## Transformations

- In OpenGL, transformation are performed in the opposite order they are called
translate(1.0, 1.0, 0.0);
rotateZ(45.0);
scale(2.0, 2.0, 0.0);
(1)

DrawSquare(0.0, 0.0, 1.0);
scale(2.0, 2.0, 0.0);
rotateZ(45.0);
translate(1.0, 1.0, 0.0);
(1)

DrawSquare(0.0, 0.0, 1.0);

## Rotation and Scaling

- Rotation and Scaling is done about origin
- You always get what you expect
- Correct on all parts of model



## Load and Mult Matrices in MV.js

- Mat4(m)
- Mat4(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)
- Sets the sixteen values of the current matrix to those specified by $m$.
- CTM = mult(CTM, xformMatrix);
- Multiplies the matrix,CTM, by xformMatrix and stores the result as the current matrix, CTM.
- OpenGL uses column instead of row vectors
- However, MV.js treats things in row-major order - Flatten does the transpose
- Matrices are defined like this (use float m[16]);

$$
\mathbf{M}=\left[\begin{array}{llll}
w_{1} & m_{5} & m_{9} & m_{13} \\
m_{2} & m_{6} & w_{10} & m_{14} \\
m_{3} & m_{7} & m_{11} & m_{15} \\
m_{4} & m_{8} & m_{12} & m_{16}
\end{array}\right]
$$

## Object Coordinate System

- Used to place objects in scene
- Draw at origin of WCS
- Scale and Rotate
- Translate to final position
- Use the MODELVIEW matrix as the CTM
- scale( $x, y, z$ )
- rotate[XYZ](angle)
- translate( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ )
- lookAt(eyeX, eyeY, eyeZ, atX, atY, atZ, upX, upY, upZ)


## lookAt

LookAt(eye, at, up)


## The lookAt Function

- The GLU library contained the function gluLookAt to form the required modelview matrix through a simple interface
- Note the need for setting an up direction
- Replaced by lookAt() in MV.js
- Can concatenate with modeling transformations
- Example: isometric view (45 deg) of cube aligned with axes



## The lookAt Function: change from WORLD space to EYE space

## View Matrix

We want to compute the view matrix that aligns the orthonormal basis at the origin and pointing down either the $+Z$ (right-handed) or $-Z$ (left-handed). Here's the picture:


$$
M_{\text {sys }}=M_{\text {screen }} * M_{\text {perspective }} * M_{\text {view }}
$$

## Perspective Transformations

Viewing system matrix $\mathbf{M}_{\text {sys transform }}$ is obtained by combining the view matrix with the perspective projection with the viewport to screen matrix. These are defined as:
$\mathbf{M}_{\text {sys }}=\mathbf{M}_{\text {screen }} \mathbf{M}_{\text {perspective }} \mathbf{M}_{\text {view }}$

# We will look at $\mathrm{M}_{\text {screen }} \mathrm{M}_{\text {perspective }}{ }^{\text {later }}$ 




## Some Examples $\mathrm{M}_{\text {view }}$



Orthonormal Rotation about origin

Translation to origin


$$
M_{\text {sys }}=M_{\text {screen }}{ }^{*} M_{\text {perspective }}{ }^{*} M_{\text {view }}
$$

## Perspective Transformations

Viewing system matrix $\mathbf{M}_{\text {sys transform }}$ is obtained by combining the view matrix with the perspective projection with the viewport to screen matrix. These are defined as:
$\mathbf{M}_{\text {sys }}=\mathbf{M}_{\text {screen }} \mathbf{M}_{\text {perspective }} \mathbf{M}_{\text {view }}$

# $\mathrm{M}_{\text {sys }}=\mathrm{M}_{\text {screen }}{ }^{*} \mathrm{M}_{\text {perspective }}{ }^{*} \mathrm{M}_{\text {view }}$ 

## Perspective Transformations

Viewing system matrix $M_{\text {sys transform is obtained by combining the }}$ view matrix with the perspective projection with the viewport to screen matrix. These are defined as:

$$
\mathbf{M}_{\text {sys }}=\mathbf{M}_{\text {screen }} \mathbf{M}_{\text {perspective }} \mathbf{M}_{\text {view }}
$$

$$
M_{\text {sys }}=M_{\text {screen }} * M_{\text {perspective }} * M_{\text {view }}
$$

Perspective Transformations
Viewing system matrix $\mathbf{M}_{\text {sys transform }}$ is obtained by combining the view matrix with the perspective projection with the viewport to screen matrix. These are defined as:


## Now Map Rectangles



## Transformation in $x$ and $y$

$\left[\begin{array}{ccc}1 & 0 & u_{\text {min }} \\ 0 & 1 & V_{\text {min }} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\lambda_{x} & 0 & 0 \\ 0 & \lambda_{y} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & -x_{\text {min }} \\ 0 & 1 & -y_{\text {min }} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
where, $\lambda_{x}=\left(\frac{u_{\text {max }}-u_{\text {min }}}{X_{\text {max }}-x_{\text {min }}}\right), \quad \lambda_{y}=\frac{\nu_{\text {max }}-v_{\text {min }}}{y_{\text {max }}-y_{\text {min }}}$

## This is Viewport Transformation

- Good for mapping objects from one coordinate system to another
- This is what we do with windows and viewports
- $M_{\text {window }}=M_{\text {screen }}$


## Canonical to Window

Canonical Viewing Volume (what is it? (NDC))
To Window (where $N x=$ number of pixels)
$M_{\text {window }}=M_{\text {screen }}$

$$
\begin{aligned}
& \mathbf{M}_{\text {window }}=\left[\begin{array}{cccc}
\frac{n_{x}}{2} & 0 & 0 & \frac{n_{x}-1}{2} \\
0 & \frac{n_{y}}{2} & 0 & \frac{n_{y}-1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \mathbf{M}_{\text {sys }}=\mathbf{M}_{\text {window }} \mathbf{M}_{\text {persp }} \mathbf{M}_{\text {view }}
\end{aligned}
$$

# $M_{\text {sys }}=M_{\text {screen }}{ }^{*} M_{\text {perspective }}{ }^{*} M_{\text {view }}$ 

## Perspective Transformations

Viewing system matrix $M_{\text {sys transform is obtained by combining the }}$ view matrix with the perspective projection with the viewport to screen matrix. These are defined as:


## Other Viewing APIs

- The LookAt function is only one possible API for positioning the camera (but a really nice one)
- Others include
- View reference point, view plane normal, view up (PHIGS, GKS-3D)
- Yaw, pitch, roll
- Elevation, azimuth, twist
- Direction angles


## General Transformation Commands

- Deprecated:
- gIMatrixMode()
- Modelview
- Projection
- Texture
- Which matrix will be modified

Subsequent transformation commands affect the specified matrix.

- void gILoadIdentity(void);
- Sets the currently modifiable matrix to the $4 \times 4$ identity matrix.
- Usually done when you first switch matrix mode


## Instance Transformation

- Start with a prototype object (a symbol)
- Each appearance of the object in the model is an instance
- Must scale, orient, position
- Defines instance transformation



## Symbol-Instance Table

Can store a model by assigning a number to each symbol and storing the parameters for the instance transformation

| Symbol | Scale | Rotate | Translate |
| :---: | :---: | :---: | :---: |
| 1 | $s_{x^{\prime}}, s_{y}, s_{z}$ | $\theta_{x^{\prime}} \theta_{y^{\prime}} \theta_{z}$ | $d_{x^{\prime}} d_{y}, d_{z}$ |
| 2 |  |  |  |
| 3 |  |  |  |
| 1 |  |  |  |
| 1 |  |  |  |
| $\cdot$ |  |  |  |

## Relationships in Car Model

- Symbol-instance table does not show relationships between parts of model
- Consider model of car
- Chassis +4 identical wheels
- Two symbols

- Rate of forward motion determined by rotational speed of wheels


## Structure Through Function Calls

car(speed, direction, time)
\{
chassis(speed, direction, time) wheel(right_front, speed, direction, time); wheel(left_front, speed, direction, time); wheel(right_rear, speed, direction, time); wheel(left_rear, speed, direction, time);
\}

- Fails to show relationships well
- Look at problem using a graph


## Graphs

- Set of nodes and edges (links)
- Edge connects a pair of nodes
- Directed or undirected
- Cycle: directed path that is a loop



## Tree

- Graph in which each node (except the root) has exactly one parent node
- May have multiple children
- Leaf or terminal node: no children



## DAG Model

- If we use the fact that all the wheels are identical, we get a directed acyclic graph
- Not much different than dealing with a tree
- But dealing with a tree is good

Chassis


Wheel

Angel and Shreiner: Interactive Computer
Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

## Modeling with Trees

- Must decide what information to place in nodes and what to put in edges
- Nodes
- What to draw
- Pointers to children
- Transformation matrices (see below)
- Edges
- May have information on incremental changes to transformation matrices (can also store in nodes)


## Tree Model of Car



## Stack Operations

- mvStack.push(M)
- M = mvStack.pop()


## Transformations

- Two ways to specify transformations
- (1) Each part of the object is transformed independently relative to the world space origin Not the best way!



## Relative Transformation

A better (and easier) way:
(2) Relative transformation: Specify the transformation for each object relative to its parent


## Object Dependency

- A graphical scene often consists of many small objects
- The attributes of an object (positions, orientations) can depend on others



## Hierarchical Representation - Scene Graph

- We can describe the object dependency using a tree structure


The position and orientation of an object can be affected by its parent, grand-parent, grand-grand-parent ... nodes

This hierarchical representation is sometimes referred to as Scene Graph

## Relative Transformation

Relative transformation: Specify the transformation for each object relative to its parent


## Relative Transformation (2)

Step 2: Rotate the lower arm and all its descendants relative to its local y axis by -90 degree


## Relative Transformation (3)

- Represent relative transformations using scene graph



## Do it in WebGL

- Translate base and all its descendants by (5,0,0)
- Rotate the lower arm and its descendants by -90 degree about the locally defined frame



## A more complicated example

- How about this model?



## Do this ...

- Base and everything - translate $(5,0,0)$
- Left hammer - rotate 75 degree about the local y
- Right hammer - rotate -75 degree about the local y




## Something is wrong ...

- What's wrong? - We want to transform the right hammer relative to the base, not to the left hammer

```
How about this?
    Do Translate(5,0,0)
    Draw base
    Do RotateY(75)
    Draw left hammer
    What's wrong?!
    Do
    Draw right hammer
```

We should undo the left hammer transformation before we transform the right hammer


Need to undo this first

## Undo the previous transformation(s)

- Need to save the modelview matrix right after we draw base
Initial modelView M
Iranslate( $5,0,0) \rightarrow \mathrm{M}=\mathrm{M} \times \mathrm{T}$
Draw base
Rotate $\mathrm{Y}(75)$
Draw left hammer
Rotate $\mathrm{Y}(-75)$
Draw right hammer

Undo the previous transformation means we want to restore the Modelview Matrix M to what it was here
i.e., save M right here

And then restore the saved Modelview Matrix

## OpenGL Matrix Stack

- We can use OpenGL Matrix Stack to perform matrix save and restore
* Store the current modelview matrix
- Make a copy of the current matrix and push into Matrix Stack:
Do Translate( $5,0,0$ ) $\rightarrow$ M = M x T
call mvStack.push(modelView)
Draw base
Do RotateY(75)
Draw left hammer $\square$ Rotate $(-7.5)$

Draw right hammer

- continue to modify the current matrix
* Restore the saved Matrix
$\rightarrow$ - Pop the top of the Matrix and copy it back to the current Modelview Matrix:
Call modeView = mvStack. pop( )


## Push and Pop Matrix Stack

- A simple OpenGL routine:

(left hammer)
Depth First Travers
translate (5,0,0)
Draw_base();
mvStack. push(modelView)
rotateY(75);
Draw_left_hammer();
modelView = mvStack. pop();
rotateY(-75);
Draw_right_hammer();


## Push and Pop Matrix Stack

- Nested push and pop operations



## Objectives

- Build a tree-structured model of a humanoid figure
- Examine various traversal strategies
- Build a generalized tree-model structure that is independent of the particular model


## Humanoid Figure



## Building the Model

- Can build a simple implementation using quadrics: ellipsoids and cylinders
- Access parts through functions
- torso()
- leftUpperArm()
- Matrices describe position of node with respect to its parent
- $\mathbf{M}_{\mathrm{Ila}}$ positions left lower leg with respect to left upper arm


## Tree with Matrices



## Display and Traversal

- The position of the figure is determined by 11 joint angles (two for the head and one for each other part)
- Display of the tree requires a graph traversal
- Visit each node once
- Display function at each node that describes the part associated with the node, applying the correct transformation matrix for position and orientation


## Transformation Matrices

- There are 10 relevant matrices
- M positions and orients entire figure through the torso which is the root node
- $\mathbf{M}_{\mathrm{h}}$ positions head with respect to torso
- $\mathbf{M}_{\text {lua }}, \mathbf{M}_{\text {rua }}, \mathbf{M}_{\text {lul }}, \mathbf{M}_{\text {rul }}$ position arms and legs with respect to torso
- $\mathbf{M}_{\mathrm{lla}}, \mathbf{M}_{\mathrm{rla}}, \mathbf{M}_{\mathrm{ll}}, \mathbf{M}_{\mathrm{rll}}$ position lower parts of limbs with respect to corresponding upper limbs


## Stack-based Traversal

- Set model-view matrix to $\mathbf{M}$ and draw torso
- Set model-view matrix to $\mathbf{M M}_{\mathrm{h}}$ and draw head
- For left-upper arm need $\mathbf{M M}_{\text {lua }}$ and so on
- Rather than recomputing $\mathbf{M M}_{\text {lua }}$ from scratch or using an inverse matrix, we can use the matrix stack to store $\mathbf{M}$ and other matrices as we traverse the tree


## Traversal Code

figure() \{
torso(); PushMatrix() Rotate (...); head(); PopMatrix(); PushMatrix(); Translate(...); Rotate(...);
left_upper_arm(); PushMatrix(); Translate(...);
Rotate(...);
left_lower_arm();
PopMatrix();
PopMatrix();
save present model-view matrix
update model-view matrix for head
recover original model-view matrix
save it again

| update model-view matrix |
| :--- |
| for left upper arm |
| save left upper arm |
| model-view matrix again |
| update model-view matrix |
| for left lower arm |

recover upper arm model-view matrix
recover original model-view matrix

## rest of code

## Tree with Matrices



## Analysis

- The code describes a particular tree and a particular traversal strategy
- Can we develop a more general approach?
- Note that the sample code does not include state changes, such as changes to colors
- May also want to push and pop other attributes to protect against unexpected state changes affecting later parts of the code


## General Tree Data Structure

- Need a data structure to represent tree and an algorithm to traverse the tree
- We will use a left-child right sibling structure
- Uses linked lists
- Each node in data structure is two pointers
- Left: next node
- Right: linked list of children


## Left-Child Right-Sibling Tree



## Tree node Structure

- At each node we need to store
- Pointer to sibling
- Pointer to child
- Pointer to a function that draws the object represented by the node
- Homogeneous coordinate matrix to multiply on the right of the current model-view matrix
- Represents changes going from parent to node
- In WebGL this matrix is a 1D array storing matrix by columns


## Creating a treenode

```
function createNode(transform,
            render, sibling, child) {
        var node = {
        transform: transform,
        render: render,
        sibling: sibling,
        child: child,
        }
        return node;
};
```


## Initializing Nodes

```
function initNodes(Id) {
    var m = mat4();
        switch(Id) {
        case torsold:
            m = rotate(theta[torsold], 0, 1, 0 );
            figure[torsold] = createNode( m, torso, null, headld );
            break;
        case head1ld:
        case head2Id:
            m = translate(0.0, torsoHeight+0.5*headHeight, 0.0);
            m = mult(m, rotate(theta[head1ld], 1, 0, 0))m= mult(m,
                rotate(theta[head2Id], 0, 1, 0));
            m = mult(m, translate(0.0, -0.5*headHeight, 0.0));
            figure[headld] = createNode( m, head, leftUpperArmld, null);
            break;
```


## Notes

- The position of figure is determined by 11 joint angles stored in theta [11]
- Animate by changing the angles and redisplaying
- We form the required matrices using rotate and translate
- Because the matrix is formed using the modelview matrix, we may want to first push original model-view matrix on matrix stack


## Preorder Traversal

```
function traverse(Id) {
    if(ld == null) return;
    stack.push(modelViewMatrix);
    modelViewMatrix = mult(modelViewMatrix, figure[ld].transform);
    figure[ld].render();
    if(figure[Id].child != null) traverse(figure[ld].child); modelViewMatrix =
        stack.pop();
    if(figure[ld].sibling != null) traverse(figure[ld].sibling);
    }
var render = function() {
        gl.clear( gl.COLOR_BUFFER_BIT );
        traverse(torsold);
        requestAnimFrame(render);
}
```


## Notes

- We must save model-view matrix before multiplying it by node matrix
- Updated matrix applies to children of node but not to siblings which contain their own matrices
- The traversal program applies to any left-child right-sibling tree
- The particular tree is encoded in the definition of the individual nodes
- The order of traversal matters because of possible state changes in the functions


## Dynamic Trees

- Because we are using JS, the nodes and the node structure can be changed during execution
- Definition of nodes and traversal are essentially the same as before but we can add and delete nodes during execution
- In desktop OpenGL, if we use pointers, the structure can be dynamic


## Animation

- Kinematics/dynamics
- Inverse Kinematics/dynamics
- Keyframing



## Scene Graph



Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

## Hierarchy vs Scene Graph

- Hierarchy just involves object transformations
- Scene Graph involves objects, appearance, lighting, etc.


