
Fall 2015

CS 4600 1

Transformations

 In OpenGL, transformation are performed
in the opposite order they are called

translate(1.0, 1.0, 0.0);
rotateZ(45.0);
scale(2.0, 2.0, 0.0);

DrawSquare(0.0, 0.0, 1.0);1

2
3
4

scale(2.0, 2.0, 0.0);
rotateZ(45.0);
translate(1.0, 1.0, 0.0);

DrawSquare(0.0, 0.0, 1.0);1

2
3
4

Rotation and Scaling

 Rotation and Scaling is done about origin
You always get what you expect

Correct on all parts of model

rotateZ(45.0);
scale(2.0, 2.0, 0.0);
translate(-0.5, -0.5, 0.0);

DrawSquare(0.0, 0.0, 1.0);1

2
3
4

Fall 2015

CS 4600 2

Load and Mult Matrices in MV.js

 Mat4(m)

 Mat4(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)

 Sets the sixteen values of the current matrix
to those specified by m.

 CTM = mult(CTM, xformMatrix);
 Multiplies the matrix,CTM, by xformMatrix

and stores the result as the current matrix,
CTM.

 OpenGL uses column instead of row vectors

 However, MV.js treats things in row-major order
 Flatten does the transpose

 Matrices are defined like this (use float m[16]);

Fall 2015

CS 4600 3

Object Coordinate System

 Used to place objects in scene
Draw at origin of WCS

Scale and Rotate

 Translate to final position

 Use the MODELVIEW matrix as the CTM
 scale(x, y, z)

 rotate[XYZ](angle)

 translate(x, y, z)

 lookAt(eyeX, eyeY, eyeZ, atX, atY, atZ, upX, upY, upZ)

lookAt
LookAt(eye, at, up)

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 4

The lookAt Function

 The GLU library contained the function gluLookAt to form the
required modelview matrix through a simple interface

 Note the need for setting an up direction

 Replaced by lookAt() in MV.js

 Can concatenate with modeling transformations
 Example: isometric view (45 deg) of cube aligned with axes

var eye = vec3(1.0, 1.0, 1.0);
var at = vec3(0.0, 0.0, 0.0);
var up = vec3(0.0, 1.0, 0.0);

var mv = LookAt(eye, at, up);

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

The lookAt Function: change from
WORLD space to EYE space

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 5

Msys =Mscreen * Mperspective * Mview

We will look at Mscreen Mperspective later

Utah School of Computing

Mview

Utah School of Computing

Right Hand System

Left Hand System

Fall 2015

CS 4600 6

Mview

Orthonormal Rotation
about origin Translation to origin

Mview

Some Examples Mview

Orthonormal Rotation
about origin Translation to origin

Mview

Fall 2015

CS 4600 7

Msys =Mscreen * Mperspective * Mview

Utah School of Computing

Msys =Mscreen * Mperspective * Mview

Utah School of Computing

Fall 2015

CS 4600 8

Msys =Mscreen * Mperspective * Mview

Utah School of Computing

16

Now Map Rectangles

),(
minmin yx

),(
maxmax vu

),(
minmin vu

),(
maxmax yx

Fall 2015

CS 4600 9

17

Transformation in x and y

yy
vv

xx
uu

y
x

v
u

yx

y

x

y

x

minmax

minmax

minmax

minmax

min

min

min

min

,where

1100

10

01

100

00

00

100

10

01

 ,

18

This is Viewport Transformation

 Good for mapping objects from one

coordinate system to another

 This is what we do with windows and

viewports

 Mwindow = Mscreen

Fall 2015

CS 4600 10

Canonical to Window
 Canonical Viewing Volume (what is it? (NDC))

 To Window (where Nx = number of pixels)

 Mwindow = Mscreen

1000

0100
2

1
0

2
0

2

1
00

2
yy

xx

window

nn

nn

M

viewperspwindowsys MMMM

Msys =Mscreen * Mperspective * Mview

Utah School of Computing

Fall 2015

CS 4600 11

Other Viewing APIs

 The LookAt function is only one possible API for
positioning the camera (but a really nice one)

 Others include
 View reference point, view plane normal, view up

(PHIGS, GKS-3D)

 Yaw, pitch, roll

 Elevation, azimuth, twist

 Direction angles

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

General Transformation Commands

 Deprecated:
 glMatrixMode()

 Modelview
 Projection
 Texture
 Which matrix will be modified

 Subsequent transformation commands affect the specified matrix.

 void glLoadIdentity(void);
 Sets the currently modifiable matrix to the 4 × 4 identity matrix.
 Usually done when you first switch matrix mode

Fall 2015

CS 4600 12

Instance Transformation

 Start with a prototype object (a symbol)

 Each appearance of the object in the
model is an instance
 Must scale, orient, position

 Defines instance transformation

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Symbol-Instance Table

Can store a model by assigning a number to
each symbol and storing the parameters for
the instance transformation

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 13

Relationships in Car Model

 Symbol-instance table does not show
relationships between parts of model

 Consider model of car
 Chassis + 4 identical wheels
 Two symbols

 Rate of forward motion determined by rotational
speed of wheels

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Structure Through Function
Calls

car(speed,direction,time)
{

chassis(speed,direction,time)
wheel(right_front,speed,direction,time);
wheel(left_front,speed,direction,time);
wheel(right_rear,speed,direction,time);
wheel(left_rear,speed,direction,time);

}

 Fails to show relationships well
 Look at problem using a graph

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 14

Graphs

 Set of nodes and edges (links)

 Edge connects a pair of nodes
 Directed or undirected

 Cycle: directed path that is a loop

loop

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Tree

 Graph in which each node (except the
root) has exactly one parent node
 May have multiple children

 Leaf or terminal node: no children
root node

leaf node

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 15

DAG Model
 If we use the fact that all the wheels are identical,

we get a directed acyclic graph

 Not much different than dealing with a tree

 But dealing with a tree is good

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Modeling with Trees

 Must decide what information to place in nodes
and what to put in edges

 Nodes
 What to draw

 Pointers to children

 Transformation matrices (see below)

 Edges
 May have information on incremental changes to

transformation matrices (can also store in nodes)

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 16

Tree Model of Car

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

xForm xForm xForm xForm

Stack Operations

 mvStack.push(M)

 M = mvStack.pop()

Fall 2015

CS 4600 17

Transformations

 Two ways to specify transformations
 (1) Each part of the object is transformed

independently relative to the world space origin

Not the best way!

Translate the base by (5,0,0);
Translate the lower arm by (5,00);
Translate the upper arm by (5,00);
…

x
z

y

Relative Transformation

A better (and easier) way:
(2) Relative transformation: Specify the transformation

for each object relative to its parent

Fall 2015

CS 4600 18

Object Dependency

 A graphical scene often consists of many
small objects

 The attributes of an object (positions,
orientations) can depend on others

base

lower arm

upper arm

hammerA Robot Hammer!

Hierarchical Representation - Scene Graph

 We can describe the object dependency
using a tree structure

Base

Lower arm

Upper arm

Hammer

Root node

Leaf node

The position and orientation of
an object can be affected
by its parent, grand-parent,
grand-grand-parent … nodes

This hierarchical representation is
sometimes referred to as Scene Graph

Fall 2015

CS 4600 19

Relative Transformation

Relative transformation: Specify the transformation for
each object relative to its parent

Step 1: Translate base and
its descendants by (5,0,0);

Relative Transformation (2)

Step 2: Rotate the lower arm and all its descendants
relative to its local y axis by -90 degree

xz

y

x

z

y

Fall 2015

CS 4600 20

Relative Transformation (3)

 Represent relative transformations
using scene graph

Base

Lower arm

Upper arm

Hammer

Rotate (-90) about its local y

Translate (5,0,0)

Apply all the way
down

Apply all the way
down

Do it in WebGL

 Translate base and all its descendants by (5,0,0)

 Rotate the lower arm and its descendants by -90
degree about the locally defined frame

Base

Lower arm

Upper arm

Hammer

// LoadIdentity
modelView = mat4();

… // setup your camera

translatef(5,0,0);

Draw_base();

rotateY(-90);

Draw_lower _arm();
Draw_upper_arm();
Draw_hammer();

Fall 2015

CS 4600 21

A more complicated example

 How about this model?

base

Right hammerleft hammer

Scene Graph?

base

Lower arm

Upper arm

Hammer

Lower arm

Upper arm

Hammer

(left hammer) (right hammer)

Do this …

 Base and everything – translate (5,0,0)

 Left hammer – rotate 75 degree about the local y

 Right hammer – rotate -75 degree about the local y

Fall 2015

CS 4600 22

Depth-first traversal

base

Lower arm

Upper arm

Hammer

Lower arm

Upper arm

Hammer

(left hammer) (right hammer)

Do transformation(s)

Draw base

Do transformation(s)

Draw left arm

Do transformation(s)

Draw right arm

What are they?

Depth First Traversal

• Program this transformation by depth-first traversal

How about this?

base

Lower arm

Upper arm

Hammer

Lower arm

Upper arm

Hammer

(left hammer) (right hammer)

Draw base

Draw left hammer

Draw right hammer

Translate(5,0,0)

RotateY(75)

RotateY(-75)

What’s wrong?!

Fall 2015

CS 4600 23

Spring 2013

Something is wrong …
 What’s wrong? – We want to transform the right

hammer relative to the base, not to the left hammer
How about this?

Do

Draw base

Do

Draw left hammer

Do

Draw right hammer

Translate(5,0,0)

RotateY(75)

RotateY(-75)

What’s wrong?!

We should undo the
left hammer transformation
before we transform the right
hammer

Need to undo this
first

Spring 2013

Undo the previous transformation(s)

 Need to save the modelview matrix right after we
draw base

Initial modelView M

Draw base

Draw left hammer

Draw right hammer

Translate(5,0,0) -> M = M x T

RotateY(75)

RotateY(-75)

Undo the previous transformation
means we want to restore the
Modelview Matrix M to what
it was here

i.e., save M right here
…

And then restore the saved
Modelview Matrix

Fall 2015

CS 4600 24

Spring 2013

OpenGL Matrix Stack

 We can use OpenGL Matrix Stack to perform matrix
save and restore

Initial modelView M

Do

Draw base

Do

Draw left hammer

Do

Draw right hammer

Translate(5,0,0) -> M = M x T

RotateY(75)

RotateY(-75)

* Store the current modelview matrix
- Make a copy of the current matrix
and push into Matrix Stack:
call mvStack.push(modelView)

- continue to modify the current
matrix

* Restore the saved Matrix
- Pop the top of the Matrix and
copy it back to the current
Modelview Matrix:
Call modeView = mvStack.pop()

Push and Pop Matrix Stack
 A simple OpenGL routine:

base

Lower arm

Upper arm

Hammer

Lower arm

Upper arm

Hammer

(left hammer) (right hammer)
Depth First Traversal

translate(5,0,0)
Draw_base();
mvStack.push(modelView)

rotateY(75);
Draw_left_hammer();

modelView = mvStack.pop();
rotateY(-75);
Draw_right_hammer();

push pop

Fall 2015

CS 4600 25

Spring 2013

Push and Pop Matrix Stack
 Nested push and pop operations

// LoadIdentity
modelView = mat4();
… // Transform using M1;
… // Transform using M2;
mvStack.push(modelView);
… // Transform using M3
mvStack.push(modelView);
.. // Transform using M4
modelView = mvStack.pop();
…// Transform using M5
…
modelView = mvStack.pop();

Modelview matrix (M) Stack

M = I
M = M1
M = M1 x M2 M1xM2

M = M1 x M2 x M3 M1xM2xM3
M1 x M2

M = M1 x M2 x M3 x M4
M = M1 x M2 x M3

M1 x M2
M = M1 x M2 x M3 x M5

M = M1 x M2

Objectives

 Build a tree-structured model of a
humanoid figure

 Examine various traversal strategies

 Build a generalized tree-model structure
that is independent of the particular model

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 26

51

Humanoid Figure

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Building the Model

 Can build a simple implementation using quadrics:
ellipsoids and cylinders

 Access parts through functions
 torso()

 leftUpperArm()

 Matrices describe position of node with respect to
its parent
 Mlla positions left lower leg with respect to left upper arm

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 27

Tree with Matrices

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Display and Traversal

 The position of the figure is determined by 11
joint angles (two for the head and one for each
other part)

 Display of the tree requires a graph traversal
 Visit each node once

 Display function at each node that describes the part
associated with the node, applying the correct
transformation matrix for position and orientation

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 28

Transformation Matrices

 There are 10 relevant matrices
 M positions and orients entire figure through the torso

which is the root node

 Mh positions head with respect to torso

 Mlua, Mrua, Mlul, Mrul position arms and legs with
respect to torso

 Mlla, Mrla, Mlll, Mrll position lower parts of limbs with
respect to corresponding upper limbs

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Stack-based Traversal

 Set model-view matrix to M and draw torso

 Set model-view matrix to MMh and draw head

 For left-upper arm need MMlua and so on

 Rather than recomputing MMlua from scratch or
using an inverse matrix, we can use the matrix
stack to store M and other matrices as we
traverse the tree

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 29

Traversal Code
figure() {

torso();
PushMatrix()
Rotate (…);
head();
PopMatrix();
PushMatrix();
Translate(…);
Rotate(…);
left_upper_arm();
PushMatrix();
Translate(…);
Rotate(…);
left_lower_arm();
PopMatrix();
PopMatrix();

save present model-view matrix

update model-view matrix for head

recover original model-view matrix

save it again

update model-view matrix
for left upper arm

save left upper arm
model-view matrix again

rest of code

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

update model-view matrix
for left lower arm

recover upper arm model-view matrix

recover original model-view matrix

Tree with Matrices

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 30

Analysis

 The code describes a particular tree and a
particular traversal strategy
 Can we develop a more general approach?

 Note that the sample code does not include
state changes, such as changes to colors
 May also want to push and pop other attributes to

protect against unexpected state changes affecting
later parts of the code

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

General Tree Data
Structure

 Need a data structure to represent tree and an
algorithm to traverse the tree

 We will use a left-child right sibling structure
 Uses linked lists

 Each node in data structure is two pointers

 Left: next node

 Right: linked list of children

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 31

Left-Child Right-Sibling
Tree

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Tree node Structure

 At each node we need to store
 Pointer to sibling

 Pointer to child

 Pointer to a function that draws the object
represented by the node

 Homogeneous coordinate matrix to multiply on the
right of the current model-view matrix
 Represents changes going from parent to node

 In WebGL this matrix is a 1D array storing matrix by columns

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 32

Creating a treenode

function createNode(transform,

render, sibling, child) {

var node = {

transform: transform,

render: render,

sibling: sibling,

child: child,

}

return node;
};

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Initializing Nodes
function initNodes(Id) {

var m = mat4();
switch(Id) {
case torsoId:

m = rotate(theta[torsoId], 0, 1, 0);
figure[torsoId] = createNode(m, torso, null, headId);
break;

case head1Id:
case head2Id:

m = translate(0.0, torsoHeight+0.5*headHeight, 0.0);
m = mult(m, rotate(theta[head1Id], 1, 0, 0))m = mult(m,

rotate(theta[head2Id], 0, 1, 0));
m = mult(m, translate(0.0, -0.5*headHeight, 0.0));
figure[headId] = createNode(m, head, leftUpperArmId, null);
break;

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 33

Notes

 The position of figure is determined by 11 joint angles
stored in theta[11]

 Animate by changing the angles and redisplaying

 We form the required matrices using rotate and

translate

 Because the matrix is formed using the model-
view matrix, we may want to first push original
model-view matrix on matrix stack

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Preorder Traversal

function traverse(Id) {
if(Id == null) return;
stack.push(modelViewMatrix);
modelViewMatrix = mult(modelViewMatrix, figure[Id].transform);
figure[Id].render();
if(figure[Id].child != null) traverse(figure[Id].child); modelViewMatrix =

stack.pop();
if(figure[Id].sibling != null) traverse(figure[Id].sibling);

}
var render = function() {

gl.clear(gl.COLOR_BUFFER_BIT);
traverse(torsoId);
requestAnimFrame(render);

}

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 34

Notes

 We must save model-view matrix before
multiplying it by node matrix
 Updated matrix applies to children of node but not to

siblings which contain their own matrices

 The traversal program applies to any left-child
right-sibling tree
 The particular tree is encoded in the definition of the

individual nodes

 The order of traversal matters because of
possible state changes in the functions

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Dynamic Trees

 Because we are using JS, the nodes and the node
structure can be changed during execution

 Definition of nodes and traversal are essentially the
same as before but we can add and delete nodes during
execution

 In desktop OpenGL, if we use pointers, the structure can
be dynamic

Angel and Shreiner: Interactive Computer
Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 35

Animation

 Kinematics/dynamics

 Inverse Kinematics/dynamics

 Keyframing

Scene Graph

Scene

CameraObject 1 Object 2Light

Color Material Material Position

Instance Instance RotatePosition

Clip

Angel and Shreiner: Interactive Computer Graphics 7E © Addison-Wesley 2015

Fall 2015

CS 4600 36

Hierarchy vs Scene Graph

 Hierarchy just involves object
transformations

 Scene Graph involves objects,
appearance, lighting, etc.

