Transformer Design

(© Dr. R. C. Goel \& Nafees Ahmed)

By

UNIVERSITY

Nafees Ahmed

Asstt. Prof. Department of Electrical Engineering DIT, University, Dehradun, Uttarakhand

References:

1. Notes by Dr. R. C. Goel
2. Electrical Machine Design by A.K. Sawhney
3. Principles of Electrical Machine Design by R.K Agarwal
4. VTU e-Learning
5. www.goole.com
6. www.wikipedia.org

OUTPUT EQUATION: - It gives the relationship between electrical rating and physical dimensions of the machines.
Let

$$
\begin{aligned}
\mathrm{V}_{1} & =\text { Primary voltage say LV } \\
\mathrm{V}_{2} & =\text { Secondary voltage say HV } \\
\mathrm{I}_{1} & =\text { Primary current } \\
\mathrm{I}_{2} & =\text { Secondary current } \\
\mathrm{N}_{1} & =\text { Primary no of turns } \\
\mathrm{N}_{2} & =\text { Secondary no of turns } \\
\mathrm{a}_{1} & =\text { Sectional area of LV conductors }\left(\mathrm{m}^{2}\right) \\
& =\frac{I_{1}}{\delta} \\
\mathrm{a}_{2} & =\text { Sectional area of HV conductors }\left(\mathrm{m}^{2}\right) \\
& =\frac{I_{2}}{\delta} \\
\delta & =\text { Permissible current density }\left(\mathrm{A} / \mathrm{m}^{2}\right) \\
\mathrm{Q} & =\text { Rating in KVA }
\end{aligned}
$$

We place first half of LV on one limb and rest half of LV on other limb to reduce leakage flux. So arrangement is LV insulation then half LV turns then HV insulation and then half HV turns.

(1) For 1-phase core type transformer

Rating is given by

$$
\begin{array}{rlrlrl}
\mathrm{Q} & =V_{1} I_{1} \times 10^{-3} & \text { KVA } & & \\
& =\left(4.44 f \phi_{m} N_{1}\right) I_{1} \times 10^{-3} & \text { KVA } & & \left(\because V_{1}=4.44 f \phi_{m} N_{1}\right) \\
& =4.44 f\left(A_{i} B_{m}\right) N_{1} I_{1} \times 10^{-3} & \text { KVA } & --------(1) & & \left(\because \phi_{m}=A_{i} B_{m}\right) \tag{1}
\end{array}
$$

Where
$\mathrm{f}=$ frequency
$\phi_{m}=$ Maximum flux in the core
$A_{i}=$ Sectional area of core
$B_{m}=$ Maximum flux density in the core
Window Space Factor
$K_{w}=\frac{\text { Actual Cu Section Area of Windings in Window }}{\text { Window Area }\left(A_{w}\right)}$
$=\frac{a_{1} N_{1}+a_{2} N_{2}}{A_{w}}$

1-phase core type transformer with concentric windings
$=\frac{\left(I_{1} / \delta\right) N_{1}+\left(I_{2}\right.}{A_{w}}$
$=\frac{I_{1} N_{1}+I_{2} N_{2}}{\delta A_{w}}$
$=\frac{2 I_{1} N_{1}}{\delta A_{w}}$
(For IdealTransformer $I_{1} N_{1}=I_{2} N_{2}$)
So
$\left[N_{1} I_{1}=\frac{\delta K_{w} A_{w}}{2}\right]$
Put the value of $\mathrm{N}_{1} \mathrm{I}_{1}$ form equation (2) to equation (1)
$Q=4.44 f A_{i} B_{m} \frac{\delta K_{w} A_{w}}{2} \times 10^{-3} \quad K V A$
$Q=2.22 f A_{i} B_{m} \delta K_{w} A_{w} \times 10^{-3} \quad K V A$

(2) For 1- phase shell type transformer

Window Space Factor
$\mathrm{K}_{\mathrm{w}}=\frac{a_{1} N_{1}+a_{2} N_{2}}{A_{w}}$
$=\frac{\left(I_{1} / \delta\right) N_{1}+\left(I_{2} / \delta\right) N_{2}}{A_{w}} \quad\left(\because a_{1}=I /_{1} \delta \& a_{2}=I /_{2} \delta\right)$
$=\frac{I_{1} N_{1}+I_{2} N_{2}}{\delta A_{w}}$
$=\frac{2 I_{1} N_{1}}{\delta A_{w}}$
(For IdealTransformer $I_{1} N_{1}=I_{2} N_{2}$)

1-phase shell type transformer with sandwich windings

So
$N_{1} I_{1}=\frac{\delta K_{w} A_{w}}{2}$
Put the value of $\mathrm{N}_{1} \mathrm{I}_{1}$ form equation (4) to equation (1)
$Q=4.44 f A_{i} B_{m} \frac{\delta K_{w} A_{w}}{2} \times 10^{-3} \quad K V A$
$Q=2.22 f A_{i} B_{m} \delta K_{w} A_{w} \times 10^{-3} \quad$ KVA ---
Note it is same as for 1-phase core type transformer i.e. equ (3)
(3) For 3-phase core type transformer

3-phase core type transformer with concentric windings

Rating is given by

$$
\begin{array}{rlr}
\mathrm{Q} & =3 \times V_{1} I_{1} \times 10^{-3} & \mathrm{KVA} \\
& =3 \times\left(4.44 f \phi_{m} N_{1}\right) I_{1} \times 10^{-3} & \mathrm{KVA} \\
& =3 \times\left(4.44 f A_{i} B_{m} N_{1}\right) I_{1} \times 10^{-3} & \mathrm{KVA} \tag{6}
\end{array}
$$

$$
\begin{aligned}
& \left(\because V_{1}=4.44 f \phi_{m} N_{1}\right) \\
& \left(\because \phi_{m}=A_{i} B_{m}\right)
\end{aligned}
$$

$$
K_{w}=\frac{\text { Actual Cu Section Area of Windings in Window }}{\text { Window Area }\left(A_{w}\right)}
$$

$=\frac{2\left(a_{1} N_{1}+a_{2} N_{2}\right)}{A_{w}}$
$=\frac{2 \times\left[\left(I_{1} / \delta\right) N_{1}+\left(I_{2} / \delta\right) N_{2}\right]}{A_{w}} \quad\left(\because a_{1}=I / /_{1} \delta \& a_{2}=I /{ }_{2} \delta\right)$
$=\frac{2\left(I_{1} N_{1}+I_{2} N_{2}\right)}{\delta A_{w}}$
$=\frac{2 \times 2 I_{1} N_{1}}{\delta A_{w}} \quad$ (For IdealTransformer $I_{1} N_{1}=I_{2} N_{2}$)
So
$N_{1} I_{1}=\frac{\delta K_{w} A_{w}}{4}$
Put the value of $\mathrm{N}_{1} \mathrm{I}_{1}$ form equation (7) to equation (6)
$Q=3 \times 4.44 f A_{i} B_{m} \frac{\delta K_{w} A_{w}}{4} \times 10^{-3} \quad K V A$
$Q=3.33 f A_{i} B_{m} \delta K_{w} A_{w} \times 10^{-3} \quad$ KVA

3-phase shell type transformer with sandwich windings

(3) For 3- phase shell type transformer

Window Space Factor
$\mathrm{K}_{\mathrm{w}}=\frac{a_{1} N_{1}+a_{2} N_{2}}{A_{w}}$
$=\frac{\left(I_{1} / \delta\right) N_{1}+\left(I_{2} / \delta\right) N_{2}}{A_{w}} \quad\left(\because a_{1}=I /_{1} \delta \& a_{2}=I I_{2} \delta\right)$
$=\frac{I_{1} N_{1}+I_{2} N_{2}}{\delta A_{w}}$
$=\frac{2 I_{1} N_{1}}{\delta A_{w}} \quad\left(\right.$ For IdealTransformer $\left.I_{1} N_{1}=I_{2} N_{2}\right)$
So
$N_{1} I_{1}=\frac{\delta K_{w} A_{w}}{2}$
Put the value of $\mathrm{N}_{1} \mathrm{I}_{1}$ form equation (9) to equation (6)
$Q=3 \times 4.44 f A_{i} B_{m} \frac{\delta K_{w} A_{w}}{2} \times 10^{-3} \quad K V A$
$Q=6.66 f A_{i} B_{m} \delta K_{w} A_{w} \times 10^{-3} \quad$ KVA
(1) Normal Si-Steel
(0.35 mm thickness, $1.5 \%-3.5 \% \mathrm{Si}$)
(2) HRGO
(Hot Rolled Grain Oriented Si Steel)
(3) CRGO
(Cold Rolled Grain Oriented Si Steel)
(0.14---0.28 mm thickness)

CHOICE OF ELECTRIC LOADING (δ)

This depends upon cooling method employed
(1) Natural Cooling:
(2) Forced Cooling :
(3) Water Cooling:
$5.0---6.0 \mathrm{~A} / \mathrm{mm}^{2}$ OW Oil immersed with circulated Water cooling
OFW Oil Forced with circulated Water cooling
$1.5---2.3 \mathrm{~A} / \mathrm{mm}^{2}$
AN Air Natural cooling
ON Oil Natural cooling
OFN Oil Forced circulated with Natural air cooling
2.2---4.0 A/mm ${ }^{2}$

AB Air Blast cooling
OB Oil Blast cooling
OFB Oil Forced circulated with air Blast cooling

CORE CONSTRUCTION:

(a) U-I type

(c) U-T type

(b) E-I type

(d) L-L type

(e) Mitred Core Construction (Latest)

EMF PER TURN:

We know

$$
\begin{align*}
& V_{1}=4.44 f \phi_{m} N_{1} \\
& \text { So EMF / Turn } \quad E_{t}=\frac{V_{1}}{N_{1}}=4.44 f \phi_{m}---------------(1)
\end{align*}
$$

and

$$
\begin{aligned}
\mathrm{Q} & =V_{1} I_{1} \times 10^{-3} & & \text { KVA } \quad \text { (Note: Take } \mathrm{Q} \text { as per phase rating in KVA) } \\
& =\left(4.44 f \phi_{m} N_{1}\right) I_{1} \times 10^{-3} & & \mathrm{KVA} \\
& =E_{t} N_{1} I_{1} \times 10^{-3} & & K V A------(3)
\end{aligned}
$$

In the design, the ration of total magnetic loading and electric loading may be kept constant
Magnetic loading $\quad=\phi_{m}$
Electric loading $\quad=N_{1} I_{1}$
So

$$
\frac{\phi_{m}}{N_{1} I_{1}}=\text { cons } \tan t\left(\text { say " } r \text { ") } \Rightarrow N_{1} I_{1}=\frac{\phi_{m}}{r} \quad \text { put in eqution }(3)\right.
$$

$$
Q=E_{t} \frac{\phi_{m}}{r} \times 10^{-3} \quad K V A
$$

Or $\quad Q=E_{t} \frac{E_{t}}{4.44 f r} \times 10^{-3} \quad K V A \quad$ using equation (2)

$$
E_{t}^{2}=\left(4.44 \mathrm{fr} r \times 10^{-3}\right) \times Q
$$

Or
$E_{t}=K_{t} \sqrt{Q} \quad$ Volts/Turn

Where $K_{t}=\sqrt{4.44 \mathrm{fr} \times 10^{-3}} \quad$ is a constant and values are
$\mathrm{K}_{\mathrm{t}}=0.6$ to $0.7 \quad$ for 3-phase core type power transformer
$\mathrm{K}_{\mathrm{t}}=0.45 \quad$ for 3-phase core type distribution transformer
$\mathrm{K}_{\mathrm{t}}=1.3$ for 3-phase shell type transformer
$\mathrm{K}_{\mathrm{t}}=0.75$ to $0.85 \quad$ for 1-phase core type transformer
$\mathrm{K}_{\mathrm{t}}=1.0$ to $1.2 \quad$ for 1-phase shell type transformer

We know

E_{t}	$=K_{t} \sqrt{Q}$
E_{t}	$=4.44 f \phi_{m}$
Or $\quad E_{t}$	$=4.44 f A_{i} B_{m}$
So $\quad A_{i}$	$=\frac{E_{t}}{4.44 f B_{m}}$

Now the core may be following types

d = Diameter of circumscribe circle
For Square core

$$
\text { Gross Area }=\frac{d}{\sqrt{2}} \times \frac{d}{\sqrt{2}}=0.5 d^{2}
$$

Let stacking factor

$$
K_{i}=0.9
$$

Actual Iron Area

$$
\begin{aligned}
A_{i} & =0.9 \times 0.5 d^{2} \\
& =0.45 d^{2} \\
& =K d^{2} \\
\text { So } \quad A_{i} & =K d^{2} \\
\text { Or } \quad d & =\sqrt{\frac{A_{i}}{K}}
\end{aligned}
$$

$$
=0.45 d^{2} \quad(0.45 \text { for square core and take ' } \mathrm{K} \text { ' as a general case })
$$

Graphical method to calculate dimensions of the core

Consider 2 step core

$$
\theta=\frac{90^{\circ}}{n+1}, \quad n=\text { No of Steps }
$$

i.e $n=2$

$$
\theta=\frac{90^{\circ}}{2+1}=30^{\circ}
$$

$$
\text { So } \begin{aligned}
a & =d \operatorname{Cos} \theta \\
b & =d \operatorname{Sin} \theta
\end{aligned}
$$

Percentage fill

$$
=\frac{\text { Gross Area of Stepped core }}{\text { Area of circumcircle }}=\frac{K d^{2} / K_{i}}{\pi d^{2} / 4}
$$

$=\frac{0.625 d^{2} / 0.9}{\frac{\Pi}{4}\left(d^{2}\right)}$ for 4 Stepcore
$=0.885$ or 88.5%

No of steps	1	2	3	4	5	6	7	9	11
\% Fill	63.7%	79.2%	84.9%	88.5%	90.8%	92.3%	93.4%	94.8%	95.8%

ESTIMATION OF MAIN DIMENSIONS:

Consider a 3-phase core type transformer

We know output equation

3-phase core type transformer

$Q=3.33 f A_{i} B_{m} \delta K_{w} A_{w} \times 10^{-3} \quad K V A$
So, Window area

$$
A_{w}=\frac{Q}{3.33 f A_{i} B_{m} \delta K_{w} \times 10^{-3}} m^{2}
$$

where

$$
\mathrm{K}_{\mathrm{w}}=\text { Window space factor }
$$

For higher rating

$$
\mathrm{K}_{\mathrm{w}}=0.15 \text { to } 0.20
$$

Assume some suitable range for

$$
\begin{array}{ll}
\mathrm{D}=(1.7 \text { to } 2) \mathrm{d} \\
\text { Width of the window } & \mathrm{W}_{\mathrm{w}}=\mathrm{D}-0.9 \mathrm{~d}
\end{array}
$$

Height of the window

$$
L=\frac{A_{w}}{\text { width of } \operatorname{window}\left(W_{w}\right)}
$$

$$
\left(\because L \times W_{w}=A_{w}\right)
$$

$$
\begin{aligned}
& K_{w}=\frac{8}{30+\text { HigherKV }} \quad \text { for upto } 10 \text { KVA } \\
& K_{w}=\frac{10}{30+\text { Higher } K V} \quad \text { for upto } 200 \mathrm{KVA} \\
& K_{w}=\frac{12}{30+\text { HigherKV }} \quad \text { for upto } 1000 \text { KVA }
\end{aligned}
$$

Generally

$$
\frac{L}{W_{w}}=2 \text { to } 4
$$

The yoke can have same area as that of the core and can be of same stepped size as core (in this case $\mathrm{D}_{\mathrm{y}}=\mathrm{a}$, $h_{y}=a$). Alternatively it could be of rectangular section. In that case yoke area A_{y} is generally taken 10% to 15% higher then core section area $\left(\mathrm{A}_{\mathrm{i}}\right)$, it is to reduce the iron loss in the yoke section. But if we increase the core section area $\left(\mathrm{A}_{\mathrm{i}}\right)$ more copper will be needed in the windings and so more cost through we are reducing the iron loss in the core. Further length of the winding will increase, resulting higher resistance so more cu loss.

	$A_{y}=\left(1.10\right.$ to 1.15) A_{i}
Depth of yoke	$D_{y}=a$
Height of the yoke	$h_{y}=A_{y} / D_{y}$

Width of the core

$$
\mathrm{W}=2 * \mathrm{D}+0.9 \mathrm{~d}
$$

Or

$$
\mathrm{W}=2 \mathrm{~W}_{\mathrm{w}}+3 \mathrm{x} 0.9 \mathrm{~d}
$$

$$
\left(\mathrm{As} \mathrm{~W}_{\mathrm{w}}=\mathrm{D}-0.9 \mathrm{~d}\right)
$$

Height of the core

$$
\mathrm{H}=\mathrm{L}+2 * \mathrm{~h}_{\mathrm{y}}
$$

Flux density in yoke

$$
B_{y}=\frac{A_{i}}{A_{y}} B_{m}
$$

2-Step
Or Cruciform- Core

ESTIMATION OF CORE LOSS AND CORE LOSS COMPONET OF NO LOAD CURRENT I $I_{\text {: }}$:

Volume of iron in core

$$
\begin{array}{rlr}
& =3 * \mathrm{~L}^{*} \mathrm{~A}_{\mathrm{i}} & \mathrm{~m}^{3} \\
& =\text { density } * \text { volume } \quad \mathrm{Kg} \\
& =\rho_{i} * 3 * \mathrm{~L} * \mathrm{~A}_{\mathrm{i}} \quad \\
\rho_{i} & =\text { density of iron }\left(\mathrm{kg} / \mathrm{m}^{3}\right) \\
& =7600 \mathrm{Kg} / \mathrm{m}^{3} \text { for normal Iron } / \text { steel } \\
& =6500 \mathrm{Kg} / \mathrm{m}^{3} \text { for M-4 steel }
\end{array}
$$

$$
\text { Weight of iron in core } \quad=\text { density } * \text { volume }
$$

From the graph we can find out specific iron loss, $\mathrm{p}_{\text {core }}$ (Watt/Kg) corresponding to flux density B_{m} in core.
So
Iron loss in core $\quad=\mathrm{p}_{\text {core }} * \rho_{i} * 3 * \mathrm{~L}^{*} \mathrm{~A}_{\mathrm{i}} \quad$ Watt
Similarly
Iron loss in yoke $\quad=p_{\text {yoke }} * \rho_{i}{ }^{*} 2 * W * \mathrm{~A}_{\mathrm{y}}$ Watt
Where
$p_{\text {yoke }}=$ specific iron loss corresponding to flux density B_{y} in yoke
Total Iron loss $\quad P_{i}=$ Iron loss in core + Iron loss in yoke
Core loss component of no load current

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{c}}=\text { Core loss per phase/ Primary Voltage } \\
& \mathrm{I}_{\mathrm{c}}=\frac{P_{i}}{3 V_{1}}
\end{aligned}
$$

ESTIMATION OF MAGNETIZING CURRENT OF NO LOAD CURRENT $\mathbf{I}_{\underline{m}}$:

Find out magnetizing force H ($\mathrm{at}_{\text {core }}, \mathrm{at} / \mathrm{m}$) corresponding to flux density B_{m} in the core and atyoke corresponding to flux density in the yoke from B-H curve

$$
\left(B_{m} \Rightarrow a t_{\text {core }} / m, \quad B_{c} \Rightarrow a t_{\text {yoke }} / m\right)
$$

So
MMF required for the core $\quad=3 * L^{*} \mathrm{at}_{\text {core }}$
MMF required for the yoke

$$
=2 * W * \mathrm{at}_{\text {yoke }}
$$

We account 5\% AT for joints etc
So total MMF required $\quad=1.05[$ MMF for core + MMF for yoke $]$
Peak value of the magnetizing current

$$
I_{m, \text { peak }}=\frac{\text { Total MMF required }}{3 N_{1}}
$$

RMS value of the magnetizing current

$$
\begin{aligned}
& I_{m, \text { RMS }}=\frac{I_{m, \text { peak }}}{\sqrt{2}} \\
& I_{m, \text { RMS }}=\frac{\text { Total MMF required }}{3 \sqrt{2} N_{1}}
\end{aligned}
$$

ESTITMATION OF NO LOAD CURRENT AND PHASOR DIAGRAM:

No load current Io

$$
I_{o}=\sqrt{I_{c}{ }^{2}+I_{m}{ }^{2}}
$$

No load power factor

$$
\operatorname{Cos} \phi_{o}=\frac{I_{c}}{I_{o}}
$$

The no load current should not exceed 5% of the full load current.

ESTIMATION OF NO OF TURNS ON LV AND HV WINDING

$\begin{array}{ll}\text { Primary no of turns } & N_{1}=\frac{V_{1}}{E_{t}} \\ \text { Secondary no of turns } & N_{2}=\frac{V_{2}}{E_{t}}\end{array}$

Primary current

$$
I_{1}=\frac{Q \times 10^{-3}}{3 V_{1}}
$$

Secondary current

$$
I_{2}=\frac{Q \times 10^{-3}}{3 V_{2}} \quad \text { OR } \frac{N_{1}}{N_{2}} I_{1}
$$

Sectional area of primary conductor $a_{1}=\frac{I_{1}}{\delta}$
Sectional area of secondary conductor $a_{2}=\frac{I_{2}}{\delta}$
Where δ is current the density.
Now we can use round conductors or strip conductors for this see the IS codes and ICC (Indian Cable Company) table.

DETERMINATION OF $\mathbf{R}_{1} \& \mathbf{R}_{2}$ AND CU LOSSES:

Let $\quad \mathrm{L}_{\mathrm{mt}}=$ Length of mean turn
Resistance of primary winding

$$
\begin{aligned}
& R_{1, d c, 75^{\circ}}=0.021 \times 10^{-6} \frac{L_{m t} N_{1}(m)}{a_{1}\left(m^{2}\right)} \\
& R_{1, a c, 75^{\circ}}=(1.15 \text { to } 1.20) R_{1, d c, 75^{\circ}}
\end{aligned}
$$

Resistance of secondary winding

$$
\begin{aligned}
& R_{2, d c, 75^{\circ}}=0.021 \times 10^{-6} \frac{L_{m t} N_{2}(m)}{a_{2}\left(m^{2}\right)} \\
& R_{2, a c, 75^{\circ}}=(1.15 \text { to } 1.20) R_{2, d c, 75^{\circ}}
\end{aligned}
$$

Copper loss in primary winding $\quad=3 I_{1}^{2} R_{1} \quad$ Watt
Copper loss in secondary winding $=3 I_{2}^{2} R_{2} \quad$ Watt
Total copper loss

$$
\begin{aligned}
& =3 I_{1}^{2} R_{1}+3 I_{2}^{2} R_{2} \\
& =3 I_{1}^{2}\left(R_{1}+R_{2}^{\prime}\right) \\
& =3 I_{1}^{2} R_{p} \\
& R_{01}=R_{p}=R_{1}+R_{2}^{\prime}
\end{aligned}
$$

$$
=\text { Total resistance referred to primary side }
$$

Note: Even at no load, there is magnetic field around connecting leads, tanks etc which causes additional stray losses in the transformer tanks and other metallic parts. These losses may be taken as 7% to 10% of total cu losses.

DETERMINATION OF EFFICIENCY:

Efficiency

$$
\begin{aligned}
\eta & =\frac{\text { Output Power }}{\text { Input Power }} \\
\eta & =\frac{\text { Output Power }}{\text { Output Power }+ \text { Losses }} \\
\eta & =\frac{\text { Output Power }}{\text { Output Power }+ \text { Iron Loss }+ \text { Cu loss }} \times 100 \%
\end{aligned}
$$

ESTIMATION OF LEAKAGE REACTANCES($\mathbf{X}_{1} \& \mathbf{X}_{2}$):

Assumptions

1. Consider permeability of iron as infinity that is MMF is needed only for leakage flux path in the window.
2. The leakage flux lines are parallel to the axis of the core.

Consider an elementary cylinder of leakage flux lines of thickness ' dx ' at a distance x as shown in following figure.

MMF at distance x

$$
M_{x}=\frac{N_{1} I_{1}}{b_{1}} x
$$

Permeance of this elementary cylinder

$$
\begin{aligned}
& =\mu_{o} \frac{A}{L} \\
& =\mu_{o} \frac{L_{m t} d x}{L_{c}} \quad\left(\mathrm{~L}_{\mathrm{c}}=\text { Length of winding } \approx 0.8 \mathrm{~L}\right)
\end{aligned}
$$

$\left(\because S=\frac{1}{\mu_{o}} \frac{L}{A} \quad \& \quad\right.$ Permeance $\left.=\frac{1}{S}\right)$
Leakage flux lines associated with elementary cylinder

$$
\begin{aligned}
d \phi_{x} & =M_{x} \times \text { Permeance } \\
& =\frac{N_{1} I_{1}}{b_{1}} x \times \mu_{o} \frac{L_{m 1} d x}{L_{c}}
\end{aligned}
$$

Flux linkage due to this leakage flux

$$
d \psi_{x}=\text { No of truns with which it is associated } \times d \phi_{x} \quad \text { MMF Distribution }
$$

$$
=\frac{N_{1} I_{1}}{b_{1}} \times \frac{N_{1} I_{1}}{b_{1}} x \times \mu_{o} \frac{L_{m t} d x}{L_{c}}
$$

$$
=\mu_{o} N_{1}^{2} \frac{L_{m t}}{L_{c}} I_{1}\left(\frac{x}{b_{1}}\right)^{2} d x
$$

Flux linkages (or associated) with primary winding

$$
\psi_{1}^{\prime}=\mu_{o} N_{1}^{2} \frac{L_{m t}}{L_{c}} I_{1} \int_{0}^{b_{1}}\left(\frac{x}{b_{1}}\right)^{2} d x=\mu_{o} N_{1}^{2} \frac{L_{m t}}{L_{c}} I_{1}\left(\frac{b_{1}}{3}\right)
$$

Flux linkages (or associated) with the space 'a' between primary and secondary windings

$$
\psi_{o}=\mu_{o} N_{1}^{2} \frac{L_{m t}}{L_{c}} I_{1} a
$$

We consider half of this flux linkage with primary and rest half with the secondary winding. So total flux linkages with primary winding

$$
\begin{aligned}
& \psi_{1}=\psi_{1}^{\prime}+\frac{\psi_{o}}{2} \\
& \psi_{1}=\mu_{o} N_{1}^{2} \frac{L_{m t}}{L_{c}} I_{1}\left(\frac{b_{1}}{3}+\frac{a}{2}\right)
\end{aligned}
$$

Similarly total flux linkages with secondary winding

$$
\begin{aligned}
& \psi_{2}=\psi_{2}+\frac{\psi_{o}}{2} \\
& \psi_{2}=\mu_{o} N_{2}^{2} \frac{L_{m t}}{L_{c}} I_{2}\left(\frac{b_{2}}{3}+\frac{a}{2}\right)
\end{aligned}
$$

Primary \& Secondary leakage inductance

$$
\begin{aligned}
& L_{1}=\frac{\psi_{1}}{I_{1}}=\mu_{o} N_{1}^{2} \frac{L_{m t}}{L_{c}}\left(\frac{b_{1}}{3}+\frac{a}{2}\right) \\
& L_{2}=\frac{\psi_{2}}{I_{2}}=\mu_{o} N_{2}^{2} \frac{L_{m t}}{L_{c}}\left(\frac{b_{2}}{3}+\frac{a}{2}\right)
\end{aligned}
$$

Primary \& Secondary leakage reactance

$$
\begin{aligned}
& X_{1}=2 \Pi f L_{1}=2 \Pi f \mu_{o} N_{1}^{2} \frac{L_{m t}}{L_{c}}\left(\frac{b_{1}}{3}+\frac{a}{2}\right) \\
& X_{2}=2 \Pi f L_{2}=2 \Pi f \mu_{o} N_{2}^{2} \frac{L_{m t}}{L_{c}}\left(\frac{b_{2}}{3}+\frac{a}{2}\right)
\end{aligned}
$$

Total Leakage reactance referred to primary side

$$
X_{01}=X_{P}=X_{1}+X_{2}^{\prime}=2 \Pi f \mu_{o} N_{1}^{2} \frac{L_{m t}}{L_{c}}\left(\frac{b_{1}+b_{2}}{3}+a\right)
$$

Total Leakage reactance referred to secondary side

$$
X_{02}=X_{S}=X_{1}^{\prime}+X_{2}=2 \Pi f \mu_{o} N_{2}^{2} \frac{L_{m t}}{L_{c}}\left(\frac{b_{1}+b_{2}}{3}+a\right)
$$

It must be 5% to 8% or maximum 10%
Note:- How to control $\mathbf{X}_{\mathbf{P}}$?
If increasing the window height $(L), L_{c}$ will increase and following will decrease b_{1}, $\mathrm{b}_{2} \& \mathrm{~L}_{\mathrm{mt}}$ and so we can reduce the value of X_{P}.

CALCULATION OF VOLTAGE REGULATION OF TRANSFORMER:

$$
\begin{aligned}
V . R . & =\frac{I_{2} R_{o 2} \operatorname{Cos} \phi_{2} \pm I_{2} X_{o 2} \operatorname{Sin} \phi_{2}}{E_{2}} \times 100 \\
& =\frac{R_{o 2} \operatorname{Cos} \phi_{2}}{E_{2} / I_{2}} \times 100 \pm \frac{X_{o 2} \operatorname{Sin} \phi_{2}}{E_{2} / I_{2}} \times 100 \\
& =\% R_{o 2} \operatorname{Cos} \phi_{2} \pm \% X_{o 2} \operatorname{Sin} \phi_{2}
\end{aligned}
$$

TRANSFORMER TANK DESIGN:

Width of the transformer (Tank)
Where

$$
\mathrm{W}_{\mathrm{t}}=2 \mathrm{D}+\mathrm{D}_{\mathrm{e}}+2 \mathrm{~b}
$$

$\mathrm{D}_{\mathrm{e}}=$ External diameter of HV winding $\mathrm{b}=$ Clearance width wise between HV and tank
Depth of transformer (Tank)
$\mathrm{D}_{\mathrm{t}}=\mathrm{D}_{\mathrm{e}}+2 \mathrm{a}$
Where
$\mathrm{a}=$ Clearance depth wise between HV and tank
Height of transformer (Tank)

$$
\mathrm{H}_{\mathrm{t}}=\mathrm{H}+\mathrm{h}
$$

Where $\quad h=h_{1}+h_{2}=$ Clearance height wise of top and bottom

Tank of a 3-Phase transformer

Surface area of 4 vertical side of the tank (Heat is considered to be dissipated from 4 vertical sides of the tank)

$$
\mathrm{S}_{\mathrm{t}}=2\left(\mathrm{~W}_{\mathrm{t}}+\mathrm{D}_{\mathrm{t}}\right) \mathrm{H}_{\mathrm{t}} \quad \mathrm{~m}^{2} \quad \text { (Excluding area of top and bottom of tank) }
$$

Let

$$
\theta=\text { Temp rise of oil }\left(35^{\circ} \mathrm{C} \text { to } 50^{\circ} \mathrm{C}\right)
$$

$12.5 \mathrm{~S}_{\mathrm{t}} \theta=$ Total full load losses (Iron loss +Cu loss)
So temp rise in ${ }^{\circ} \mathrm{C} \quad \theta=\frac{\text { Total full load losses }}{12.5 \mathrm{~S}_{\mathrm{t}}}$
If the temp rise so calculated exceeds the limiting value, a suitable no of cooling tubes or radiators must be provided

CALCULATION OF NO OF COOLING TUBES:

Let
$\mathrm{xS}_{\mathrm{t}}=$ Surface area of all cooling tubes

Specific Heat dissipation
$6 \mathrm{Watt} / \mathrm{m}^{2}-{ }^{0} \mathrm{C}$ by Radiation
6.5 Watt $/ \mathrm{m}^{2}-{ }^{0} \mathrm{C}$ by Convection

Then
Losses to be dissipated by the transformer walls and cooling tube

$$
=\text { Total losses }
$$

$\left(12.5 S_{t}+8.5 x S_{t}\right) \theta=$ Total losses
6 W-Raditon+6.5 W-Convection=12.5
$6.5 * 1.35 \mathrm{~W} \approx 8.5$ ($\approx 35 \%$ more) Convection only

So from above equation we can find out total surface area of cooling tubes $\left(\mathrm{xS}_{\mathrm{t}}\right)$
Normally we use 5 cm diameter tubes and keep them 7.5 cm apart

$$
\begin{aligned}
\mathrm{A}_{\mathrm{t}} & =\text { Surface area of one cooling tube } \\
& =\pi d_{\text {tube }} l_{\text {tube } \text { mean }}
\end{aligned}
$$

Hence

Tank and Arrangement of Cooling tubes

WEIGHT OF TRANFORMER:

Let
$\mathrm{W}_{\mathrm{i}}=$ Weight of Iron in core and yoke (core volume* density + yoke volume* density) Kg
$\mathrm{W}_{\mathrm{c}}=$ Weight of copper in winding (volume* density)
(density of $\mathrm{cu}=8900 \mathrm{Kg} / \mathrm{m}^{3}$)
Weight of Oil
$=$ Volume of oil $* 880$
Kg
Add 20% of $\left(W_{i}+W_{c}\right)$ for fittings, tank etc.
Total weight is equal to weight of above all parts.
Example 1: Estimate the main core dimensions for a $50 \mathrm{~Hz}, 3$-phase, $200 \mathrm{KVA}, 6600 / 500 \mathrm{~V}$, Star/mesh connected core type transformer. Use the following data:
Core limb section to be 4 -stepped for which the area factor $=0.62$
Window space factor $=0.27$
$\frac{\text { Height of window }}{\text { Width of window }}=2$
Current density $=2.8 \mathrm{MA} / \mathrm{m}^{2}$
Volts per turn $=8.5$
Maximum flux density $=1.25 \mathrm{~Wb} / \mathrm{m}^{2}$.

Solution:

We know emf per turn

$$
E_{t}=4.44 f A_{i} B_{m} \Rightarrow \quad 8.5=4.44 \times 50 \times A_{i} \times 1.25 \quad \Rightarrow \mathrm{Ai}=0.03063 \mathrm{~m}^{2}
$$

For 4 stepped core

$$
\mathrm{A}_{\mathrm{i}}=\mathrm{K} \mathrm{~d}^{2} \quad \Rightarrow \quad 0.03063=0.625 \mathrm{~d}^{2} \quad \Rightarrow \mathrm{~d}=0.2214 \mathrm{~m}
$$

We also know

$$
\begin{align*}
& Q=3.33 f A_{i} B_{m} \delta K_{w} A_{w} \times 10^{-3} \\
& \Rightarrow 200=3.33 \times 50 \times 0.03063 \times 1.25 \times 2.8 \times 10^{6} \times 0.27 A_{w} \times 10^{-3} \\
& \Rightarrow \mathrm{~A}_{\mathrm{w}}=0.0415 \mathrm{~m}^{2}=\mathrm{LxW}_{\mathrm{w}} \quad--\cdots----(1) \tag{1}\\
& \frac{L}{W_{w}}=2 \tag{2}
\end{align*}
$$

Solving (1) \& (2)

$$
\mathrm{W}_{\mathrm{w}}=0.144 \mathrm{~m}
$$

$$
\mathrm{L}=0.288 \mathrm{~m}
$$

$$
\begin{aligned}
& \mathrm{Ay}=1.15 \mathrm{Ai} \\
& \mathrm{D}_{\mathrm{y}}=\mathrm{a} \\
& =\mathrm{d} \cos \Theta
\end{aligned}
$$

(Let yoke area Ay is 15% more than area Ai) (Width of largest stamping)

$$
\begin{array}{ll}
\mathrm{D}_{\mathrm{y}}=0.92 \mathrm{~d} & \text { (To give maximum area Ai) } \\
\text { Or }=0.95 \mathrm{~d} & \text { (By Graphical Method) } \\
\hline
\end{array}
$$

Selecting

$$
\mathrm{D}_{\mathrm{y}}=0.92 \mathrm{~d}
$$

Also assuming rectangular section for yoke

$$
\Rightarrow \mathrm{D}_{\mathrm{y}}=0.204 \mathrm{~m}
$$

Overall height	$\begin{aligned} \mathrm{h}_{\mathrm{y}} & =\mathrm{A}_{\mathrm{y}} / \mathrm{D}_{\mathrm{y}}=1.15 \mathrm{~A}_{\mathrm{i}} / \mathrm{D}_{\mathrm{y}} \\ & =1.15 \mathrm{x} 0.03063 / 0.204 \end{aligned}$	(Assuming $\mathrm{Ay}=15 \%$ more than A_{i})		
			0.173 m	
	$\mathrm{H}=\mathrm{L}+\mathrm{h}_{\mathrm{y}}=0.288+0.173$	\Rightarrow	$\mathrm{H}=0.461 \mathrm{~m}$	

Overall width

$$
\begin{gathered}
\mathrm{W}=2 \mathrm{D}+0.9 \mathrm{~d}=2 \mathrm{Ww}+3 \times 0.9 \mathrm{~d}=2 \mathrm{x} 0.144+3 \times 0.9 \mathrm{x} 0.2214 \\
\Rightarrow \mathrm{~W}=0.88578 \mathrm{~m}
\end{gathered}
$$

Example 2: Calculate no load current of a $400 \mathrm{~V}, 50 \mathrm{~Hz}$, 1-Phase, core type transformer, the particulars of which are as follows:
Length of means magnetic path $=200 \mathrm{Cm}$,
Gross core section $=100 \mathrm{Cm}^{2}$,
Joints equivalent to 0.1 mm air gap,
Maximum flux density $=0.7 \mathrm{~T}$,
Specific core loss at $50 \mathrm{~Hz} \& 0.7 \mathrm{~T}=0.5 \mathrm{~W} / \mathrm{Kg}$,
Ampere turns $=2.2$ per cm for 0.7 T ,
Stacking factor $=0.9$,
Density of core material $=7.5 \times 10^{3} \mathrm{Kg} / \mathrm{m}^{3}$.
Solution:
Find I_{C} :
Core loss component of no load current $I_{C}=\frac{\text { Totol core loss }}{V_{1}}=\frac{\text { Specific core loss } \times \text { Weight of core }}{V_{1}}$
$I_{C}=\frac{\text { Specific core loss } \times\left(K_{i} \times A_{g i} \times \text { length } \times \text { density }\right)}{V_{1}}=\frac{0.5 \times 0.9 \times 100 \times 10^{-4} \times 200 \times 10^{-2} \times 7.5 \times 10^{3}}{400}$

$$
\Rightarrow \quad I_{\mathrm{C}}=0.168 \mathrm{~A}
$$

Find I_{m} :
We know $V 1=4.44 f A_{i} B_{m} N_{1}$

$$
400=4.44 \times 50 \times 0.9 \times 100 \times 10^{-4} \times 0.7 \times N_{1} \Rightarrow \quad \mathrm{~N}_{1}=286
$$

Magnetizing component $I_{m}=\frac{\text { Totol MMF }}{\sqrt{2} N_{1}}=\frac{\text { MMF for core }+ \text { MMF for airgap of length of } 0.1 \mathrm{~mm}}{\sqrt{2} N_{1}}$

$$
\begin{gathered}
I_{m}=\frac{M M F \text { for core }+B_{m} \times \frac{1}{\mu_{0}} l_{g}}{\sqrt{2} N_{1}}=\frac{2.2 \times 200+0.7 \times \frac{1}{4 \pi \times 10^{-7}} \times 0.1 \times 10^{-3}}{\sqrt{2} \times 286} \quad\left(\because M M F=\phi \times S=B_{m} \times \frac{1}{\mu_{0}} l_{g}\right) \\
\Rightarrow I_{\mathrm{m}=1.226 \mathrm{~A}}
\end{gathered}
$$

So No load current

$$
\begin{gathered}
I_{0}=\sqrt{I_{C}^{2}+I_{m}^{2}}=\sqrt{0.168^{2}+1.226^{2}} \\
\Rightarrow \quad \mathrm{I}_{0}=1.237 \mathrm{~A}
\end{gathered}
$$

Example 3: Design an adequate cooling arrangement for a $250 \mathrm{KVA}, 6600 / 400 \mathrm{~V}, 50 \mathrm{~Hz}, 3-\mathrm{phase}$, delta/star core type oil immersed natural cooled transformer with the following particulars:
Winding temperature rise not to exceed $50^{\circ} \mathrm{C}$,
Total losses at $90^{\circ} \mathrm{C}$ are 5 Kw ,
Tank Dimensions height x length x width $=125 \times 100 \times 50($ all in cm)
Oil level $=115 \mathrm{~cm}$ length
Sketch diagram to show the arrangement of cooling tubes.

Solution:

Dissipating surface area of plain tank after neglecting the top and bottom

$$
\mathrm{S}_{\mathrm{t}}=2\left(\mathrm{~W}_{\mathrm{t}}+\mathrm{D}_{\mathrm{t}}\right) \mathrm{H}_{\mathrm{t}}=2(50+100) 125=3.75 \times 10^{4} \mathrm{~cm}^{2}=3.75 \mathrm{~m}^{2}
$$

$$
\theta=\frac{\text { Total full load losses }}{12.5 \mathrm{~S}_{\mathrm{t}}}=\frac{5000}{12.5 \times 3.75}=106.66^{\circ} \mathrm{C}
$$

But it is required that the temp rise is not to exceed $50^{\circ} \mathrm{C}$. So cooling tubes are required.
Let
$\mathrm{xSt}=$ Surface area of all cooling tubes
$\left(12.5 S_{t}+8.5 x S_{t}\right) \theta=$ Total losses
$\Rightarrow \quad \mathrm{xSt}=6.25 \mathrm{~m}^{2}$
Surface area of one cooling tube (Assuming Tube dia $=5 \mathrm{~cm}$, average height of tube $=105 \mathrm{~cm}$)

$$
A_{t}=\pi d_{\text {tube }} l_{\text {tube, mean }}=3.14 \times 0.05 \times 1.05=0.1649 \mathrm{~m}^{2}
$$

No of cooling tubes $=\frac{x S_{t}}{A_{t}}=\frac{6.25}{0.1649} \approx 38$
Let the tubes to space 7 cm apart centre to centre, we will be able to accommodate 13 tubes on 100 cm side and 6 tubes on 50 cm side.

Total tubes $=2 \times 13+2 \times 6=38$

