

Transfer Switches Made Easy: A Guide for Selecting Transfer Switches

PowerHour webinar series for consulting engineers Experts you trust. Excellence you count on.

November 20th, 2019 11:00 PDT / 13:00 CDT (1PDH issued by Cummins)

Welcome!

PowerHour is designed to help our engineer partners to...

- Keep up to date on products, technology, and codes and standards development
- Interact with Cummins experts and gain access to ongoing technical support
- Participate at your convenience, live or on-demand
- Earn Professional Development Hours (PDH)

Technical tips:

- Audio is available through teleconference, or your computer (don't forget to unmute)
- You are in "listen only" mode throughout the event
- Use the WebEx Q&A Panel to submit questions, comments, and feedback throughout the event. We will provide sufficient Q&A time after presentation
- If you lose audio, get disconnected, or experience a poor connection, please disconnect and reconnect
- Report technical issues using the WebEx Q&A Panel, or email powergenchannel@cummins.com

Meet your panelists

Cummins presenter:

Munir Kaderbhai, Product Manager, Transfer Switch Cummins Inc.

Cummins facilitator:

Tom Bakritzes, Global Sales Training Manager Cummins Inc.

Your local Cummins contacts:

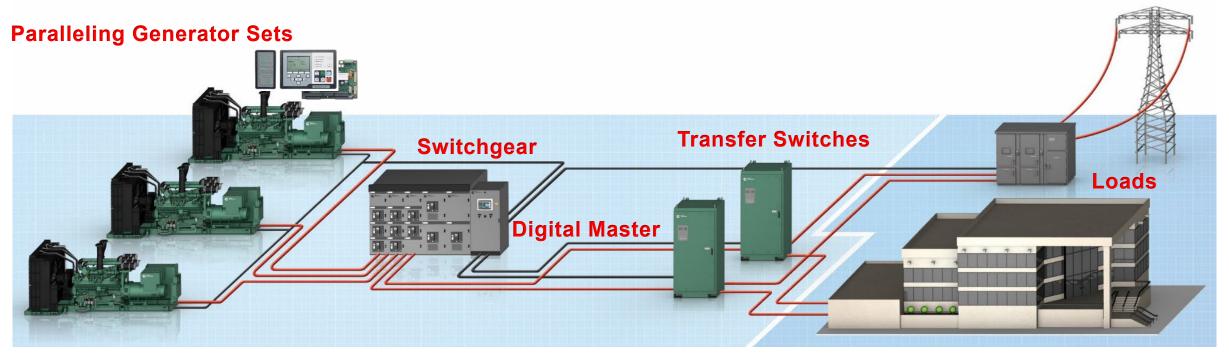
- > Western Canada: Ian Lindquist (ian.Lindquist@cummins.com), Western Canada Region
- > Eastern Canada: Melvin Nicholas (melvin.nichols@cummins.com), Eastern Canada Region
- > AZ, ID, NM, NV: Carl Knapp (carl.knapp@cummins.com), Rocky Mountain Region
- > CO, MT, ND, UT, WY: Chris Scott (chris.scott@cummins.com), Rocky Mountain Region
- > Northern IL, IA: John Kilinskis (john.a.kilinskis@cummins.com), Central Region
- > UP of MI, MN, East ND, WI: Michael Munson (michael.s.munson@cummins.com), Central Region
- > NE, SD, West MO, KS: Earnest Glaser (earnest.a.glaser@cummins.com), Central Region

- > South IL, East MO: Jeff Yates (jeffrey.yates@cummins.com), Central Region
- > TX, OK, AR, LA, MS, AL, Western TN: Scott Thomas (m.scott.thomas@cummins.com), Gulf Region
- > FL, GA, NC, SC, Eastern TN: Robert Kelly (robert.kelly@cummins.com), South Region
- > NY, NJ, CT, PA, MD: Charles Attisani (charles.attisani@cummins.com), East Region
- > CA, HI: Brian E Pumphrey (brian.pumphrey@cummins.com), Pacific Region
- > WA, OR, AK: Tom Tomlinson (tom.tomlinson@cummins.com), Pacific Region
- For other states and territories, email <u>powergenchannel@cummins.com</u> or visit <u>http://power.cummins.com/sales-service-locator</u>

Disclaimer

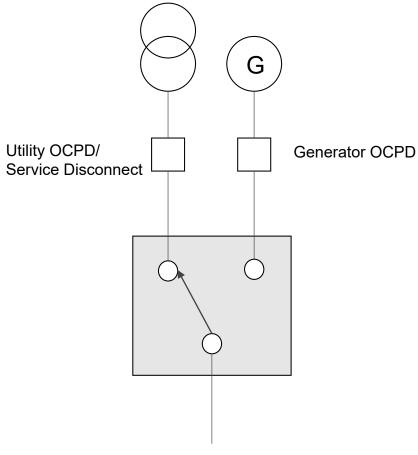
The views and opinions expressed in this course shall not be considered the official position of any regulatory organization and shall not be considered to be, nor be relied upon as, a Formal Interpretation.

Participants are encouraged to refer to the entire text of all referenced documents. In addition, when it doubt, reach out to the Authority Having Jurisdiction.


Course Objectives: A Guide for Selecting Transfer switches

After completing this course, participants will be able to:

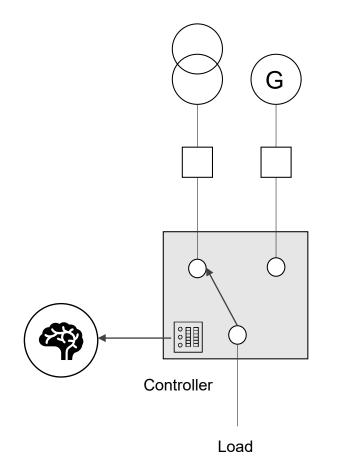
- Understand the different variants of UL1008 transfer switches and know when to use them
- Have a list of basic selection criteria and step-by-step guide to help them with their transfer switch selection process
- Have a better understanding of some of the common pitfalls in ATS selection process and how to avoid them.


Power System Building Blocks

Grid

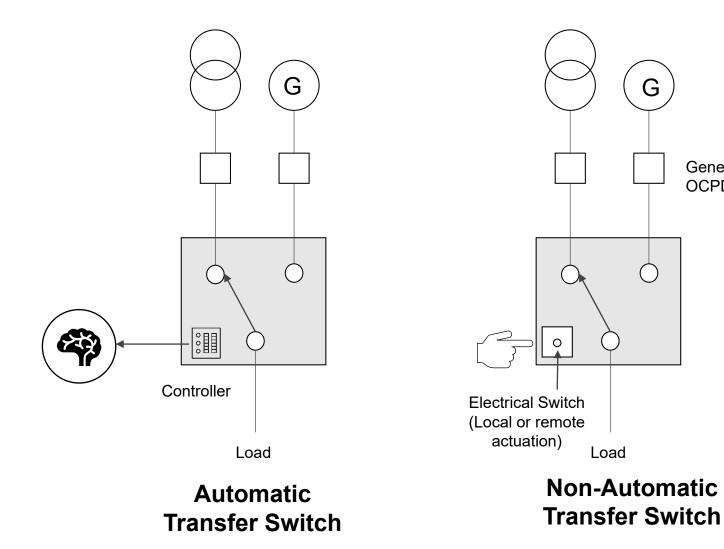
What is a Transfer Switch?

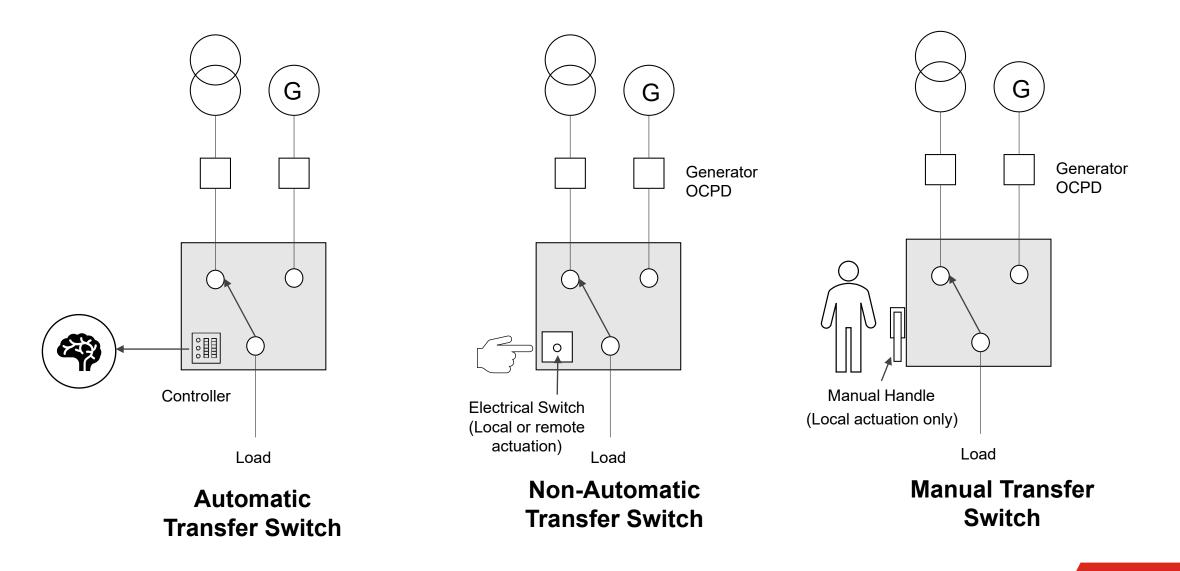
- Monitors the availability and quality of two connect power sources
- Transfers power consumed by electrical loads connected to the transfer switch output between two sources based on source availability

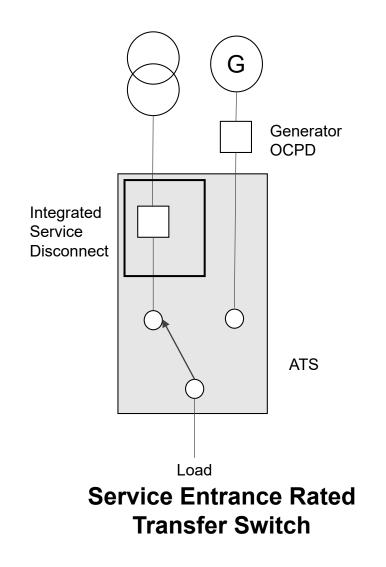

Key Considerations When Selecting a Transfer Switch

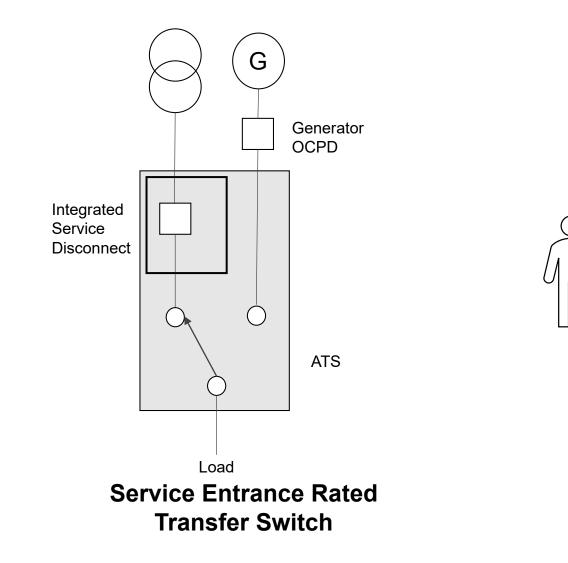
Switch type

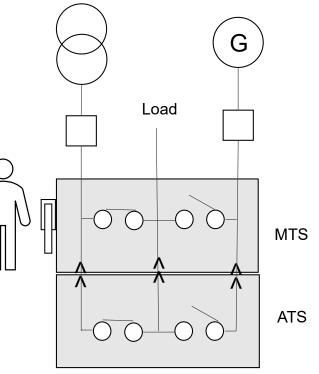
- Transition type
- Application
- Grounding schemes
- Cable sizes and entry requirements
- Enclosures

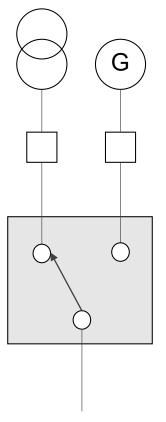

Voltage


- Current
- Fault current
- Selective coordination
- **Type of load in the systems per Codes & Standards**



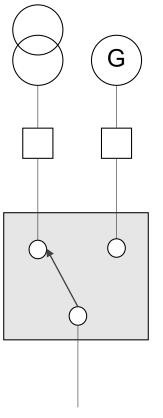

Automatic Transfer Switch


Generator OCPD

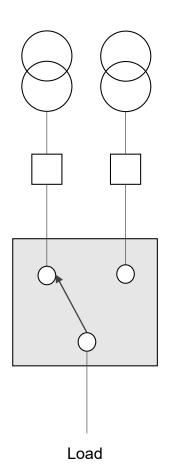


Bypass Isolation Transfer Switch

Transfer Switch Application



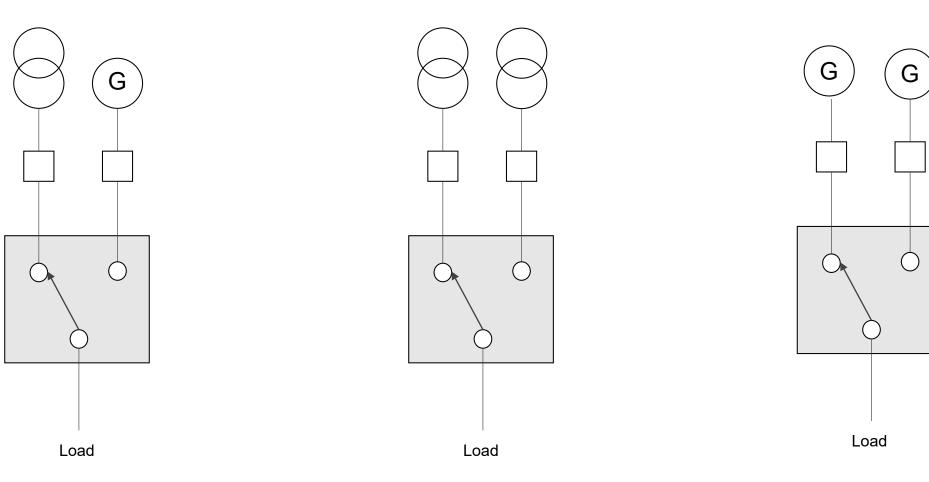
Load


Utility to Generator

For facilities with a standby power system and a single utility feed

Transfer Switch Application

Load


Utility to Generator

For facilities with a standby power system and a single utility feed

Utility to Utility

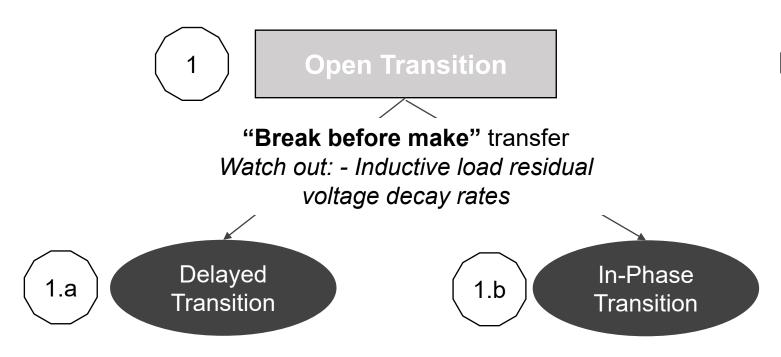
For use in facilities with redundant feeds but no standby generator

Transfer Switch Application

Utility to Generator

For facilities with a standby power system and a single utility feed

Utility to Utility

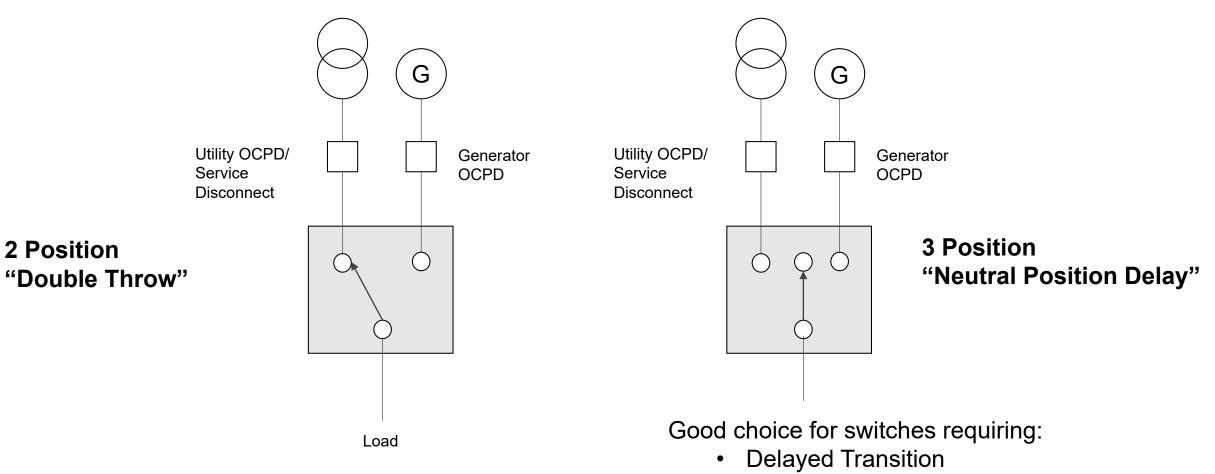

For use in facilities with redundant feeds but no standby generator

Generator to Generator

For facilities with a prime power system using multiple on-site generators

Transition Types

There are two ways to transition the loads:



2 Closed Transition

""Make before break" transfer Watch out: - Safeguards and extensive documentation required by utility may add cost and complexity

- Adjustable neutral position delay
- Flexible, simple, reliable
- Best option for large motors
- Step loading generators possible
- Based on synchronization of sources
- "Fast" typically 30ms 50ms delay
- Okay for resistive loads and small inducive loads

Two Position vs. Three Position Switches

- Load shed won't transfer to "dead" source
 - Cummins 18

Concept Check

Which transition types are not suitable for stored energy loads (large motors, MRIs)?

- a) Open (In Phase)
- b) Open (Delayed)
- c) Closed
- d) Both b) and c)

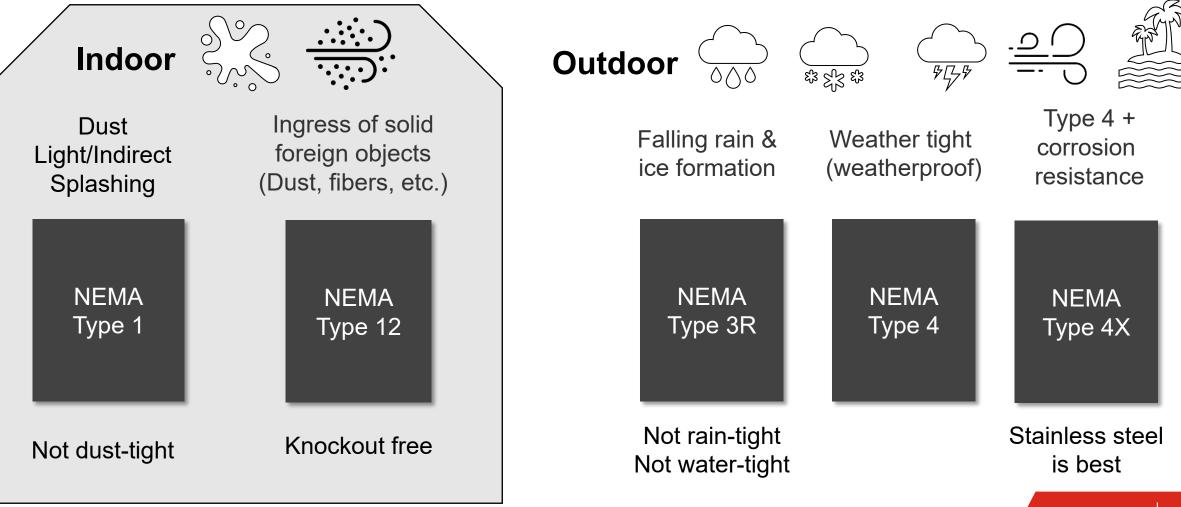
Concept Check

Which transition types are not suitable for stored energy loads (large motors, MRIs)?

a) Open (In Phase)

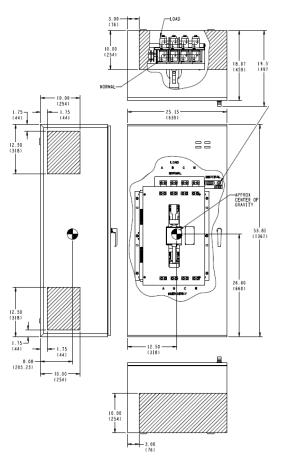
b) Open (Delayed)

c) Closed


d) Both b) and c)

Lets Get Grounded on 3 Pole vs. 4 Pole

- Choice depends on grounding scheme of the system
- NFPA70 (NEC) requires some systems to have ground fault protection (GFP)
- Complications and errors less likely by using 4 pole transfer switches


Enclosure Types and Selection Criteria

Choice based on: (1) Placement, (2) Environmental conditions

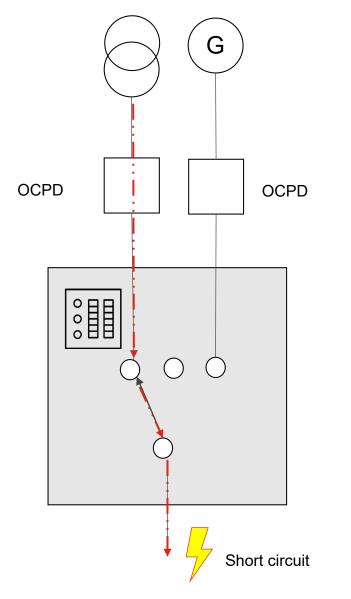
Cable Size and Entry Requirements

- Detailed information is typically provided in transfer switch specification sheets and/or outline drawings
- Information to look for:
 - Cable entry
 - Lug options and capacities
 - Mechanical lugs or Compression lugs may be available
 - 90°C rated and accept copper or aluminum wire

NOTES:

- I. UL TYPE I ENCLOSURE
- 2. APPROX. WEIGHT: 225 LBS MASS: 102 kg
- 3. DIMENSIONS IN () ARE MILLIMETRES.
- 4. LUG CAPACITY: 300, 400 AMP (QUANTITY I WIRE) 3/0-600 (95-300) MCM CU-AL (QUANTITY 2 WIRES) 3/0-250 (25-120) MCM CU-AL LUG CAPACITY: 600 AMP (QUANTITY 2 WIRES) 250-500 (120-240) MCM CU-AL.
- USE SEPARATE CONDUITS FOR CONTROL WIRING AND POWER WIRING. DO NOT COMBINE.
- SHADED AREA INDICATES WIRING AND CABLE ENTRANCE AREA DO NOT INSTALL OUTSIDE OF SHADED AREA.
- WIRE BENDING SPACE CONFORMS TO NATIONAL ELECTRICAL CODE (NFPA70).
- REFER TO THE NATIONAL ELECTRICAL CODE FOR MINIMUM CLEAR SPACE IN FRONT OF THIS ENCLOSURE.
- 4 POLE SWITCHED NEUTRAL TRANSFER SWITCH SHOWN. A SOLID NEUTRAL BAR IS PROVIDED WITH 3 POLE TRANSFER SWITCHES.

Example: Snapshot of Cummins OTPCC ATS Outline Drawing – Type 1 Enclosure

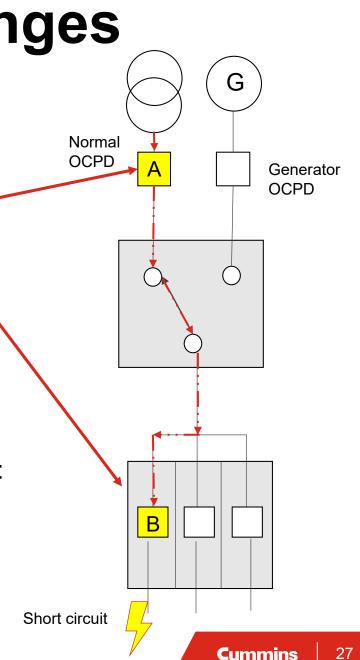

Voltage Selection

- Transfer Switches designed to have two unsynchronized power sources connected to it
- A well designed UL transfer switch will provide adequate spacing and insulation to cope with the increased voltage stress.
- Typical AC Voltages: 120, 208, 240, 480, 600 volts, single or three phase, 50/60Hz

Current Rating Selection

- Switches are rated for continuous current \rightarrow hold maximum value for three hours or more.
- Typically capable of carrying 100% of the rated current at an ambient temperature of 40° C
- Typically, the most commonly used ampere ratings range from 40 to 4000 amperes.
- Switch frame size will dictate the current rating range and WCR Ratings
- Service Entrance Rated Transfer Switches may be rated at 80%
- Anticipate future load requirements during the planning process select a transfer switch with a continuous current rating equal to the total of the anticipated load

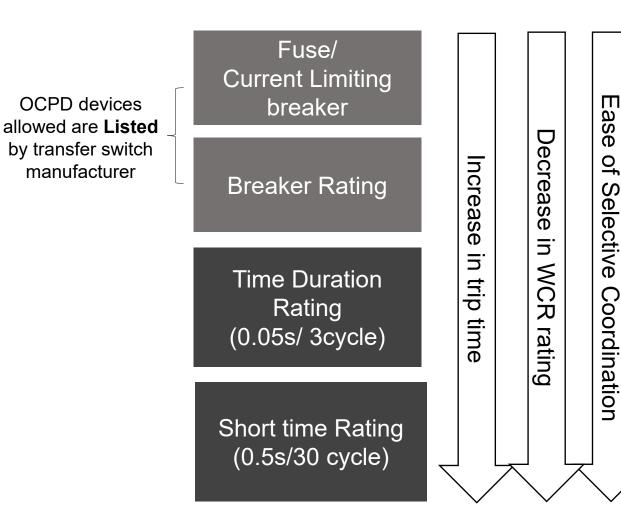
Overcurrent Protection



- A fault downstream of the transfer switch will result in a short circuit current flowing through the transfer switch
- High level of fault currents will cause the following stresses on the transfer switch:
 - Thermal
 - Magnetic
- Transfer switch <u>must</u> be provided with overcurrent protection devices (OCPD) on both sources
- Available fault current needs to be determined
- Withstand and close rating of the transfer switch must matched to the available fault current

Selective Coordination Challenges from ATS Perspective

Selective Coordination is required for emergency, legally required standby and critical operations power systems circuits


- NEC-2017, 700.32, 701.27, and 708.54 "...over-current devices shall be selectively coordinated..."
- Selective coordination will require time delays to be set on OCPDs
 - In the example shown, A \underline{must} trip after B \rightarrow Time delay on A
- Time delay setting of OCPD A will depend on the available fault current from either source & the device B trip curve characteristic
- For the duration of the OCPD A time delay, the ATS must be able to:
 - Withstand the fault
 - Close into the fault
- Transfer switches manufacturer will publish a Withstand and Close rating

UL 1008 Short Circuit Ratings

- UL 1008 requires all ATS to have a withstand and closing rating (WCR)
- Rating can either be time based or specific OCPD (breaker/fuse) based
- OCPD based ratings allow for higher WCR ratings but requires the ATS to be protected by a "listed" breaker or fuse
- Allowing for either time based or specific breaker based ratings enables flexibility for a cost effective design

ATS Short Circuit Ratings

			Euso protocti			-			-	Breaker F (General)	rotection		Timo Boo	od Poting		Short Tin	no Potingo
			Fuse protection			(Common)		(General)		Time Based Ratings			Short Time Ratings				
		Bypass	Max Fuse, Size and type	WCR @ Volts		WCR @ Volts		WCR @ Volts		Time	WCR @ Volts		lts	Time	WCR@		
Amps	ATS Model	Model		480	600	240	480	600	240	480	600	(sec)	240	480	600	(sec)	480V
			600 A Class J, RK1, RK5 or														
	OTEC, OTPC	BTPC	1200 A Class L, T	200,000	200,000	125,000	100,000	50,000	200,000	200,000	200,000						
			400 A Class J or T or 200 A														
260	OHPC, CHPC		Class RK1 or 100 A ClassrK5	200,000	200,000				200,000	200,000	200,000	0.050	25,000	25,000	18,000	0.167	25,000
			600 A Class J, RK1, RK 5 or														
	OTEC, OTPC	BTPC	1200 A Class L, T	200,000	200,000	125,000	100,000	50,000	200,000	200,000	200,000	0.050	25,000	25,000	25,000		
			400 A Class J or T or 200 A														
300	OHPC, CHPC		Class RK1 or 100 A ClassrK5	200,000	200,000	125,000	100,000	50,000	200,000	200,000	200,000	0.050	35,000	35,000	22,000	0.500	30,000

Several Short Circuit Ratings are available at each amp node

Specific overcurrent device ratings are substantially higher than time based ratings

• As high as 200,000 amps with current limiting breakers and fuses

UL1008 Listing and Operation

Emergency, Legally Required, Critical Operation Power (NFPA70 – 700/701/708)

- Require UL1008 WPWR Automatic Transfer Switches for Use in Emergency Systems
- Automatic or Bypass Isolation
- Manual/Non-Automatic not permitted

Optional Standby (NFPA70 – 702)

- Requires UL1008 WPXT- Automatic Transfer Switches for Use in Optional Standby Systems
- Automatic or bypass isolation
- Manual/Non-Automatic permitted

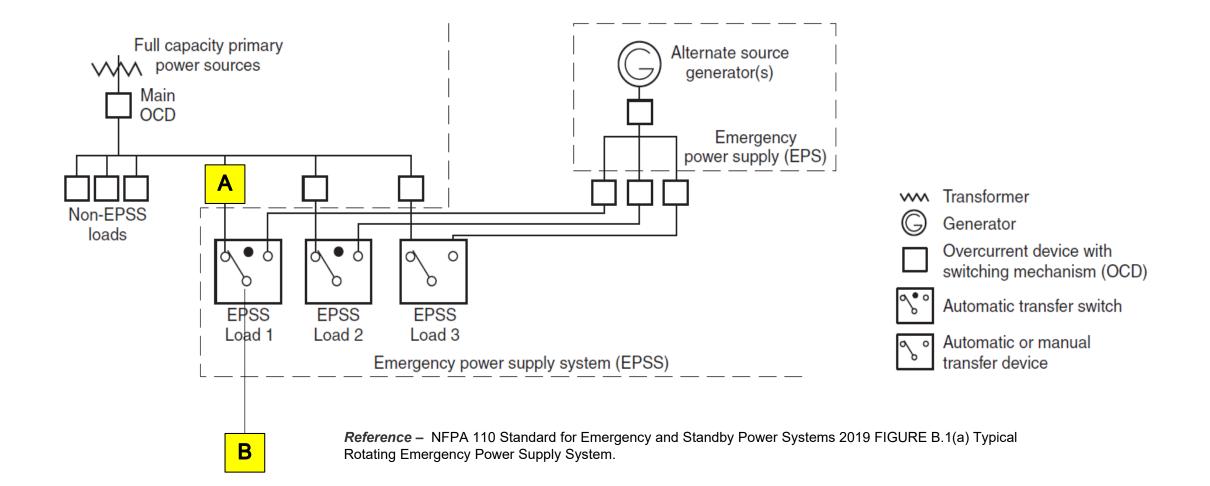
Healthcare (NFPA70 – 517/NFPA99/OSHPD)

- Require UL1008 WPWR Automatic Transfer Switches for Use in Emergency Systems
- Automatic or Bypass Isolation
- While not specifically required by code in all jurisdictions, it may be advantageous to ensure ATSs are equipped with bypass/isolation capabilities.
- Health care facilities in California, governed by Office of Statewide Health Planning and Development (OSHPD) mandate the use of Bypass Isolation switches in certain systems

Concept Check

Non-automatic transfer switches are permitted for Emergency Systems, True or False

a) True


b) False

Concept Check

Non-automatic transfer switches are permitted for Emergency Systems, True or False?

Example of Typical System

System Parameters → ATS Specification

Scenario

EPSS 1 – Healthcare Emergency System Environmentally controlled, indoor installation

NFPA110 – 1 sec time delay required

Voltage - 277/480V, 3 Phase, 60Hz

Service disconnect is available upstream

GFP is required

Consists of HVAC load

Load current - 450A

Available fault current – 35,000 Amps

Selective coordination is required with downstream MCCB breaker

Specification

Switch Type – Bypass Isolation

UL1008 Listing - Emergency System

Application – Utility to Generator

Transition Type – Open transition, delayed

Voltage - 277/480V, 3 Phase, 60Hz

Current Rating - 600A

4 Pole ATS

NEMA Type 1 Enclosure

Match Available Fault Current to Transfer Switch WCR Ratings

Available fault current < Selected WCR Rating?

- Available fault current = 35,000 at 480V
- MCCB Based WCR = 65,000 at 480V
- Remember to check approved breaker list published by the manufacturer and select breaker based on selective coordination needs

UL withstand and closing ratings

The transfer switches listed below must be protected by circuit breakers or fuses. Referenced drawings include detailed listings of specific breakers or fuse types that must be used with the respective transfer switches. Consult with your distributor/dealer to obtain the necessary drawings. Withstand and Closing Ratings (WCR) are stated in symmetrical RMS amperes.

	MC	CB protection	on	Special circuit breaker protection					
Transfer switch ampere	WCR @ volts max with specific manufacturers MCCBs	Max MCCB ratings	Drawing reference	With specific current limiting breakers (CLB)	Max CLB rating	Drawing reference			
	30,000 at 480 25,000 at 600			200,000 at 480	400 A				
150, 225, 260		400 A	A048E955	100,000 at 600	100,000 at 600	A051D533			
	65,000 at 480 65,000 at 600			200,000 at 480	1200 A				
300, 400, 600		1200 A	A056M836	100,000 at 600	100,000 at 600	A048J544			
	65,000 at 480 65,000 at 600			200,000 at 480	1400 A	A048J546			
800, 1000		1400 A	A056M548	100,000 at 600	100,000 at 600				

Specific Circuit Breaker Manufacturer and Type Listing

When protected by a circuit breaker of a specific manufacturer and type, and up to the maximum breaker amperes listed below, this transfer switch is suitable for use in a circuit capable of delivering up to the short circuit current and voltage listed below, but no more than the rating of specific circuit breaker.

alboonto entre								
	rt Circuit Curre ymmetrical Arr 65000		Short Cin <u>AC Volta</u> 600		Maxium <u>Breaker Amperes</u> 1200			
<u>GE</u> Teyd	TEYH	TEYL						
	IETH	IETL						
Siemens		_						
BQCH	HDGA	HHLD6 ²	HLXD6°	LFGA	NDGA	QJH2		
BQD	HED4	HHLXD6 ²	HMD6 ^{1,8}	LJGA	NFGA			
CQD	HED6	HJD6	HMG	LLGA	ngb			
ED2	HFD6	HJGA	HMXD6 ^{1,8}	LLGB	NGG			
ED4	HFGA	HD/D6	HQJ2H	LMD6 ^{1,2}	NJGA			
ED6	HFXD8	HLD6 ²	JD8	LMG	NLGA			
FD6	HHFD6	HLGA	JXD2	LMXD6 ^{1,2}	NLGB			
FD6A	HHFXD6	HLGB HLMD8 ^{1,2}	JXD6 LD6 ²	LXD6 ² MD6 ^{1,8}	NMG			
FXD6 FXD6A	HHJD6 HHJXD6		LDG	MXD6 1,3	QJ2 QJ2H			
	to 600 ampe me		Thaw	MVD0	SPI2⊓			
	1 to 600 amps me 1 to 240 volts ma							
	lio 480 volta ma	dmum						
Square D		_						
PA	Paf	PAL	PH	Phf	Phl			
Eaton		_						
BAB	DK⁴	EGH	hfd	JGE	QBHW			
CHKD⁴	ED	EGS	HJD	JGH	QC			
CHILD ⁴	EDB	ehd	HKD	JGS	QCHW			
CHMDL ⁴	EDC	FD	HLD⁴	KD	QHCX			
CKD 1	EDH	FDB	HMDL⁴	KDB	QHPX			
CLD ⁴	EDS	GD	HQP	LD⁴	QPHW			
CLDC 4	EGB	GHB	JD	MDL ⁴				
CMDL ⁴	EGE	GHC	JDB	QBH				
4-81010	ip unit only					A056M838 A		

36

Summary

Transfer Switches Made Easy: A Guide for Selecting Transfer switches

- We talked about the different variants of UL1008 transfer switches
- We went over a list of basic selection criteria and step-by-step guide to help them with their transfer switch selection process
- We talked about how some common application issues can be avoided by specifying the right type of transfer switch

Key Takeaway:

When it comes to selecting the right transfer switch for a facility, engineers need to sort through a wide array of product features such as transfer switch types, operation modes, ratings, etc. Furthermore, each installation may have many variables that need to be accounted for. The content in this course covers some key criteria that may help you get started. However, to build your expertise, I recommend you dig deeper into each of the topics covered.

Additional Resources

Cummins White Papers

- Transfer switch set up for reliability and efficiency, parts 1, 2 & 3
- UL 1008 Withstand and Close on Ratings
- Grounding of AC generators and switching the neutral in emergency and standby power systems, part one & part 2

Cummins On-Demand Webinars

- Transfer Switch Operation and Application
- UL 1008 ATS Withstand and Close On Ratings

Cummins Application Manual

• Transfer Switch Application Manual, T-011

>White paper By Gary Olson, Director, Power Systems Development ower Generation Our energy working for you," Many facilities that have generator sets Provide timer functions for power failure sequence. power return sequence, and exercise sequence (gensets) also have automatic transfer switch equipment (ATS) to automatically start the gen-
Physically switch load from one power source erator set on a power failure and automatically to another switch the load from the utility to the generator If the transfer switch is improperly set up, the system set and back again. To obtain the most reliable may fail to detect and respond to a power failure, or it may start the generator set and transfer unnecessarily. and efficient system operation, it's important In order to set it up correctly, you first need to underto have the ATS properly set up so that it can stand what a transfer switch is, and how it operates sense power failure and operate in the best to provide power transfer functions. From there, you sequence for the system that is installed and will need to have a clear understanding of what loads the equipment it supports. PT-7016 part 1 are served with genset power in your facility and what explains how transfer switches operate and their requirements are, and an how the utility power the time sequence of power failure and return. distribution to your facility is configured. With that understanding in, decisions on proper settings can PT-7016 part 2 covers characteristics of utility be made. power failures and the sensing of power failure sequences. PT-7016 part 3 looks at ATS set-Transfer switch operation ting best practices and features available on There are a wide variety of transfer switches available the equipment through many different manufacturers. Variations that are available include manual operation, automatic oper A typical standby power system includes a generator set operating on diesel fuel or natural gas, and one RANSFER SWITCH SYMBOLIC ILLUSTRATIO or more automatic transfer switches. The system will also have a number of accessory components such as battery charging equipment, fuel pumps, ventilation fans, and other equipment. The transfer switch directs - Selich Cleaner power to critical loads from either a utility service or your generator set. If it's an automatic switching device, to Lowb it needs to: - Setich Cont · Monitor power availability on each source Send a start command to the genset when it from Generator Sal needs to run FIGURE 1

Power topic #7016 Part 1 of 3 | Technical Information from Cummins Power Generation Transfer switch set up for reliability and efficiency, part 1 Transfer switch operation sequences

Q&A

Type your questions, comments, feedback in the **WebEx Q&A box**. We will get to as many questions as we can We will publish consolidated FAQ along with presentation and webinar recording on <u>powersuite.cummins.com</u>

Your local Cummins contacts:

- > Western Canada: Ian Lindquist (ian.Lindquist@cummins.com), Western Canada Region
- > Eastern Canada: Melvin Nicholas (melvin.nichols@cummins.com), Eastern Canada Region
- > AZ, ID, NM, NV: Carl Knapp (carl.knapp@cummins.com), Rocky Mountain Region
- > CO, MT, ND, UT, WY: Chris Scott (<u>chris.scott@cummins.com</u>), Rocky Mountain Region
- > Northern IL, IA: John Kilinskis (john.a.kilinskis@cummins.com), Central Region
- > UP of MI, MN, East ND, WI: Michael Munson (<u>michael.s.munson@cummins.com</u>), Central Region
- > NB, SD, West MO, KS: Earnest Glaser (earnest.a.glaser@cummins.com), Central Region
- South IL, East MO: Jeff Yates (<u>Jeffery.yates@cummins.com</u>), Central Region
- > TX: Scott Thomas (<u>m.scott.thomas@cummins.com</u>), Gulf Region
- > FL, GA, SC, NC and Eastern TN: Robert Kelly (<u>robert.kelly@cummins.com</u>), South Region
- > NY, NJ, CT, PA, MD: Charles Attisani (charles.attisani@cummins.com): East Region
- > CA, HI: Brian E Pumphrey (brian.Pumphrey@cummins.com), Pacific Region
- > WA, OR, AK: Tom Tomlinson (tom.tomlinson@cummins.com), Pacific Region
- > For other states and territories, email powergenchannel@cummins.com or visit http://power.cummins.com/sales-service-locator

Closing

Watch out for a follow-up email including:.

- A Link to webinar recording and presentation
- A PDH Certificate

Visit powersuite.cummins.com for:

- PowerHour webinar recording, presentation and FAQ archive
- Other Cummins Continuing Education programs
- Sizing and specification development tools

Upcoming PowerHour Webinars:

• December – Distributed Generation Applications (Microgrids)

Please contact Mohammed Gulam if you have any questions related to the PowerHour webinar (<u>mohammed.gulam@cummins.com</u>)

