
1 Transfer Matrix 

In this chapter we introduce and discuss a mathematical method for the analysis of the 
wave propagation in one-dimensional systems. The method uses the transfer matrix and 
is commonly known as the transfer matrix method [7,29]. 

The transfer matrix method can be used for the analysis of the wave propagation of 
quantum particles, such as electrons [29,46,49,81,82,115–117,124,103,108,131,129,141] 
and of electromagnetic [39,123,124], acoustic, and elastic waves. Once this technique is 
developed for one type of wave, it can easily be applied to any other wave problem. 

First we will treat the scattering from an arbitrary one-dimensional potential. Usually, 
one writes the amplitudes of the waves to the left side of the potential in terms of those 
on the right side. This defines the transfer matrix M. Since we work in a one-dimensional 
system, the wave in both the left and right sides of the potential has two components, 
one moving to the right and one moving to the left. Therefore, the transfer matrix M is a 
2 × 2 matrix. The 2  × 2 scattering matrix S will also be introduced; it describes the outgoing 
waves in terms of the ingoing waves. The relationship between the transfer and scattering 
matrices will be introduced. Time-reversal invariance and conservation of the current 
density impose strong conditions on the form of the transfer matrix M, regardless of the 
specific form of the potential. Through the transfer matrix formalism, the transmission 
and reflection amplitudes can easily be defined and evaluated. Both traveling and standing 
(bound) waves will be examined. 

Once the transfer matrix is calculated for one potential, it can be easily extended 
to calculate analytically the transfer matrix for N identical potentials [39, 165]. As the 
number of potentials increases, the traveling waves give rise to pass bands, while the 
standing or bound waves give rise to gaps in the energy spectrum of the system. 
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The appearance of bands and gaps is a common characteristic of wave propagation 
in periodic media. Bands and gaps appear in electronic systems [1,3,4,11,17,23,30], 
photonic crystals (electromagnetic waves) [33–36,39], phononic crystals (acoustic waves), 
and left-handed materials. The transfer matrix formalism is also very useful in calculating 
reflection and transmission properties of disordered random systems [49,59,89,90,103, 
108, 124,129]. 

1.1 A Scattering Experiment 

Perhaps the simplest problem in quantum mechanics is the one-dimensional propagation 
of an electron in the presence of a localized potential. The motion of a quantum particle of 
mass m in the presence of a potential V (x) in one dimension is governed by Schrödinger’s 
equation [7,25,30] 

�
2 ∂2W(x) [ ] − + V (x) − E W(x) = 0. (1.1)

2m ∂x2 

Here, W(x) is the  wave function and E the energy of the electron. 
In the absence of a potential, the electron is a wave that travels along in a particular 

direction. In the presence of a potential, we would like to know how the propagation of 
the electron changes. Can the electron reflect back? Can the electron pass through the po
tential? These questions illustrate some quantum effects not present in classical physics. 

For simplicity, we assume that the potential V (x) is nonzero only inside a finite region, 



V (x) for  0 ≤ x ≤ �, 

V (x) = (1.2) 
 0  for  x < 0 and  x > �.  

An electron approaches the sample represented by the potential V (x) from either the left 
or the right side of the potential and is scattered by the sample. Scattering means that the 
electron is either reflected back or transmitted through the sample. We can measure the 
transmission and reflection amplitudes, t and r , respectively (they will be defined later), 
and from t and r we can extract information about the physical properties of the sample. 

We assume that Schrödinger’s equation outside the potential region is known and that 
it can be written as a superposition of plane waves: 

= W+ 
L (x) + W−WL(x) L (x), x ≤ 0, 

(1.3) 
WR(x) R (x) + W− 

R (x), x ≥ �.= W+ 

Here, the subscripts L (Left) and R (Right) indicate the position of the particle with respect 
to the potential region, and the superscripts + (–) determine the direction of propagation: 
+ means that the electron propagates in the positive direction (from left to right) and 
− means that the electron moves from right to left (see figure 1.1). Thus, W+ 

L (x) is the  
wave function of the electron left of the sample, propagating to the right; hence it is 
approaching the sample. We call W+ 

L (x) the  incident wave, in contrast to W− 
L (x), which is 

the wave function of the electron propagating away from the sample toward the left side. 
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W+Figure 1.1. A typical scattering experiment. Incident waves L (x) and 
W− 

R (x) are scattered by the sample, characterized by the potential V (x). 
Outgoing waves W− 

L (x) and W+ 
R (x) consist of waves transmitted through 

the sample as well as waves reflected from the sample. Outside the 
sample, the wave function can be expressed as a superposition of plane 
waves given by equations (1.3) and (1.4). 

The components of the wave function can be expressed as 

W+ 
L (x) = Ae+iq x, W− 

L (x) = Be−iq x, 
(1.4) 

W+ 
R (x) = Ce+iq x, W− 

R (x) = De−iq x. 

Here, q is the wave vector related to the energy, E of the electron through the dispersion 

relation 

E = E (q ). (1.5) 

The dispersion relation (1.5) determines the physical properties of the electron in the 
region outside the sample (x < 0 and  x > �). We will call these regions leads. To guarantee 
the plane wave propagation of the particle, i.e., equation (1.4), we require that both leads 
are translationally invariant. In the simplest cases, we will represent both leads as free 
space. Then q = k and k is related to the energy of the free particle, 

�
2k2 

E = . (1.6)
2m 

More general realizations of leads, for instance consisting of periodic media, will be 
discussed later. In this book, we assign k to the free-particle wave vector and use q for 
more general cases. 

1.2 Scattering Matrix and Transfer Matrix 

The general solution W(x) of the Schrödinger equation 

�
2 ∂2W(x) [ ] − + V (x) − E W(x) = 0 (1.7)

2m ∂x2 

must be a continuous function of the position x. The same must be true for the first 
derivative ∂W(x)/∂x. In particular, the requirement of the continuity of the wave function 



∣ ∣ ∣ ∣ 

∣ ∣ ∣ ∣ 

4 ■ Chapter 1 

and its derivative at the boundaries of the potential V (x) gives  

WL(x = 0−) = U(x = 0+),
∂WL(x) 

∣
∣ = 

∂U(x) 
∣
∣ 

(1.8)
∂x ∣ ∂x ∣ 

x=0− x=0+ 

on the left boundary of the sample, and 

WR(x = �+) = U(x = �−),
∂WR(x) ∣

∣ = 
∂U(x) ∣

∣ (1.9)
∂x ∣ ∂x ∣ 

x=�+ x=�− 

on the right boundary. Here, U(x) is the solution of Schrödinger’s equation inside the 
potential region 0 ≤ x ≤ �. Generally, U(x) cannot be expressed as a simple superposition 
of propagating waves. 

We can, in principle, solve Schrödinger’s equation (1.7) and find explicit expressions 
for the wave functions for any position x, including the region of the scattering potential. 
However, this is possible only in very few special cases, since the Schrödinger equation is 
not analytically solvable for a general form of the potential V (x). In many cases, however, 
it is sufficient to know only the form of the wave function outside the potential region. 
This problem is much easier, since the wave function consists only of a superposition of 
plane waves, as discussed in equations (1.3) and (1.4). However, we need to estimate the 
coefficients A– D, defined in equation (1.4). This can be done if we know the right-hand 
sides of the four equations (1.8) and  (1.9). Thus, the wave function outside the sample 
is fully determined by the four parameters that describe the scattering properties of the 
sample. 

In general, linear relations between outgoing and incoming waves can be written as 
    

W− 
L (x = 0) W+ 

L (x = 0)     
  = S  , (1.10) 
W+ 

R (x = �) W− 
R (x = �) 

where the matrix S, 
  

 S11 S12 S =  , (1.11) 
S21 S22 

is called the scattering matrix. By definition, the matrix S relates the outgoing waves to the 
incoming waves as shown in figure 1.1. Its elements completely characterize the scattering 
and transmission properties of the one-dimensional potential V (x). 

We can also define the transfer matrix M by the relation 
    

W+ 
R (x = �) W+ 

L (x = 0)     
  = M   . (1.12) 
W− 

R (x = �) W− 
L (x = 0) 

The matrix M expresses the coefficients of the wave function on the right-hand side of the 
sample in terms of the coefficients of the wave function on the left-hand side. 

While the representation in terms of the scattering matrix S can be easily generalized 
to three-dimensional systems, the transfer matrix approach is more appropriate for the 
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analysis of one-dimensional systems and will be used frequently in the following chapters. 
On the other hand, physical properties of the scattering are formulated more easily by the 
S matrix. 

By comparing the linear equations (1.10) and  (1.12), it is easy to express the elements 
of the transfer matrix M in terms of the elements of the scattering matrix S (see 
problem 1.1): 

    S22 S11 S22
S21 −    M11 M12   S12 S12 M =   =   . (1.13) 

 M21 M22 −S11 1


S12 S12


Equivalently, we can express the elements of the scattering matrix S in terms of the 
elements of the transfer matrix: 

 
M21 1 −  M22 M22   S =   . (1.14) 

 M12 M21 M12
M11 − 

M22 M22 

The scattering matrix S contains four complex parameters. In general, the matrix S 
is fully determined by eight real parameters. However, when solving a given physical 
problem, we can use its physical symmetries to reduce the number of independent 
parameters. Two symmetries—conservation of the current density and time-reversal 
symmetry—will be discussed in the following sections. 

1.2.1 Conservation of the Current Density 

For the time-independent problems discussed in this chapter, the total number of 
particles in the potential region, 

W ∗ W dx, (1.15) 
0 

is constant. For this case, in section 1.5.1 we derive the result that the current density 
entering the sample from one side must be equal to the current density that leaves the 
sample on the other side: 

j (x = 0) = j (x = �). (1.16) 

We remind the reader that the current density j (x) is defined as 

j (x) = 
�i 

W(x) 
∂W∗(x) −W ∗(x) 

∂W(x) 
. (1.17)

2m ∂x ∂x 

Using the definition of the current density, equation (1.17) and the expression for the 
current density for a plane wave, j = (�q/m)|W|2, derived later in section 1.5.1, we can 
express the current density on both sides of the sample [equation (1.16)] as 

jL = 
�q ( 

L |2 − |W− 
) = 
�q ( 

R |2 − |W− 
) = jR,|W+ 

L |2 |W+ 
R |2 (1.18) 

m m 
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which are equal in magnitude, according to equation (1.16). Note that the current does not 
depend on x. Equation (1.18) can be rewritten in a more convenient form as 

|W− 
R |2 

L |2 + |W+ 
R |2 = |WL 

+|2 + |W− , (1.19) 

or, in vector notation 
    

W− W+ 

(W−∗ W+∗  L  = (W+∗ W−∗  L  
, (1.20)L R )   L R )  

W+ W− 
R R 

where W∗ is the complex conjugate of W. 
Now we use equation (1.10), which relates the outgoing waves L and W+ 

R with the W− 

incoming waves W+ 
L and W− 

R . For complex conjugate waves, the relation (1.10) reads 

(W−∗ 
L W+∗ 

R ) = (W+∗ 
L W−∗ 

R )S† , (1.21) 

where the conjugate matrix S† is defined in appendix A as the matrix 
  

S∗ S∗ 

S†  11 21  =   . (1.22) 
S∗ S∗ 

12 22 

Inserting (1.10) and (1.21) into equation (1.20), we obtain the identity 
    

W+ W+ 
 L   L (W+∗ W−∗ 

R )S†S   = (W+∗ W−∗ 
R )   . (1.23)L L 

W− W− 
R R 

The relation (1.23) must be valid for any incoming wave. This can be guaranteed only if 
the scattering matrix satisfies the relation 

S†S = 1, (1.24) 

which means that the scattering matrix is unitary. 
The explicit form of equation (1.24) is given by  
      

S∗ S∗ S11 S12 1 0   11 21      
    = 1 =   . (1.25) 

S∗ S∗ 
12 22 S21 S22 0 1  

After matrix multiplication, we obtain the following relationships between the matrix 
elements of the scattering matrix: 

|S11|2 + |S21|2 = 1, |S22|2 + |S12|2 = 1, 
(1.26) 

S∗ S∗ 
22 S21 = 0.11 S12 + S21 

∗ S22 = 0, 12 S11 + S∗ 

Note, from equation (1.24) it follows also (see problem 1.2) that 

|det S| =  1. (1.27) 
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Equation (1.24) can be also written as 

S† = S−1 . (1.28) 

Using the expression for the inverse matrix, given by equation (A.9) we obtain  
    

S∗ S∗ 
 11 21  1  S22 −S21  
  =   . (1.29) 

S∗ S∗ det S 
12 22 −S12 S11 

Comparison of the matrix elements of equation (1.29) gives some additional useful 
relationships for the matrix elements of the scattering matrix: 

|S11| = |S22|. (1.30) 

Then, from the third and fourth equations (1.26) we obtain that  

|S12| = |S21|. (1.31) 

The conservation of the current density also introduces a relationship between the 
elements of the transfer matrix M. We can derive them beginning with equation (1.18), 
describing the conservation of the current density, 

|W+ 
L |2 − |WL 

−|2 = |W+ 
R |2 − |WR

−|2 . (1.32) 

It is easy to verify that equation (1.32) can be rewritten in the vector form as 
        

W+ W+ 

(W+∗ W−∗  1 0   L  = (W+∗ W−∗  1 0   R  
L L )     R R )     . (1.33) 

0 −1 W− 
L 0 −1 W− 

R 

Now we use the definition of the transfer matrix, equation (1.12), and its conjugate form 

(W+∗ W−∗ 
R ) = (W+∗ W−∗ 

L )M† (1.34)R L 

to obtain 
        

1 0 W+ 
L 1 0 W+ 

L
(W+∗ W−∗     = (W+∗ W−∗ 

L )M†     
L L )     L   M   . (1.35) 

0 −1 L 0 −1 LW− W− 

Since this relation should hold for any wave function L L , we obtain the  W+ and W− 

relationship [29,103,108,129,141] 
    

1 0 1 0    M†   M =   . (1.36) 
0 −1 0 −1 

The explicit form of equation (1.36) is given by  
        

M∗ M∗ 1 0 1 0  11 21     M11 M12    
      =  , (1.37) 

M∗ M∗ 
12 22 0 −1 M21 M22 0 −1 
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which means that the elements of the transfer matrix satisfy the following relations: 

|M11|2 − |M21|2 = 1, |M22|2 − |M12|2 = 1, 
(1.38) 

M∗ M∗ 
22 M21 = 0.11 M12 − M21 

∗ M22 = 0, 12 M11 − M∗ 

1.2.2 Time-Reversal Symmetry 

Physical systems that are symmetric with respect to an inversion of time possess another 
symmetry which further reduces the number of independent parameters of the matrices 
S and M. 

If the system possesses time-reversal symmetry and if W(x) is a solution of 
Schrödinger’s equation, then its complex conjugate W∗(x) is also a solution. In our special 
case, the wave functions outside the potential region are expressed as plane waves given 
by equations (1.3) and (1.4). The complex conjugate of the wave 

φ(x) = eiq x  (1.39) 

is the wave 

φ ∗(x) = e−iq x  , (1.40) 

which propagates in the opposite direction. This means that, after time reversal, we have 
the same physical system as before, but the incoming waves are W−∗ 

L and W+∗ 
R and the 

outgoing waves are WL 
+∗ and WR 

−∗. Since the scattering matrix S relates any incoming 
waves to the outgoing waves, we obtain 

    

W+∗ W−∗ 
 L   L  
  = S   . (1.41) 
W−∗ W+∗ 

R R 

On the other hand, the complex conjugate of equation (1.10) reads 
    

W−∗ W+∗ 
 L  = S∗  L  
    . (1.42) 
W+∗ W−∗ 

R R 

Now, inserting equation (1.42) into equation (1.41), we obtain 
    

W+∗ W+∗ 
 L   L  
  = SS∗   . (1.43) 
W−∗ W−∗ 

R R 

Since relation (1.43) must hold for any incoming waves, we conclude that 

SS∗ = S∗S = 1. (1.44) 

This condition, in conjunction with the unitary relation, equation (1.24), implies that 
the scattering matrix S must be symmetric. Indeed, in terms of matrix elements, the 
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condition (1.44) reads 

|S11|2 + S12 
∗ S21 = 1, |S22|2 + S∗ 

(1.45)
21 S12 = 1, 

S∗ S∗ 
22 S21 = 0.11 S12 + S12 

∗ S22 = 0, 21 S11 + S∗ 

Comparison of the third equation of (1.26), S∗ 
21 = 0, with the third equation of 11 S12 + S22 S∗ 

(1.45) shows that the scattering matrix S is a symmetric matrix when the system possesses 
both time-reversal symmetry and conservation of current density, 

S12 = S21. (1.46) 

Time-reversal symmetry also implies that 
    

W−∗ W−∗ 
 R   L  
  = M   . (1.47) 
W+∗ W+∗ 

R L 

The above equation follows from the definition of the transfer matrix M given by equation 
(1.12). Indeed, the wave W−∗ 

R now plays the role of the incoming wave and the wave W+ 
R is 

the outgoing wave, while W−∗ 
L is the incoming wave and W+ 

L is the outgoing wave. Equation 
(1.47) can be written as 

        

0 1  W+∗ 0 1  W+∗ 
   R     L  
    = M     . (1.48) 

1 0  W−∗ 
R 1 0  W−∗ 

L 

On the other hand, the complex conjugate of the relation (1.12) reads 
    

W+∗ W+∗ 
 R   L  
  = M∗   . (1.49) 
W−∗ W−∗ 

R L 

Comparison of the last two equations shows that, in the case of time-reversal symmetry, 
the transfer matrix satisfies the relationship 

    

0 1  0 1      
  M   = M∗ . (1.50) 

1 0  1 0  

With the use of symmetry (1.50), we obtain that for systems with time-reversal symmetry, the  
transfer matrix M, has the form 

  

 M11 M12 M =   (1.51) 
M∗ M∗ 

12 11 

[29,103,108,129,141]. We also have from the expression (1.13) that det M = S21/S12. With  
the use of equation (1.46), we obtain, for the case of time-reversal symmetry, that 

det M = 1. (1.52) 
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From equation (1.51 it also follows that Tr M = M11 + M22 = M11 + M∗ is a real number 11 

when time-reversal symmetry is preserved. 
By applying both the requirement for conservation of probability flux and time-reversal 

symmetry, we reduce the number of independent elements of the transfer matrix to three. 
Indeed, M is given by two complex numbers M11 and M12, or by four real numbers, which 
determine the real and imaginary parts of M11 and M12. These four numbers are not 
independent, because of the constraint det M = 1. 

1.3 Transmission and Reflection Amplitudes 

To find the physical meaning of the elements of the scattering matrix S, we return to 
the scattering experiment described in section 1.1. Consider a particle approaching the 
sample from the right. As no particle is coming from the left, we have 

W+ 
L = 0. (1.53) 

We also normalize the incoming wave to unity, 

|W− 
R |2 = 1. (1.54) 

From equation (1.10), we obtain that the transmitted wave W− 
L (x) is given by  

W− 
L (x = 0) R (x = �) (1.55)= S12W

− 

and the reflected wave W+ 
L (x + �) is given by  

W+ 
R (x = �) = S22W

− 
R (x = �). (1.56) 

We call S12 the transmission amplitude t and S22 the reflection amplitude r : 

t = S12, r = S22. (1.57) 

In the same way, we consider scattering of the particle coming from the left side 
of the potential. We obtain r ′ = S11 as the reflection amplitude, and t ′ = S21 as the 
transmission amplitude from left to the right. Finally, in terms of transmission and 
reflection amplitudes, we can write the scattering matrix S in the form 

  

r ′ t 
S =  

 
 
 . (1.58) 

t ′ r 

Using the relationship between scattering and transfer matrices, equation (1.13), we can 
express the transfer matrix in the form 

 ′  
t ′ − 

r r  r 
 t t  

M =  ′  . (1.59)  
r 1 − 
t t 



′ 
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For further applications, it is useful to write the transfer matrix in the form 

  

t ′ − r t−1r ′ r t−1 
 M =   (1.60) 

−t−1r ′ t−1 

(problem 1.3). The order of terms in expression (1.60) is important for the analysis of 
scattering on many scattering centers as well as for generalization of the transfer matrix 
to many-channel problems, discussed in section 1.5.3. 

The transmission (reflection) coefficients are defined, respectively, as the probability that 
the particle is transmitted (reflected): 

T = |t|2 and R = |r |2 . (1.61) 

Using the symmetry properties of the scattering matrix, equations (1.30) and  (1.31), 
we have 

|r | = |r ′| and |t| = |t ′|. (1.62) 

Conservation of the current density, equations (1.26), gives 

|t|2 + |r |2 = 1  and  |t ′|2 + |r ′|2 = 1. (1.63) 

Equations (1.63) have a simple physical interpretation. When the sample contains no 
losses and no sources, then the electron can be either reflected back or transmitted 
through the sample. 

Now we use the definition (1.58) and rewrite the third equations (1.26), S∗ 
2111S12 + S∗ 

S22 = 0, in the form 
( )∗ r r= −  . (1.64)

t t ′ 

This helps us to express 

M11 = t ′ − 
r

t 
r ′ = t ′ + |

(

r

t ′

′

)

|
∗ 

2 

= 
(t

1 
′)∗ 

( |t ′|2 + |r ′|2) = 
(t

1 
′)∗

, (1.65) 

and we can write the transfer matrix, given by equation (1.59) in the more symmetric form 

  

(t ′)∗−1 r t−1 
 M =   . (1.66) 

−t−1r ′ t−1 

When scattering is symmetric with respect to time inversion, we have also 

t = t ′ (1.67) 

[see equation (1.46)]. It is also evident that for no scattering potential, V (x) ≡ 0, we have 
T = 1 and  R = 0. 
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1.4 Properties of the Transfer Matrix 

The transfer matrix enables us to study the properties of the sample through scattering 
experiments. Far from the sample, we prepare a plane wave with a given wave vector q 

and measure how this wave transmits through the potential. Of course, the transmission 
coefficient T , the reflection coefficient R, as well as all elements of matrices S and M 
are functions of q . Thus, we discover the properties of the system from its scattering 
response. It is evident that both the transmission and the reflection depend on the energy 
E = E (q ) of the incoming particle. In particular, 

t = t(q ) and  r = r (q ). (1.68) 

As will be shown in the next chapters, the transfer matrix is a very powerful method of 
analysis for one-dimensional systems. 

The transfer matrix depends on the properties of the entire system represented by the 
potential V (x) and the two leads on the left and right sides of the potential. Any change 
in the physical properties of the leads (regions outside the sample) also changes the 
transfer matrix. We also must keep in mind that, when deriving the symmetry properties 
of the transfer matrix, we assumed that the leads at both sides of the sample are equal to 
each other. We will see that this condition is not always satisfied. Although the transfer 
matrix method works also in the case of different leads, some symmetry relations are 
not satisfied. For instance, the determinant of the transfer matrix M can be different 
from one. 

For completeness, we note there is also another definition of the transfer matrix used in 
the literature. It uses the linear relationship between coefficients A– D defined in equation 
(1.4), instead of wave functions: 

    

C A     
  = T   . (1.69) 

D B 

By inserting the explicit expression for the wave functions, equation (1.4), into equation 
(1.12), we see that the transfer matrix M, equation (1.12), is related to T as 

  

eiq� 0  M =   T. (1.70) 
0 e−iq� 

Note that, in the limit of zero potential V ≡ 0, the T matrix is the unit matrix, while the 
matrix M possesses the phase factors e±iq�, which the particle gains as it moves between 
x = 0 and  x = �. In the following we will use the transfer matrix M. All results can be 
easily reformulated in terms of the matrix T. Of course, the transmission and reflection 
coefficients T and R are the same in both formulations, since the transfer matrices M 
and T differ from each other only in the phase. 
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1 2 

1 2 
t1r2r1t2 

1 2 
t1r2r1r2r1t2 

Figure 1.2. Schematic explanation of the calculation of the transmission 
through two barriers. A few paths with the electron scattered between the 
barriers are shown. To show different transmission paths, samples are 
separated by a distance �. We consider � ≡ 0 in the text. 

1.4.1 Multiplication of Transfer Matrices 

Consider a more complicated experiment in which the particle is scattered by two 
individual samples. The first sample is given by the potential V1(x), located at (a < x ≤ b), 
and the second sample is determined by the potential V2(x), located at (b ≤ x < c). 
The problem of transmission and reflection through such a system can be treated in 
two ways: either we can use the transfer matrices M1 and M2, which determine the 
scattering properties of individual potentials V1 and V2, or we can consider the potential 
V12(x) defined on the interval a ≤ x ≤ c and use the corresponding transfer matrix M12. 
Physically, it is clear that the results obtained by these two methods must be the same. 
This indicates that the transfer matrix M12 is completely determined by the elements of 
the transfer matrices M1 and M2. To derive the relationship between the transfer matrices, 
we express the wave function in three regions: 

W+ 
L (x),WL(x) = L (x) + W− x ≤ a, 

W(x = b) = W+(b) + W−(b), x ≡ b, (1.71) 

WR(x) = W+ 
R (x),R (x) + W− x ≥ c . 

Two samples are schematically shown in figure 1.2. Then, from the definition of the 
transfer matrix M, equation (1.12), we have 

    

W+W+(b) L (a)     
  = M1   (1.72) 
W−(b) W− 

L (a) 

and 
    

W+ 
R (c) W+(b)     

  = M2   . (1.73) 
W− 

R (c) W−(b) 



[ ] 
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t12 1+2 

Figure 1.3. Transmission of the electron through the entire system 
consisting of two samples 1 + 2. 

By combining the equations (1.72) and (1.73), we obtain 
    

W+ 
R (c) W+ 

L (a)     
  = M2M1   . (1.74) 
W− 

R (c) W− 
R (a) 

As discussed above, we can consider the whole system as represented by the transfer 
matrix M12. Then we can write  

    

W+ 
R (c) W+ 

L (a)     
  = M12   . (1.75) 
W− 

R (c) W− 
R (a) 

A comparison of (1.74) with (1.75) gives the composition law 

M12 = M2M1. (1.76) 

Since the matrix M12 is the transfer matrix of the whole system, its matrix elements 
determine the transmission and the reflection amplitudes [equation (1.60)] for the entire 
system. This enables us to determine the transmission and the reflection amplitudes of 
the entire system (figure 1.3) in terms of elements of the transfer matrices of the system’s 
constituents. For example, we can calculate the transmission amplitude t12 for an electron 
approaching the system from the right. Using the explicit form of the transfer matrix, 
equation (1.60), 

  

12 − r12t−1 ′ r12t−1 
 t

′ 
12 r12 12 M =  


−t−1 ′ t−1

12 r12 12


    

 t2 
′ − r2t2 

−1r2 
′ r2t2 

−1 
  t1 

′ − r1t1 
−1r1 

′ r1t1 
−1 

 =    , (1.77) 
−t−1 ′ t−1 −t−1 ′ t−1


2 r2 2 1 r1 1


we find by matrix multiplication that 

t−1 = t−1 − t−1 ′ 
12 2 t1 

−1
2 r2r1t1 

−1 , (1.78) 

which can be written as 

[ ]−1 
t12 = t1 1 − r2

′ r1 t2. (1.79) 

The physical interpretation of formula (1.79) is more clear if we expand the right-hand 
side (r.h.s.) of equation (1.79) in terms of a power series: 

t12 = t1 1 + r2
′ r1 + r2

′ r1r2
′ r1 + · · ·  t2. (1.80) 



[ ] 

′ 
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Table 1.1. Physical meaning of the parameters of the scattering matrix, S equation (1.58), and the 
transfer matrix, M equation (1.60). 

t transmission of a wave propagating from right to left 

r reflection of a wave coming from right 

t ′ transmission of a wave propagating from left to right 

r ′ reflection of a wave coming from left 

Then we see that transmission amplitude t12 is given by the sum of the contributions 
of all possible paths through the two potential regions, V1 and V2. Three such paths are 
shown in figure 1.2. The first term in (1.80), t1t2, represents the transmission through both 
the potentials. The second term t1r2

′ r1t2 corresponds to the path when an electron passes 
through the second sample (t2), is reflected back from the second sample (r1), and, after 
reflection from the second sample (r2

′ ), finally passes through the first one (t1). Higher 
terms in the expansion (1.80) contain higher powers of (r2

′ r1)n = r2
′ r1r2

′ r1 . . .. The  nth term 
corresponds to a trajectory in which the electron is n times scattered between samples 1 
and 2 before it passes through the second sample and escapes to the left. 

In the same way, we can derive an expression for the reflection amplitude. From 
equation (1.77) we obtain that  

−t−1 ′ t−1
2
′ (t1 

′ − r1t−1
1
′ ) − t2 

−1t−1 ′

12 r12 = − 2 r 1 r 1 r1


= −t2 
−1r2

′ t1 
′ + t2 

−1 r2
′ r1 − 1 t1 

−1r1
′ . (1.81) 

Now we multiply both sides of the last equations by −t12 = −t1[1 − r2
′ r1]−1t2 and obtain 

r ′ r ′ [ 
1 − r ′ ]−1 

r2
′ t ′ (1.82)12 = 1 + t1 2r1 1. 

We remind the reader that, in agreement with our convention (table 1.1), r12 is the 
reflection amplitude for the particle which approaches the sample from the left and is 
reflected back to the left. 

The reflection amplitude again contains contributions of an infinite number of 
trajectories. The first term in equation (1.82) is just the reflection from the first barrier. 
All subsequent terms represent trajectories in which the electron transmits through the 
first barrier, then is n times reflected between both barriers, and is finally transmitted 
through the first sample (with transmission amplitude t1) and leaves the system to 
the left. 

Of special interest is the case when V2(x) = 0. Then, the matrix M2 is the diagonal 
matrix and 

  

eiq� 0  M12 =   M1, � = c − b, (1.83) 
0 e−iq� 
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and consequently 

1 1 1 
T12 = = = = T1. (1.84)|t12|2 |eiq�t1|2 |t1|2 

Also, it is evident that R12 = R1. This important result is easy to understand physically, 
since any reflection can appear only in the region where the potential is nonzero. 
The transmission and reflection coefficients through the barrier are not changed if 
we add a free interval of any length to the barrier. However, we must keep in mind 
that addition of such an interval changes the phases of the transmission and reflection 
amplitudes. 

The composition relationship (1.76) can be easily generalized for the case of N barriers, 
resulting in the transfer matrix M given by 

M = MNMN−1 · · · M2M1. (1.85) 

1.4.2 Propagating States 

Consider a system with time-reversal symmetry. Then det M = 1 and Tr  M is real. The 
two eigenvalues k1 and k2 of the transfer matrix are related by 

1 
k2 = . (1.86)

k1 

We will distinguish two cases. In the first case |k1| = 1. Then k1 can be written as 

k1 = eiq�, (1.87) 

with the wave vector q being real. As k2 = e−iq�, we have Tr  M = k1 + 1/k1 = 2 cos q�. 
Note that 

|Tr M| ≤ 2. (1.88) 

In the second case, we have |k1| �= 1. Then we have |Tr M| = |k1 + k−
1

1| = 2 cosh j� > 2. 
In this case, the amplitude of the transmitted wave decreases exponentially with increa
sing width of the potential barrier. 

Thus, we conclude that equation (1.88) represents a sufficient condition for the 
existence of the propagating solution. Condition (1.88) is very useful in the analysis 
of complicated long systems. Following the composition rule (1.76) derived in section 
1.4.1, we can calculate the transfer matrix as a product of transfer matrices of individual 
subsystems. Then, equation (1.88) allows us to determine unambiguously whether or 
not a given solution is propagating. In this way, we can estimate the entire spectrum 
of propagating solutions of the system. 

1.4.3 Bound States 

A one-dimensional potential well 

V (x) < 0 (1.89) 
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always has at least one bound state [11]. A bound state is characterized by a wave function 
that decays exponentially on both sides of the potential. We can use the transfer matrix to 
estimate the energy of the bound state. 

The wave function of a bound state decreases exponentially for both x > � and x < 0: 

W+ 
R (x) ∝ e−jx , x > �,  

(1.90) 
W− 

L (x) ∝ e+jx , x < 0, 

where 

q = ij and j > 0. (1.91) 

To avoid solutions that increase exponentially far from the sample, we require 

W− 
R (x) ≡ 0, x > �,  (1.92) 

and 

W+ 
L (x) ≡ 0, x < 0. (1.93) 

Inserting equations (1.92) and (1.93) into the transfer matrix equation (1.12), we obtain 

W− 
R = M21W

+ 
L . (1.94)L + M22W
− 

We immediately obtain the result that, for the existence of a bound state, one needs to 
satisfy the following equation: 

M22(ij) = 0 for  j > 0. (1.95) 

The solution jb = j from equation (1.95) determines the energy Eb of the bound state, 
which is localized around the impurity. We will use this criterion to obtain different 
bound states for electrons and electromagnetic waves. 

1.4.4 Chebyshev’s Identity 

A special case of the multiplication law equation (1.85) is the case when all the potential 
barriers are equal: 

M1 = M2 = · · · = MN . (1.96) 

Then the resulting transfer matrix M can be easily expressed in terms of the elements of 
the individual matrix M1, with the use of the Chebyshev identity [165]. 

Consider the transfer matrix M, 
  

a b   M =   . (1.97) 
c d  

The eigenvalues k1 and k2 of the matrix M are


k1 = eiq� and k2 = e−iq�. (1.98)
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Chebyshev’s identity states [39,165] that the Nth power of the transfer matrix can be 
expressed as 

 N  


a b  aUN−1 − UN−2 bUN−1
   MN =   =   . (1.99) 
c d  cUN−1 dUN−1 − UN−2 

Here, the function UN = UN(q ) is defined as 

sin(N + 1)q� 
UN = , (1.100)

sin q� 

and q� is given by the eigenvalues of the transfer matrix M, 

Tr M = k1 + k2 = 2 cos  q�. (1.101) 

All the above identities are valid in the case of real q (then |k1| = 1) and in the case of 
complex q = ij (then |k1| > 1). A proof of Chebyshev’s identity is given in section 1.5.2. 

1.4.5 Transmission through N Identical Barriers 

Chebyshev’s identity allows us to derive a general expression for the transmission 
coefficient of N identical barriers. First, note that the transmission coefficient can be 
written as 

|t|2 1 
T = |t|2 = |t|2 + |r |2 

= |r |2 (1.102) 
1 + |t|2 

(we have used that |t|2 + |r |2 = 1). Then, comparing the matrix elements of M in equation 
(1.97) with the general expression of the transfer matrix in terms of transmission and 
reflection amplitudes, equation (1.60), we see that 

r 
M12 = , (1.103)

t 

so that the transmission through a single barrier is 

1 
T1 = . (1.104)

1 + |M12|2

Finally, from identity (1.99) we obtain the transmission for N identical barriers in the 
form 

1 
TN = . (1.105)

1 + |M12|2U2 
N−1 

Using the explicit expressions for the function UN−1 [equation (1.100)] and for b, given by  
equation (1.103), we arrive at the general expression for the transmission of the particle 
through N identical barriers: 

1 
TN = ∣ ∣ , (1.106) 

∣ r 2 ∣ sin2 Nq� 
1 + ∣ t2 ∣ sin2 q� 

where q� is given by equation (1.101). 
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Relationship (1.106) plays a crucial role in the analysis of transmission through periodic 
systems. We only need to calculate r/t for an individual potential and we immediately 
obtain, with the help of equation (1.106), the transmission coefficient for any number of 
barriers. 

1.5 Supplementary Notes 

1.5.1 Current Density 

We derive in this section the equation for the conservation of the particle density and 
show that the requirement of constant particle density in a given volume leads to the 
conservation of the current density. 

We first multiply both sides of the Schrödinger equation 

∂W(x, t) �
2 ∂2W(x, t)

i� = −  + V (x)W(x, t) (1.107)
∂t 2m ∂x2 

by the complex conjugate wave function W∗ and integrate both sides of the equation over 
x in the interval (xa, xb): 

xb ∂W �
2 xb ∂2W xb 

i� W ∗ dx = −  W ∗ dx + W ∗V (x)W dx. (1.108)
∂t 2m ∂x2 

xa xa xa 

Then we consider the complex conjugate Schrödinger equation 

−i� 
∂W∗(x, t) = −  

�
2 ∂2W∗(x, t) + V∗(x)W ∗(x, t), (1.109)

∂t 2m ∂x2 

multiply it by W, and again integrate from xa to xb , 

−i� 
∫ xb 

xa 

W 
∂W∗ 

∂t 
dx = −  

�
2 

2m 

∫ xb 

xa 

W 
∂2W∗ 

∂x2 
dx + 

∫ xb 

xa 

WV∗(x)W ∗ dx. (1.110) 

Now we subtract equation (1.110) from equation (1.108): 

i� 
∫ xb 

xa 

[ 

W ∗
∂W 

∂t 
+W 

∂W∗ 

∂t 

] 

dx = −  
�

2 

2m 

∫ xb 

xa 
∫ xb 

[ 

W ∗
∂2W 

∂x2 
−W 

∂2W∗ 

∂x2 

] 

dx  

(1.111) 

+ 
[ 
W ∗V (x)W−WV∗(x)W ∗

] 
dx. 

xa 

Next, we use the following identities: 

W 
∂W∗ 

∂t 
+W ∗

∂W 

∂t 
= 

∂ 

∂t
[W ∗ W] (1.112) 

and 

W 
∂2W∗ 

∂x2 
−W ∗

∂2W 

∂x2 
= 

∂ 

∂x 

[ 

W 
∂W∗ 

∂x 
−W ∗

∂W 

∂x 

] 

= 
2m 

�i 

∂ 

∂x 
j (x), (1.113) 

where j (x) is the current density at the point x: 

j (x) = 
�i 

2m 

[ 

W 
∂W∗ 

∂x 
−W ∗

∂W 

∂x 

] 

. (1.114) 
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Finally, we use the identity 

xa ∂ j (x)
dx = j (xb) − j (xa). (1.115)

∂xxb 

Inserting relations (1.112)–(1.115) into equation (1.111), we obtain the final result 

∂ xb [ ] 
W∗W dx  = j (xb) − j (xa)

∂t xa 
∫ (1.116)

1 xb [ ] + W ∗ V (x)W− WV∗(x)W ∗ dx. 
i� xa 

The physical interpretation of equation (1.116) is very simple: the term on the l.h.s. 
determines the change of the density of electrons in the region (xa, xb) versus time. This 
change is due either to the flux of the particle inside or outside the region (given by the 
first term on the r.h.s.), or to the creation (or annihilation) of particles inside the region 
(the last term on the r.h.s.). Note that the last term 

xb 

W∗ V (x)W− WV∗(x)W∗ dx  (1.117) 
xa 

is zero if the potential V (x) is real:  

V (x) = V∗(x). (1.118) 

The case of complex potentials corresponds to systems with absorption or gain. In this 
book, we will treat only real potentials. 

If the last term in equation (1.116) is zero, then equation (1.116) reduces to 

∂ xb 

W ∗ Wdx = j (xb) − j (xa). (1.119)
∂t xa 

Since we study only time-independent problems in this book, the density of particles 
in any region (xa, xb) does not change in time. Therefore the left-hand side of equation 
(1.116) is zero: 

∂ xb 

W ∗ W dx = 0. (1.120)
∂t xa 

This means that the number of particles in the region (xa, xb) does not change with time. 
equation (1.116) reduces to 

j (xa) = j (xb), (1.121) 

which represents the conservation of the flux: if the number of particles inside a given 
region is constant, then the current flowing inward to this region must be equal to the 
current flowing outward. 

Finally, we can express the current density for the case of a plane wave, 

W(x) = Aeikx  . (1.122) 
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Inserting this into equation (1.114), we obtain the result that the current density of a plane 
wave is 

�k �k 
j = |W|2 = |A|2 . (1.123) 

m m

The current density is proportional to the wave vector k (the velocity of the particle) and 
to the probability density |W|2. Note that the current j indeed does not depend on x. 

1.5.2 Proof of the Chebyshev Identity 

The Chebyshev identity is used in section 1.4.4 to derive useful relations for the matrix 
elements of the Nth power of the transfer matrix M. The Chebyshev identity is formulated 
as follows: 

Consider a matrix M 
  

a b   M =   . (1.124) 
c d  

Its eigenvalues k1 and k2 are given by 

k1 = eiq� and k2 = e−iq�. (1.125) 

The Nth power of the matrix M can be expressed as 

 N  


a b  aUN−1 − UN−2 bUN−1
   MN =   =   . (1.126) 
c d  cUN−1 dUN−1 − UN−2 

Here, the function UN = UN(q ) is defined as 

sin(N + 1)q� 
UN = , (1.127)

sin q� 

where q� is given by the eigenvalues of the transfer matrix M [equation (1.87)], and 
satisfies the relation 

Tr M = k1 + k2 = 2 cos q�. (1.128) 

All the above identities are valid when q is real (then |k1| = 1) and when q is complex 
(then |k1| > 1). 

We will prove the Chebyshev identity given by equation (1.126), by mathematical 
induction. 

First, note that the identity (1.126) is satisfied for N = 1. Indeed, from equation (1.127) 
we have U0 ≡ 1 and  U−1 ≡ 0. 
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Next, assume that the identity (1.126) is valid for some N ≥ 1. We show that then it is 
valid also for N + 1. To do so, we express 

2 

  

MN+1 = MMN = M  aUN−1 − UN−2 bUN−1  
  

cUN−1 dUN−1 − UN−2 

(1.129) 
  

[ ] 
(a + bc)UN−1 − aUN−2 b (a + d)UN−1 − UN−2   =   . 
c 
[ 
(a + d)UN−1 − UN−2 

] 
(d2 + bc)UN−1 − dUN−2 

We calculate the matrix element (MN+1)11: 

(a2 + bc)UN−1 − aUN−2 = [a(a + d) − ad + bc ]UN−1 − aUN−1 

= a[(a + d)UN−1 − UN−2] − UN−1 (1.130) 

= aUn − UN−1, 

where we have used the fact that a + d = 2 cos q� and ad − bc = det M = 1. We also used 
the identity 

UN ≡ 2 cos  q� UN−1 − UN−2, (1.131) 

which can be verified with the use of the trigonometric relations (the proof is given in 
problem 1.4). All the other matrix elements of the matrix M can be calculated in the same 
way. Finally, we derive 

  

aUN − UN−1 bUN  MN+1 =   , (1.132) 
cUN dUN − UN−1 

which is the relation obtained from (1.126) by the substitution N → N + 1. 
Starting with N = 1, we have just proven that relation (1.126) holds also for N = 2. Then, 

starting with N = 2,  we find that (1.126) holds also for N = 3. By induction. we conclude 
that (1.126) is valid for any integer N. 

Another Proof of the Chebyshev Identity 

Another way to prove the Chebyshev identity (1.126) is the following. To get the Nth power 
of the matrix A, we first find its eigenvalues and eigenvectors. We write 

  

k1 0  M = R   L (1.133) 
0 k2 

where k1 and k2 are eigenvalues, and L (R) is the matrix of left (right) eigenvectors, 
respectively. They can be found with the help of the formulas given below in appendix A. 
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Then it is easy to find that 
      

k1 0 k1 0 kN 0      1 MN = R   LR   L · · · = R   L, (1.134) 
0 k2 0 k2 0 k2 

N 

since LR = 1. Next, one easily finds that 

k1,2 = e±iq� (1.135) 

with q given by (1.101). After some algebra (do it!), one finds that MN is given by 
equation (1.99). 

1.5.3 Quasi-One-Dimensional Systems 

The transfer matrix can be easy generalized for the case of quasi-one-dimensional systems, 
which are finite in the direction perpendicular to the direction of propagation of the 
particle, and infinite in the x direction [29,47,103,52,115,131,118]. A particle propagates 
along the x direction, but, due to the finite size of the system in the transverse direction, 
it possess also transverse momentum k⊥. The energy of the particle is then 

�
2 

E = [k‖ 
2 + k2 ]. (1.136)

2m ⊥

In the one-dimensional case k⊥ ≡ 0 and  k k‖ 
2 + k2= ⊥ = k‖. In quasi-one-dimensional 

systems, different values of k⊥ are allowed, as determined by the structure of the system. 
If there are N allowed values of k⊥n, n L (x) and  W− 

L (x)= 1, 2, . . . , N, then the functions W+ 

consist of superpositions of N plane waves, 

W+ 
L (x) = 

∑
n
N 
=1 An(z)e+ik⊥n x , 

(1.137) 
W− 

L (x) = 
∑

n
N 
=1 Bn(z)e−ik⊥n x . 

The right wave function W+ 
R (x) and  W− 

R (x) can be expressed in a similar way. The wave 
vectors k⊥n are given by the boundary conditions in the transverse direction. Together 
with the energy E they determine the nth value of k‖. 

We can introduce the N × N matrices of the transmission amplitudes t and t ′. Their  
matrix elements tnm and t ′ give the transmission amplitude of the process in which an nm 

electron passes through the sample from the channel n on the left side of the sample 
to the channel m on the right side of the sample. In the same way, we introduce N × N 

matrices of the reflection amplitudes r and r ′. Then the transfer matrix can be expressed 
as a 2N × 2N matrix, 

  

t ′ − r t−1r ′ r t−1 
 M =   . (1.138) 

−t−1r ′ t−1 

Note that M is formally identical to the one-dimensional transfer matrix given by equation 
(1.60). However, in this case we have to take care about the order of the matrices in the 
matrix products. For instance, r t−1 �= t−1r , since r and t are noncommutative matrices. 
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The transmission coefficient T is given as 

N 

T = Tr t†t = t ∗ (1.139)nmtnm


nm


where t is the N × N transmission matrix. More detailed information about the trans
mission properties of the system can be obtained if one measures also the following 
transmission parameters [83,151,156]: 

Tnm = |tnm|2 (1.140) 

and 

Tn = Tnm. (1.141) 
m 

The matrix elements Tnm define the transmission amplitude from the state with k‖n to the 
state k‖m. The transmission coefficient Tn is the transmission through the sample from 
the state n to all possible states m on the other side of the sample. 

If there is no absorption in the system (the potential V is real) then the reflection R can 
be found from the conservation of the current density, 

R = N − T (1.142) 

Note that relations (1.36) and  (1.50) are valid also for the general case N > 1. The 2 × 2 
matrices 

    

1 0 0 1      
  and   (1.143) 

0 −1 1 0  

are replaced by 2 N × 2N matrices 
    

1 0 0 1     
  and   , (1.144) 

0 −1 1 0 

where 1 is a unity N × N matrix. 

1.6 Problems 

Problems with Solutions 

Problem 1.1 
Derive the relationships (1.13) and (1.14) between the transfer matrix and scattering matrix. 

Solution. The matrix equations (1.11) and (1.12) can be written explicitly as 

W− 
R , W+ = S21W

+ (1.145)
L = S11W

+ 
L +S12W

− 
R L +S22WR 

− 
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and 

W+ 
R = M11W

+ 
L , W− 

R = M21W
+ 

L .	 (1.146)
L +M12W

− 
L +M22W

− 

We express W− 
R from the first equation (1.145): 

W− 
R =	

1 
W− 

L − 
S11 

W+ 
L (1.147)

S12 S12 

and insert it into the second equation (1.145). We obtain 

W+ 
R = S21 − 

S11 S22 
W+ 

L + 
S22 

W− 
L . (1.148)

S12 S12 

Now, compare equations (1.146) with equations (1.147) and (1.148) and get  

S11 S22 S22
M11 = S21 − , M12 =


S12 S12

(1.149)

S11 1 
M21 = −  , M22 = .


S12 S12


The relations (1.149) are equivalent to the matrix equation (1.13). In the same way, we can 
express elements of the scattering matrix S in terms of elements of the transfer matrix M 
to obtain expression (1.14). 

Problem 1.2 
Prove that |det S| = 1 [equation (1.27)]. 

Solution. Since the determinant of the product of two matrices AB equals the product of 
their determinants, 

det AB = det A det B, (1.150) 

we have for a unitary matrix S that 

det S det S† = 1. (1.151) 

On the other hand, 

det S† = S∗ 
22 − S∗ 

21 = [det S]∗ .	 (1.152)11 S
∗ 

12 S
∗ 

By combining the previous equations we obtain 

|det S| = 1.	 (1.153) 

Problem 1.3 
Derive the expression (1.60) for the transfer matrix.


Solution. From the definition of the scattering matrix, equation (1.58), we have

      

W− r ′ t W+ 
 L     L  
  =    ,	 (1.154) 
W+ 

R t ′ r W− 
R 
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which can be written in the form 

WL 
− = r ′WL 

+ +tWR
− , W+ 

R = t ′WL 
+ +rW− 

R . (1.155) 

= t−1W− ′W+From the first equation (1.155) we express W− 
R L − t−1r L . Inserting this expres

sion into the second equation (1.155), we obtain 
      

W+ t ′ − r t−1r ′ r t−1 W+ 
 R     L  
  =     . (1.156) 
W− −t−1 ′ t−1 W−


R r L


Comparing this with the definition of transfer matrix, equation (1.12), we obtain 
expression (1.60). 

Problem 1.4 
Prove the identity (1.131). 

Solution. To prove the relation (1.131), we start from the definition of the function UN , given  
by equation (1.127), and use the relation sin(x ± y) = sin x cos y ± cos x sin y. We obtain  

sin(N + 1)q� sin Nq� cos q� + cos Nq� sin q� 
UN(q�) = = (1.157)

sin q� sin q� 

and 

sin(N − 1)q� sin Nq� cos q� − cos Nq� sin q� 
UN−2(q�) = = . (1.158)

sin q� sin q� 

Now we sum both equations to obtain 

2 cos q� sin Nq� 
UN + UN−2 = = 2 cos  q�Un, (1.159)

sin q� 

which is already the required identity, equation (1.131). 

Problems without Solutions 

Problem 1.5 
We can also define the transfer matrix M̃ by the relation 

    

W+ 
L (x) W+ 

R (x + �)   ˜   
  = M   . (1.160) 
W− 

L (x) W− 
R (x + �) 

M̃ expresses the wave function on the left side of the potential region in terms of the wave 
function on the right side. Show that M̃ = M−1. Derive the explicit form of the transfer 
matrix M̃: 

 1 S22−  S21 S21   M̃ =   . (1.161) 
 S11 S11 S22

S12 − 
S21 S21 
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Problem 1.6 
Using the multiplication law for transfer matrices, equation (1.76), as well as the physical 
arguments explained in section 1.4.1, derive the composition laws for the transmission 
amplitude t ′ and reflection amplitude r12 of a system that consists of two samples. 12 

Problem 1.7 
Write the transmission and reflection amplitudes as follows: 

t = |t|eiφt , r = |r |eiφr . (1.162) 

In section 1.4.1 we showed that the addition of a free space to the sample does not 
change transmission and reflection coefficients [equations (1.83) and (1.84)]. Show how 
the additional free space influences the phases φt and φr . Analysis of the phases of the 
transmission and reflection amplitudes is very important for inverse problems (see, for 
instance, section 2.6). 

Problem 1.8 
Repeat the analysis of section 1.4.3 with j < 0. Show that in this case the bound state is 
given as a solution of the equation 

M11(ij) = 0 for j < 0. (1.163) 




