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Abstract  The problem of preprocessing transaction data for supervised fraud clas-
sification is considered. It is impractical to present an entire series of transactions
to a fraud detection system, partly because of the very high dimensionality of such
data but also because of the heterogeneity of the transactions. Hence, a framework
for transaction aggregation is considered and its effectiveness is evaluated against
transaction-level detection, using a variety of classification methods and a realistic
cost-based performance measure. These methods are applied in two case studies using
real data. Transaction aggregation is found to be advantageous in many but not all
circumstances. Also, the length of the aggregation period has a large impact upon
performance. Aggregation seems particularly effective when a random forest is used
for classification. Moreover, random forests were found to perform better than other
classification methods, including SVMs, logistic regression and KNN. Aggregation
also has the advantage of not requiring precisely labeled data and may be more robust
to the effects of population drift.
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1 Introduction

In this work, we consider the problem of identifying whether a credit or debit card
account has been compromised by fraud. That is, we are interested in whether the
account has been subject to fraudulent activity. There are two main levels on which
we may approach this question: transaction level and account level. Banks usually
implement some form of transaction classification system, often a set of rules, which
raise alerts on individual transactions which are considered suspicious. A transaction
might arouse suspicion if, for example, it is for a large amount of money and with
a particular type of merchant (e.g. online bookmaker) at a certain time of day. This
type of fraud detection strategy considers only transactions in isolation from each
other. Neither the previous history of the associated account, nor other transactions
are taken into consideration. It may be, for example, that a particular combination of
transactions (maybe online gambling in combination with theater ticket bookings) is
a better indicator of fraud than either transaction in isolation. Also, the occurrence of
two transactions in geographically distant locations at nearly the same time (called a
‘collision’ or “high velocity” event) is an often-used indicator of fraud. Moreover, it
may also be that the frequency or volume of transactions is more important for fraud
detection than the characteristics of any individual transaction.

In addition, some banks implement ‘behavioral models’ which aim to characterize
the legitimate transaction behavior of each individual account over a period of time.
For example, customer X only uses her credit card for retail purchases at supermarkets
and high street shops, whilst customer Y tends to use his card for online purchases,
especially at bookmakers. If, at some future time, online transactions start to appear on
customer X’saccount, this change in behavior may be considered suspicious, as it is not
characteristic of that customer’s previous behavior. Behavioral models only consider
the previous history of each account but do not attempt to identify global patterns
of fraudulent behavior; they only try to detect changes in behavior. These models
are unsupervised classifiers, examples of which have been discussed by Fawcett and
Provost (1997) and Bolton and Hand (2001). The problem with this approach is that
a change in behavior may not be due to fraud.

Given that neither behavioral models nor transaction-level classification are fool-
proof strategies for detecting fraud, it is important to find other strategies which may
be able to ameliorate their weaknesses. All these strategies will ultimately be used
in parallel, together with any existing rule-based detection system (e.g. for collision
detection). An obvious extension to transaction-level classification is to aggregate
information over a succession of transactions, or a period of time. This is indeed the
approach often taken by designers of commercial fraud detection systems, which is
one reason why we are examining it in this paper. For example, we may simply count
the number of transactions at a particular type of merchant, or take the sum of the
value of all online transactions over the past week or day. Whilst we may expect
such transaction aggregation to result in better fraud detection than transaction-level
classification, it is not clear how much advantage can be obtained by this strategy.
Also, in the transition from transaction classification to account level aggregates, a
lot of information is being discarded, especially concerning the order of transactions.
In addition, we no longer have a transaction-level fraud/non-fraud signal. Instead, we
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have a label which tells us only that there is some fraud among a set of transactions,
some of which are also likely to be genuine. To put it another way, we have a signal
identifying the account “status’ as fraudulent or not within an extended time window
covered by the aggregation period. The contribution of a single fraud transaction is
diluted when aggregation is used. However, if the aggregated data records are updated
continuously (with every transaction) then it is still possible to identify fraud as soon
as it occurs.

Thus, transaction aggregation is also not without problems, which become greater
as the aggregation period lengthens. Our aim in this study is first to assess whether
transaction aggregation may result in better fraud detection than transaction-level
classification. We would also like to quantify this advantage, if any, and see how it
varies with the length of the aggregation period. In doing so, we are following a two-
class classification approach, using real historical labeled data from two collaborating
banks. Understandably, there is relatively little previously published material on credit
card fraud detection methods, although there are commercial products, which use a
variety of the strategies outlined above (e.g. Fair 2007). As far as the authors are
aware, there is no published work addressing the question of how useful transaction
aggregation is compared to using individual transactions in a two-class classification
framework.

For a recent survey of the general area of fraud detection, see Kou et al. (2004).
Also see Bolton and Hand (2002) and Provost (2002) for a discussion of the problems
particular to fraud detection which statistical techniques should seek to address. Chan
et al. (1999) develop a boosting algorithm which uses a cost-weighted performance
measure specifically designed to optimize classifiers for fraud detection. Although
we do not make use of this algorithm here, we do use a cost-weighted measure for
performance assessment (Hand et al. 2008). This is necessary, in the light of criticism
of the conventional measures, such as those based on the ROC curve, when these are
applied in a fraud detection context (see e.g. Hand 2005).

Previous published approaches to credit card transaction fraud, based on super-
vised classification, concentrate on classifying individual transactions rather than
account level detection. Ghosh and Reilly (1994) use covariates from a medium-term
(8-10weeks of aggregated data) account level profile within a transaction-level RBF-
type neural network classifier. Dorronsoro et al. (1997) use some short-term transaction
history, although it is not very clear what this consists of and most of the inputs to
their classifiers are from the transaction records. For other examples of neural network
based transaction-level classifiers, see Aleskerov et al. (1997) and Brause et al. (1999).
More recently, Maes et al. (2002) have compared neural classifiers with Bayesian net-
works for transaction classification. For an approach to credit card application fraud
using case-based reasoning, see Wheeler and Aitken (2000).

In this paper we address the general problem of how best to present the data to a
fraud classifier by developing a framework for aggregating transaction records. We
investigate how this affects detection performance. Our emphasis is upon account-
level detection rather than the classification of individual transactions. Also, in order
to keep a general perspective, we use a broad variety of classifiers. The following
section explains our strategy in more detail, including classification methods and
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performance measurement. After that, we discuss the data itself, before going on to
present our results and conclusions.

2 Methodology
2.1 Formal description of data attributes

The data for each transaction is a vector of characteristics, x. This encodes various
aspects of the transaction: typically the amount (i.e. value), type (e.g. payment, refund,
balance enquiry), merchant type (where applicable, e.g. supermarket), channel (e.g.
ATM or POS terminal) and verification mode (e.g. chip and PIN, magnetic stripe etc.),
among others. Fraud may be identified at the transaction level, or in some cases one
may know that there is fraud on an account but not know for sure which transactions
were fraudulent.

The status of an account may be regarded as a latent time-dependent binary variable,
S . This indicates whether the account has suffered a fraudulent transaction at or prior
to time t. The subscript t may be regarded either as an actual time or as the index of a
transaction, since these are ordered in time. The task of a fraud detection system is to
identify the latent state § for any t. By convention, we choose S = 1 to represent a
fraud state (i.e. the account has been compromised), whilst § = 0 represents a normal
non-fraud account state. For most accounts § = 0 Vt. However, for some accounts,
the state changesfrom § = 0 (fort < tf)to § = 1 (fort > ty). Thisisan irreversible
step change which needs to be identified, as soon after t; as possible.

2.2 Why aggregate?

One of the chief dilemmas facing any fraud detection algorithm or system is deter-
mining at what point an alarm should be raised. Information about the status of each
account is continually being updated as new transactions occur. This new information
should allow better discrimination between fraudulent and non-fraudulent behavior.
Three suspicious transactions in a row is surely more likely to be indicative of fraud
than just one transaction in isolation. Thus, as information from transactions accu-
mulates, the system should become more confident in its diagnosis of the underlying
(latent) state, §, of the account.

However, the marginal value of new information may diminish as time passes.
Aggregating 101 transactions is not likely to be much more useful than aggregating
100. In fact, the consequent loss of temporal resolution may obscure any fraudulent
signal in the data. Worse still, as time passes, an account in a fraud state (i.e. one which
has been compromised and is subject to fraudulent activity) is potentially incurring
costs in the form of fraudulent transactions. Clearly, it is better to raise an alarm as
early as possible in order to limit these losses. On the other hand, if one raises an
early alarm, using relatively little information, confidence is likely to be low and there
will be a high false alarm rate, which also leads to higher costs and may also result in
many frauds going undetected. The question may therefore be phrased as: how much
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information is needed before a decision about the status of an account can be made
with confidence?

It is hoped that using transaction information accumulated over time will result in
better fraud discrimination than one can obtain at the level of isolated transactions.
Certain combinations of transactions may together be suspicious, even though those
same transactions in isolation are not. For example, one may find that a mobile phone
top-up followed by a series of online electronics purchases is peculiarly characteristic
of fraudulent behavior, whilst those individual transactions alone are not. Such a
combination of transactions might be called a “fraud signature’. That is, there may be
useful information in interactions between transactions and such information must be
gathered over some interval of time. On the other hand, if this interval is too long then
the information will be too diluted and it may even be too late to do anything. Hence,
we expect there will be some optimal length for the aggregation period.

2.3 How to aggregate

The foregoing considerations lead us to perform a transformation from the transaction
level to the account level so that each observation consists of an account level summary
of transaction data, y = ®(Xq, ..., Xn), Where X, ..., X, represent a time-ordered
series of recent transactions. We refer to y as an ‘activity record’ (in contrast to a
transaction record). The number, n, of transactions could be fixed or we could include
all transactions in the past up to a fixed time limit, so n may vary between accounts.
The function @ is the pre-processing transform, which may take many forms. We have
chosen @ such that y is a set of summary statistics on the transactions, X, ..., Xn SO
that their order does not matter. That is, @ is invariant to permutations of its arguments
in this case (although it need not be so, e.g. if one considers a function such as temporal
correlation in order to identify a trend). Of course, this means that we will be unable
to identify a pattern of fraudulent transactions in which such ordering is important.
This is unfortunate but we must somehow reduce the dimensionality of the data,
which inevitably means losing some information. In proceeding this way, we hope
that ordering information is not vital for fraud detection or else we will rely on some
other technique to discover patterns where ordering is important. We will see that
the classifiers built using aggregated data are capable of good performance and this
helps to justify our approach, although it is likely that supplementary methods will be
needed to improve performance further.

Several salient aspects of the transaction record, x, were identified as being rele-
vant to fraud detection by exploratory data analysis. For example, one statistic was
the number of POS transactions (i.e. at point-of-sale terminals). Another statistic was
the total value of these transactions. Similarly, other statistics were defined as counts
or total value of various other types of transaction. To give another example, transac-
tions verified by magnetic stripe are more likely to be fraudulent than chip and PIN
transactions. Hence, two other statistics were defined as the total count and total value
of transactions verified by magnetic stripe.

Transactions were also segmented by merchant code into groups of merchants with
differing fraud risk rates. The merchant field has about 500 or so possible values.

@ Springer



Transaction aggregation as a strategy for credit card fraud detection 35

Tablel Example transaction

Amt Time Service_id Entry_mode Merchant
records

50.00 11:25 ATM

12.99 13:00 POS CNP 1550

3371 13:30 POS PIN 4500

5.20 13:45 POS Mag 1105

10000 1815  ATM

Table2 Example aggregated record

Pos ATM CNP PIN Mag Mgrpl Mgrp3  TODx TODy

Amt 51.90 150.00 12.99 33.71 5.20 18.19 33.71 —91.23 -110.74
Num 3 2 1 1 1 2 1 -3.71 —1.93

These were first grouped into 24 similar ‘super-categories’ (this leads to the creation
of 48 variables) based upon a separate analysis using Laplace-smoothed estimates
of the fraud rates within the categories. We attempted to create groups with fairly
homogeneous fraud rate and a reasonably large number of total observations whilst
maintaining the ordering of the codes. In this way, it was possible to derive count
and total value statistics for merchant groups, as well as other groups of transactions.
An explicit example may help to clarify the process. Consider a set of transactions as
specified in Table 1.

These simplified transactions may be aggregated to create a single record shown in
Table 2.

As can be seen, there are 2 ATM transactions, along with 3 at point-of-sale terminals.
This fact is summarized in the second line of the aggregated record, where the number
of different types of transactions is given. ‘Entry_mode’ and ‘Merchant’ information
is relevant only for the POS transactions. Here, ‘CNP’ means ‘card not present’ (as is
usual for telephone or internet transactions). The 3 different entry modes are aggregated
separately and there is only 1 transaction of each type. The first line of the aggregated
record gives the total amount of each type of transaction. For example, the two ATM
withdrawals amounted to £150 in total, where as the POS transactions add up to £51.90
all together. Although there are 3 merchant codes, these have been put into 2 different
groups (according to a separate analysis), with the codes 1105 and 1550 assigned to
merchant group 1 and code 4500 assigned to group 2 (along with other codes which
we do not mention here). The total amount of the two transactions in group 1 is £18.109.
Finally, there are two ‘time-of-day’ aggregation variables which are explained in detail
below.

Formally, x is first mapped to a vector of binary flags, z = Z(x), so that z indicates
whether x is a member of a particular class of transactions (e.g. POS transactions,
transactions at a merchant belonging to some particular group, transactions verified
by magnetic stripe, etc.). Then, for each class of transactions, the summary statistics
are the count and total value. Thus, for a particularaccount,y = (3L, zi, >\ az),
where g isthe amount (monetary value) of the i th transaction. There were also a couple
of features that did not quite fit this general scheme, although they were defined very
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similarly. For example, the time of day of each transaction was considered important,
as it was noticed that late night and early morning transactions tended to be associated
more with fraud. The time of each transaction was coded as a pair of variables, ¢1 =
cos(2xt/T) and ¢ = sin(2wt/T) where t is the time of day and T is the length of
the day. Hence midday becomes the vector (—1, 0) and midnight is (1, 0). The vector
(0, 1) represents6amand (0, —1) is 6 pm. This coding avoids the arbitrary discontinuity
which otherwise occurs at midnight and is more efficient than using ‘bins’ for different
times of day. The summary statistics are then still defined as above, treating ¢; and ¢>
just like elements of the indicator vector z, which is now allowed to take real values.
The aggregated time-of-day variables are then defined ast = (Zin=1 Cin D A )
in much the same way as the other aggregated variables. The kind of pre-processing
described here is commonly used in commercial fraud detection systems and is known
to work well in many commercial applications, from the authors’ own experience.

In general, we do not have to restrict attention to the counts and amounts, g;, but
could calculate sample moments or other statistics for any attribute we might consider
interesting, such as the variance of geographical locations or maximum difference
between successive amounts. The possibilities for features which may be included in
y are endless. We have merely chosen a simple scheme for this study, based largely
on measures of transaction volume. Other aggregation schemes are equally valid and
can be incorporated within the same framework.

Note also that we do not require accurate labels (fraud/non-fraud) for all tran-
sactions. Indeed, it is often the case that banks cannot identify with certainty which
transactions are fraudulent and can say with confidence only that there was some fraud
on a certain date or dates. In such cases, transaction aggregation is particularly useful,
since itis only necessary to specify atime (t ¢ ) at which the status of an account changes
from non-fraud to fraud. An “activity record’, y = ® (X, ..., Xn), is allocated to the
fraud class if any of the transactions {x1, ..., Xy} in its argument has a time later than
ts. An ‘activity record’ may therefore be defined to have a ‘generation time’ equal
to the time of the last transaction in its argument. This formulation and definition of
fraud status is also robust to misclassifications of individual transactions. Furthermore,
in practice it is expected that there may be legitimate transactions mixed with fraud
transactions on an account (in a fraud state). Any successful detection system will
have to identify fraud states in spite of the possible presence of legitimate transac-
tions. Indeed, legitimate transactions may sometimes be useful in identifying fraud
states. For example, the near simultaneous use of a card in very different locations
probably implies fraud, even though one does not know which of the transactions is
actually fraudulent. Considerations such as these provide strong justification for the
aggregation strategy.

2.4 Variation of time window
One of our aims is to determine how fraud detection performance changes as the length
of the aggregation period varies. We vary the amount of information in the activity

record, y, by choosing time windows of different widths over which to accumulate
transaction data. We may do this by considering different fixed numbers of transactions,
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n in the argument to the transformation, ® (xu, .. ., X,) above. Alternatively we may
vary the width of a fixed time window (e.g. in terms of days). In the present work, the
latter approach is adopted, but we will also consider single-transaction classification as
a limiting case in which the time window is effectively zero (or n = 1). Many existing
fraud detection systems only classify individual transactions, rather than accumulating
account information. It will be interesting to quantify how much improvement in
detection performance, if any, can be gained by considering more than one transaction
in the context of 2-class classification.

In this study, we examine fixed time window periods of 1, 3 and 7 days respectively.
For simplicity, these periods include the day of the current transaction and always start
at midnight on the previous day, or 3 or 7 days ago. Note that if no transactions occur
within a particular time window, then no activity record is generated, so a record is
produced only when a transaction is observed. This can always be done, even if there is
only one transaction in the window. We might have used a fixed number of transactions
instead, but we feel that time periods are easier to understand from a practitioner’s
perspective. A fixed number of transactions might also entail a very long time per-
iod for certain accounts, which might be impractical. It is also important to note that
ideally the aggregation period is a rolling window, so an activity record is updated
with every transaction. This means that there would be a one-to-one correspondence
between activity records and transactions, which allows the possibility of immediate
fraud detection rather than having to wait for a fixed period of time to elapse before
a new record is created. However, in practice we may have to be content with aggre-
gating at particular times, such as once per day. The activity records in our study
were generated at midnight each day (thus aggregating the previous n days of transac-
tions). As noted above, we also compare the classifiers built using these time windows
with classifiers built solely on transaction data (i.e. a window of length equal to 1
transaction).

One interesting possibility which we did not examine was to combine different
aggregation periods within a single classifier. This would be one way of achieving a
greater degree of ‘scale invariance’ among our input variables, as we could then see
whether quantities such as ‘average spend over last 3days/average spend over last
month (or year)’ might be significant predictors. The use of such variables has a lot
in common with the “anomaly detection’ (or behavioral model) approach. In practice,
this strategy is likely to be advantageous, especially for longer aggregation periods,
but we wanted to keep things simple and so examined different aggregation periods
in isolation.

2.5 Classification methods

Although comparison of methods is not the primary aim of this study, we propose
to use and compare several approaches to classification. By using a whole range of
classification methods, we hope to be able to draw more general conclusions concer-
ning fraud detection and transaction aggregation, rather than conclusions specific only
to one or two particular methods. It must be remembered, though, that the optimal
parameter settings for any method will vary from one data set to another. Where we
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give parameter settings below, these were found to be good for our data and if we do
not mention all parameters, then standard default values may be assumed. Two of the
methods we used are representative of the more sophisticated recent approaches and
have the property that they are capable (in their most advanced forms) of classifying
any data:

e Support Vector Machines (SVMs) with Gaussian radial basis kernels (Cristianini
and Shawe-Taylor 2000). The kernel width was set as the median distance (over all
training examples) to the 40th nearest neighbor, as this gave good results on vali-
dation data. The regularization parameter, C, was set to 0.5 after experimentation
with a wide range of values.

e Random Forests (Breiman 2001). This is a classifier in which a set of decision
trees is generated on bootstrap samples of the data and then combined by majority
voting (an example of a ‘bagging’ classifier). Unless otherwise stated, we used 200
trees in each forest (using more trees takes longer to train but did not improve the
results). The ‘mtry” parameter was set to 10 (no. of variables to consider at each
splitting).

These will be compared with the following more traditional or ‘simple’ methods,
which are also limited in terms of the kinds of decision boundaries that they can
implement:

e Logistic Regression (see e.g. Hosmer and Lemeshow 2000), using all inputs.

e Quadratic Discriminant. Based on a two-class regularized multivariate Gaussian
Bayes classifier (Friedman 1989).

o Naive Bayes Classifier (see e.g. Hand and Yu 2001; Duda and Hart 1973). Each
variable was divided into 50 intervals of equal frequency (i.e. the same total number
of observations in each) where possible. The class-conditional probability density
was then estimated in each interval. Variables with fewer than 50 values had one
bin for each value. Note that all variables were effectively numerical (after aggre-
gation).

Note that we used a Naive Bayes classifier rather than a more general Bayesian
Network, as the latter would be much more complicated to train and the former have
been known to perform well despite violation of its independence assumption. The
more general Bayesian Network should have similar capabilities to the Random Forest
and SVM but if Naive Bayes were found to perform equally well then its ease of
use would make it a preferred choice. The same could be said of the other ‘simple’
classifiers.

In addition, the following methods are included as highly flexible universal clas-
sifiers, although they have been in use for many years and may be considered as
‘standard’ or ‘traditional’ approaches (for an overview see Hastie et al. 2001):

e Decision Tree (CART) (Breiman et al. 1984). The level of the tree was optimized
using misclassification rate on validation data.

e K-nearest-neighbors (KNN). See, e.g. Hastie et al. (2001) for details. The fifth root
transform was used to remove the otherwise excessive skewness of many of the
variables. A Euclidean distance metric was applied after the transform and K was
optimized using Gini coefficient on training data.
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These approaches have been selected as they are either fairly common, or variants
of commonly used classifiers, as well as representing a diversity of approaches with
differing strengths and weaknesses. In addition, the fact that the authors have rea-
sonable expertise in using all of these methods helps to provide a fair assessment
between them. Practitioners in the banking sector rarely have special expertise in the
use of these classification techniques, so usability is an important consideration. If
a method requires a high degree of specialist knowledge and a great deal of time or
effort in order to set the parameters, then it is less likely to be successful in practice
(Hand 2006). This should be borne in mind when assessing the relative performance
of these classifiers. Care was taken to invest roughly the same amount of human time
and effort in the use of each of these classification techniques, with regard to opti-
mizing parameters. Again, although such an assessment is subjective, it should help
to make the comparison fairer. For this study, a decision was made to spend about
one standard man-day of effort on each model. Generally, it is true to say that the
performance of most classifiers can be improved in any given case by applying extra
effort in fine tuning parameters or modifying the data. In this study, we made only
rudimentary efforts in this regard and tried to ensure that no technique was favored.
The reader should therefore be aware that the results reported here do not represent the
very best performance achievable by each model with this data, although we believe
they are close to optimal. In an ideal world, one would want to know the very best
parameter settings for each method but this is not possible in practice. The procedure
we followed is realistic and should provide a fair comparison, even though it does not
necessarily produce the very best models.

2.6 Performance measurement

Most classifiers can produce a real number, monotonically related to the fraud
probability, for each input pattern or record. This is referred to as the ‘score’, which
is then compared with some threshold in order to produce a decision. Where we have
reported ‘scores’ here, they are essentially fraud probabilities (under the assumption
of equal priors) and are therefore directly comparable. By convention, a higher score
is associated with higher fraud probability. If the decision threshold is set at a particu-
lar score, an alert is generated for any record with an equal or higher score. Records
with lower scores are classified as non-fraud. Thus, only the ordering of the scores
is important for performance measurement. All the measures we use are invariant to
any monotonic transformation of score values. One measure of performance is simply
the misclassification rate, although this takes no consideration of the varying costs of
different types of misclassification. In addition, one should take care to ensure that
the performance measure bears a close relation to the real costs incurred by banks
faced with fraud. The actual industry average fraud rate on accounts is about 0.1%
per annum in the UK (APACS 2006). This is reflected in the data we have, although
we use sub-samples in which the fraud population is much higher, in order to develop
classifiers. However, when calculating performance, we rebalance the fraud/non-fraud
ratio to reflect the expected fraud prevalence of about 0.1%.
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Performance measurement for fraud detection is a subtle matter, with many pitfalls
and potential controversies. In particular, the Gini coefficient or AUC (area under
the ROC curve) is often used as a standard measure of classification performance,
although it has been pointed out that this may not be an appropriate measure for fraud
applications (Adams and Hand 1999; Provost and Fawcett 1997). The reason for this
is that the Gini or AUC is neutral regarding the relative cost of false negatives and false
positives. In effect, these measures may be regarded as integrals over all possible cost
ratios (Hand 2005). In order to evaluate fraud classifiers, one should really make some
appropriate assumptions about the likely cost ratios involved and use these in a cost-
weighted performance measure, such as the loss function described below, proposed
in Hand et al. (2008). In the results section, we will focus on the loss function but we
will also highlight where these differ from the Gini coefficient and why, arguing that
the loss measure is more appropriate for fraud detection.

For this study, we assume that a false positive has a cost of 1 unit. This may be
thought of as the cost of investigating a case. We will denote this as cn/+ (the cost of
a non-fraud classified as fraud). True positives will also incur this cost, denoted c+ .
This is because an alert must be investigated before a fraud can be confirmed and there
is always a cost associated with this. Hence cn/f = cf/f = 1. So, a fraud system
produces alerts, which must then be scrutinized by a team of trained investigators. In
most cases, an ‘investigation’ will consist of a brief look at recent transactions on an
account, followed by a phone call to confirm that those transactions were made by the
account holder. It may also require calls to the merchants involved, or more extensive
work, depending on the size of the potential fraud loss. However, given that fraud is
rare, there will always be a preponderance of false positives, so it is important to keep
investigation costs down, especially when the potential loss is relatively small. Usually,
a single phone call should suffice to ascertain the legitimacy of a set of transactions.
The cost of the call is a few 10s of pence at most but the investigator’s time is more
expensive, together with overheads (office maintenance etc.), although fixed costs
should be ignored. As a rough estimate, we will assume that a typical investigator can
easily handle 50 investigations (essentially phone calls) per day and is paid about £400
per week. These figures were estimated with the help of our collaborating banks but
they need not be perfectly accurate. We are only seeking some rough approximation of
the true costs, which will vary widely across the industry. This implies a cost of about
£2 per case, including the phone call. This may be compared with the typical cost of
a known fraudulent transaction from the second data set described in Sect. 3.2. The
mean amount of the fraud transactions was £140. This gives us a cost ratio of 70 but we
will round up this number to 100. Formally, we will say cf,n = 100, where c¢n, is the
cost of a fraud classified as non-fraud. This is equivalent to assuming a slightly more
‘aggressive’ fraud environment (where the cost of fraud is higher or its prevalence is
increased). In any case, the assumed cost ratio is only a very approximate figure based
on guesswork. In practice, any bank will have to make its own calculations based
on its own costs. So, for this study, we will assume the cost of a false negative (i.e.
undetected fraud) to be 100, as this is believed to be a reasonably realistic approximate
figure. Finally, the cost of a true negative (non-alerted record), is assumed negligible
and taken as zero. Thus cn/n = 0.
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Forany given score and model, one may calculate the total cost associated with using
that score as a decision threshold, as the sum of costs defined above for each record.
However, the total cost may not be easy to interpret, so we will present ‘normalized’
costs, by dividing the total cost by the theoretical maximum cost, which is given
by assuming that every record is misclassified. This then gives us a loss function,
expressed as:

_ Ct/tN£/£(S) + Cn/f Nyt (S) + Ct/nN/n(S) + Ca/nNin/n(S)
Cf/nNf + Cn/fNn

C(s) 1)

Since cn/n = 0and ¢y s = /¢ = 1this is the same as the measure “T1’ proposed
by Hand et al. (2008), but normalized to give a value between 0 and 1, allowing easy
comparison between datasets of different sizes. Hence:

Nt/f(S) + Nnyt (S) + Ci/nNt/n(S)

C(s) =
Cf/nNf + Nn

@)

The cost in Eg. 2 is shown explicitly as a function of the score, s, which determines
the numbers n¢,+ and so forth, representing the number of frauds classified as fraud.
Thus, n¢/n(s) is the number of fraud records classified as non-fraud (number of false
negatives) when the threshold is s. The denominator is simply the maximum cost,
where n¢ is just the number of fraud records and ny, is the number of non-frauds.
The optimum loss is simply the minimum of C(s) over all possible thresholds, s. It
is this minimum value (on a validation sample) which we quote as the performance
of a particular model. Note also that the one-to-one correspondence between activity
records and transactions allows the same cost function to be applied regardless of the
aggregation period.

Full details of how to calculate this cost performance measure are contained in
Hand et al. (2008). Although it is much more relevant than a measure such as the
Gini coefficient, it must be admitted that no performance measure fully captures all
the practical aspects of fraud investigation. For example, it has been brought to our
attention that banks will often avoid carrying out more than one investigation onasingle
account within a time period of a few weeks, in order to minimize inconvenience to
the account holder. Clearly, this policy might lead to some frauds going unchallenged
even though they may be detected by our system. We have decided not to take account
of such policy decisions in our performance measure, since we would rather have a
measure which is independent of the particular policies which individual banks may
or may not apply. As a result, we believe our measure captures the essential common
characteristics of the fraud intervention process and gives an idealized estimate of the
potential benefit of the detection system under consideration, although it is possible
that the full value of this benefit may not be realized in practice.

It must also be noted that we are assuming that our fraud classifier detection system
will operate in addition to any existing anti-fraud processes used by the banks. Both
of the banks in this study do have some basic rule-based fraud intervention system
which leads to some transactions being queried. Some of the known fraud cases in
our data have been detected after being queried by these systems; these accounts are
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then terminated. Often, our classifiers can detect these cases even earlier (which leads
to a positive benefit using our performance measure). However, in cases where our
classifier does not detect the fraud, we cannot know how much fraud would have gone
undiscovered, if the banks’ existing systems did not exist. This data is censored by the
existing anti-fraud process. Hence, any benefits we report here for fraud classifiers are
additional to those obtained by the existing systems and supposes the continued use
of those systems. Ultimately, though, many of the observed fraud cases are reported
by customers after viewing their statements. This means that there is an upper time
limit of about one month during which fraud can be carried out. The amount of the
loss is also limited by the credit limit of the account.

3 Data

We describe results based on two independent data sets from two different banks.
They each contain credit and debit card transactions, at both ATM and POS terminals,
although we are focusing only on POS fraud in this study because we only had labeled
data for POS fraud. Figurel is a frequency chart of how many transactions were
made by each account in a 3-month period, but only up to 20 transactions (13% of
goods had more than 20 transactions, along with 59% of the frauds but the shape
of the distributions do not change). One can see that it is heavily skewed but that
fraudulent accounts were less skewed, as these tended to be more active. In the first
data set, fraud has been identified by specifying a date of first fraudulent transaction
for each account where fraud has been committed. Thus, it is not possible to identify
individual fraudulent transactions in this data set: one can only say that an account is
in a fraudulent state at any given time. All records generated after the onset of fraud
are labeled as fraudulent for training and validation. The second data set contained
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Fig. 1 Account activity
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individually labeled fraud transactions. An account is considered to have entered a
fraudulent state after the first fraudulent transaction has been committed. Hence, any
record summarizing account behavior after that date must be considered fraudulent
(i.e. labeled by S).

3.1 Bank A

This dataset contained 175 million transactions, collected between 1st August 2005
and 30th November 2005 with 76 fields per transaction. These belong to 16.8 million
accounts, of which 5,946 experienced fraud (at POS terminals) during the observation
period. Only the date of the first fraudulent transaction is given. For training and
validation, the non-fraud accounts had to be considerably sub-sampled. Many accounts
were inactive anyway and all accounts with no POS transactions were filtered out. All
the “fraud” accounts were retained as far as was feasible.

From this raw data, many fields were essentially uninformative (i.e. virtually single-
valued). Only about 30 informative fields, deemed to have some relevance to the
question of fraud, were retained. These fields were mainly categorical. Most of them
were codes, indicating the following types of information:

type of terminal

transaction success status

PIN use indicator

checks made on the card (e.g. CVV code)
merchant type

transaction type (payment, deposit, transfer etc.)

One field also held the amount of each transaction. From these, further processing
(as outlined in Sect. 2.1) produced 87 variables (some integer and some real-valued)
for each activity record. These were mainly of two types:

e Counts of the number of transactions in each category (e.g. number of payments
at a particular type of merchant) within a fixed time window

o Total value of transactions in each category (e.g. amount spent at terminals where
card was not present) within a fixed time window

The transaction-level dataset (i.e. with no aggregation) contained only 45 variables,
due to the fact that it is not necessary to count the number of transactions in each
category. It is only necessary to supply the indicator variables and the amount field, as
it is known that there is only one transaction. Hence, this data is inherently of lower
dimension, with about half as many variables. In one way, this simplification is an
advantage as it makes modeling easier. In another way, it may be disadvantageous,
as the missing variables may contain useful information. This is partly what we are
trying to ascertain.

Four complete datasets were produced, each with different time windows for aggre-
gation. Transaction-level data was produced with a time window of effectively zero.
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Activity records with windows of length 1, 3and 7 days were also produced. It is impor-
tant to note here that the parameters for each classification method were held constant
with respect to the different aggregation periods (1-7 days), since these data sets were
so similar. This helps to make performance comparison more objective, although para-
meters for the transaction-level models may be different since the dimensionality of
this data set is smaller.

3.2 Bank B

This dataset was already highly filtered by the collaborating bank and contained
1.1 million transactions (75 fields each) observed between July 1, 2005 and December
31, 2005, pertaining to 21,655 accounts, of which 8,335 suffered some fraud.

The raw data was similar to that of bank A but not quite commensurable in every
aspect, although there was a field containing the transaction amount, of course. After
pre-processing (as for bank A), this resulted in activity records with 91 variables.
Again, 4 full datasets were generated, using different time window periods (0, 1, 3
and 7 days as before), with transaction-level data equivalent to a period of length zero.
The transaction-level data had only 47 fields, for the reason given earlier.

3.3 Training and test samples

In addition to the four different aggregation periods, the data were split into training
and validation samples in 2 different ways:

1. Prediction: Records dated up to October 30, 2005 were used for classifier training.
The classifiers were then tested on records dated November 1, 2005 onwards. This
partition was chosen in order to simulate the effect of implementing a fraud clas-
sifier in a real environment, since fraud systems are required to work in situations
where data distributions may be evolving over time. They are always required
to extrapolate into the future, subject to the vagaries of population drift. Results
will depend on how exactly the population has changed, so we cannot make safe
generalizations from these.

2. Random: Records were assigned randomly (at account level) to training (70%)
and test (30%) samples. This enables us to see if the models have over-fitted. As
long as performance is roughly equal on the two samples, we may be confident
that the models can generalize to ‘unseen’ data. This split may also be regarded
as the purest test of the capabilities of the different models, in the absence of
population drift.

In both cases, there was approximately a 70-30% split between training and test
data respectively. In total, the aggregated datasets (with 1-, 3- and 7-day windows)
contained about 46-48,000 activity records (training and test samples together). The
transaction-level datasets were somewhat larger, containing around 60,000 records for
bank A and 50,000 records for bank B.
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3.4 Fraud rates

For bank A, the typical training data sample (using 1-, 3- and 7-day window sizes
respectively) consisted of about 33—-36,000 activity records, of which 33% were fraud.
The transaction-only datasets (denoted ‘tx’ later) were slightly larger, with over 41—
46,000 transaction records, of which 43-48% were fraud. The difference is due to the
aggregation periods being full days ending at midnight, together with the nature of the
fraud label. The validation samples contained over 11-14,000 activity records each,
with about 30-33% fraud. For the transaction-only validation, there were 13-18,000
records, with 33-49% fraud. The variation reflects the fact that the fraud rate rose
significantly over the observation period.

For the training sample of bank B, there were over 33-47,000 activity records and
35-37,000 transaction-only records, with about 3650 and 27-36% fraud respectively.
The validation samples contained 11-19,000 activity records, with 40-63% fraud.
The transaction-only validation set had about 14-15,000 records, with 36-58% fraud.
Again, the variation was due to changes in volume and fraud rate over the observation
period.

Clearly, these fraud rates are not representative of the rates in the whole population,
since our data are sampled to remove many of the accounts which were almost inac-
tive (those with less than 3 transactions in total), as almost none of these experienced
fraud. In addition the non-fraud accounts were randomly sampled to reduce the imba-
lance in class sizes, which makes model development much faster without sacrificing
effectiveness. The dataset sizes were thus kept manageable whilst retaining as many
fraud records as possible. However, as noted before, the populations were re-weighted
back to the true expected proportions for the purpose of calculating cost-weighted
misclassification rates. For this purpose, we took the ‘standard’ population fraud rate
to be 0.1%, in line with our data as well as industry-wide estimates (APACS 2006).

4 Resultsand discussion
4.1 Prediction

Figure 2 shows the performance of all seven classifiers on the ‘prediction split” of the
data from bank A. Each group of four columns gives the minimum loss, as defined in
Eqg. 2, for each aggregation window. The leftmost column is for the transaction level
classifier. The other columns give the minimum loss (over all decision thresholds) for
aggregation windows of 1, 3 and 7 days from left to right. Figure 3 presents the perfor-
mance on bank B, also for the “prediction split’. There is a standard error (computed
by bootstrap methods) for the loss function of roughly 0.001 in all these charts. The
only method for which aggregation does not seem to work, with bank B data, is CART
(see Fig. 3), where performance degrades as the period lengthens. This is discussed
further in Sect. 4.3.

First, note that a cost of 0.091 (for both datasets) is achievable when no fraud system
is employed (i.e. no alerts are generated at all) and fraudsters are simply allowed to
carry out their activities. This performance level is shown by a dotted line in the
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charts. A genuine saving is only achieved when the loss drops below this level. One
can see that several models do not achieve a useful performance, especially when
transaction-only data (‘tx”) is employed.

The Random Forest appears to give the best results on both datasets, followed
by Logistic Regression and SVMs, although the Random Forests and SVMs do not
perform well on transaction-only data for bank A. For most (but not all) of the models,
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longer periods of aggregation give better results. This is especially true for the Random
Forests, although it is hard to see a clear advantage in aggregating beyond 3 days. There
does seem to be an advantage in using an aggregation period of longer than 1day in
nearly all cases, however.

4.2 Random assighment

Figures 4 and 5 present results on validation samples for the ‘random split’. For
bank A these results are very similar to those on prediction. For bank B, however,
the transaction-level performance is much better than under the prediction split. The
standard error is again around 0.001.

Although we have not shown the training data results, these are effectively identical
to those on the test sample, differing by no more than 0.002 in every case. This confirms
that good generalization has been achieved by the models. However, some models
are clearly better than others. Again, the Random Forest stands out, especially at
longer aggregation periods. In general, as the aggregation period grows, performance
improves on bank A data. For bank B, the situation is less clear cut. By 3days, the
Random Forest is only slightly better than at transaction-level, but by 7 days there is
clear improvement.

4.3 Population drift
For bank A, the two different data splits give very similar results, despite the inevi-

table effects of population drift over time (Kelly et al. 1999). For bank B, prediction
performance at transaction level is not as good as it is for the random split. Transaction
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aggregation seems to be less affected by population drift, as the prediction performance
is better for both banks with aggregated data than with transaction data.

The relative performance of the different classifiers does not seem to differ much
between the two data splits. Population drift has a similar effect on most classifiers.
However, Naive Bayes does not seem to benefit from aggregation on the random split,
whilst CART shows marked performance deterioration on the prediction split. It may
be that CART in particular is more sensitive to population drift. This may be due to
the tendency for a variable near the root of the tree to have a much greater influence on
the results than variables nearer the leaves. Such a variable may work well on training
data but could also suffer from population drift which will affect performance in the
prediction scenario. The other classification methods give more equal consideration to
the input variables, which ought to make them more robust in the event of population
drift. In practice, this will be an important consideration, since population drift is
inevitable.

For Naive Bayes, it may be that performance is affected by the increasing correla-
tions between variables as the aggregation period lengthens, as this leads to increasing
violation of the independence assumption underlying the Naive Bayes method.

4.4 Relative classifier performance

Random Forests emerge as a consistent winner in terms of performance in most cir-
cumstances, especially when using aggregated data. As a ‘bagging’ classifier, it does
demand a fair amount of computing resources, similar to those required by SVMs,
which also did very well, although finding the right parameters for the kernels also
required some effort. Logistic regression also performed very well considering it was
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one of the simplest methods to apply, requiring very little time or computing power.
K-nearest-neighbors did particularly well on transaction-level data but not so well
using aggregated records. This may be due to the considerable difference in dimen-
sionality, as the aggregated records contain about twice as many variables and KNN
classifiers are known to struggle in very high dimension. The worst classifier seems
to be the QDA Bayes classifier. This could be because of the existence of near colli-
nearities among the variables, in addition to excessive skewness, both of which tend
to make covariance determination problematic, despite the use of regularization.

4.5 Score distributions and cost functions

The following tables give the means and standard deviations of the output scores
(expressed as a probability of fraud under certain assumptions about priors) from the
Random Forest models on Split 1 of the data (prediction) for bank B, broken down
by the two classes, on transaction level and 7-day activity records respectively. The
statistics in the first two columns are within-class, whilst the third column gives overall
statistics regardless of class (Tables 3 and 4).

These tables show that the ‘fraud-score’ separation between the class means is
greater for the transaction records, with a t-statistic of 2.3, compared to 1.7 for the
activity records. However, the standard deviation of the fraud class is appreciably
smaller for the activity records. This is a partial explanation for the better performance
of activity records on the loss function measure (T1). A more detailed explanation is
found when one looks at the empirical score (i.e. predicted fraud probability) distri-
butions of the two classes at transaction level and activity record level respectively.

Figures 6 and 7 show the distributions of the non-fraud class (‘diamonds’ designa-
ted ‘NF’ in the figure legend) and fraud class (squares designated ‘F’) using essen-
tially the same x-axis in each case. At transaction level, the non-frauds are skewed
towards low scores but there is also a high proportion (about 5%) of frauds at this

Table3 Transaction level score statistics by class

Actual class

Non-fraud Fraud All
Mean score 0.111 0.711 0.325
SD of score 0.223 0.319 0.389
No. of observations 8856 4917 13773

Table4 Activity record (7 day) score statistics by class

Actual class

Non-fraud Fraud All
Mean score 0.434 0.788 0.606
SD of score 0.215 0.195 0.271
No. of observations 9818 9311 19129
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end. By contrast, the activity record approach spreads the non-fraud observations
more evenly across scores. However, the fraud observations are pushed up more away
from the low scores, whilst the good observations are effectively bunched into the
middle scores. This seems to give better discrimination in the regions where it matters
most.
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It is interesting also to take a closer look at the cost-weighted loss (T1) as a func-
tion of score, s, as given by (2). Figure8 shows T1 as a function of score threshold
for the two models under discussion. Thus, the lines represent the total financial
cost of investigating those alarms above the threshold, s, along with the cost of
all frauds not found (below the threshold). The red line, representing 7-day acti-
vity records, is above the blue line, representing transaction records, until the thre-
shold reaches 0.68. Only then does the activity record approach lead to a smaller
cost-weighted loss. The improvement is important, however, and fully justifies the
use of activity records for a cost ratio in the region of 100. Note that if no fraud
system is deployed, the cost is 0.091. This level is reached at a threshold of 0.59
for transaction records and 0.66 for activity records. It may look as if there is not
much improvement over having no system at all, but it must be remembered that the
minimum loss of 0.062 represents a fraud cost reduction of about 32% (from 0.091)
(Fig.8).

The functions shown in Fig. 8 are the result of the class-conditional score distri-
butions described in the preceding tables, which give some insight into why activity
records work better than transaction records on loss function performance. By contrast,
the Gini coefficient for the model based on transaction records is 85.0, compared to
only 77.5 for activity records (with standard error £0.5). It is thus clear that the Gini
index is an inappropriate measure for the performance of these systems (Hand 2005).
One might wonder if other cost ratios would produce the same results. Our investi-
gations confirm that this is so; for cost ratios varying between 25 and 125, activity
records yield considerable improvement over transaction records. It is only at higher
cost ratios that the difference is not so marked.
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5 Conclusions

Before discussing our conclusions, it must be remarked that a study of this kind has
certain limitations. Exact replication is not possible, although we suppose that many of
the more general characteristics of our data would likely be reproduced in subsequent
data, from different banks and different time periods. Fraud is, however, a notoriously
fast-changing phenomenon, which responds to market conditions as well as to the
measures taken by financial institutions against it. Any particular study is always
a snapshot in time and space. Many of our conclusions will therefore be tentative.
However, this is unavoidable if one wishes to study fraud. It is only by taking many
studies together that one may arrive at a full picture. It should also be remembered that
we have had to make some simplifying assumptions in the use of our cost function,
which may not be exactly and universally applicable, although we believe they are
sufficiently good approximations to the truth in most cases.

Probably the most important conclusion to draw from this work is that the aggrega-
tion period has a major impact upon the performance of classifiers for fraud detection.
In the case of bank A, the different aggregation periods account for 88% of the variance
in our performance measure in the prediction scenario and 78% of the variance in the
randomized scenario. So, for bank A, the variation in performance due to the aggre-
gation period is much greater than that due to the different classification methods.
For bank B, the impact is smaller but still important, accounting for 29 and 43% of
the variance in the prediction and randomized scenarios respectively. The lesson for
practitioners is that they should pay at least as much attention and care to selecting
appropriate aggregation periods as they do to selecting the best modeling techniques
(and fine tuning their parameters).

So, aggregation is important but does it lead to better fraud classification? For bank
A, this is clearly the case on the cost-weighted measure. This is unsurprising, as there
is no class label information lost in using aggregated records (since we only have
an approximate date of onset of fraud). For bank B the picture is less clear cut and
more interesting. It seems that aggregation is only consistently better in the case of the
Random Forest model, both for prediction and in the random data split (Figs. 3 and 5).
Indeed, the Random Forest with aggregated data at 3 and 7 days produced clearly the
best results with the data from both banks. This does seem to support the contention
that data aggregation is an advantageous strategy, at least in some circumstances,
although the advantage may be dependent upon the type of classifier and the amount
of population drift. In particular, our study suggests that aggregation appears to work
best under the following circumstances:

e With more “capable’ classifiers (Random Forests and SVMs in this case).

e When the fraud label is less precise (e.g. given by a date rather than for each
transaction).

e Where population drift is a significant factor.

With regard to the last point, it should also be noted that aggregation produced
improvements in the prediction scenario for all of the classifier types, except for CART
(Fig. 3). This suggests that aggregation may be a more robust strategy for dealing with
population drift.
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These results are perhaps surprising when one considers that the bank B data
contains labeled transactions, not just an indication of the fraud start date (as for
bank A). This information is discarded when moving to the aggregation strategy. Yet,
given a suitably long period of aggregation, the disadvantage of the missing class
information can be overcome. Presumably, this is because useful new information is
supplied in the form of transaction volumes or rates. Still, transaction-level classifica-
tion does perform almost as well or better with most models for bank B on the random
split (Fig.5). This suggests that transaction-level classification should at least form a
part of any successful overall fraud system.

The transaction-only approach is merely attempting to discriminate known frau-
dulent transactions from the rest, which may include both legitimate and possibly
undiscovered fraud transactions. Indeed, it may be the case that a number of transac-
tions labeled as non-fraud in this dataset are actually fraudulent. This might explain
the elevated performance of the transaction-only classifier for bank B, if the known
frauds are known precisely because they are particularly obvious.

The activity record approach is fundamentally different, in that it is attempting to
classify an account as being in a fraudulent state, despite the possible presence of
legitimate transactions. The decision does not attach to any individual transaction but
rather to a whole series. This makes it particularly robust to the presence of mislabeled
data, which is a common problem in the databases we are considering. Indeed, one
does not require accurately labeled transaction data in order to apply this approach.
It is only necessary to have historical data with approximate dates of onset of fraud.
The good performance for transaction-only classification on bank B suggests that
confirmed fraud transactions are relatively easy to discriminate. For example, the Gini
coefficient at transaction level is 0.85 compared to 0.78 at 7-day level for Random
Forests on bank B. However, this ease of classification does not translate into a great
cost saving compared to the activity record approach. The reason for that may be better
seen when one looks at a graph of the cost function over the range of possible score
thresholds (see Fig. 6). As we have seen, the aggregated activity records give rise to a
smaller dispersion for the score distribution of the fraud records (Table 4), although the
two class means are better separated at transaction level (Table 3). This last fact also
suggests a possible mechanism by which aggregation achieves easier classification: it
seems likely that aggregation leads to smaller relative dispersion of input variables (as
a consequence of the central limit theorem), especially within the fraud class. There is
not sufficient space to prove this assertion here, but it could be the subject of a future
study.

In summary, transaction aggregation is certainly useful in at least some situations
and is probably essential when one does not have individually labeled transactions.
Even when labeled transaction data is available, transaction aggregation may result in
better performance. The appropriate aggregation period will probably vary from one
dataset to another, depending on the typical timescale over which fraud takes place.
The results here suggest that a period of at least 3days is preferred for the datasets we
examined, although it is not clear whether longer periods produce further advantage
and it would be unwise to generalize on the basis of a single study. Another important
point to note is that in practice, one might want to combine features based on very
different aggregation periods, as this would allow the possibility of detection based
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on differences in behavior over different periods. In the interests of simplicity, we did
not examine this possibility but it would be interesting to devote some future study to
this approach.

In practice, classification of aggregated records will be combined, whenever pos-
sible, with transaction-level classification and anomaly detection into a complete fraud
detection system. One would hope that information could be combined from all 3 sub-
systems in such a way as to produce much better fraud detection than any single
sub-system could achieve on its own. For example, if an anomaly detector produces
an alert that behavior for an account has changed, this is much more likely to be due
to fraud if a fraud classifier also produces an increased fraud score for that account.
A transaction level classifier would lend extra support to this conclusion if it could
identify several individual transactions on that account which look fraudulent. Future
work will try to address the question of how best to combine the outputs of these three
sub-systems.
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