1	3.0 2.9
110	4.5		3.2	1000	23.1	17.7	2.24	30.7	10.3	123.7	6.7	6.4	1.2	0.2	0.6	1000					100.1		3.2	3.0
	6.0	2.1 4	4.9	810	23.0	16.1	2.04	30.0	11.3	120.0	6.0	5.7	1.2	0.2	0.6	810	31.6	1.65	26.0	5.6	106.1	65.0	3.1	2.9
	6.0 3.0		4.9 1.1	1000 810					11.0 7.5	120.3 138.9		5.9 8.9	1.2	0.2	0.6	1000 810	32.4 31.6				100.0 106.1		3.2	3.0 2.9
	3.0		1.1	1000						139.6		9.2	1.0	0.1	0.2	1000					100.1		3.1	3.0
120	4.5	1.1 2	2.6	810	20.6	15.0	2.41	28.9	8.6	132.8	8.2	7.8	1.0	0.1	0.2	810	31.6	1.65	26.0	5.6	106.1	65.0	3.1	2.9
120	4.5		2.6						8.4			8.1	1.0	0.1	0.2	1000					100.0		3.2	3.0
	6.0 6.0		4.4 4.4						9.2 9.0			7.2 7.4	1.0 1.0	0.1 0.1	0.2		31.6 32.4			5.6 6.0	106.1 100.0		3.1 3.2	2.9 3.0
Interpolati			1						2.0			Flow io	1			ninimum								

Interpolation is permissable, extrapolation is not.

All performance data is based upon the lower voltage of dual voltage rated units
See performance correction tables for operating conditions other than those listed above.

Flow is controlled to maintain minimum LWT 70° F in cooling and maximum LWT 65° F in heating. Contact factory for performance data of non-vFlow units.

For operation in the shaded areas, please see the Performance Data Selection Notes page. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. Operation at or below 40° F EWT is based on 15% methanol antifreeze solution.

Performance Data — TES/TEP038 Full Load With vFlow

1000 CFM Nominal Airflow Heating, 1000 CFM Nominal Airflow Cooling

Performance capacities shown in thousands of Btuh

1000 CF	VI NOM	inal Airflow F	leating,	1000	CFM	Nomin	al Airfl	ow Coc	oling			Per	lorman	ice cap	acities	shown	in the	ousand	ds of Btu	ıh			
EWT			(Cooli	ng - I	EAT	80/67	7°F								Hea	ating	- EA	T 70°F				
°F	001	WPD	0517	т.		13.57		EES	1.16/-	TTS	TTP	0511	W	PD	0517		1247		005		LVACT	TTS	TTP
	GPM	PSI FT	CFM	TC	SC	kW	HR	EER	LWT	HWC	HWC	GPM	PSI	FT	CFM	HC	kW	HE		LAT	LWT	HWC	HWC
20	2.0	1.4 3.3	1010						70.0	1.8	1.7	9.0	8.3	19.2	1010					91.9	16.3	2.0	1.9
	2.0	1.4 3.3 1.2 2.7				1.77 1.68		24.3 24.9	70.0 70.0	1.9 1.8	1.8 1.7	9.0 4.5	8.3 2.6	19.2 6.0	1250 1010	24.5 26.0			3.6 3.6	88.1 93.9	16.1 21.7	2.1	2.0
	2.5	1.2 2.7	1250					24.3	70.0	1.9	1.8	4.5	2.6	6.0		26.6			3.8	89.7	21.3	2.4	2.3
30	2.5	1.2 2.7	1010					24.9	70.0	1.8	1.7	6.8	4.6	10.6	1010				3.7	94.9	24.2	2.5	2.4
30	2.5	1.2 2.7	1250						70.0	1.9	1.8	6.8	4.6	10.6	1250					90.6	23.9	2.6	2.5
	2.5 2.5	1.2 2.7 1.2 2.7	1010 1250						70.0 70.0	1.8 1.9	1.7 1.8	9.0 9.0	6.9 6.9	16.0 16.0	1010 1250					95.4 91.0	25.5 25.3	2.5 2.6	2.4 2.5
	3.3	1.3 2.9				1.68		24.9	70.0	1.8	1.7	4.5	2.0	4.7	1010	29.5			3.9	97.0	30.2	2.8	2.7
	3.3	1.3 2.9	1250						70.0	1.9	1.8	4.5	2.0	4.7	1250					92.4	29.8	2.9	2.8
40	3.3	1.3 2.9	1010					24.9	70.0	1.8	1.7	6.8	3.8	8.8	1010				4.0	98.2	33.2	3.0	2.9
	3.3 3.3	1.3 2.9 1.3 2.9	1250 1010					24.3 24.9	70.0 70.0	1.9 1.8	1.8 1.7	6.8 9.0	3.8 5.9	8.8 13.6	1250 1010	31.5			4.3 4.1	93.3 98.8	32.9 34.7	3.1 3.1	2.9 2.9
	3.3	1.3 2.9	1250					24.3	70.0	1.9	1.8	9.0	5.9	13.6	1250				4.4	93.8	34.5	3.2	3.0
	4.5	1.7 3.9	1010					24.5	71.1	1.8	1.7	4.5	1.7	3.9	1010	32.9			4.2	100.2		3.3	3.1
	4.5	1.7 3.9	1250					24.0	71.8	1.9	1.8	4.5	1.7	3.9	1250			26.3	4.6	95.0	38.3	3.4	3.2
50	4.9 4.9	1.9 4.5 1.9 4.5	1010 1250						70.0 70.0	1.8 1.9	1.7 1.8	6.8 6.8	3.3	7.6 7.6	1010 1250	34.3 35.1			4.3 4.7	101.5 96.0	41.9	3.5 3.6	3.3 3.4
	4.9	1.9 4.5	1010						70.0	1.8	1.7	9.0	5.2	11.9	1010	35.0			4.4	102.1		3.6	3.4
	4.9	1.9 4.5				1.77		24.3	70.0	1.9	1.8	9.0	5.2	11.9	1250			28.3	4.7	96.6	43.7	3.7	3.5
	4.5	1.5 3.5	1010					21.7	80.9	2.5	2.4	4.5	1.5	3.5	1010			28.2		103.2		3.8	3.6
	4.5 6.8	1.5 3.5 2.9 6.8	1250 1010						81.5 74.0	2.6 2.0	2.5 1.9	4.5 6.8	1.5 2.9	3.5 6.8	1250 1010	37.1 37.7				97.5 104.6	46.9 51.2	3.9 4.0	3.7 3.8
60	6.8	2.9 6.8	1250						74.5	2.1	2.0	6.8	2.9	6.8	1250				5.0	98.6	50.9	4.1	3.9
	9.0	4.7 10.8	1010	41.8	25.8	1.69	47.6	24.7	70.6	1.8	1.7	9.0	4.7	10.8	1010	38.5	2.41	30.2	4.7	105.3	53.3	4.1	3.9
	9.0	4.7 10.8	1250						70.9	1.9	1.8	9.0	4.7	10.8	1250			31.6		99.2	53.0	4.2	4.0
	4.5 4.5	1.5 3.4 1.5 3.4	1010 1250					18.9 18.5	90.5 91.2	3.3 3.4	3.1 3.2	4.5 4.5	1.5 1.5	3.4 3.4	1010 1250	39.4			4.7 5.1	106.1 99.9	56.2 55.6	4.3 4.4	4.0 4.2
70	6.8	2.8 6.4	1010						83.8	2.7	2.6	6.8	2.8	6.4	1010				4.8	107.5		4.5	4.2
70	6.8	2.8 6.4	1250						84.3	2.8	2.7	6.8	2.8	6.4	1250					101.0		4.6	4.4
	9.0	4.4 10.1	1010						80.4	2.4 2.5	2.3	9.0	4.4	10.1	1010					108.2		4.5	4.3
	9.0 4.5	4.4 10.1 1.5 3.4	1250 1010					21.3 16.3	80.8 100.1	4.2	2.4 4.0	9.0 4.5	4.4 1.5	10.1 3.4	1250 1010	42.3			5.3 4.9	101.6 108.8		4.7 4.6	4.5 4.4
	4.5	1.5 3.4				2.42		15.9	100.8	4.3	4.1	4.5	1.5	3.4	1250					102.1		4.8	4.6
80	6.8	2.7 6.2	1010					18.1	93.6	3.6	3.4	4.7	1.6	3.6	1010					108.9		4.7	4.5
	6.8 9.0	2.7 6.2 4.2 9.7						17.7 19.0	94.1 90.3	3.7 3.2	3.5 3.0	4.7 4.7	1.6 1.6	3.6 3.6	1250				5.3 4.9	102.2 108.9		4.9 4.7	4.7 4.5
	9.0	4.2 9.7	1010 1250						90.5	3.2	3.1	4.7	1.6	3.6	1010 1250					100.9		4.7	4.5
	4.5	1.5 3.5	1010					13.9	109.8	5.2	5.0	2.8	0.9	2.0	1010					108.9		4.7	4.5
	4.5	1.5 3.5	1250						110.4	4.7	4.5	2.8	0.9	2.0	1250					102.2		4.9	4.7
90	6.8 6.8	2.7 6.2 2.7 6.2				2.38		15.6 15.2	103.3 103.8	4.5 4.7	4.3 4.5	2.8 2.8	0.9	2.0	1010 1250	42.5				108.9 102.2		4.7 4.9	4.5 4.7
	9.0	4.1 9.5				2.29		16.4	100.1	4.7	4.0	2.8	0.9	2.0	1010					102.2		4.7	4.7
	9.0	4.1 9.5				2.41			100.4	4.3	4.1	2.8	0.9	2.0	1250				5.3	102.2		4.9	4.7
	4.5	1.5 3.4	1010	33.9	23.3	2.87	43.7	11.8	119.4	6.4	6.1	2.0	0.6	1.4	1010					108.9		4.7	4.5
	4.5 6.8	1.5 3.4						11.5 13.2			6.3 5.3	2.0 2.0	0.6 0.6	1.4 1.4	1250 1010					102.2		4.9 4.7	4.7
100	6.8	2.7 6.1 2.7 6.1	1250								5.5	2.0	0.6	1.4	1250					108.9 102.2		4.7	4.5 4.7
	9.0	4.1 9.4						14.0			5.0	2.0	0.6	1.4	1010					108.9		4.7	4.5
	9.0	4.1 9.4						13.7			5.1	2.0	0.6	1.4	1250					102.2		4.9	4.7
	4.5 4.5	1.4 3.2 1.4 3.2	1010 1250					10.0 9.8			7.4 7.7	1.6	0.3	8.0 8.0	1010 1250					108.9 102.2		4.7 4.9	4.5 4.7
440	4.5 6.8	1.4 3.2 2.6 5.9						9.8 11.2			6.5	1.6 1.6	0.3	0.8	1010					102.2		4.9 4.7	4.7 4.5
110	6.8	2.6 5.9	1250	34.2	25.9	3.14	44.9	10.9	123.3	7.1	6.7	1.6	0.3	0.8	1250	43.5	2.39	35.3	5.3	102.2		4.9	4.7
	9.0	4.0 9.2						11.8			6.2	1.6	0.3	8.0	1010					108.9		4.7	4.5
	9.0 4.5	4.0 9.2 1.1 2.6	1250 1010					11.5	120.0 138.9		6.4 8.9	1.6 1.3	0.3	0.8	1250 1010					102.2 108.9		4.9 4.7	4.7 4.5
	4.5 4.5	1.1 2.6						8.2			9.2	1.3	0.1	0.1	1250					108.9		4.7	4.5 4.7
120	6.8	2.4 5.5						9.4			7.9	1.3	0.1	0.1	1010					108.9		4.7	4.5
120	6.8	2.4 5.5	1250								8.2	1.3	0.1	0.1	1250					102.2		4.9	4.7
	9.0		1010								7.4	1.3	0.1	0.1	1010					108.9		4.7	4.5
	9.0	3.9 8.9	1250	<i>აა.</i> 0	∠5.4	3.39	44.5	9.7	129.9	8.1	7.7	1.3	U.1	0.1	1250	43.5	2.39	35.3	5.3	102.2	ხ5.0	4.9	4.7

Interpolation is permissable, extrapolation is not. All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above. Data shown is for units equipped with vFlow technology, flow is controlled to maintain a minimum LWT 70 F degrees in cooling and maximum 65 F degrees in heating. Contact the factory for performance data of non-vFlow units. Operation at or below 40° F EWT is based on 15% methanol antifreeze solution

Flow is controlled to maintain minimum LWT 70° F in cooling and maximum LWT 65° F in heating. Contact factory for performance data of non-vFlow units.

For operation in the shaded areas, please see the Performance Data Selection Notes page. Table does not reflect fan or pump power corrections for AHRI/ISO conditions.

Performance Data — TES/TEP049 Part Load With vFlow

1400 CFM Nominal (Rated) Airflow Heating, 1300 CFM Nominal (Rated) Airflow Cooling

Performance capacities shown in thousands of Btuh

1400 CFI	M Nom	inal (Rated)	Airflow I	Heatin	ig, 130	00 CFI	VI Nom	iinal (Ra	ated) A	irflow Co	ooling			Perto	rmance	capad	cities	shown	in thou	sands	of Btuh		
EWT									Hea	ating	- EA	T 70°F	=										
°F	CDM	WPD	CEM	тс	00	14/4/	LID	ГГР	LVA/T	TTS	TTP	CDM	WI	PD	CEM	ш	LAA		COD	LAT	LVA/T	TTS	TTP
	GPM	PSI FT	CFM	TC	SC	kW	HR	EER	LWT	HWC	HWC	GPM	PSI	FT	CFM	HC	kW	HE	COP	LAT	LWT	HWC	HWC
20	1.9	0.1 0.2	1300						70.0	1.4	1.3	9.0	3.2	7.4	1140			14.9	2.9	88.6	16.7	2.4	2.3
20	1.9	0.1 0.2					46.7		70.0	1.5	1.4	9.0	3.2	7.4	1400			15.8	3.1	85.5	16.5	2.5	2.4
	2.3	0.0 0.0 0.0 0.0	1300 1060		24.3 27.2			26.9 26.3	70.0 70.0	1.5 1.5	1.4 1.4	4.5 4.5	0.6 0.6	1.4 1.4	1140 1400	25.0 25.6			3.1 3.3	90.3	22.5 22.0	2.5 2.6	2.4 2.5
30	2.3	0.0 0.0	1300						70.0	1.5	1.4	6.8	1.6	3.7	1140	26.0				91.1	24.7	2.5	2.4
30	2.3	0.0 0.0	1060						70.0	1.5	1.4	6.8	1.6	3.7		26.6				87.6	24.4	2.6	2.5
	2.3	0.0 0.0 0.0 0.0	1300 1060						70.0 70.0	1.5 1.5	1.4 1.4	9.0 9.0	2.8 2.8	6.4 6.4	1140 1400	26.5 27.2				91.6 88.0	25.9 25.7	2.5 2.6	2.4 2.5
	3.1	0.1 0.2			24.3			26.9	70.0	1.5	1.4	4.5	0.5	1.1	1140	28.7	2.35	20.7	3.6	93.3	30.8	2.6	2.5
	3.1	0.1 0.2	1060						70.0	1.5	1.4	4.5	0.5	1.1	1400			21.7		89.4	30.3	2.7	2.6
40	3.1 3.1	0.1 0.2 0.1 0.2	1300 1060						70.0 70.0	1.5 1.5	1.4 1.4	6.8 6.8	1.3 1.3	3.1	1140 1400			22.0 23.2		94.4	33.5 33.2	2.6 2.7	2.5 2.6
	3.1	0.1 0.2	1300						70.0	1.5	1.4	9.0	2.4	5.6	1140			22.8	3.8	95.0	34.9	2.6	2.5
	3.1	0.1 0.2	1060					26.3	70.0	1.5	1.4	9.0	2.4	5.6	1400	31.5			4.1	90.8	34.7	2.7	2.6
	4.5 4.5	0.4 0.9 0.4 0.9	1300 1060					26.7 26.1	70.1 70.7	1.5 1.5	1.4 1.4	4.5 4.5	0.4 0.4	0.9	1140 1400			24.7 25.8	4.1 4.4	96.6 92.1	39.0 38.5	2.7 2.8	2.6 2.7
5 0	4.7	0.4 0.5	1300						70.0	1.5	1.4	6.8	1.2	2.7	1140			26.4		98.0	42.2	2.8	2.7
50	4.7	0.4 1.0	1060						70.0	1.5	1.4	6.8	1.2	2.7	1400			27.6	4.6	93.3	41.9	2.9	2.8
	4.7	0.4 1.0	1300						70.0	1.5	1.4	9.0	2.2	5.1	1140			27.3	4.4	98.7	43.9	2.8	2.7
	4.7 4.5	0.4 1.0 0.4 0.8			24.3		46.7 44.6	26.3 22.6	70.0 79.8	1.5 2.0	1.4 1.9	9.0 4.5	0.4	5.1 0.8	1400 1140			28.5 28.8	4.7 4.6	93.9 99.9	43.7 47.2	2.9	2.8
	4.5	0.4 0.8	1060	39.8	27.1	1.80	46.0	22.1	80.4	2.1	2.0	4.5	0.4	0.8	1400	37.7			4.9	95.0	46.6	2.9	2.8
60	6.8	1.1 2.5	1300						73.3	1.5	1.5	6.8	1.1	2.5	1140			30.7	4.8	101.5		2.9	2.8
	6.8 9.0	1.1 2.5 2.0 4.7	1060 1300						73.7 70.1	1.6 1.5	1.5 1.4	6.8 9.0	1.1 2.0	2.5 4.7	1400 1140	39.8		32.0	5.2 4.9	96.3 102.4	50.6 52.9	3.0 3.0	2.9 2.9
	9.0	2.0 4.7	1060						70.4	1.5	1.4	9.0	2.0	4.7		40.8			5.3	97.0	52.7	3.1	2.9
	4.5	0.4 0.9			23.8			18.9	89.3	2.7	2.6	4.5	0.4	0.9	1140	40.9			5.0	103.2		3.0	2.9
	4.5 6.8	0.4 0.9 1.1 2.4			26.6 24.2			18.5 21.4	90.0 83.0	2.8 2.2	2.7 2.1	4.5 6.8	0.4 1.1	0.9 2.4	1400 1140	41.9 43.0			5.4 5.2	97.7 104.9		3.1 3.2	2.9 3.0
70	6.8	1.1 2.4	1060						83.4	2.3	2.2	6.8	1.1	2.4		44.0			5.7	99.1	59.4	3.3	3.1
	9.0	2.0 4.5	1300						79.9	1.9	1.8	9.0	2.0	4.5	1140	44.0				105.7		3.2	3.0
	9.0 4.5	2.0 4.5 0.4 0.9			27.1 23.1			22.2 15.5	80.2 98.7	2.0 3.7	1.9 3.5	9.0 4.5	2.0 0.4	4.5 0.9	1400 1140	45.0		37.2 36.4	5.8 5.4	99.8	61.7 63.8	3.3	3.1 3.1
	4.5	0.4 0.9			25.8			15.3	99.3	3.8	3.6	4.5	0.4	0.9		45.6			5.8	100.2		3.4	3.1
80	6.8	1.1 2.4						17.7	92.7	3.0	2.9	5.1	0.5	1.3	1140	45.3				106.8		3.4	3.2
00	6.8	1.1 2.4			26.4			17.3	93.1	3.1	2.9	5.1	0.5	1.3		46.4				100.7		3.5	3.3
	9.0 9.0	1.9 4.4 1.9 4.4	1300 1060					18.9 18.5	89.7 90.0	2.7 2.8	2.6 2.7	5.1 5.1	0.5 0.5	1.3 1.3	1140 1400	45.3 46.4			5.5 5.9	106.8 100.7		3.4 3.5	3.2 3.3
	4.5	0.4 1.0			22.0			12.6	108.1	4.7	4.5	3.1	0.2	0.5	1140	45.3			5.5	106.8		3.4	3.2
	4.5	0.4 1.0	1060						108.7	4.1	3.9	3.1	0.2	0.5	1400	46.4				100.7		3.5	3.3
90	6.8 6.8	1.1 2.4 1.1 2.4			22.7 25.4		41.6	14.5 14.1	102.2 102.6	4.0 4.1	3.8 3.9	3.1 3.1	0.2	0.5 0.5	1140 1400	45.3 46.4			5.5 5.9	106.8 100.7		3.4 3.5	3.2 3.3
	9.0	1.9 4.4			23.0			15.4	99.3	3.7	3.5	3.1	0.2	0.5	1140	45.3			5.5	106.8		3.4	3.2
	9.0	1.9 4.4			25.7			15.1	99.7	3.8	3.6	3.1	0.2	0.5		46.4				100.7		3.5	3.3
	4.5 4.5	0.4 1.0 0.4 1.0	1300					10.1 9.9	117.3 117.9	6.1 6.3	5.8 6.0	2.2 2.2	0.2	0.4 0.4	1140			~~ ~		106.8	~= ~	3.4 3.5	3.2 3.3
100	6.8	1.1 2.4						11.6			5.0	2.2	0.2	0.4	1140				5.9 5.5	100.7		3.4	3.2
100	6.8	1.1 2.4	1060	31.8	24.0	2.80	41.4	11.4	112.2	5.4	5.1	2.2	0.2	0.4	1400	46.4	2.29	38.6	5.9	100.7	65.0	3.5	3.3
	9.0 9.0	1.9 4.3 1.9 4.3						12.4			4.6	2.2	0.2	0.4 0.4	1140					106.8		3.4 3.5	3.2
	9.0 4.5	1.9 4.3 0.4 0.9	1300					12.2 8.1	126.7		4.8 7.2	2.2 1.7	0.2	0.4	1400 1140					100.7 106.8		3.4	3.3
	4.5	0.4 0.9	1060	27.2	21.3	3.43	38.9	7.9	127.3	7.8	7.4	1.7	0.1	0.2	1400	46.4	2.29	38.6	5.9	100.7	65.0	3.5	3.3
110	6.8	1.0 2.4	1300						121.3		6.3	1.7	0.1	0.2	1140					106.8		3.4	3.2
	6.8 9.0	1.0 2.4 1.8 4.3	1060 1300						121.7 118.6		6.5 5.9	1.7 1.7	0.1 0.1	0.2	1400 1140					100.7 106.8		3.5 3.4	3.3 3.2
	9.0	1.8 4.3	1060	29.7	22.9	3.07	40.2	9.7	118.9		6.1	1.7	0.1	0.2	1400	46.4	2.29	38.6	5.9	100.7	65.0	3.5	3.3
	4.5	0.3 0.7	1300	23.6	17.3	3.68	36.1	6.4	136.1		8.8	1.4	0.1	0.2	1140					106.8		3.4	3.2
	4.5 6.8	0.3 0.7 0.9 2.1	1060					6.3 7.3	136.7		9.1 7.8	1.4 1.4	0.1 0.1	0.2	1400 1140					100.7 106.8		3.5 3.4	3.3 3.2
120	6.8	0.9 2.1						7.2			8.1	1.4	0.1	0.2	1400					100.8		3.5	3.3
	9.0	1.8 4.1	1300	26.0	18.8	3.32	37.3	7.8	128.3	7.7	7.4	1.4	0.1	0.2	1140	45.3	2.41	37.1	5.5	106.8	65.0	3.4	3.2
	9.0	1.8 4.1	1060	26.7	21.0	3.49	38.6	7.7	128.6	8.0	7.6	1.4	0.1	0.2	1400	46.4	2.29	38.6	5.9	100.7	65.0	3.5	3.3

Interpolation is permissable, extrapolation is not.

All performance data is based upon the lower voltage of dual voltage rated units See performance correction tables for operating conditions other than those listed above. Flow is controlled to maintain minimum LWT 70° F in cooling and maximum LWT 65° F in heating. Contact factory for performance data of non-vFlow units.

For operation in the shaded areas, please see the Performance Data Selection Notes page. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. Operation at or below 40° F EWT is based on 15% methanol antifreeze solution.

Performance Data — TES/TEP049 Full Load With vFlow

1650 CFM Nominal (Rated) Airflow Heating, 1550 CFM Nominal (Rated) Airflow Cooling

Performance capacities shown in thousands of Btuh

1650 CFI	VI Nom	inal (Rated)	Airflow I	Heatin	g, 155	0 CF	VI Nom	inal (R	ated) A	irflow Co	ooling			Perto	rmance	capad	cities	shown	in thou	sands	of Btuh		
EWT		3PM														Hea	ating	- EA	T 70°F	=			
°F	CDM	WPD	CEM	тс	80	 	ПВ	CED	LVVI	TTS	TTP	GPM	WI	PD	CFM	НС	kW	HE	СОР	LAT	LWT	TTS	TTP
	GFIVI	PSI FT	CI IVI	10	30	KVV	HIX	LLK	LVVI	HWC	HWC	GFIVI	PSI	FT	CI IVI	110	KVV		COF	LAI	LVVI	HWC	HWC
20	2.5	0.2 0.5	1250	52.3	31.6	2.33	60.2	22.5	70.0	2.2	2.1	12.0	5.3	12.1	1340			22.2	3.1	92.8	16.3	3.2	3.0
20	2.5	0.2 0.5					62.1		70.0	2.3	2.2	12.0	5.3	12.1	1650			23.5	3.3	88.9	16.1	3.3	3.1
	3.1 3.1	0.2 0.5 0.2 0.4	1250 1550				60.2 62.1	22.5 22.0	70.0 70.0	2.2 2.3	2.1 2.2	6.0 6.0	1.2 1.2	2.8	1340 1650	36.0 36.9			3.3 3.6	94.9	21.6 21.2	3.4 3.5	3.2 3.3
30	3.1	0.2 0.4	1250						70.0	2.2	2.1	9.0	2.8	6.4		37.6			3.4	96.0	24.1	3.4	3.2
30	3.1	0.2 0.4	1550						70.0	2.3	2.2	9.0	2.8	6.4	1650				3.7	91.6	23.8	3.5	3.3
	3.1 3.1	0.2 0.4 0.2 0.4	1250 1550						70.0 70.0	2.2 2.3	2.1 2.2	12.0 12.0	4.7 4.7	10.8 10.8	1340 1650			28.9	3.5 3.8	96.5 92.1	25.4 25.2	3.5 3.6	3.3 3.4
	4.1	0.3 0.8					60.2	22.5	70.0	2.2	2.1	6.0	1.0	2.3	1340	40.9			3.7	98.3	30.1	3.6	3.4
	4.1	0.3 0.8	1550						70.0	2.3	2.2	6.0	1.0	2.3	1650					93.5	29.5	3.7	3.5
40	4.1 4.1	0.3 0.8 0.3 0.8	1250 1550				60.2 62.1		70.0 70.0	2.2 2.3	2.1 2.2	9.0 9.0	2.4 2.4	5.6 5.6	1340 1650	42.7			3.8 4.1	99.5 94.5	33.0 32.7	3.7 3.8	3.5 3.6
	4.1	0.3 0.8	1250						70.0	2.2	2.1	12.0	4.2	9.7	1340				3.9	100.2		3.8	3.6
	4.1	0.3 0.8	1550					22.0	70.0	2.3	2.2	12.0	4.2	9.7	1650				4.2	95.1	34.3	3.9	3.7
	6.0 6.0	0.9 2.0 0.9 2.0	1250 1550					21.8	70.1 70.7	2.3 2.4	2.2	6.0 6.0	0.9	2.0	•	45.6 46.7			4.0 4.3	101.5 96.2	38.0	3.9 4.0	3.7 3.8
50	6.2	0.9 2.2	1250						70.0	2.2	2.1	9.0	2.2	5.1	1340				4.1	102.8		4.0	3.8
50	6.2	0.9 2.2	1550						70.0	2.3	2.2	9.0	2.2	5.1	1650				4.5	97.3	41.6	4.1	3.9
	6.2 6.2	0.9 2.2 0.9 2.2	1250 1550				60.2	22.5	70.0 70.0	2.2 2.3	2.1 2.2	12.0 12.0	3.9 3.9	9.0 9.0	1340 1650	48.5 49.7			4.2 4.5	103.5 97.9	43.8	4.1 4.2	3.9 4.0
	6.0	0.8 1.8				2.56		20.0	79.9	2.8	2.7	6.0	0.8	1.9	1340	50.0			4.3	104.6		4.3	4.0
	6.0	0.8 1.8	1550						80.6	2.9	2.8	6.0	8.0	1.9	1650				4.6	98.7		4.4	4.2
60	9.0 9.0	2.0 4.7 2.0 4.7	1250 1550					21.6	73.4 73.8	2.4 2.5	2.3 2.4	9.0 9.0	2.0	4.7 4.7	1340 1650				4.4 4.7	105.9 99.8	51.1 50.7	4.4 4.5	4.1 4.3
	12.0	3.6 8.4	1250						70.0	2.2	2.1	12.0	3.6	8.4	1340				4.5	106.6		4.5	4.2
	12.0	3.6 8.4	1550						70.4	2.3	2.2	12.0	3.6	8.4		54.2				100.4		4.6	4.4
	6.0 6.0	0.8 1.8 0.8 1.8	1250 1550	49.3				17.5 17.1	89.7 90.3	3.6 3.7	3.4 3.5	6.0 6.0	8.0 8.0	1.8 1.8	1340 1650	54.0 55.3		42.1 43.9	4.5 4.9	107.3 101.0		4.6 4.8	4.4 4.6
70	9.0	2.0 4.5		50.5				19.1	83.2	3.0	2.9	9.0	2.0	4.5	1340			43.7		108.6		4.8	4.6
70	9.0	2.0 4.5	1550					18.7	83.7	3.1	2.9	9.0	2.0	4.5		57.1				102.1		5.0	4.8
	12.0 12.0	3.5 8.1 3.5 8.1	1250 1550						80.0 80.3	2.8 2.9	2.7 2.8	12.0 12.0	3.5 3.5	8.1 8.1	1340 1650			44.6 46.5	4.7 5.0	109.2 102.6		4.9 5.1	4.7 4.8
	6.0	0.8 1.8		47.2				15.1	99.3	4.4	4.1	6.0	0.8	1.8	1340			45.2		109.7		5.0	4.8
	6.0	0.8 1.8	1550					14.8	99.9	4.5	4.3	6.0	8.0	1.8				47.2		103.0		5.2	4.9
80	9.0 9.0	1.9 4.4 1.9 4.4	1250 1550	48. <i>7</i> 50.1				16.7 16.3	93.0 98.6	3.8 3.9	3.6 3.7	6.3 6.3	0.9 0.9	2.1	1340 1650			45.4 47.4		109.8 103.1		5.2 5.4	5.0 5.1
	12.0	3.4 7.9	1250					17.6	89.8	3.5	3.3	6.3	0.9	2.1		57.7				109.8		5.2	5.0
	12.0	3.4 7.9	1550						90.1	3.6	3.4	6.3	0.9	2.1	1650			47.4		103.1		5.4	5.1
	6.0 6.0	0.8 1.9 0.8 1.9	1250 1550	44.8 47.8				12.8 14.0	108.9 109.5	5.4 4.9	5.1 4.7	3.8 3.8	0.3	0.7 0.7		57.7 59.0		45.4 47.4	4.7 5.1	109.8 103.1		5.2 5.4	5.0 5.1
00	9.0	1.9 4.4		46.4				14.3	102.8		4.5	3.8	0.3	0.7	1340			45.4		109.8		5.2	5.0
90	9.0	1.9 4.4	1550						103.2		4.7	3.8	0.3	0.7				47.4		103.1		5.4	5.1
	12.0 12.0	3.3 7.7 3.3 7.7	1250 1550					15.1 14.8	99.6 100.0	4.5 4.6	4.2 4.4	3.8 3.8	0.3	0.7 0.7	1340 1650			45.4 47.4	4.7 5.1	109.8 103.1		5.2 5.4	5.0 5.1
	6.0	0.8 1.9	1250						118.5		6.3	2.7	0.2	0.4	1340					109.8		5.2	5.0
	6.0	0.8 1.9						10.5			6.6	2.7	0.2	0.4	1650					103.1		5.4	5.1
100	9.0 9.0	1.9 4.3 1.9 4.3	1250 1550					12.1			5.6 5.8	2.7 2.7	0.2	0.4 0.4	1340 1650				4.7 5.1	109.8		5.2 5.4	5.0 5.1
	12.0	3.3 7.6						12.8			5.2	2.7	0.2	0.4	1340					109.8		5.2	5.0
	12.0	3.3 7.6						12.5			5.4	2.7	0.2	0.4	1650					103.1		5.4	5.1
	6.0 6.0	0.8 1.8 0.8 1.8	1250 1550					9.0 8.8	128.1 128.7		7.8 8.1	2.1 2.1	0.1 0.1	0.3	1340 1650					109.8 103.1		5.2 5.4	5.0 5.1
110	9.0	1.8 4.3	1250	41.1	27.0	4.08	55.0	10.1	122.2	7.3	6.9	2.1	0.1	0.3	1340					109.8		5.2	5.0
110	9.0	1.8 4.3	1550	42.2	30.1	4.29	56.9	9.8	122.6	7.5	7.1	2.1	0.1	0.3	1650	59.0	3.40	47.4	5.1	103.1	65.0	5.4	5.1
	12.0 12.0	3.3 7.5 3.3 7.5						10.7 10.5			6.4 6.7	2.1 2.1	0.1 0.1	0.3	1340 1650					109.8 103.1		5.2 5.4	5.0 5.1
	6.0	0.7 1.6	1250						137.7		9.6	1.7	0.1	0.3	1340					109.8		5.2	5.0
	6.0	0.7 1.6	1550	37.3	27.9	5.20	55.1	7.2	138.4	10.4	9.9	1.7	0.1	0.3	1650	59.0	3.40	47.4	5.1	103.1		5.4	5.1
120	9.0 9.0	1.8 4.1 1.8 4.1						8.3 8.1			8.4 8.6	1.7 1.7	0.1 0.1	0.3	1340 1650					109.8 103.1		5.2 5.4	5.0 5.1
	12.0	3.2 7.4						8.8			7.9	1.7	0.1	0.3	1340					109.8		5.4	5.0
	12.0	3.2 7.4						8.6			8.2	1.7	0.1		1650					103.1		5.4	5.1

Interpolation is permissable, extrapolation is not. All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above. Data shown is for units equipped with vFlow technology, flow is controlled to maintain a minimum LWT 70 F degrees in cooling and maximum 65 F degrees in heating. Contact the factory for performance data of non-vFlow units.

Flow is controlled to maintain minimum LWT 70 $^{\circ}$ F in cooling and maximum LWT 65 $^{\circ}$ F in heating. Contact factory for performance data of non-vFlow units.

For operation in the shaded areas, please see the Performance Data Selection Notes page. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. Operation at or below 40° F EWT is based on 15% methanol antifreeze solution.

Performance Data — TES/TEP064 Part Load With vFlow

1650 CF	M Nom	inal (F	ated)	Airflow	Heatin	ıg, 155	50 CFI	M Nom	ninal (R	ated) A	irflow Co	ooling			Perfo	rmance	capa	cities	shown	in thou	sands (of Btuh		
	M Nominal (Rated) Airflow Heating, 1550 CFM Nominal (Rated) Airflow Coolling - EAT 80/67°F																Hea	ting	- EA	T 70°F	=			
EWT		WI	PD								TTS	TTP		WI	PD								TTS	TTP
°F	GPM	PSI	FT	CFM	TC	SC	kW	HR	EER	LWT	HWC	HWC	GPM	PSI	FT	CFM	HC	kW	HE	COP	LAT	LWT	HWC	HWC
20	2.2	0.1	0.2	1220				53.4	25.3	70.0	1.7	1.7	12.0	5.2	11.9	1340			18.9	2.9	89.9	16.8	3.0	2.9
	2.2	0.1	0.2	1500 1220		35.3 31.6		55.1	24.7 25.3	70.0 70.0	1.8 1.7	<u>1.7</u> 1.7	12.0 6.0	5.2 0.9	11.9 2.1	1650 1340	29.5 31.8		20.1	3.1 3.2	86.6 92.0	16.6 22.8	3.1 3.1	2.9
	2.8	0.1	0.2	1500					24.7	70.0	1.8	1.7	6.0	0.9	2.1	1650	32.5			3.4	88.3	22.3	3.2	3.0
30	2.8	0.1	0.2	1220						70.0	1.7	1.7	9.0	2.5	5.7	1340				3.3	92.8	24.9	3.1	2.9
	2.8 2.8	0.1	0.2	1500 1220					24.7 25.3	70.0 70.0	1.8 1.7	1.7 1.7	9.0 12.0	2.5 4.2	5.7 9.6	1650 1340				3.5 3.3	88.9 93.3	24.6 26.1	3.2 3.1	3.0 2.9
	2.8	0.1	0.2	1500					24.7	70.0	1.8	1.7	12.0	4.2	9.6	1650			24.9	3.6	89.3	25.9	3.2	3.0
	3.7	0.1	0.2			31.6			25.3	70.0	1.7	1.7	6.0	0.5	1.1	1340			26.2	3.6	95.1	31.3	3.2	3.0
40	3.7 3.7	0.1	0.2	1500 1220					24.7 25.3	70.0 70.0	1.8 1.7	1.7 1.7	6.0 9.0	0.5 1.9	1.1 4.4	1650 1340	37.2		27.6 27.7	3.9 3.7	90.9 96.2	30.8 33.9	3.3 3.3	3.1 3.1
40	3.7	0.1	0.2	1500	48.4	35.3	1.96	55.1	24.7	70.0	1.8	1.7	9.0	1.9	4.4	1650	38.8	2.85	29.1	4.0	91.8	33.5	3.4	3.2
	3.7 3.7	0.1	0.2	1220 1500						70.0 70.0	1.7 1.8	1.7 1.7	12.0 12.0	3.4 3.4	7.9 7.9	1340 1650			28.5 29.9	3.8 4.1	96.8 92.2	35.3 35.0	3.3 3.4	3.1 3.2
	5.5	0.1	0.2			31.6			25.3	70.0	1.7	1.7	6.0	0.2	0.6	1340	41.1			4.0	98.4	39.7	3.4	3.2
	5.5	0.1	0.2	1500						70.0	1.8	1.7	6.0	0.2	0.6		42.1				93.6	39.2	3.5	3.3
50	5.5 5.5	0.1	0.2	1220 1500					25.3 24.7	70.0 70.0	1.7 1.8	1.7 1.7	9.0 9.0	1.5 1.5	3.5 3.5	1340 1650	42.9 44.0			4.1 4.5	99.7 94.7	42.8 42.4	3.5 3.6	3.3 3.4
	5.5	0.1	0.2			31.6			25.3	70.0	1.7	1.7	12.0	3.0	6.9	1340				4.2	100.4		3.5	3.3
	5.5	0.1	0.2	1500					24.7	70.0	1.8	1.7	12.0	3.0	6.9	1650	45.0			4.5	95.2	44.2	3.6	3.4
	6.0 6.0	0.2	0.4 0.4	1220 1500		31.2 34.8			21.8 21.3	77.6 78.1	2.2 2.3	2.1 2.2	6.0 6.0	0.2	0.4 0.4	1340 1650	45.9 47.0			4.4 4.7	101.7 96.4	48.2 47.6	3.6 3.7	3.4 3.5
60	9.0	1.4	3.1						24.2	71.8	1.8	1.7	9.0	1.4	3.2	1340	48.0			4.6	103.2		3.7	3.5
00	9.0	1.4	3.1 5.3	1500 1220					23.6	72.2 70.0	1.9 1.8	1.8	9.0 12.0	1.4 2.7	3.2 6.3		49.1			4.9	97.6 103.9	51.3	3.8	3.6 3.6
	11.1 11.1	2.3	5.3	1500					25.3 24.7	70.0	1.0	1.7 1.8	12.0	2.7	6.3	1650	49.1 50.2			4.6 5.0	98.2	53.3	3.8 3.9	3.7
	6.0	0.2	0.4	1220	44.0	30.4	2.38	52.1	18.5	87.4	3.1	2.9	6.0	0.2	0.4	1340	50.6	3.11	40.0	4.8	105.0		3.9	3.7
	6.0 9.0	0.2 1.3	0.4 3.0	1500 1220		34.0			18.0 20.4	87.9 81.7	3.2 2.6	3.0 2.5	6.0 9.0	0.2 1.3	0.4 3.0		51.8 52.9			5.1 5.0	99.1 106.5	56.1	4.0 4.0	3.8 3.8
70	9.0	1.3	3.0	1500						82.0	2.7	2.6	9.0	1.3	3.0		54.1				100.4		4.1	3.9
	12.0	2.6	6.0	1220						78.8	2.3	2.2	12.0	2.6	6.0	1340				5.1	107.4		4.1	3.9
	12.0 6.0	2.6 0.3	6.0 0.6	1500 1220		29.5			15.4	79.1 97.2	2.4 4.1	2.3 3.9	12.0 6.0	2.6 0.3	6.0 0.6	1650 1340			45.2 44.5	5.5 5.2	101.1 108.1	62.5 65.2	4.2 4.2	4.0
	6.0	0.3	0.6	1500						97.7	4.2	4.0	6.0	0.3	0.6	1650			46.3	5.6	101.7		4.3	4.1
80	9.0	1.3	3.1			30.1			17.2	91.5	3.5	3.3	6.2	0.3	0.7	1340			44.7	5.2	108.3		4.4	4.1
	9.0 12.0	1.3 2.6	3.1 5.9	1500 1220		30.3			16.8 18.1	91.9 88.7	3.6 3.2	3.4 3.0	6.2 6.2	0.3	0.7 0.7	1650 1340			46.5 44.7	5.6 5.2	101.8 108.3		4.5 4.5	4.3 4.2
	12.0	2.6	5.9	1500	45.1	33.9	2.55	53.8	17.7	89.0	3.3	3.1	6.2	0.3	0.7	1650	56.7	2.98	46.5	5.6	101.8	65.0	4.6	4.4
	6.0 6.0	0.3	0.7 0.7	1220 1500		28.4			12.8 14.0	106.9 107.4	5.2 4.7	5.0 4.5	3.7 3.7	0.1 0.1	0.2	1340 1650			44.7 46.5	5.2 5.6	108.3 101.8		4.2 4.3	4.0 4.1
90	9.0	1.4	3.2					51.2		101.4	4.5	4.3	3.7	0.1	0.2	1340			44.7		108.3		4.2	4.0
90	9.0	1.4	3.2			32.5			14.0	101.8	4.7	4.5	3.7	0.1	0.2	1650	56.7			5.6	101.8		4.3	4.1
	12.0 12.0	2.6 2.6	6.0	1220 1500		29.4 32.8			15.1 14.8	98.6 98.9	4.3 4.4	4.0 4.2	3.7 3.7	0.1 0.1	0.2	1340 1650			44.7 46.5	5.2 5.6	108.3 101.8		4.2 4.3	4.0 4.1
	6.0	0.3	0.8	1220		27.2			10.4	116.4	6.6	6.3	2.7	0.1	0.2	1340			44.7	5.2	108.3		4.1	3.9
	6.0	0.3		1500							6.8	6.5	2.7	0.1	0.2					5.6			4.3	4.1
100	9.0 9.0	1.4 1.4	3.2 3.2						11.7 11.5	111.5	5.8 6.0	5.5 5.7	2.7 2.7	0.1 0.1	0.2	1340 1650					108.3 101.8		4.1 4.3	3.9 4.1
	12.0	2.6	6.0	1220	39.6	28.3	3.18	50.4	12.4	108.4	5.4	5.1	2.7	0.1	0.2	1340	55.4	3.14	44.7	5.2	108.3	65.0	4.1	3.9
	12.0	2.6 0.3	6.0	1500 1220						108.7		5.3 7.8	2.7	0.1 0.1	0.2	1650					101.8 108.3		4.3	4.1 3.9
	6.0 6.0	0.3	0.6							125.6 126.2		7.8 8.1	2.1 2.1	0.1	0.2	1340 1650					108.3		4.1 4.3	3.9 4.1
110	9.0	1.3	3.1	1220	35.3	26.5	3.77	48.2	9.4	120.7	7.4	7.0	2.1	0.1	0.2	1340	55.4	3.14	44.7	5.2	108.3	65.0	4.1	3.9
	9.0 12.0	1.3 2.5	3.1 5.8							121.1 118.1		7.2 6.5	2.1 2.1	0.1 0.1	0.2	1650 1340					101.8 108.3		4.3 4.1	4.1 3.9
	12.0	2.5	5.8	1500	37.4	30.1	3.83	50.5	9.8	118.4		6.7	2.1	0.1	0.2	1650	56.7	2.98	46.5	5.6	100.3		4.3	4.1
	6.0	0.1	0.2	1220	28.0	23.1	4.59	43.7	6.1	134.6		9.5	1.7	0.1	0.2	1340	55.4	3.14	44.7	5.2	108.3		4.1	3.9
	6.0 9.0	0.1 1.1	0.2 2.6	1500 1220						135.1 130.1		9.8 8.6	1.7 1.7	0.1 0.1	0.2	1650 1340					101.8 108.3		4.3 4.1	4.1 3.9
120	9.0	1.1	2.6	1500	31.7	27.3	4.53	47.1	7.0	130.5	9.3	8.8	1.7	0.1	0.2	1650	56.7	2.98	46.5	5.6	101.8	65.0	4.3	4.1
	12.0	2.4	5.4							127.7		8.1	1.7	0.1	0.2	1340					108.3		4.1	3.9
	12.0	2.4	5.4	1500	33.0	28.0	4.37	47.9	7.6	128.0	8.8	8.4	1.7	U.1	0.2	1650	56./	2.98	46.5	5.6	101.8	65.0	4.3	4.1

Interpolation is permissable, extrapolation is not.

All performance data is based upon the lower voltage of dual voltage rated units See performance correction tables for operating conditions other than those listed above. Flow is controlled to maintain minimum LWT 70° F in cooling and maximum LWT 65° F in heating. Contact factory for performance data of non-vFlow units.

For operation in the shaded areas, please see the Performance Data Selection Notes page. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. Operation at or below 40° F EWT is based on 15% methanol antifreeze solution.

Performance Data — TES/TEP064 Full Load With vFlow

2050 CFM Nominal (Rated) Airflow Heating, 1825 CFM Nominal (Rated) Airflow Cooling

Performance capacities shown in thousands of Btuh

EWT									_						rmance				_				
	Т		(Coolii	ng - I	EAT 8	80/67	′°F								Hea	ating	- EA	T 70°F	=			
∘⊏	CDM	WPD	CENA	TC	00	L/\//	ЦΩ	EED	LVVT	TTS	TTP	CDM	W	PD	CENA	ПС	L) A /	UF	COD	LAT	LVA/T	TTS	TTP
	GPM	PSI FT	CFM	TC	SC	kW	HR	EER	LWT	HWC	HWC	GPM	PSI	FT	CFM	HC	kW	HE	COP	LAT	LWT	HWC	HWC
20	3.0	0.1 0.2	1480					21.7		2.7	2.6	15.0	7.3	16.8		41.0			3.1	92.9	16.3	3.7	3.5
	3.0	0.1 0.2 0.1 0.2	1825 1480			3.07 2.92		21.2	70.0 70.0	2.8	2.7	15.0 7.5	7.3 1.7	16.8 3.9	2050 1660	42.0	3.72		3.3	89.0 94.9	16.1 21.7	3.8 3.9	3.6 3.7
	3.8	0.1 0.2				3.07			70.0	2.8	2.7	7.5	1.7	3.9	2050				3.5	90.6	21.3	4.0	3.8
30	3.8	0.1 0.2				2.92			70.0	2.7	2.6	11.3	3.7	8.6	1660				3.4	95.9	24.2	4.0	3.8
	3.8 3.8	0.1 0.2 0.1 0.2				3.07 2.92			70.0 70.0	2.8 2.7	2.7 2.6	11.3 15.0	3.7 6.1	8.6 14.1	2050 1660				3.6 3.4	91.5 96.5	23.9 25.5	4.1 4.0	3.9 3.8
	3.8	0.1 0.2				3.07			70.0	2.8	2.7	15.0	6.1	14.1		48.6			3.7	91.9	25.3	4.1	3.9
	5.0	0.1 0.2	1480			2.92		21.7	70.0	2.7	2.6	7.5	1.2	2.7	1660		4.14		3.6	98.2	30.3	4.2	4.0
	5.0 5.0	0.1 0.2 0.1 0.2				3.07 2.92			70.0 70.0	2.8 2.7	2.7 2.6	7.5 11.3	1.2 3.1	2.7 7.1	2050 1660	51.8 52.7			3.9 3.7	93.4 99.4	29.8 33.2	4.3 4.3	4.1 4.0
40	5.0	0.1 0.2				3.07			70.0	2.8	2.7	11.3	3.1	7.1	2050	54.0			4.0	94.4	32.8	4.4	4.2
	5.0	0.1 0.2				2.92			70.0	2.7	2.6	15.0	5.3	12.2	1660	53.9	4.22	39.5	3.7	100.1		4.4	4.1
	5.0 7.5	0.1 0.2 0.9 2.0	1825			3.07		21.2	70.0	2.8	2.7	15.0 7.5	5.3 0.9	12.2 2.0	2050	55.1	4.01		4.0 3.9	94.9	34.5	4.5	4.3
	7.5 7.5	0.9 2.0 0.9 2.0	1480 1825			2.93 3.08			69.5 70.2	2.7	2.7	7.5	0.9	2.0	1660 2050		4.29		4.2	96.1	38.3	4.5 4.6	4.4
50	7.6	0.9 2.1				2.92			70.0	2.7	2.6	11.3	2.6	6.1	1660	58.8			4.0	102.8		4.6	4.4
50	7.6	0.9 2.1				3.07			70.0	2.8	2.7	11.3	2.6	6.1		60.2			4.3	97.2	41.8	4.8	4.6
	7.6 7.6	0.9 2.1 0.9 2.1				2.92 3.07			70.0 70.0	2.7 2.8	2.6 2.7	15.0 15.0	4.7 4.7	10.8 10.8	1660 2050	60.0 61.4	4.38 4.16		4.0 4.3	103.5 97.7	44.0 43.7	4.7 4.9	4.5 4.7
	7.5	0.8 1.7	1480			3.20		19.2	79.3	3.3	3.1	7.5	0.8	1.7	1660		4.43		4.1	104.6		4.9	4.7
	7.5	0.8 1.7				3.37		18.8	79.9	3.4	3.2	7.5	8.0	1.7	2050	63.5			4.4	98.7	46.9	5.1	4.8
hu i	11.3	2.4 5.5				3.01		20.8	72.9	2.8	2.7	11.3	2.4	5.5	1660	64.4			4.2	105.9		5.1	4.9
	11.3 15.0	2.4 5.5 4.3 10.0	1480			3.17		20.4	73.4 69.8	2.9 2.6	2.8 2.5	11.3 15.0	2.4 4.3	5.5 10.0	2050 1660	65.6			4.5 4.2	99.8 106.6	50.9 53.3	5.3 5.2	5.0 5.0
	15.0	4.3 10.0				3.07		21.2	70.1	2.7	2.6	15.0	4.3	10.0	2050			52.5	4.6	100.3		5.4	5.1
	7.5	0.7 1.7	1480			3.52		16.9	89.1	4.2	4.0	7.5	0.7	1.7		67.1			4.3	107.4		5.3	5.1
	7.5 11.3	0.7 1.7 2.3 5.3	1825 1480			3.71 3.31		16.5 18.4	89.7 82.8	4.3 3.6	4.1 3.4	7.5 11.3	0.7 2.3	1.7 5.3	2050 1660	68.6 69.3			4.6 4.4	101.0 108.6		5.5 5.6	5.2 5.3
7()	11.3	2.3 5.3				3.48		18.0	83.2	3.7	3.5	11.3	2.3	5.3	2050	70.9			4.7	102.0		5.8	5.5
	15.0	4.1 9.5				3.20		19.2	79.7	3.3	3.1	15.0	4.1	9.6		70.4			4.4	109.2		5.7	5.4
	15.0 7.5	4.1 9.5 0.8 1.8	1825 1480			3.37		18.8	80.0	3.4 5.2	3.2 5.0	15.0 7.5	4.1 0.8	9.6 1.8	2050 1660		4.42		4.8	102.5 109.8		5.9 5.9	5.6 5.6
	7.5 7.5	0.8 1.8 0.8 1.8	1825			3.92 4.13		14.5 14.2	98.8 99.4	5.4	5.1	7.5	0.8	1.8	2050		4.00		4.5 4.8	103.0		6.1	5.8
80	11.3	2.3 5.2	1480			3.66		16.0	92.6	4.5	4.3	7.7	0.9	2.0	1660			55.5	4.5	109.9		5.9	5.6
	11.3	2.3 5.2				3.85			93.1	4.7	4.5	7.7	0.9	2.0	2050	73.1			4.8	103.0		6.1	5.8
	15.0 15.0	4.1 9.4 4.1 9.4				3.53 3.72		16.8 16.4	89.5 89.8	4.2 4.3	4.0 4.1	7.7 7.7	0.9	2.0	1660 2050	71.4		55.5 57.9	4.5 4.8	109.9 103.0		5.9 6.1	5.6 5.8
	7.5	0.8 1.9	1480			4.40		12.3	108.4	6.5	6.2	4.6	0.1	0.2	1660			55.5	4.5	109.9		5.9	5.6
	7.5	0.8 1.9	1825			4.29		13.5		5.8	5.5	4.6	0.1	0.2	2050			57.9	4.8	103.0		6.1	5.8
911	11.3	2.3 5.3	1480			4.08		13.8 13.5	102.4	5.6 5.8	5.3	4.6	0.1	0.2	1660			55.5 57.0	4.5	109.9		5.9 6.1	5.6 5.8
	11.3 15.0	2.3 5.3 4.0 9.3	1825 1480			4.29 3.93		14.5	99.4	5.8 5.2	5.5 5.0	4.6 4.6	0.1	0.2	2050 1660		4.45	57.9 55.5	4.8 4.5	103.0 109.9		6.1 5.9	5.8 5.6
	15.0	4.0 9.3	1825	58.6	41.6	4.14	72.7	14.2	99.7	5.4	5.1	4.6	0.1	0.2	2050	73.1	4.45	57.9	4.8	103.0		6.1	5.8
	7.5	0.9 2.0	400-		~~ -			10.2		7.8	7.4	3.3	0.1	0.2	1660					109.9	~= ~	5.9	5.6
	7.5 11.3	0.9 2.0 2.3 5.3						10.0 11.5			7.7 6.6	3.3 3.3	0.1	0.2 0.2	2050 1660					103.0 109.9		6.1 5.9	5.8 5.6
	11.3	2.3 5.3						11.3			6.8	3.3	0.1	0.2	2050					103.9		6.1	5.8
	15.0	4.0 9.3	1480	54.0	35.9	4.43	69.1	12.2	109.2	6.5	6.2	3.3	0.1	0.2	1660	71.4	4.69	55.5	4.5	109.9	65.0	5.9	5.6
	15.0	4.0 9.3						11.9			6.4	3.3	0.1	0.2	2050					103.0		6.1	5.8
	7.5 7.5	0.8 1.8 0.8 1.8	1480 1825					8.2	127.6 128.2		8.9 9.2	2.6 2.6	0.1	0.2 0.2	1660 2050					109.9 103.0		5.9 6.1	5.6 5.8
110	11.3	2.2 5.2				5.23			121.9		8.0	2.6	0.1	0.2	1660					109.9		5.9	5.6
	11.3	2.2 5.2						9.2			8.3	2.6	0.1	0.2	2050					103.0		6.1	5.8
	15.0 15.0	4.0 9.2 4.0 9.2						10.1 9.8			7.5	2.6 2.6	0.1	0.2 0.2	1660 2050					109.9 103.0		5.9 6.1	5.6 5.8
	7.5	4.0 9.2 0.6 1.3	1480						137.0		7.8 10.6	2.0	0.1	0.2	1660					103.0		5.9	5.8 5.6
	7.5	0.6 1.3	1825	42.8	34.0	6.83	66.1	6.3	137.6	11.5	10.9	2.1	0.1	0.2	2050	73.1	4.45	57.9	4.8	103.0	65.0	6.1	5.8
1 7 1 1	11.3	2.0 4.7	1480						131.5		9.6	2.1	0.1	0.2	1660					109.9		5.9	5.6
	11.3 15.0	2.0 4.7 3.8 8.8	1825			6.30 5.74			132.0 128.8		9.9 9.1	2.1 2.1	0.1 0.1	0.2	2050 1660					103.0 109.9		6.1 5.9	5.8 5.6
	15.0	3.8 8.8				6.04			120.0		9.1	2.1	0.1		2050							6.1	5.8

Interpolation is permissable, extrapolation is not. All performance data is based upon the lower voltage of dual voltage rated units. See performance correction tables for operating conditions other than those listed above. Data shown is for units equipped with vFlow technology, flow is controlled to maintain a minimum LWT 70 F degrees in cooling and maximum 65 F degrees in heating. Contact the factory for performance data of non-vFlow units.

Flow is controlled to maintain minimum LWT 70° F in cooling and maximum LWT 65° F in heating. Contact factory for performance data of non-vFlow units.

For operation in the shaded areas, please see the Performance Data Selection Notes page. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. Operation at or below 40° F EWT is based on 15% methanol antifreeze solution.

Physical Data

Physical Data		TI	ES			TI	ΕP	
Model	026	038	049	064	026	038	049	064
Compressor [1 Each)	Сор	eland UltraTed	h Two-Stage S	Scroll	Соре	eland UltraTec	h Two-Stage	Scroll
Factory Charge HFC-410A (oz) [kg]	96 [2.72]	104 [2.95]	126 [3.57]	192 [5.44]	96 [2.72]	104 [2.95]	126 [3.57]	192 [5.44]
Water Connection Size								
(In)		1 (S	wivel)		3/4 (S	wivel)	1 (S	wivel)
HWG Connection Size								
(ln)		1 (S	wivel)			5/8 (I.D	. Sweat)	
Line Set Connection Size								
Liquid Line Sweat Connection (in.)	3/8	3/8	3/8	1/2	3/8	3/8	3/8	1/2
Vapor Line Sweat Connection (in.)	3/4	7/8	7/8	7/8	3/4	7/8	7/8	7/8
Weight - Operating, (lbs) [kg]	233 [106]	251 [114]	280 [127]	295 [134]	245[111]	263 [119]	309 [140]	337 [153]
Weight - Packaged, (lbs) [kg]	248 [112]	266 [121]	295 [134]	310 [141]	260 [118]	278 [126]	324 [147]	352 [160]

Units have grommet compressor mountings, TXV expansion devices, and 1/2" [12.2mm] & 3/4" [19.1mm] electrical knockouts.

Unit Maximum Working Water Pressure	
Options	Max Pressure PSIG (kPa)
Base Unit	500 (3,447)
Unit with Internal Flow Controller	145 (999)
Unit with Internal Modulating Water Valve	300 (2,068)

				TAC			
Model	026BM17	026BM21	038BM21	038BM24	049BM21	049BM24	064BM24
Connections - Sweat							
Liquid I.D in	3/8	3/8	3/8	3/8	3/8	3/8	3/8
Suction I.D in	3/4	3/4	7/8	7/8	7/8	7/8	7/8
Cased Coil Dimensions							
A - Width - in [cm]	17 1/2 [44.5]	21 [53.3]	21[53.3]	24 1/2 [62.2]	21 [53.3]	24 1/2 [62.2]	24 1/2 [62.2]
B - Coil Height - in [cm]	14 1/2 [36.8]	17 1/2 [44.5]	25 7/8 [65.7]	25 3/8 [64.5]	25 7/8 [65.7]	25 3/8 [64.5]	30 [76.2]
C- Height - in [cm]	20 [50.8]	20 [50.8]	28 [71.1]	32 [81.3]	28 [71.1]	32 [81.3]	32 [81.3]
Weight							
Coil Weight lbs. [kg]	43 [20]	49 [22]	71 [32]	83 [38]	71 [32]	83 [38]	100 [45]
Shipping Weight lbs. [kg]	48 [22]	54 [24]	78 [35]	93 [42]	78 [35]	93 [42]	110 [50]

				TAH			
Model	026-A	026-B	038-B	038-C	049-B	049-C	064-C
Liquid I.D. in.	3/8	3/8	3/8	3/8	3/8	3/8	3/8
Suction I.D. in.	3/4	3/4	7/8	7/8	7/8	7/8	7/8
Fan Motor Type/Speeds			E	CM Variable			
Fan Motor (hp)		1/2				1	
Blower Wheel Size (Dia x W) in. [mm]	9 x 7 [229 :	x 178]			11 x 10 [279 x 25	4]	
Air Coil Dimensions (H x W) in. [mm]	14 x 17 [356	6 x 432]		24 x 17 [610) x 432]		24x17 [610 x 432]
Filter Standard - 1" [25mm] Thick Throwaway in. [mm]	16 x 20 [406 x 508]	20 x 20 [5	508 x 508]	20 x 24 [508 x 610]	20 x 20 [508 x 508]	20 x	24 [508 x 610]
Weight - Operating lbs. [kg]	80 [36]	163 [74]	173 [78]	181 [82]	180 [82]	188 [85]	198 [90]
Weight - Packaged lbs. [kg]	96 [44]	179 [81]	198 [90]	206 [93]	218 [99]	226 [103]	236 [107]

Electrical Data

Electrical Data (TES without Flow Controller)

Model	Co	mpress	or	HWG	Total	Min Circuit	Max
Wodei	RLA	LRA	Qty	FLA	Unit FLA	Amps	Fuse/ HACR
026	11.7	58.3	1	0.5	12.2	15.1	25
038	15.3	83.0	1	0.5	15.8	19.6	30
049	21.2	104.0	1	0.5	21.7	27.0	45
064	27.1	152.9	1	0.5	27.6	34.3	60

Rated Voltage of 208/230/60/1 All fuses Class RK-5 Min/Max Voltage of 197/252

Electrical Data (TES with High Head Flow Controller)

Madal	Co	mpress	or	Loop	Total	Min	Max	
Model	RLA	LRA	Qty	Pump FLA	Unit FLA	Circuit Amps	Fuse/ HACR	
026	11.7	58.3	1	1.44	13.1	16.1	25	
038	15.3	83.0	1	1.44	16.7	20.6	35	
049	21.2	104.0	1	1.44	22.6	27.9	45	
064	27.1	152.9	1	1.44	28.5	35.3	60	

Rated Voltage of 208/230/60/1 All fuses Class RK-5 Min/Max Voltage of 197/252

Electrical Data (TES with Standard Head Flow Controller)

Model	(Compresso	or	HWG Pump	Loop Pump	Total Unit	Min Circuit	Max Fuse/
Model	RLA	LRA	Qty	FLA	FLA	FLA	Amps	HACR
026	11.7	58.3	1	0.5	0.7	12.9	15.8	25
038	15.3	83.0	1	0.5	0.7	16.5	20.3	35

Rated Voltage of 208/230/60/1 All fuses Class RK-5 Min/Max Voltage of 197/252

Electrical Data (TEP with High Head Flow Controller)

Model	(Compresso	or	Loop Pump	Total Unit	Min Circuit	Max Fuse/	
Wiodei	RLA	LRA	Qty	FLA	FLA	Amps	HACR	
026	11.7	58.3	1	1.44	13.1	16.1	25	
038	15.3	83.0	1	1.44	16.7	20.6	35	
049	21.2	104.0	1	1.44	22.6	27.9	45	
064	27.1	152.9	1	1.44	28.5	35.3	60	

Rated Voltage of 208/230/60/1 All fuses Class RK-5

Min/Max Voltage of 197/252

Electrical Data (TEP with Standard Head Flow Controller)

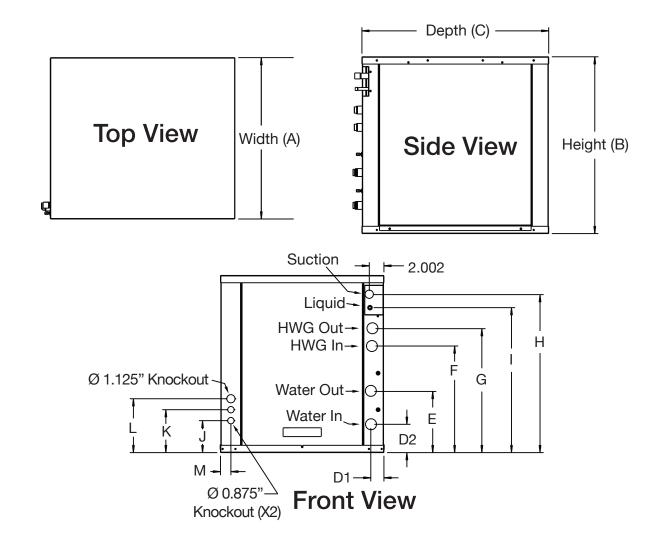
Model	(Compresso	r	Loop Pump	Total Unit	Min Circuit	Max Fuse/	
Wiodei	RLA	_A LRA Qty		FLA	FLA	Amps	HACR	
026	11.7	58.3	1	0.7	12.4	15.3	25	
038	15.3	83.0	1	0.7	16.0	19.8	35	

Rated Voltage of 208/230/60/1 All fuses Class RK-5 Min/Max Voltage of 197/252

Electrical Data

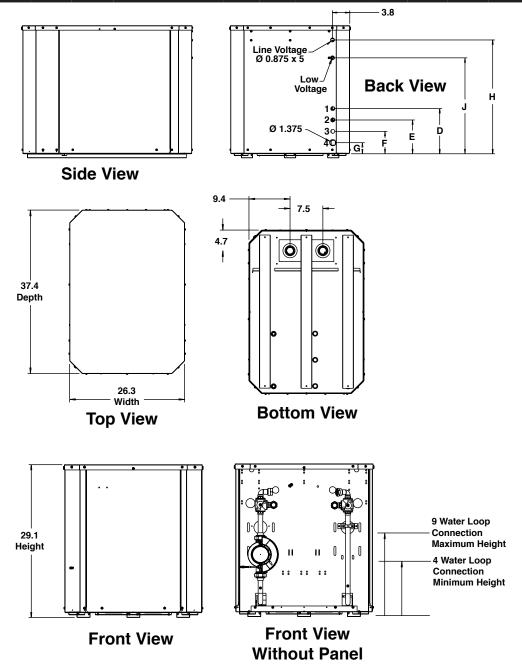
Electrical Data (HWG)

HWG Module	Voltage	Pump FLA	Total FLA	Min Circuit Amps
AHWG1BASS	115/60/1	0.52	0.52	1.20
AHWG1BGSS	208/230/60/1	0.40	0.40	0.90

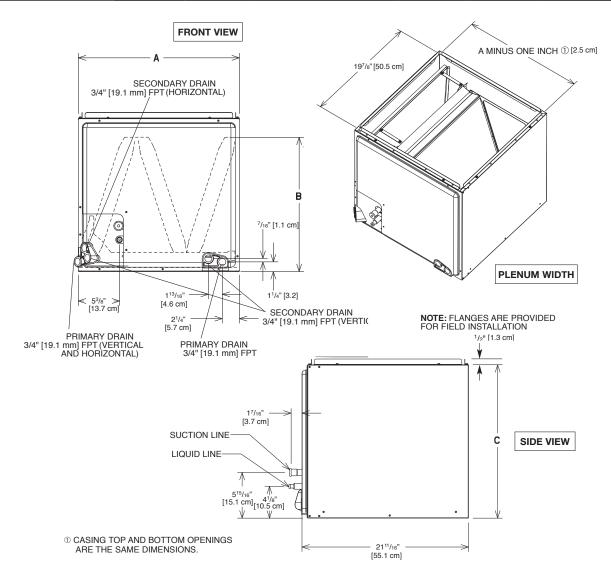

Electrical Data (TAH)

Model	Fan Motor FLA	Fan Motor HP	Max Fan ESP	Min Circ Amp (120) 208/230	Total Unit FLA	Max Fuse/ HACR (120) 208/230
026	(7.7) 4.3	1/2	0.5	(7.8) 4.9	(7.7) 4.3	(15) 15
038	(7.7) 4.3	1/2	0.5	(7.8) 4.9	(7.7) 4.3	(15) 15
049	(12.8) 7	1	1	(14.4) 8.6	(12.8) 7	(25) 15
064	(12.8) 7	1	1	(14.4) 8.6	(12.8) 7	(25) 15

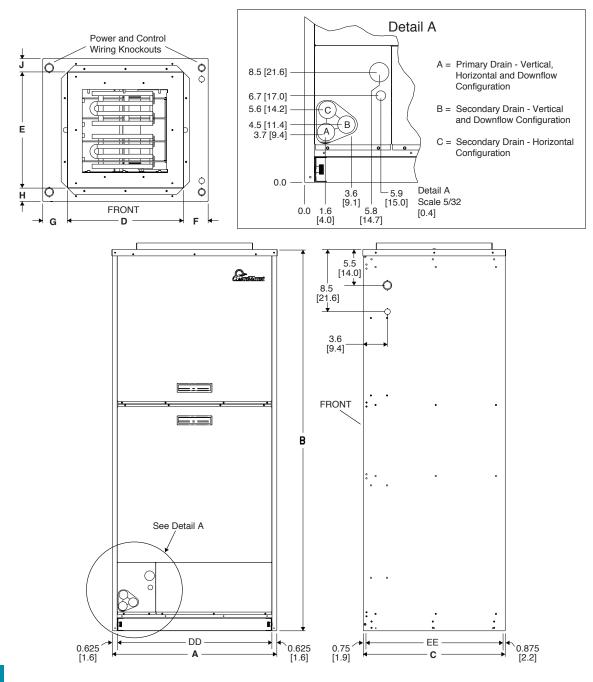
Dual Rated Voltate: (115) 208/230 Min/Max Voltage: 115: 114/132 Min/Max Voltage: 208/230: 197/252


Tranquility® Digital Indoor (TES) Dimensional Data

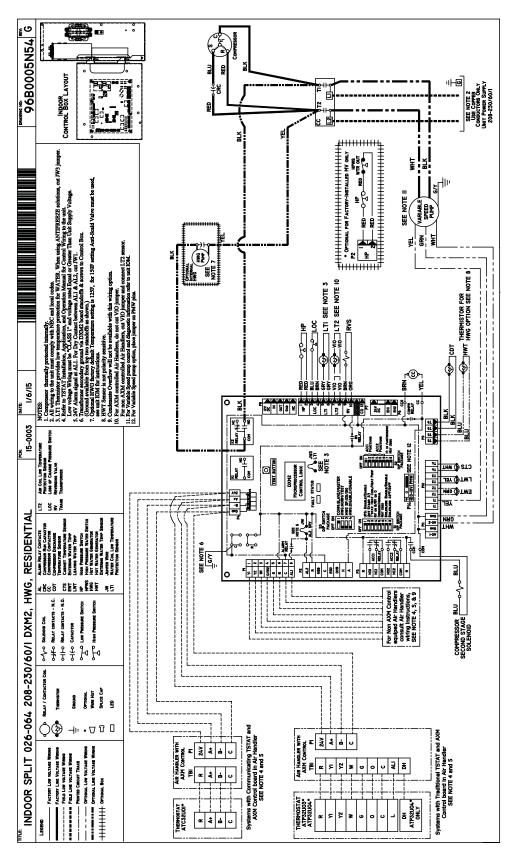
		Ove	rall Cal	oinet			Water	Conne	ctions			Refri	igerant (Connect	ion	Ele	ctrical	Knocko	outs
Мо	del	A Width	B Height	C Depth	1 Water In/Out	2 HWG In/Out	D1 Water	D2 Water	E Water	F HWG	G HWG	3 Suction	4 Liquid	H Suction	 Liquid	J	К	L	M
			ŭ		Sw	ivel	ln	In	Out	In	Out		·						
026	in	22.4	24.3	25.6	1"	1"	1.8	3.9	8.4	14.6	17.0	3/4"	3/8"	21.6	19.8	4.4	5.9	7.4	1.4
020	cm	56.9	61.7	65.0	'	'	4.6	9.9	21.3	37.1	43.2	3/4	3/6	54.9	50.3	11.2	15.0	18.8	3.5
038	in	25.4	26.3	30.6	4"	4"	2.0	3.9	8.4	15.4	18.7	7/8"	3/8"	23.6	21.8	4.4	5.9	7.4	1.7
036	cm	64.5	66.8	77.7] '	'	5.1	9.9	21.3	39.1	47.5	1/6	3/6	59.9	55.4	11.2	15.0	18.8	4.3
0.40	in	25.4	26.3	30.6	4"	4"	2.0	3.9	8.4	15.4	18.7	7/0"	0./0"	23.6	21.8	4.4	5.9	7.4	1.7
049	cm	64.5	66.8	77.7] '	1	5.1	9.9	21.3	39.1	47.5	7/8"	3/8"	59.9	55.4	11.2	15.0	18.8	4.3
064	in	25.4	26.3	30.6	4"	4"	2.0	3.9	8.4	15.4	18.7	7/0"	1/0"	23.6	21.8	4.4	5.9	7.4	1.7
064	cm	64.5	66.8	77.7	_	1" 1"	5.1	9.9	21.3	39.1	47.5	7/8"	1/2"	59.9	55.4	11.2	15.0	18.8	4.3


Tranquility® Digital Outdoor (TEP) Dimensional Data

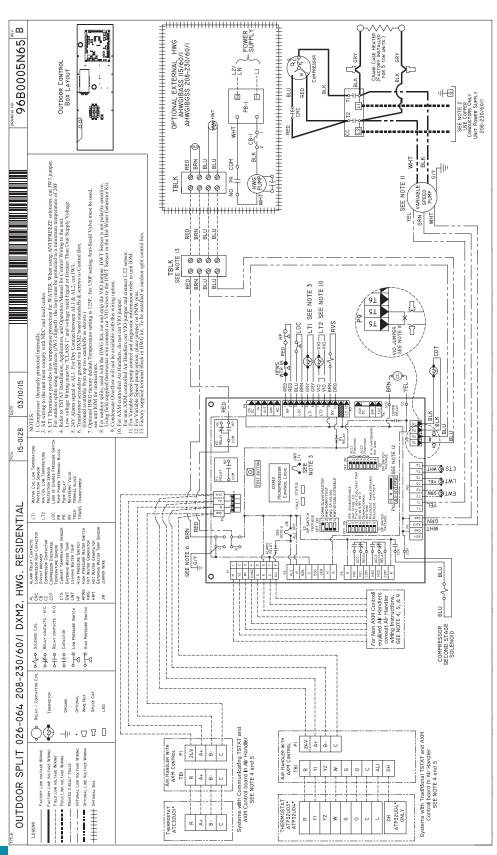
		Ove	erall Cab	inet			Refrige	rant Lir	ne Conn	ections			El	ectrical h	Knockou	ıts
Mo	odel	A Width	B Height	C Depth	1 To HWG	2 From HWG	D	E	3 Liquid Line	4 Vapor Line	F	G	Line Voltage	Low Voltage	н	J
026	in [cm]	26.3 [66.8]	29.1 [73.9]	37.4 [95.0]	5/8"	5/8"	9.9 [25.1]	7.4 [18.8]	3/8"	3/4"	4.9 [12.4]	2.4 [6.1]	7/8"	7/8"	25.1 [63.8]	21.1 [53.6]
038	in [cm]	26.3 [66.8]	29.1 [73.9]	37.4 [95.0]	5/8"	5/8"	9.9 [25.1]	7.4 [18.8]	3/8"	7/8"	4.9 [12.4]	2.4 [6.1]	7/8"	7/8"	25.1 [63.8]	21.1 [53.6]
049	in [cm]	26.3 [66.8]	29.1 [73.9]	37.4 [95.0]	5/8"	5/8"	9.9 [25.1]	7.4 [18.8]	3/8"	7/8"	4.9 [12.4]	2.4 [6.1]	7/8"	7/8"	25.1 [63.8]	21.1 [53.6]
064	in [cm]	26.3 [66.8]	29.1 [73.9]	37.4 [95.0]	5/8"	5/8"	9.9 [25.1]	7.4 [18.8]	1/2"	7/8"	4.9 [12.4]	2.4 [6.1]	7/8"	7/8"	25.1 [63.8]	21.1 [53.6]

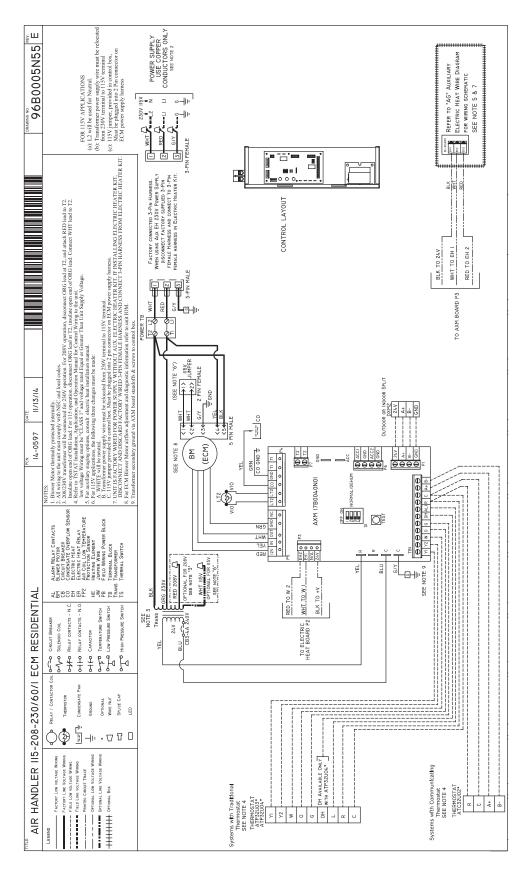

Tranquility® Cased Coil (TAC) Dimensional Data

Model	026BM17	026BM21	038BM21	038BM24	049BM21	049BM24	064BM24
Connections - Sweat							
Liquid I.D in	3/8	3/8	3/8	3/8	3/8	3/8	3/8
Suction I.D in	3/4	3/4	7/8	7/8	7/8	7/8	7/8
Cased Coil Dimensions							
A - Width - in [cm]	17 1/2 [44.5]	21 [53.3]	21[53.3]	24 1/2 [62.2]	21 [53.3]	24 1/2 [62.2]	24 1/2 [62.2]
B - Coil Height - in [cm]	14 1/2 [36.8]	17 1/2 [44.5]	25 7/8 [65.7]	25 3/8 [64.5]	25 7/8 [65.7]	25 3/8 [64.5]	30 [76.2]
C- Height - in [cm]	20 [50.8]	20 [50.8]	28 [71.1]	32 [81.3]	28 [71.1]	32 [81.3]	32 [81.3]
Weight							
Coil Weight lbs. [kg]	43 [20]	49 [22]	71 [32]	83 [38]	71 [32]	83 [38]	100 [45]
Shipping Weight lbs. [kg]	48 [22]	54 [24]	78 [35]	93 [42]	78 [35]	93 [42]	110 [50]



Tranquility® Digital Air Handler (TAH) Dimensional Data


Cabine	t	Ove	rall Cab	inet	Supply Ai	r Opening	Return Ai	r Opening					
Size		A Width	B Height	C Depth	D Width	E Depth	DD Width	EE Depth	F	G	Н	J	
A - Cabinet	in.	18.5	44.0	22.0	14.0	14.0	17.3	20.4	2.3	2.3	4.1	4.1	
A - Gabinet	cm.	47.0	111.8	55.9	35.6	35.5	43.9	51.8	5.8	5.8	10.3	10.3	
D. Cobinet	in.	22.0	55.0	22.0	18.0	18.0	20.8	20.4	2.1	2.1	2.1	2.1	
B - Cabinet	cm.	55.9	139.7	55.9	45.7	45.7	52.8	51.8	5.2	5.2	5.2	5.2	
C. Cabinat	in.	25.5	59.0	22.0	18.0	18.0	24.3	20.4	3.8	3.8	2.1	2.1	
C - Cabinet	cm.	64.8	149.9	55.9	45.7	45.7	61.7	51.8	9.9	9.9	5.2	5.2	


Tranquility® Digital Indoor Split (TES) Electrical Wiring Diagram - 96B0005N54

Tranquility® Digital Outdoor Split (TEP) DXM2 wiring diagram with Internal Flow Controller - 96B0005N65

Tranquility® Digital Air Handler (TAH) Electrical Wiring Diagram - 96B0005N55

Tranquility® Digital Split (TES/TEP/TAC/TAH) Series Submittal Data

Models 026 - 064 60Hz - HFC-410A

Residential

SUBMITTAL DATA - I-P UNITS
Unit Designation:
Job Name:
Architect:
Engineer: —
Contractor:
PERFORMANCE DATA
Cooling Capacity:
EER:
Heating Capacity:
COP:
Ambient Air Temp:°F_
Entering Water Temp (Clg):°F_
Entering Air Temp (Clg):°F_
Entering Water Temp (Htg):°F_
Entering Air Temp (Htg):°E_
Airflow:CEM_
Fan Speed or Motor/RPM/Turns:
Operating Weight:(lb)_
ELECTRICAL DATA
Power Supply: 208/230 Volts Single Phase 60 Hz
Minimum Circuit Ampacity:
Maximum Overcurrent Protection:

Accessories & Options

vFlow[®] Internal Variable Speed Water-flow Control

ClimateMaster takes ease and speed of installation of geothermal heating and cooling systems to the next level with vFlow® variable water flow control. vFlow integrates water-flow control inside the unit AND matches the flow to the unit's operating requirements. Compared to conventional units that can just turn the water-flow on or off, Tranquility® Digital Split units vary the water-flow, which results in lower operating cost and longer system life. New 2-way communicating control (and communicating Pump / modulating valve) make vFlow a reality and are only available on ClimateMaster Tranquility Digital systems.

Thermostat (field installed)

The ATC32U** communicating thermostat is a programmable multi-stage auto-changeover electronic digital thermostat. The ATC offers up to 3 heating and 2 cooling stages with precise temperature control. The ATC is capable of controlling heating and cooling stages using a differential or proportional integral control algorithm. Multiple system temperatures and data can be displayed. The ATC is an integral component in system configuration and diagnostics.

Hot Water Generator (Indoor Compressor Section Only)

An optional heat reclaiming desuperheater coil of vented double-wall copper construction suitable for potable water shall be provided. The coil and hot water circulating pump shall be factory mounted inside the unit. A high limit and low compressor discharge line temperature switch shall be provided to disable the pump when these conditions occur.

Hot Water Generator (Outdoor Compressor Section Only)

An optional external heat reclaiming desuperheater module including a vented double-wall heat cupro-nickel exchanger suitable for potable water use shall be provided. The heat exchanger, hot water circulating pump, and a microprocessor control shall be factory installed in an external cabinet. A sensor shall be provided to monitor the entering potable water temperature. A second sensor shall be used to monitor the compressor discharge temperature. A microprocessor shall be provided to control the desuperheater based on the sensor inputs. The Hot Water Generator module shall be 115 vac and listed by a nationally recognized safety-testing laboratory or agency.

Cupro-Nickel Heat Exchanger

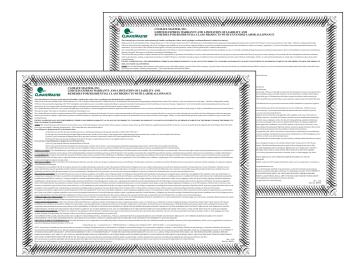
An optional corrosion resistant Cupro-Nickel coaxial heat exchanger shall be factory installed in lieu of standard copper construction (indoor section only).

Hose Kits (field installed)

A rubber hose kit shall provide connections between the unit and Flow Controller. Rubber I'' hose allows flexible connection and absorbs vibration transmission between unit and Flow Controller. Brass elbows with MPT fittings for unit connection, barbed fittings for hose connection and FPT fittings for Pressure/Temperature ports shall be included to allow service and troubleshooting of the unit.

Hose clamps shall be used to connect the hose to the brass elbows and Flow Controller.

Warranty Information


ClimateMaster residential class heat pumps are backed by a ten-year limited warranty on all unit parts, including the following accessories when installed with ClimateMaster units: Flow Controllers, Thermostats & Electric Heaters.

ClimateMaster goes even further to back up its commitment to quality by including a service labor allowance for the first five years on unit parts and thermostats, auxiliary electric heaters and geothermal pumping modules.

See ClimateMaster's 2010 Limited Express Residential Warranty Certificate RP851 for specific coverage and limitation.

The Optional Extended Factory Service Labor Allowance Warranty offers additional length of term protection to the consumer by offsetting service labor costs for 10 years.

To order this warranty, contact your ClimateMaster distributor. This coverage must be purchased within 90 days of unit installation. See Limited Express Extended Labor Warranty Certificate RP852 for details.

Notes

Notes

Revision History

Date	Page #	Description
November 4, 2020	Various	General Materials Update
December 27, 2019	14	Removed table and added footnote to decoder
November 11, 2019	5	Removed no flow center graphic
October 29, 2019	6, 14	Decoder and pump curve updates
January 23, 2019	6,31	High Head Variable Pump update
April 1, 2016	9	Run test description
January 14, 2016	17	Update Table Data
November 23, 2015	Various	Updated Table Data
October 30, 2015	Various	Revision Updates on Data Tables and Images
October 13, 2015	All	Revision Updates
Febuary 12, 2015	31	Update Electrical Data for External Pump
January 22, 2015	All	Added no vFlow and UPM-Geo Options
October 13, 2013	17	ISO Ratings Updated
June 7, 2013	30	Edits to 038-064 RLA, FLA and MCA
Febuary 15, 2013	3-7	What's New, iGate™ Communicating Controls, vFlow™ Internal Variable Water Flow Control and How to Use pages added
November 9, 2012	All	First Published

RP1003

7300 S.W. 44th Street Oklahoma City, OK 73179 Phone: 405-745-6000 Fax: 405-745-6058 climatemaster.com

ClimateMaster works continually to improve its products. As a result, the design and specifications of each product at the time for order may be changed without notice and may not be as described herein. Please contact ClimateMaster's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely ClimateMaster's opinion or commendation of its products.

Engineered and assembled in the USA

© ClimateMaster, Inc. 2009

