

Proudly Operated by Battelle Since 1965

### Transactive Modeling and Simulation Capabilities

NIST Transactive Energy Challenge Preparatory Workshop

03/24/2015

Jason Fuller jason.fuller@pnnl.gov (509) 372-6575

### Early Transactive Experiment (2008): GridWise™ Olympic Peninsula Project



Proudly Operated by Baffelle Since 1965



Using price signals, successfully:

- Coordinated response of 100s of devices
- Reduced bulk energy costs
- Alleviated local constraints

But how do the results translate to other regions of the country?

To utilities with wholesale markets?

### GridLAB-D: A Design Tool for a Smarter Grid

#### Unifies models of the key elements of a smart grid:



✓ Smart grid analyses

Pacific Northwes

NATIONAL LABORATORY
Proudly Oberated by Battelle Since 1965

- field projects
- technologies
- control strategies
- cost/benefits
- $\checkmark$  Time scale: sec. to years
- ✓ Open source
- $\checkmark$  Contributions from
  - government
  - industry
  - academia
- ✓ Vendors can add or extract own modules
- GridLAB-D is an open-source, time-series simulation of all aspects of operating a smart grid, from the substation to end-use loads in unprecedented detail.
- Simultaneously solves 1) power flow, 2) end use load behavior in 1000s of homes and devices, 3) retail markets, and 4) control systems.
- > <u>NEW</u>: Supported by newly established, industry-led User's Association.

>45,000 downloads in 150 countries

### What GridLAB-D Currently Can and Cannot Do

NATIONAL LABORATORY

Pacific Northwes

Proudly Operated by Battelle Since 1965

### What GridLAB-D is:

- Performs time-series simulations.
- Captures midterm dynamic behavior (seconds to hours).
- Captures seasonal effects (days to years).
- Simulates control systems.
  - Individual device controls.
  - System level controls.

### What GridLAB-D is not:

- Is not a power system specific tool.
- Is not suited for transmission only studies.
- Is not an "optimizer" (although it can receive inputs from an optimizer).



### **Field Studies: Validation & Verification**



- Developed transactive control system for AEP gridSMART® Demonstration
- Evaluated effects on consumer bills & potential for DR-related savings with RTP
  - Accepted as a retail RTP rate by Ohio PUC
  - Fairness across classes of energy users
- Comparison between simulated and observed results available in report:

AEP Ohio gridSMART® Demonstration Project Real-Time Pricing Demonstration Analysis

- Evaluated GE Coordinated Volt/VAR system on 8 AEP feeders
- Simulations predicted a 2.9% reduction in energy consumption (field results indicated 3.3% reduction)

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

- Has led to 4 follow-on CVR experiments with AEP (OH & OK)
- Represents intersection of building and grid technologies and shared benefits



## Hardware in the Loop Testing and Power System Simulation of High Penetration Levels of PV



Proudly Operated by Battelle Since 1965

- A joint Hardware In the Loop (HIL) effort between PNNL and NREL using PNNL's EIOC and NREL's ESIF
- Hardware located in the ESIF is combined with system level software simulations in EIOC
  - PNNL: GridLAB-D running a time-series power system model
  - NREL: PV inverter hardware running with control signal received from the GridLAB-D simulation
- Communications between the two facilities is via the internet using JSON
- Initial work focused on HIL with PV inverters



### **Scalability and Co-Simulation**



Co-simulation allows for expansion of capabilities with minimal investment

- Allows for re-use of existing software AND models
- Enables multi-scale modeling & simulation required for understanding transactive
- FNCS is a framework for integrating simulators across multiple domains
  - Framework for Network Co-Simulation (FNCS pronounced like "Phoenix")
  - Developed for HPC applications across multiple platforms



### **Demand Response/Real-Time Pricing Example**

RTP, double-auction, retail market

- Market accepts demand and supply bids
- Clears on five minute intervals
- Designed to also manage capacity constraints at substation

Residential energy management system

- Acts as a distributed agent to offer bids & respond to clearing prices
- Consumer sets a preference for "savings" versus "comfort"

Same system as discussed before (part of the AEP gridSMART® ARRA Demonstration)







ited by **Battelle** Since 1965

### Ideal result is...



Proudly Operated by **Battelle** Since 1965

- Decreased wholesale energy costs
- Peak demand limited to feeder capacity



IEEE-13 node system with 900 residential loads simulated in GridLAB-D™

# But what happens when including communication latency?



IEEE-13 node model with 900 residential loads and controllers modeled in GridLAB-D

- Model was modified to work within FNCS framework
- An ns-3 communication network model was created (radial WIFI)
- EXTREME communication delays (for Wifi) were considered



# But what happens when including communication latency?



Excessive communication delays during critical period caused an "accounting error" in auction (this was considered in Demo deployment)



As simulated in GridLAB-D and ns-3



Proudly Operated by Battelle Since 1965

### Back up slides

### **GE CRADA – Smart Appliance DR**

Pacific Northwest

Proudly Operated by Baffelle Since 1965





#### Mitigated with randomized "release" times



Lifetime savings for an average household by appliance in PJM.

|                  | Average Lifetime of<br>Appliance (years) | Life | etime Savings<br>(\$) |
|------------------|------------------------------------------|------|-----------------------|
| Clothes Dryer    | 14                                       | \$   | 37.62                 |
| Clothes Washer   | 12                                       | \$   | 27.88                 |
| Dishwasher       | 12                                       | \$   | 39.61                 |
| Food Preparation | 15                                       | \$   | 3.72                  |
| Freezer          | 16                                       | \$   | 13.08                 |
| HVAC             | 14                                       | \$   | 201.07                |
| Lights and Plugs | -                                        |      | -                     |
| Refrigerator     | 14                                       | \$   | 12.12                 |
| Water Heater     | 14                                       | \$   | 137.31                |
| Total            | -                                        | \$   | 472.41                |

### **Evaluation of SGIG Grants – Potential Impacts of Primary Technologies**

- Distribution automation benefits2% 4%Volt-VAR optimization (annual energy saved)2% 4%Reclosers & sectionalizers (SAIDI improved)2% 70%Distribution & outage management systems (SAIDI improved)7% 17%Fault detection, identification, & restoration (SAIDI improved)21% 77%Demand response15% 50%Sustainable (e.g. 6-hour) load reductions15% 20%
- Thermal storage (commercial buildings)
  - Peak load reduction @ 10% penetration:

## Residential photovoltaic generation

- 3 kW- 5 kW each, 0% 6% penetration (0.1% 3% annual energy saved)
- Low penetration: losses generally decreased
- High penetrations, deployed in an uncoordinated manner, can increase system losses



up to 5%



Proudly Operated by Baffelle Since 1965

### **Distributed Resources**



Residential Buildings

- Agent-based, thermal model (ETP)
- Controllable for Demand Response applications (i.e., price responsive thermostats)
- Controllable appliance models (i.e., DLC water heater)
- Single-Zone Office and Retail Buildings
  - Connection to EnergyPlus for more advanced models
- Distributed Generation / Storage
  - Photovoltaics, Wind Turbines, Diesel, Batteries, Inverters, PHEVs, Thermal Energy Storage
  - Agent-based control and market bidding strategies
- Real-Time Energy Markets
  - Built to represent all aspects of a retail transactive market



### **Conservation Voltage Reduction Analysis** on a National Level

- Pacific Northwest NATIONAL LABORATORY Proudly Oberated by Battelle Since 1965
- Many empirical studies indicate a reduction in distribution system voltage reduces energy consumption.
  - How CVR achieves this energy reduction has been a topic of debate.
  - Using GridLAB-D it was possible to show the mechanism by which energy reduction is achieved.
- With an analytic basis for analysis it was possible to extrapolate these results to a national level.
- When extrapolated to a national level a complete deployment of CVR provides a 3.0% reduction in annual energy consumption for the electricity sector.

80% of this benefit can be achieved if deployed on 40% of feeders, a 2.4% reduction.
Percent Total Benefits vs. Percent Total Number of Feeders in



### AEP gridSMART Demo



Proudly Operated by Baffelle Since 1965

max

Annual Energy

Delta Annual Bill

Poly. (Delta Annual Bill)

6.0



### **System Description**



- Simulation of a distribution feeder in GridLAB-D
  - IEEE 123 node test feeder
  - IEEE 8500 node test feeder
- Robust, lightweight communication protocol
  - Complex V
  - Complex /
  - Weather model
- Hardware inverters at power, interacting with grid simulator and PV simulator
  - Single-phase inverters
  - Three-phase inverter



### **Effect of Inverter Control Mode on PCC Voltage**

Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

- Single-phase inverter embedded in IEEE 8500 node test feeder at PCC on secondary system
- 5-minute period with cloud transient
- Inverter control modes compared
  - Base case, no PV
  - PV injects active power (PF =1.0)
  - PV injects active power and absorbs reactive power at PF=0.81
  - PV with active Volt/VAr control (VVC)



### PV & EV



- PV models in cooperation with NREL
- HECO study: high penetration solar led to significant voltage variations
  - Control of real power loads was ineffective for voltage control low load resource
  - Inverter technology with four-quadrant control was effective but limited by standards
  - Additional insight into inverter control is necessary with respect to revised standards
- Coordination of EV charging can reduce transformer overloading, increase renewable integration, and benefit both distribution AND transmission goals
- Develop rapid, cost-effective interconnection studies for PV
- MECO FY13: benefits / impacts of decentralized vs. centralized battery storage

