Transformer Manufacturing Processes

- Ronnie Minhaz, P.Eng.

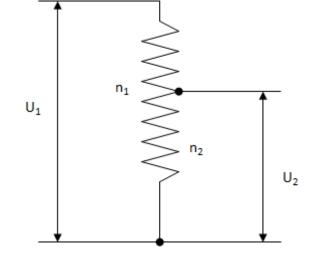
Most common types of power transformers:

GSU's (Generator Step-Up):

- 2 windings HV/LV
- 3 windings HV/LV1/LV2
- with D.T.C. in HV, typically ± 2x2.5%
- normally no L.T.C.
- Connection Wye/Delta
- typical LV: 10, 20, 25 kV
- typical HV: 33, 69, 115, 138, 161, 230, 345, 500 kV

+ 5%

- 5%


- Single-phase
- Three-phase

Most common types of power transformers:

Auto-Transformers:

- 1 winding (series + common winding)
- 2 windings (series + common) + tertiary winding
- D.T.C. in HV
- L.T.C. in HV or LV
- Single-phase or three-phase
- Connection: always Wye/Wye
- purpose of tertiary winding
 - suppression of harmonics
 - can be buried (no bushings brought out)
 - sometimes brought out for station service voltage
- tertiary sized at 33% of rating
- Auto-transformer has smaller frame size
 - e.g. Rating = 300 MVA HV = 230 kV LV = 115 kV

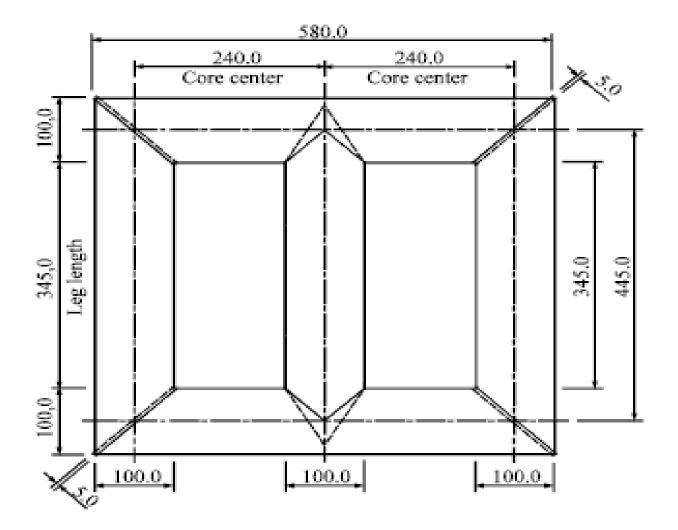
Frame size: <u>230-115</u> x 300 = 150 MVA 230

Most common types of power transformers:

Step-down transformers:

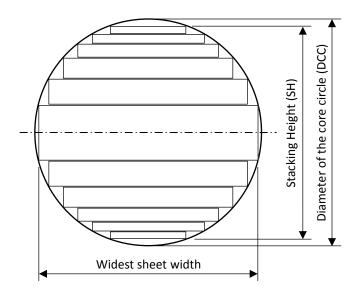
- 2 winding HV/LV + D.T.C.
- 2 winding HV/LV + L.T.C. winding
- 3 winding HV1xHV2/LV + D.T.C. HV1xHV2/LV + L.T.C. winding HV/LV1xLV2 + D.T.C. HV/LV1xLV2 + L.T.C. winding

• Connection:


Delta - Wye (majority) Wye - Delta Wye - Wye

Three-phase

- Core Construction
- Insulation
- Windings
- Core and Coil


- Processing
- Tanks
- Testing
- Shipping

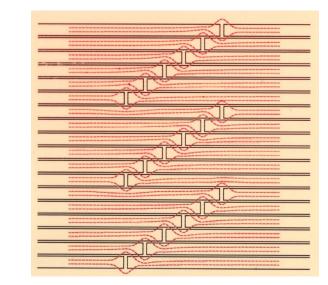
Core Dimensions

Core Dimensions

Circular core cross section:

Steps of 5 mm for DCC

Manufacturing Process: Core stacking methods


BUTT-LAP STACKING:

- Local concentration of flux
- higher excitation current & core loss.

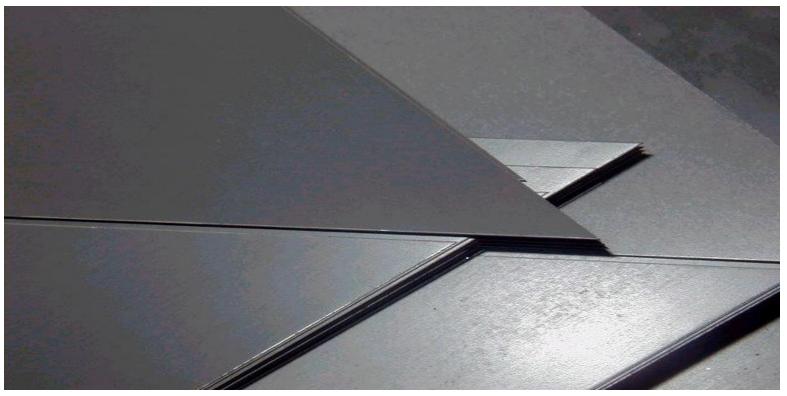
STEP-LAP STACKING:

- •Reduced Local flux concentration
- •lower excitation current & core loss.

Core Material- Grain Oriented Silicon M - NON-LS; H - LS H ZDKH (laser scribed) ZDMH (mechanically scribed)

Manufacturing Process: Core Cutting - Georg

- Automatically stacks legs & yokes
- Purchase uncut slit rolls of steel or pre-cut



Manufacturing Process: Core 'Logs' Stacked

Manufacturing Process: Core Cutting

- "Core Form Design"
- Fully mitered & step lapped in corner joints
 - improves flux distribution, minimizes losses & sound level
- Circular core shape
 - provides windings with optimum radial support

Core Stacking

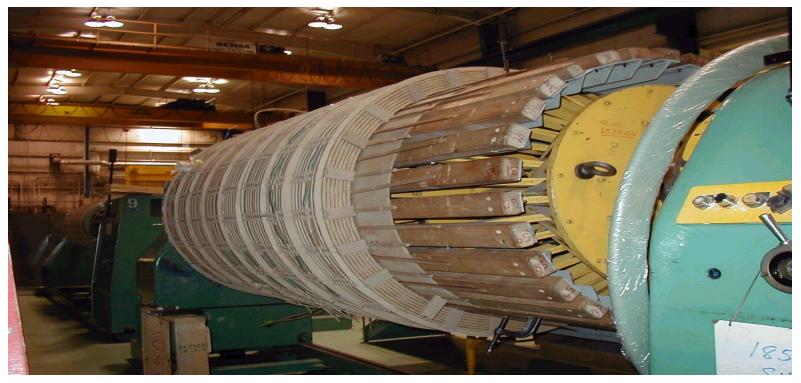
- Use of temporary bolt guides for stacking
- 2, 3, 4 & 5 leg cores manufactured for single & three phase units

Manufacturing Process: Core Stacking

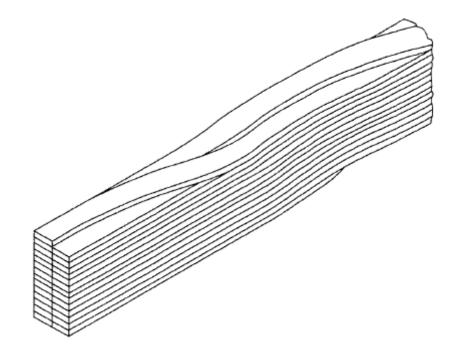
- Oil ducts utilized to control temperature rise
- Temporary, Permanent or combination of banding

Manufacturing Process: Core Stacking

Type 2 and type 3 cores with DCC = 500 mm															
	cooling ducts			1 cooling duct				2 cooling ducts				3 cooling ducts			
	SW mm]	PS [mm]	CS [mm]	No	SW [mm]	PS [mm]	CS [mm]	No	SW [mm]	PS [mm]	CS [mm]	Νo	SW [mm]	PS [mm]	CS [mm]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 8 9 20	120 160 205 250 280 310 340 370 390 410 430 450 470 450 470 450 470 430 390 370	5.8 8.9 11.5 9.4 10.9 12.9 15.1 11.8 13.3 15.5 18.6 23.7 35.6 99.4 35.6 23.7 18.6 15.5 13.3 11.8	5.8 14.7 26.2 35.6 46.5 59.4 74.5 86.3 99.6 115.1 133.7 157.4 193.0 292.4 328.0 351.7 370.3 385.8 399.1 410.9	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	120 160 205 250 310 340 370 390 410 430 450 470 490 DUCT 490 470 450 430 410	5.8 8.9 11.5 9.4 10.9 12.9 15.1 11.8 13.3 15.5 18.6 23.7 35.6 46.7 6.0 46.7 35.6 23.7 18.6 23.7	5.8 14.7 26.2 35.6 46.5 59.4 74.5 86.3 99.6 115.1 133.7 157.4 193.0 239.7 245.7 292.4 328.0 351.7 370.3 385.8	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15	120 160 205 250 280 310 340 370 390 410 430 450 470 DUCT 470 490 470 DUCT 470 450	5.8 8.9 11.5 9.4 10.9 12.9 15.1 11.8 13.3 15.5 18.6 23.7 11.5 6.0 18.1 99.4 18.1 6.0 11.5 23.7	5.8 14.7 26.2 35.6 46.5 59.4 74.5 86.3 99.6 115.1 133.7 157.4 168.9 174.9 193.0 292.4 310.5 316.5 328.0 351.7	1 2 3 4 5 6 7 8 9 10 11 12 13 14 14 15 16	120 160 205 250 280 310 340 370 390 410 430 DUCT 450 470 490 DUCT 490 470 450 DUCT	5.8 8.9 11.5 9.4 10.9 12.9 15.1 11.8 13.3 15.5 15.0 6.0 21.3 35.6 46.7 35.6 21.3 6.0	5.8 14.7 26.2 35.6 46.5 59.4 74.5 86.3 99.6 115.1 130.1 136.1 136.1 157.4 193.0 239.7 245.7 292.4 328.0 349.3 355.3
21 22 23 24 25 26 27	340 310 280 250 205 160 120	15.1 12.9 10.9 9.4 11.5 8.9 5.8	426.0 438.9 449.8 459.2 470.7 479.6 485.4	19 20 21 22 23 24 25 26 27	390 370 340 280 250 205 160 120	13.3 11.8 15.1 12.9 10.9 9.4 11.5 8.9 5.8	399.1 410.9 426.0 438.9 449.8 459.2 470.7 479.6 485.4	17 18 19 20 21 22 23 24 25	430 410 390 370 340 310 280 250 205	18.6 15.5 13.3 11.8 15.1 12.9 10.9 9.4 11.5	370.3 385.8 399.1 410.9 426.0 438.9 449.8 459.2 470.7	17 18 19 20 21 22 23 24 25	430 410 390 370 340 280 250 205	15.0 15.5 13.3 11.8 15.1 12.9 10.9 9.4 11.5	370.3 385.8 399.1 410.9 426.0 438.9 449.8 459.2 470.7
				2.	.20	5.5		26 27	160 120	8.9 5.8	479.6 485.4	26 27	160 120	8.9 5.8	479.6 485.4

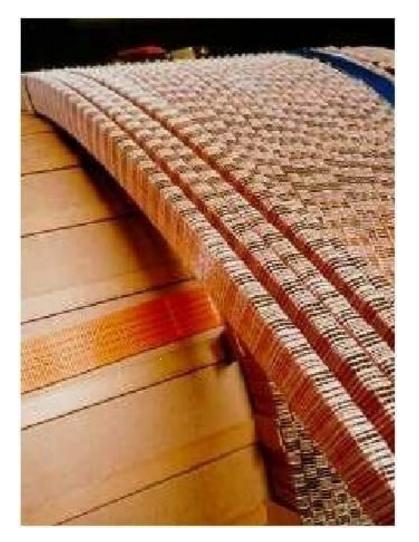

Coil Winding Shop

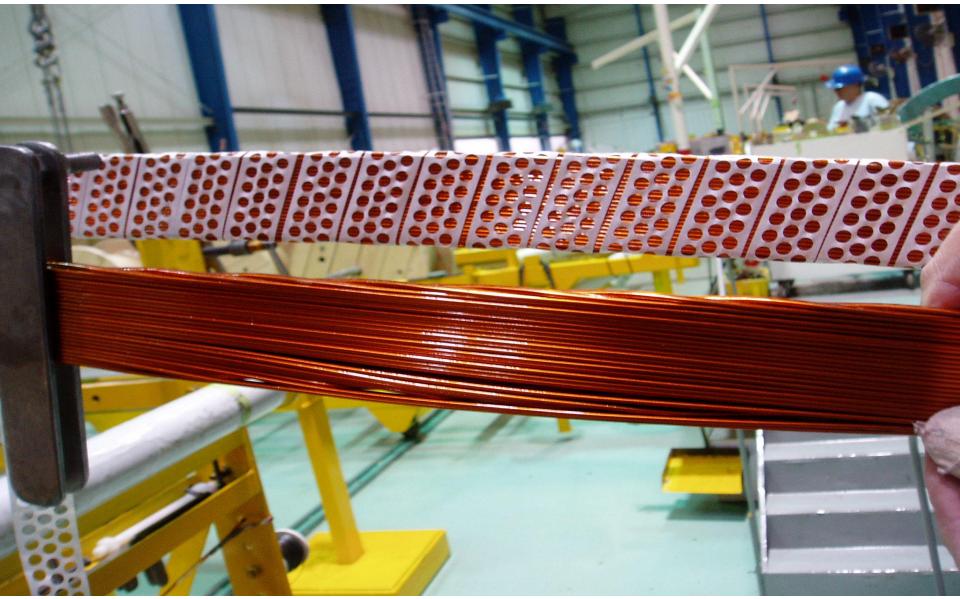
- Winding room separate from other manufacturing areas
- Positive Pressure
- Horizontal/Vertical winding mandrels

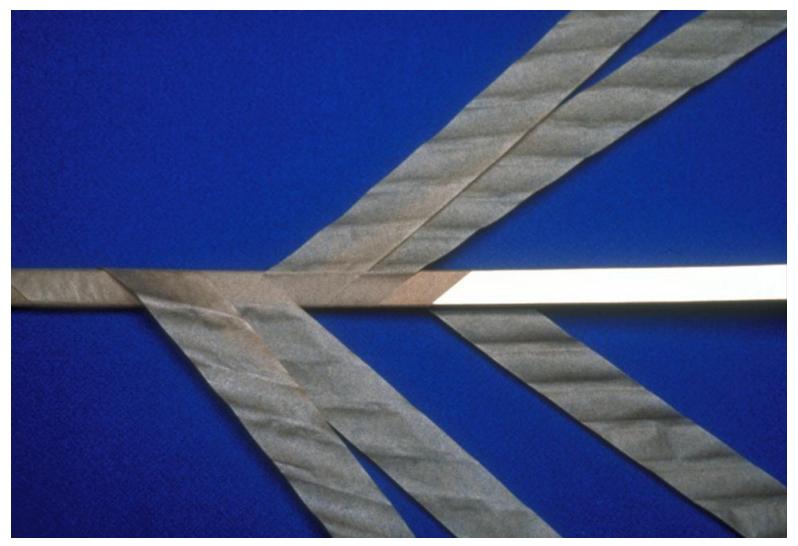


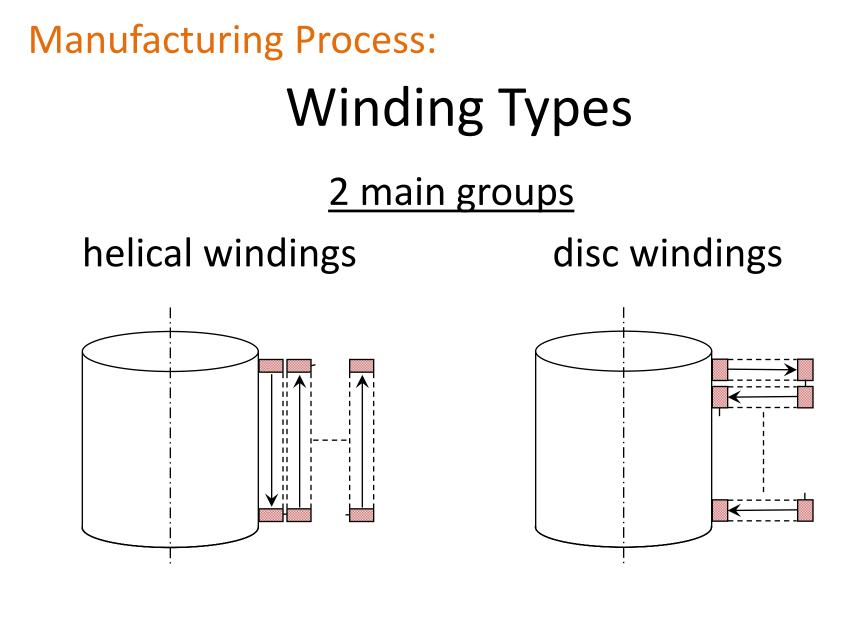
Manufacturing Process: Coil Winding

- Windings are circular concentric type
- Conductor are either copper magnetic wire or continuously transposed conductor
- Conductor purchased pre-wrapped with thermally upgraded paper or Nomex
- High strength wire or epoxy bonded CTC used when high short circuit forces
- Winding type chosen according to voltage & application, Cont. Disc, Interleaved Disc, Helical, etc.


Continuously Transposed Conductor


Manufacturing Process: CTC – Thermally upgraded paper


CTC - epoxy bonded, netting tape



Manufacturing Process: CTC - Perforated Nomex



Manufacturing Process: Magnet Wire, Paper Insulated

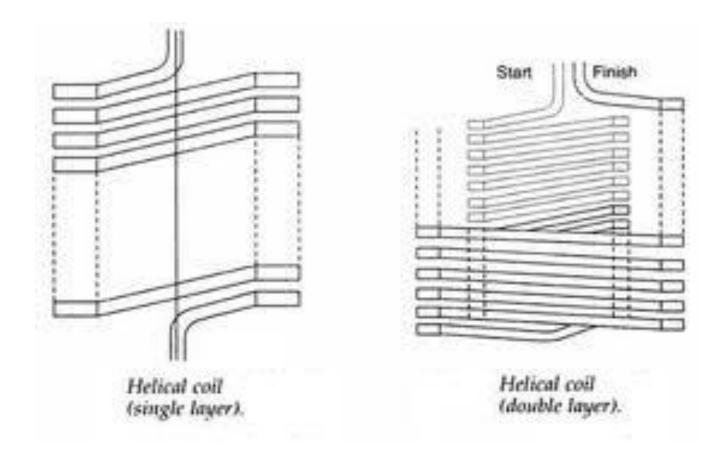
Flat/Edge Wound

Winding Types

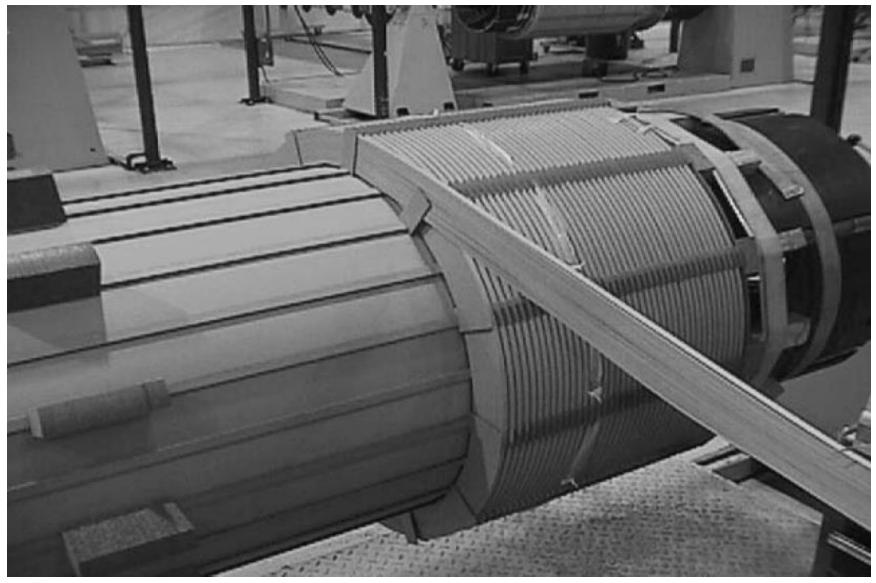
2 main groups

helical windings

- Boomerang
- Giron
- Equally transposed
- Layer and multilayer
- Multistart


Mainly LV, TV, CR and FR

disc windings


- Continuous disc
- Interleaved
- Partial Interleaved
- Axial Interleaved

Mainly HV, LV, FR

Helical Winding

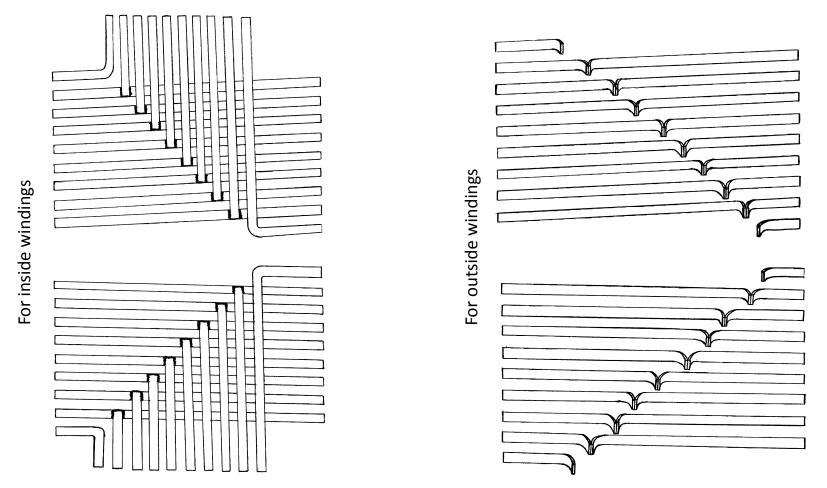
Helix – Boomerang MW

Helix- Boomerang, Giron, Double Helix equally Transposed

Use(Varies from Manufacturer to Manufacturer):

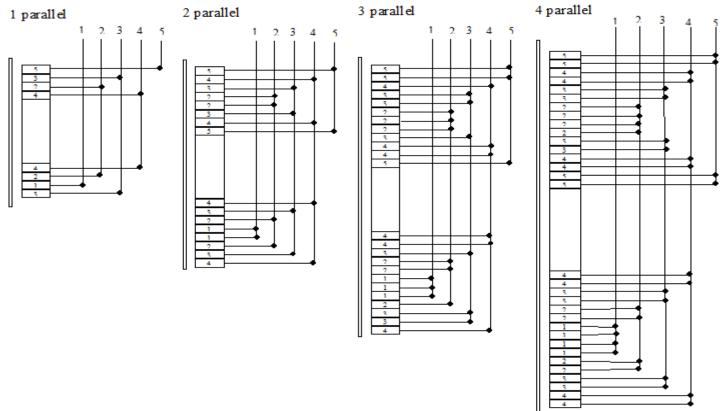
- -1 or 2 layers
- –Up to 325 kV BIL for single-layer windings
- -Up to 200 kV BIL for two-layer windings
- Axial cooling ducts in the winding or with zigzag cooling depending on what kind of helix
- -Preferably with at least one turn between successive transpositions

Advantages:

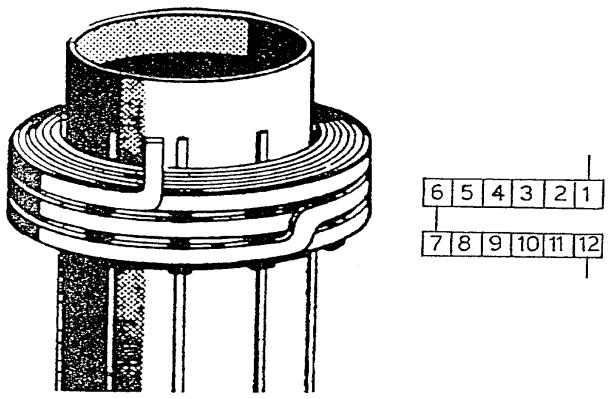

- -Cheap winding
- -No radial overbuild at the transpositions depends on Boomerang type

Disadvantages:

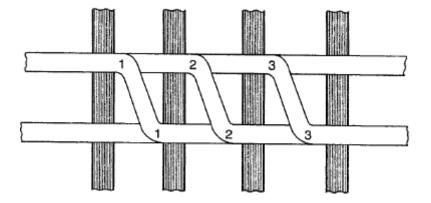
- –One brazing per transposition on Boomerang type
- -Cannot be used for zigzag cooling without radial overbuilds on Giron and Double helix type


Manufacturing Process: Tapped helix MW / CTC

- Regulating winding(for LV)
- Easy to wind, high Cu cross-section possible
- Eccentric duct necessary if used as inside winding


Manufacturing Process: Multistart MW / CTC

- With ZnO-discs : up to 1050 kV BIL, Without ZnO-discs : up to 450 kV BIL if impulsed and up to 950 kV BIL if not impulsed
- Easy to wind, Uniform Amp-turns distribution, Robust winding, especially when MW is used on the edge
- Medium to high paper insulation thickness needed, due to the voltage difference of 1 or 2 taps between adjacent wires. This can cause high thermal winding gradients.



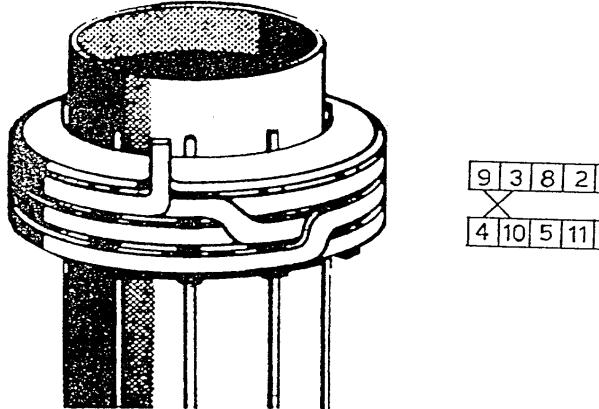
Manufacturing Process: Continuous disc

- Many electrical turns, up to 550 kV BIL with key spacers, above 550 kV BIL with key spacers in combination with interleaved part at impulse side
- Easy to wind, No brazing, High axial space factor and reduced manufacturing time for version without key spacers
- Partial turns can cause extra sections, Decreased radial space factor for the version without key spacers

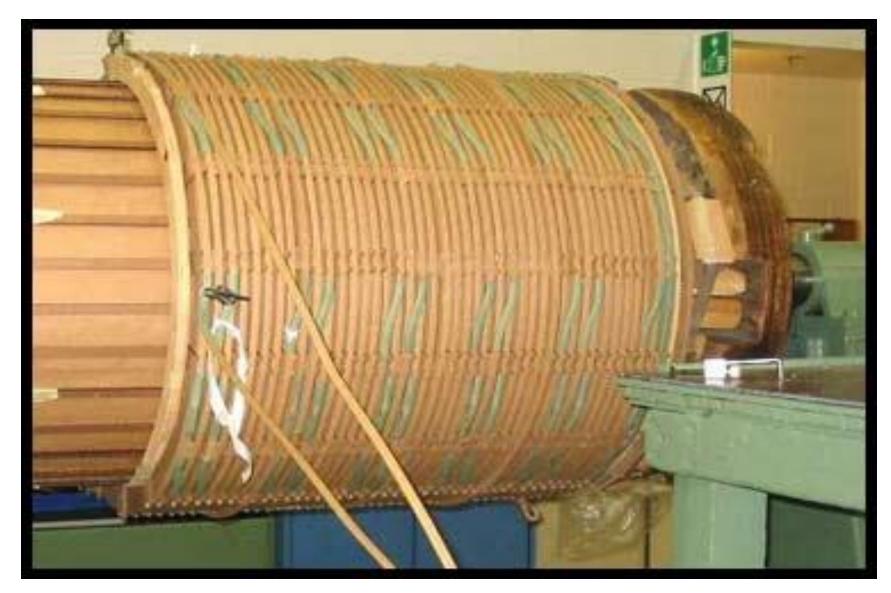
Continuous disc Transposition

Transposition at each cross over

Manufacturing Process: Interleaved


- Many electrical turns, typically above 550 kV BIL, if necessary for impulse reasons Adjacent is standard method for interleaving, Braided interleaving method if necessary for lightning impulse
- High impulse withstand capability, due to improved voltage distribution
- Brazing necessary, and thus very time consuming with CTC, Total number of sections must be even

8


3

2

6 12

Manufacturing Process: Interleaved Winding

Manufacturing Process: Shielded Winding

Manufacturing Process: Shielded Winding

Winding Selection

Based on:

- winding voltages: (nominal, test, impulse, ...)
 - number of turns
 - electrical clearances
 - ZnO discs allowed?
- winding current:
 - needed Copper cross-sectional area
 - maximum allowed temperature (average and hottest spot)
- cooling type: axial cooling or zigzag cooling
- winding position in the core window

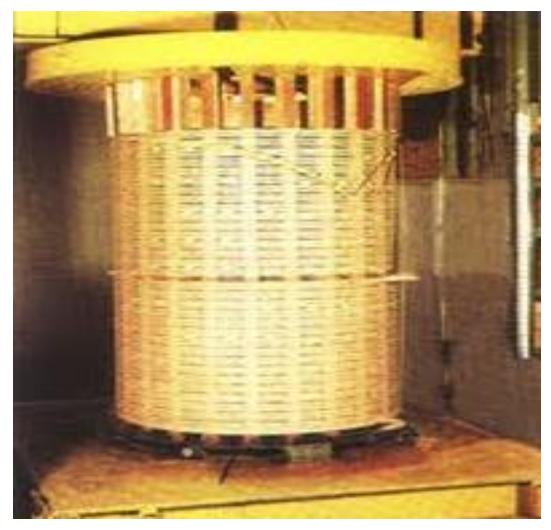
Manufacturing Process: Lead Connection

• Stress ring and pick tail connected with lead

Manufacturing Process: Upender

Manufacturing Process: Insulation Shop

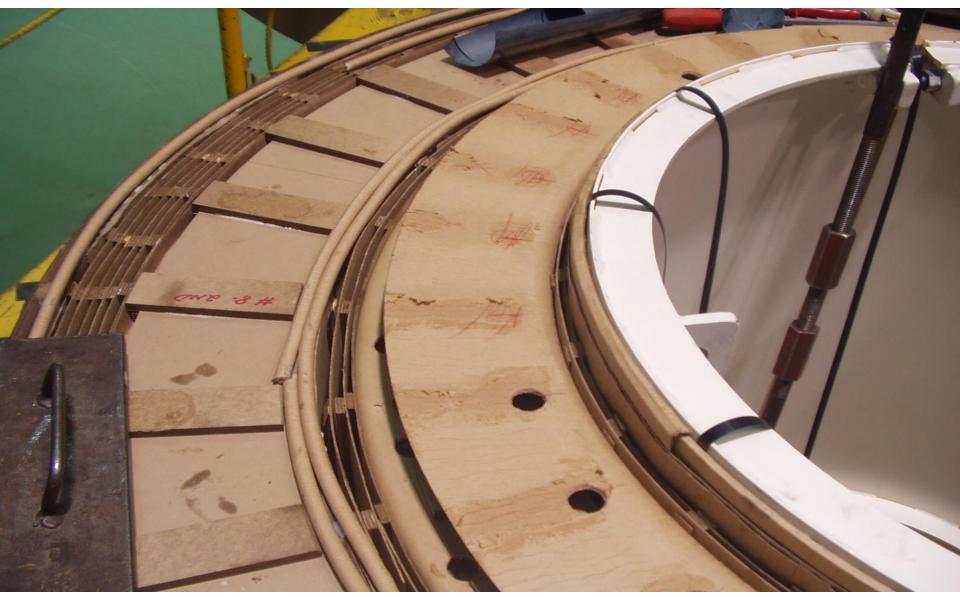
- Insulation Shop separate from other areas
- Winding cylinders and spacers are made from high density pressboard

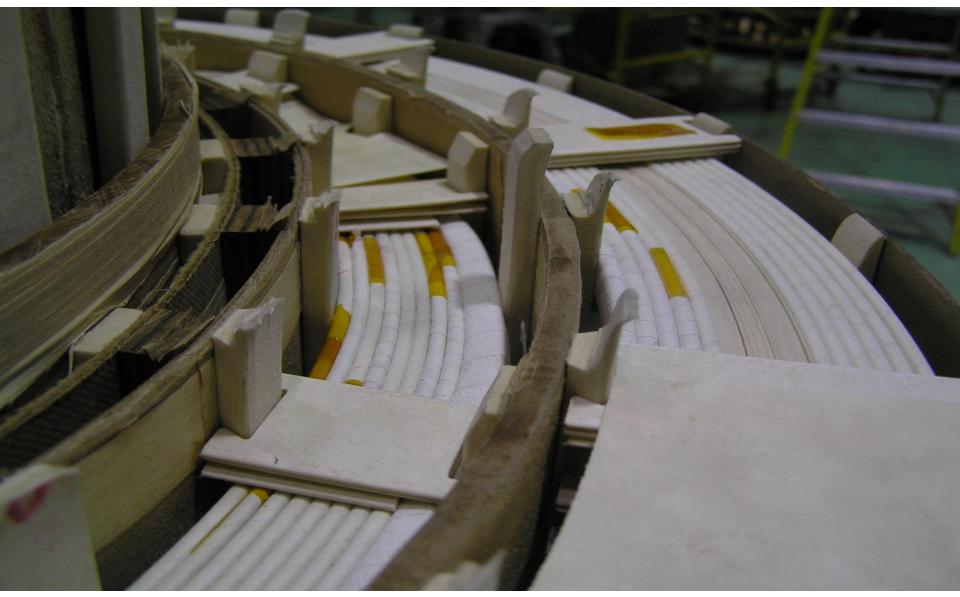

Manufacturing Process: Complete Winding Insulation Package



Transformer Consulting Services Inc.

Manufacturing Process: Coil Sizing


• Coil sizing force applied to check and adjust (of stabilize) the winding height



- Winding type
- Conductor Type
- Insulation components

- Exposed edges of core are bonded with low viscosity, high strength epoxy resin which penetrates and bonds laminations.
- Prefabricated coil to clamp insulation is placed on bottom clamps

Transformer Consulting Services Inc.

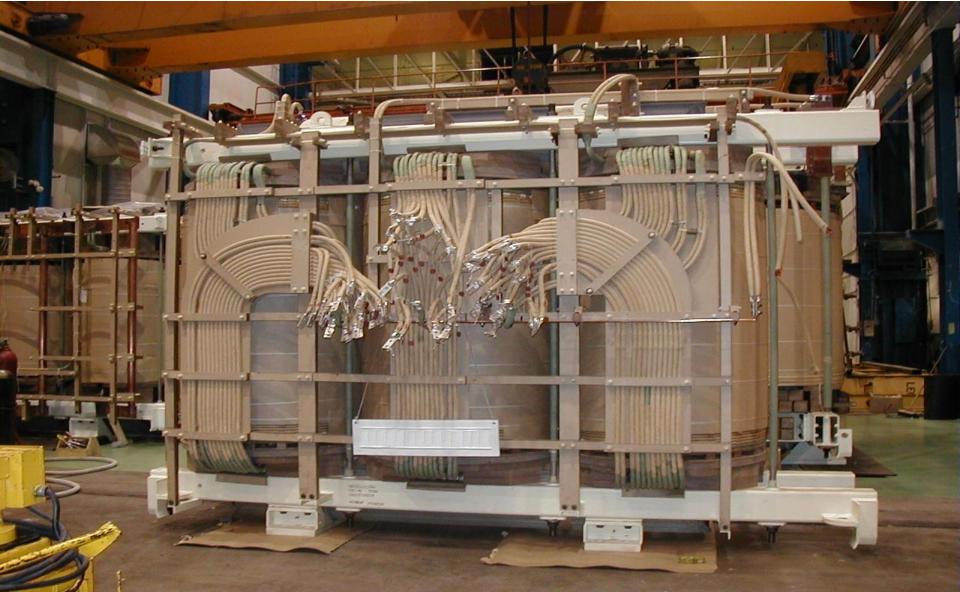
<u>Coil & Core</u> <u>Assembly</u>

- Coils lowered over core
- Top coil to clamp insulation
- Top clamps
- Top core inserted

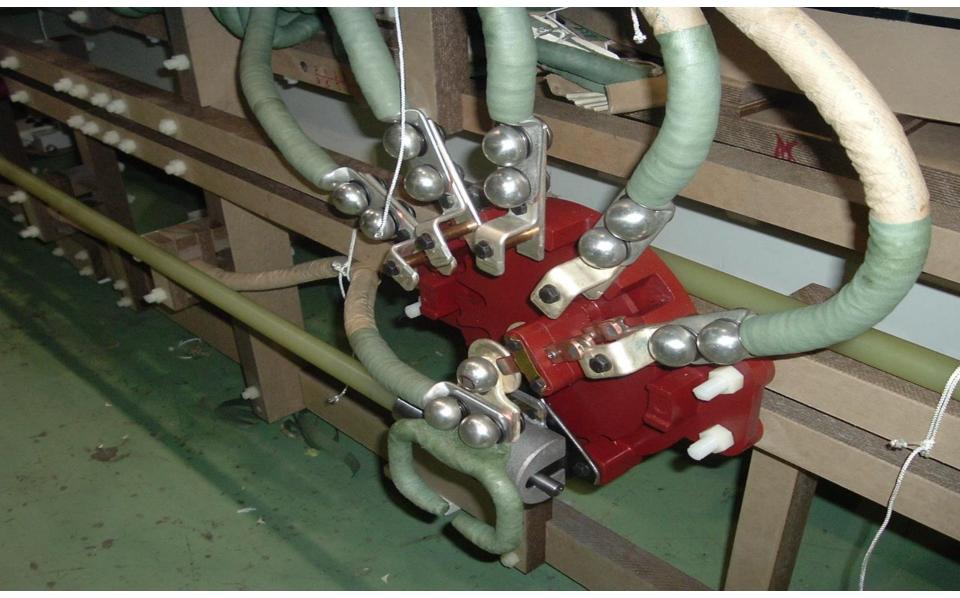
Lead Braising

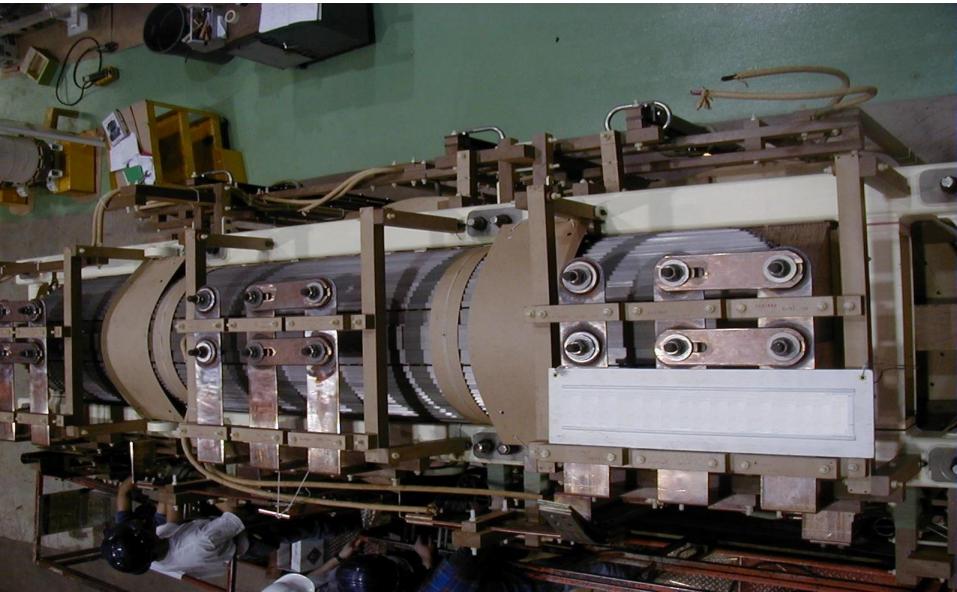
Lead Braising

Manufacturing Process:LV Cu bus bar instead of cable for high current

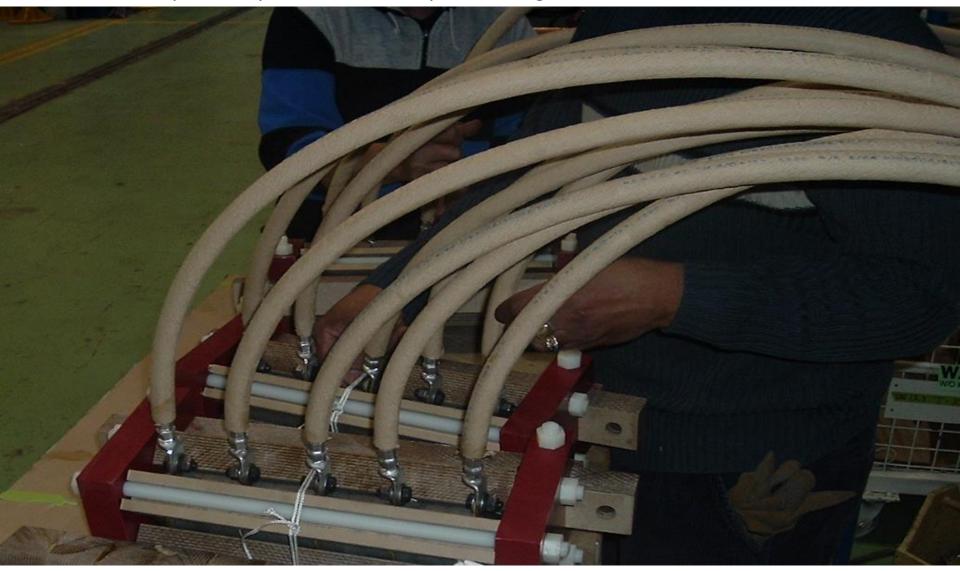

• HV Center Fed with snout and draw lead to bushing; reactor for RMV tap changer

- Windings are clamped using external or internal tie rods to provide additional support for axial forces
- Leads and busbars are rigidly supported to withstand forces from shipping & short circuits
- Assembly moved on air cushions


Manufacturing Process: LTC Lead Connection


Manufacturing Process: DTC Lead Connection

Manufacturing Process: DTC Lead Connection



Manufacturing Process: Link Board: Re-connectable LV

ZnO

• Used for taps usually above 550kV impulse voltage

Manufacturing Process: Vapor Phase Unit

•Complete core and coil assembly is dried using a vapor phase cycle method

- Power factor & water extraction are continually monitored
- · Kerosene is vaporized & drawn by vacuum into autoclave

Manufacturing Process: Tank Shop

- Designed to withstand full vacuum filling
- Facilities for lifting, jacking, and pulling provided

Manufacturing Process: Tank Shop

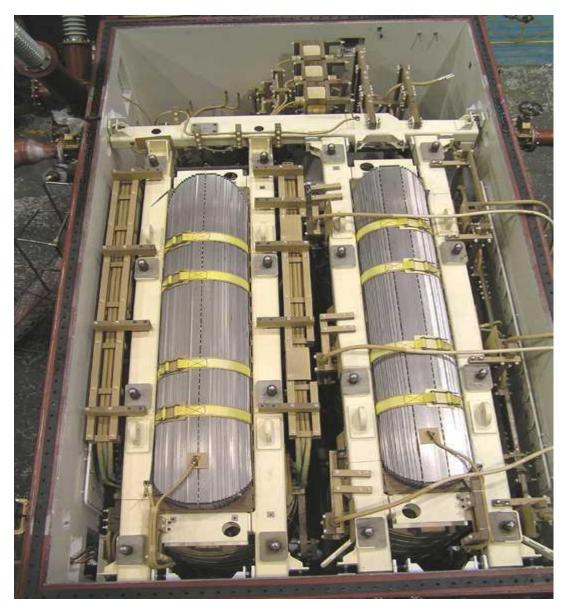
- All tanks are grit-blasted cleaned before priming and painting.
- Inside painted white for good visibility during internal inspections.
- Shunt Packs

Manufacturing Process: Tank Covers

- Raised flanges are provided to prevent water entry
- Cover is designed to prevent water collection
- High quality steel plate is cut by an automated waterbed plasma cutter

Manufacturing Process: Re-Pack & Tanking

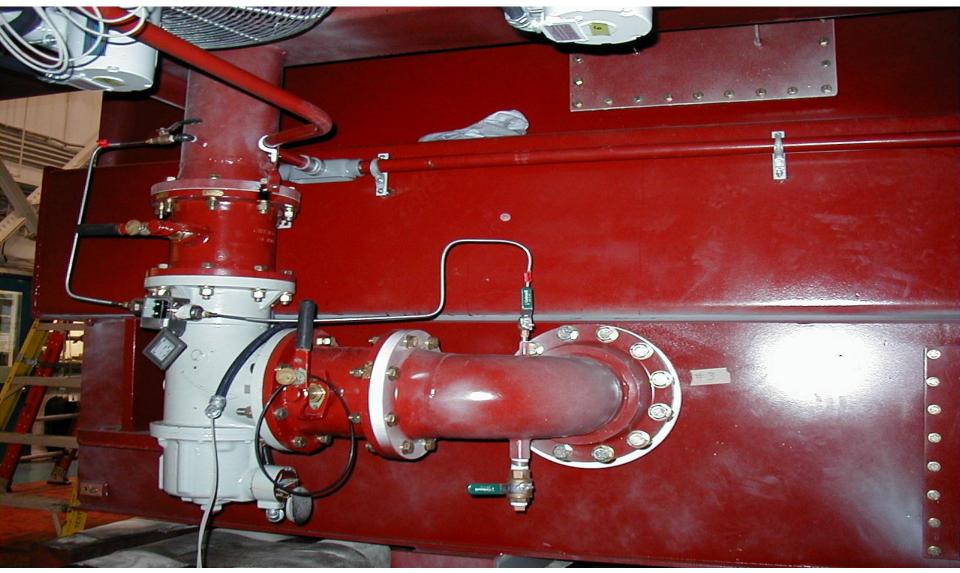
- After vapor phase unit is re-packed and undergoes final hydraulic clamping
- Maximum exposure time to atmosphere is limited to under 16 hours


Manufacturing Process: LTC Lead Connection

Manufacturing Process: LTC Lead Connection

Manufacturing Process: Exciter and Series Transformer

Transformer Consulting Services Inc.


• Installation of conservator, radiators, pumps, fans, etc.

• Fans bottom mounted

• The surge of one pump should die down before the next pump comes-on

Testing

- All Industry standard tests :
 - ✓ Routine Tests
 - ✓ Loss Measurement and Temperature Rise tests
 - ✓ Dielectric tests
 - ✓ Zero-phase-sequence
 - ✓ Audible Sound Level
 - ✓ Short-circuit tests, if required (performed at the IREQ lab)

Factory Pretest

Test		Standard	Section	Engineering Instruction
Parallel Turns	No	EMT 200.011		
Ratio,Polarity,Core meg.	Std	EMT 200.011		
R.S.G.	Yes	EMT 200.011		
Non Linear Resistors	Std	EMT 200.011		
CT's & PT's	Std	EMT 200.011		
LTC Reactor	Std	EMT 200.011		
LTC Pretest prior to tank.	Std	EMT 200.011.1		

Manufacturing Process: Factory Tests

Ratio		Std	ANSI C57.12.90	7.3.3	
Polarity		Std		6.2.2	
Resistance		Std		5.3.1	
Core Loss & Exciting Current		Std		8.1	
Load Loss & Impedance		Std		9.1	
Zero Sequence Impedance				9.5	
Temperature	OA			11	
Rise Tests	FA			11	
	Overload			11	
Lightning	HV			10.3	kV LIL
Impulse	HVN				kV LIL
	LV				kV LIL
	LVN				kV LIL
	TV				kV LIL
Switching	HV			10.2	kV SIL
Impulse	LV				kV SIL
Applied	HV			10.5	kV rms
Potential	LV				kV rms
	TV				kV rms
Induced Potential				10.7	
Partial Discharge				10.8	
Sound Level				13	
110 % Voltage Run			CAN/CSA-C88-M90	16.3.k	
Core Loss after Dielectrics			ANSI C57.12.90	8	
			CAN/CSA-C88-M90	16.3.k	

Manufacturing Process: Factory tests cont.

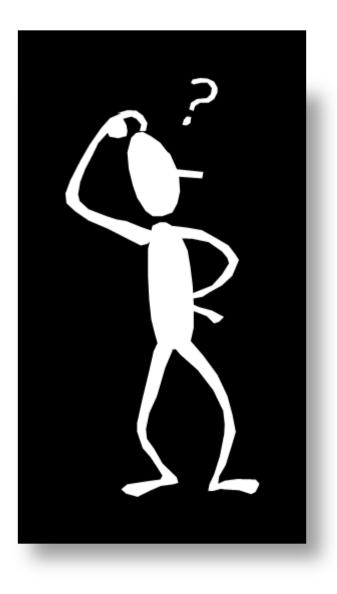
Test		Standard	Section	Engineering Instruction
Dissipation	Std	EMT200.012.6 & ANSI	10.9	
Core Megger	Std	CSA & EMT 200.012.1		
CT Resistance	Std			
CT Ratio & Polarity	Std	CSA & EMT 200.012.4		
PT Ratio & Polarity	Std	CSA & EMT 200.012.4		
Hi-Pot: Panels, Fans,	Std	CSA & MI 355.021		
Pumps				
Hi-Pot: PT's & CT's	Std	CSA & EMT 200.012.4		
Hot Spot Calibration	Std	CSA & EMT 200.012.8		
Top Oil Calibration	Std	CSA & EMT 200.012.8		
GDR Alarm & Trip	Std	CSA & EMT 200.012.8		
Panel Operation	Std	CSA & EMT 200.012.7		
Line Drop Compensator	Std	CSA & MI 355.105		
Fan, Pump Losses;Klixon	Std	CSA & EMT 200.012.7		
Tapgear Operation	Std	CSA & EMT 200.012.7		
Pressure Tests	Std	CSA & MI 358.012		
Gas-in-Oil Samples				
PCB Oil Sample				
ADDITIONAL TESTS				

Manufacturing Process: Unit in Test

Manufacturing Process: Paint Booth

• Epoxy base paint system, meets ANSI C57.12.28

Manufacturing Process: Shipping Parts



Manufacturing Process: Shipping Transformer

Manufacturing Process: Shipping Transformer

