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FOREWORD

Every now and then, a good book comes along and quite rightfully makes itself
a distinguished place among the existing books of the electric power engineering
literature. This book by Professor Arieh Shenkman is one of them.
Today, there are many excellent textbooks dealing with topics in power
systems. Some of them are considered to be classics. However, many of them
do not particularly address, nor concentrate on, topics dealing with transient
analysis of electrical power systems.
Many of the fundamental facts concerning the transient behavior of electric
circuits were well explored by Steinmetz and other early pioneers of electrical
power engineering. Among others, Electrical T ransients in Power Systems by
Allan Greenwood is worth mentioning. Even though basic knowledge of tran-
sients may not have advanced in recent years at the same rate as before, there
has been a tremendous proliferation in the techniques used to study transients.
The application of computers to the study of transient phenomena has increased
both the knowledge as well as the accuracy of calculations.
Furthermore, the importance of transients in power systems is receiving more
and more attention in recent years as a result of various blackouts, brownouts,
and recent collapses of some large power systems in the United States, and
other parts of the world. As electric power consumption grows exponentially
due to increasing population, modernization, and industrialization of the
so-called third world, this topic will be even more important in the future than
it is at the present time.
Professor Arieh Shenkman is to be congratulated for undertaking such an
important task and writing this book that singularly concentrates on the topics
related to the transient analysis of electric power systems. The book successfully
fills the long-existing gap in such an important area.

Turan Gonen, Ph.D., Fellow IEEE
Professor and Director
Electric Power Educational Institute
California State University, Sacramento



PREFACE

Most of the textbooks on electrical and electronic engineering only partially
cover the topic of transients in simple RL , RC and RL C circuits and the study
of this topic is primarily done from an electronic engineer’s viewpoint, i.e., with

an emphasis on low-current systems, rather than from an electrical engineer’s
viewpoint, whose interest lies in high-current, high-voltage power systems. In
such systems a very clear differentiation between steady-state and transientffff

behavior of circuits is made. Such a division is based on the concept that steady-

state behavior is normal and transients arise from the faults. The operation of
most electronic circuits (such as oscillators, switch capacitors, rectifiers, resonant

circuits etc.) is based on their transient behavior, and therefore the transients

here can be referred to as ‘‘desirable’’. The transients in power systems are

characterized as completely ‘‘undesirable’’ and should be avoided; and subse-

quently, when they do occur, in some very critical situations, they may result

in the electrical failure of large power systems and outages of big areas. Hence,

the Institute of Electrical and Electronic Engineers (IEEE) has recently paid

enormous attention to the importance of power engineering education in gene-

ral, and transient analysis in particular.

It is with the belief that transient analysis of power systems is one of the

most important topics in power engineering analysis that the author proudly

presents this book, which is wholly dedicated to this topic.

Of course, there are many good books in this field, some of which are listed

in the book; however they are written on a specific technical level or on a high

theoretical level and are intended for top specialists. On the other hand, intro-

ductory courses, as was already mentioned, only give a superficial knowledge

of transient analysis. So that there is a gap between introductory courses and

the above books.

The present book is designed to fill this gap. It covers the topic of transient

analysis from simple to complicated, and being on an intermediate level, this

book therefore is a link between introductory courses and more specific technical

books. In the book the most important methods of transient analysis, such as

the classical method, Laplace and Fourier transforms and state variable analysis
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are presented; and of course, the emphasis on transients in three-phase systems
and transmission lines is made.
The appropriate level and the concentration of all the topics under one cover
make this book very special in the field under consideration. The author believes
that this book will be very helpful for all those specializing in electrical engineer-
ing and power systems. It is recommended as a textbook for specialized under-
graduate and graduate curriculum, and can also be used for master and doctoral
studies. Engineers in the field may also find this book useful as a handbook
and/or resource book that can be kept handy to review specific points.
Theoreticians/researchers who are looking for the mathematical background of
transients in electric circuits may also find this book helpful in their work.
The presentation of the covered material is geared to readers who are being

exposed to (a) the basic concept of electric circuits based on their earlier study
of physics and/or introductory courses in circuit analysis, and (b) basic mathe-
matics, including differentiation and integration techniquesffff
This book is composed of eight chapters. The study of transients, as men-
tioned, is presented from simple to complicated. Chapters 1 and 2 are dedicated
to the classical method of transient analysis, which is traditional for many
introductory courses. However, these two chapters cover much more material
giving the mathematical as well as the physical view of transient behavior of
electrical circuits. So-called incorrect initial conditions and two generalized
commutation laws, which are important for a better understanding of the
transient behavior of transformers and synchronous machines, are also discussed
in Chapter 2.
Chapters 3 and 4 give the transform methods of transient analysis, introducing

the Laplace as well as the Fourier transforms. What is common between these
two methods and the differences are emphasized. The theoretical study of theffff
transform methods is accompanied by many practical examples.
The state variable method is presented in Chapter 5. Although this method
is not very commonly used in transient analysis, the author presumes that the
topic of the book will not be complete without introducing this essential and
interesting method. It should be noted that the state variable method in its
matrix notation, which is given here, is very appropriate for transient analysis
using computers.
Naturally, an emphasis and a great amount of material are dedicated to
transients in three-phase circuits, which can be found in Chapter 6. As power
systems are based on employing three-phase generators and transformers, the
complete analysis of their behavior under short-circuit faults at both steady-
state and first moment operations is given. The overvoltages following switching-
off in power systems are also analyzed under the influence of the electric arc,
which accompanies such switching.
In Chapter 7 the transient behavior of transmission lines is presented. The
transmission line is presented as a network with distributed parameters and
subsequently by partial differential equations. The transient analysis of suchffff
lines is done in two ways: as a method of traveling waves and by using the
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Laplace transform. Different engineering approaches using both methods areffff
discussed.
Finally, in Chapter 8 an overview of the static and dynamic stability of power
systems is given. Analyzing system stability is done in traditional ways, i.e., by
solving a swing equation and by using an equal area criterion.
Throughout the text, the theoretical discussions are accompanied by many
worked-out examples, which will hopefully enable the reader to get a better
understanding of the various concepts.
The author hopes that this book will be helpful to all readers studying and

specializing in power system engineering, and of value to professors in the
educational process and to engineers who are concerned with the design and
R&D of power systems.
Last but not least, my sincere appreciation goes to my wife, Iris, who prodi-
giously supported and aided me throughout the writing of this book. I am also
extremely grateful for her assistance in editing and typing in English.



Chapter #1

CLASSICAL APPROACH TO TRANSIENT
ANALYSIS

1.1 INTRODUCTION

Transient analysis (or just transients) of electrical circuits is as important as

steady-state analysis. When transients occur, the currents and voltages in some

parts of the circuit may many times exceed those that exist in normal behavior

and may destroy the circuit equipment in its proper operation. We may distin-

guish the transient behavior of an electrical circuit from its steady-state, in that

during the transients all the quantities, such as currents, voltages, power and

energy, are changed in time, while in steady-state they remain invariant, i.e.

constant (in d.c. operation) or periodical (in a.c. operation) having constant

amplitudes and phase angles.

The cause of transients is any kind of changing in circuit parameters and/or

in circuit configuration, which usually occur as a result of switching (commuta-

tion), short, and/or open circuiting, change in the operation of sources etc. The

changes of currents, voltages etc. during the transients are not instantaneous

and take some time, even though they are extremely fast with a duration of

milliseconds or even microseconds. These very fast changes, however, cannot

be instantaneous (or abrupt) since the transient processes are attained by the

interchange of energy, which is usually stored in the magnetic field of inductances

or/and the electrical field of capacitances. Any change in energy cannot be

abrupt otherwise it will result in infinite power (as the power is a derivative of

energy, p=dw/dt), which is in contrast to physical reality. All transient changes,
which are also called transient responses (or just responses), vanish and, after

their disappearance, a new steady-state operation is established. In this respect,

we may say that the transient describes the circuit behavior between two steady-

states: an old one, which was prior to changes, and a new one, which arises

after the changes.

A few methods of transient analysis are known: the classical method, The

Cauchy-Heaviside (C-H) operational method, the Fourier transformation
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method and the Laplace transformation method. The C-H operational or sym-
bolic (formal) method is based on replacing a derivative by symbol s ((d/dt)<s)
and an integral by 1/s

AP dt< 1sB .
Although these operations are also used in the Laplace transform method, the
C-H operational method is not as systematic and as rigorous as the Laplace
transform method, and therefore it has been abandoned in favor of the Laplace
method. The two transformation methods, Laplace and Fourier, will be studied
in the following chapters. Comparing the classical method and the transforma-
tion method it should be noted that the latter requires more knowledge of
mathematics and is less related to the physical matter of transient behavior of
electric circuits than the former.
This chapter is concerned with the classical method of transient analysis. This
method is based on the determination of differential equations and splitting theffff
solution into two components: natural and forced responses. The classical
method is fairly complicated mathematically, but is simple in engineering prac-
tice. Thus, in our present study we will apply some known methods of steady-
state analysis, which will allow us to simplify the classical approach of tran-
sient analysis.

1.2 APPEARANCE OF TRANSIENTS IN ELECTRICAL CIRCUITS

In the analysis of an electrical system (as in any physical system), we must
distinguish between the stationary operation or steady-state and the dynamical
operation or transient-state.
An electrical system is said to be in steady-state when the variables describing
its behavior (voltages, currents, etc.) are either invariant with time (d.c. circuits)
or are periodic functions of time (a.c. circuits). An electrical system is said to
be in transient-state when the variables are changed non-periodically, i.e., when
the system is not in steady-state. The transient-state vanishes with time and a
new steady-state regime appears. Hence, we can say that the transient-state, or
just transients, is usually the transmission state from one steady-state to another.
The parameters L and C are characterized by their ability to store energy:
magnetic energy w

L
=1
2
yi=1

2
L i2 (since y=L i), in the magnetic field and electric

energy w
C
=1
2
qv=1

2
Cv2 (since q=Cv), in the electric field of the circuit. The

voltage and current sources are the elements through which the energy is
supplied to the circuit. Thus, it may be said that an electrical circuit, as a
physical system, is characterized by certain energy conditions in its steady-state
behavior. Under steady-state conditions the energy stored in the various induc-
tances and capacitances, and supplied by the sources in a d.c. circuit, are
constant; whereas in an a.c. circuit the energy is being changed (transferred
between the magnetic and electric fields and supplied by sources) periodically.
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When any sudden change occurs in a circuit, there is usually a redistribution
of energy between L -s and C-s, and a change in the energy status of the sources,
which is required by the new conditions. These energy redistributions cannot
take place instantaneously, but during some period of time, which brings about
the transient-state.
The main reason for this statement is that an instantaneous change of energy
would require infinite power, which is associated with inductors/capacitors. As
previously mentioned, power is a derivative of energy and any abrupt change
in energy will result in an infinite power. Since infinite power is not realizable
in physical systems, the energy cannot change abruptly, but only within some
period of time in which transients occur. Thus, from a physical point of view it
may be said that the transient-state exists in physical systems while the energy
conditions of one steady-state are being changed to those of another.
Our next conclusion is about the current and voltage. To change magnetic
energy requires a change of current through inductances. Therefore, currents in
inductive circuits, or inductive branches of the circuit, cannot change abruptly.
From another point of view, the change of current in an inductor brings about
the induced voltage of magnitude L (di/dt). An instantaneous change of current
would therefore require an infinite voltage, which is also unrealizable in practice.
Since the induced voltage is also given as dy/dt, where y is a magnetic flux, the
magnetic flux of a circuit cannot suddenly change.
Similarly, we may conclude that to change the electric energy requires a
change in voltage across a capacitor, which is given by v=q/C, where q is the
charge. Therefore, neither the voltage across a capacitor nor its charge can be
abruptly changed. In addition, the rate of voltage change is dv/dt= (1/C) dq/dt=
i/C, and the instantaneous change of voltage brings about infinite current,
which is also unrealizable in practice. Therefore, we may summarize that any
change in an electrical circuit, which brings about a change in energy distribution,
will result in a transient-state.
In other words, by any switching, interrupting, short-circuiting as well as any
rapid changes in the structure of an electric circuit, the transient phenomena
will occur. Generally speaking, every change of state leads to a temporary
deviation from one regular, steady-state performance of the circuit to another
one. The redistribution of energy, following the above changes, i.e., the transient-
state, theoretically takes infinite time. However, in reality the transient behavior
of an electrical circuit continues a relatively very short period of time, after
which the voltages and currents almost achieve their new steady-state values.
The change in the energy distribution during the transient behavior of electri-
cal circuits is governed by the principle of energy conservation, i.e., the amount
of supplied energy is equal to the amount of stored energy plus the energy
dissipation. The rate of energy dissipation affects the time interval of the tran-ffff
sients. The higher the energy dissipation, the shorter is the transient-state.
Energy dissipation occurs in circuit resistances and its storage takes place in
inductances and capacitances. In circuits, which consist of only resistances, and
neither inductances nor capacitances, the transient-state will not occur at all



4 Chapter #1

and the change from one steady-state to another will take place instantaneously.
However, since even resistive circuits contain some inductances and capacitances
the transients will practically appear also in such circuits; but these transients
are very short and not significant, so that they are usually neglected.
Transients in electrical circuits can be recognized as either desirable or unde-
sirable. In power system networks, the transient phenomena are wholly undesir-
able as they may bring about an increase in the magnitude of the voltages and
currents and in the density of the energy in some or in most parts of modern
power systems. All of this might result in equipment distortion, thermal and/or
electrodynamics’ destruction, system stability interferences and in extreme cases
an outage of the whole system.
In contrast to these unwanted transients, there are desirable and controlled
transients, which exist in a great variety of electronic equipment in communica-
tion, control and computation systems whose normal operation is based on
switching processes.
The transient phenomena occur in electric systems either by intentional switch-
ing processes consisting of the correct manipulation of the controlling apparatus,
or by unintentional processes, which may arise from ground faults, short-circuits,
a break of conductors and/or insulators, lightning strokes (particularly in high
voltage and long distance systems) and similar inadvertent processes.
As was mentioned previously, there are a few methods of solving transient
problems. The most widely known of these appears in all introductory textbooks
and is used for solving simpler problems. It is called the classical method. Other
useful methods are Laplace (see Chap. 3) and Fourier (see Chap. 4) transforma-
tion methods. These two methods are more general and are used for solving
problems that are more complicated.

1.3 DIFFERENTIAL EQUATIONS DESCRIBING ELECTRICAL
CIRCUITS

Circuit analysis, as a physical system, is completely described by integrodiVi eren-VV

tial equations written for voltages and/or currents, which characterize circuit
behavior. For linear circuits these equations are called linear differential equa-ffff
tions with constant coefficients, i.e. in which every term is of the first degree in
the dependent variable or one of its derivatives. Thus, for example, for the
circuit of three basic elements: R, L and C connected in series and driven by a
voltage source v(t), Fig. 1.1, we may apply Kirchhoff ’s voltage law

v
R
+v
L
+v
C
=v(t),

in which

v
R
=Ri

v
L
=L

di

dt

v
C
= P i dt,
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Figure 1.1 Series RL C circuit driven by a voltage source.

and then we have

L
di

dt
+Ri+

1

C P i dt=v(t). (1.1)

After the differentiation of both sides of equation 1.1 with respect to time, theffff
result is a second order differential equationffff

L
d2t
dt2
+R

di

dt
+
1

C
i=
dv

dt
. (1.2)

The same results may be obtained by writing two simultaneous first order
differential equations for two unknowns,ffff i and v

C
:

dv
C
dt
=
1

C
i (1.3a)

Ri+L
di

dt
+v
C
=v(t). (1.3b)

After differentiation equation 1.3b and substitutingffff dv
C
/dt by equation 1.3a, we

obtain the same (as equation 1.2) second order singular equation. The solution
of differential equations can be completed only if the initial conditions areffff
specified. It is obvious that in the same circuit under the same commutation,
but with different initial conditions, its transient response will be diffff fferent.ffff
For more complicated circuits, built from a number of loops (nodes), we will
have a set of differential equations, which should be written in accordance withffff
Kirchhoff ’s two laws or with nodal and/or mesh analysis. For example, con-
sidering the circuit shown in Fig. 1.2, after switching, we will have a circuit,
which consists of two loops and two nodes. By applying Kirchhoff ’s two laws,
we may write three equations with three unknowns, i, i

L
and v

C
,

C
dv
C
dt
+ i
L
− i=0 (1.4a)

L
di
L
dt
+R1 iL+Ri=0 (1.4b)

L
di
L
dt
+R1 iL−vC=0 (1.4c)
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Figure 1.2 A two-loop circuit.

These three equations can then be redundantly transformed into a single second
order equation. First, we differentiate the third equation of 1.4c once withffff
respect to time and substitute dv

C
/dt by taking it from the first one. After that,

we have two equations with two unknowns, i
L
and i. Solving these two equations

for i
L
(i.e. eliminating the current i) results in the second order homogeneous

differential equationffff

L CR
d2i
L
dt2
+ (L+CRR1 )

di
L
dt
+ (R+R1 )iL=0. (1.5)

As another example, let us consider the circuit in Fig. 1.3. Applying mesh
analysis, we may write three integro-diVi erential equationsVV with three unknown
mesh currents:

L
di1
dt
−L
di2
dt
+R1 i1=v(t)

L
di2
dt
−L
di1
dt
+ (R2+R3 )i2−R3 i3=0 (1.6)

−R3 i2+R3 i3+
1

C P i3dt=0.
In this case it is preferable to solve the problem by treating the whole set of
equations 1.6 rather than reducing them to a single one (see further on).

Figure 1.3 A three-loop circuit.
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From mathematics, we know that there are a number of ways of solving
differential equations. Our goal in this chapter is to analyze the transientffff
behavior of electrical circuits from the physical point of view rather than
applying complicated mathematical methods. (This will be discussed in the
following chapters.) Such a way of transient analysis is in the formulation of
differential equations in accordance with the properties of the circuit elementsffff
and in the direct solution of the obtained equations, using only the necessary
mathematical rules. Such a method is called the classical method or classical
approach in transient analysis. We believe that the classical method of solving
problems enables the student to better understand the transient behavior of
electrical circuits.

1.3.1 Exponential solution of a simple differential equationffff

Let us, therefore, begin our study of transient analysis by considering the simple
series RC circuit, shown in Fig. 1.4. After switching we will get a source free
circuit in which the precharged capacitor C will be discharged via the resistance
R. To find the capacitor voltage we shall write a differential equation, which inffff
accordance with Kirchhoff ’s voltage law becomes

Ri+v
C
=0, or RC

dv
C
dt
+v
C
=0. (1.7)

A direct method of solving this equation is to write the equation in such a
way that the variables are separated on both sides of the equation and then to
integrate each of the sides. Multiplying by dt and dividing by v

C
, we may

arrange the variables to be separated.

dv
C
v
C
=−

1

RC
dt. (1.8)

The solution may be obtained by integrating each side of equation 1.8 and by
adding a constant of integration:

P dvCv
C
=−

1

RC P dt+K,

Figure 1.4 A series RC circuit.
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and the integration yields

ln v
C
=−

1

RC
t+K (1.9)

Since the constant can be of any kind, and we may designate K= ln D, we have

ln v
C
=−

1

RC
t+ ln D,

then

v
C
=De

−
t

RC. (1.10)

The constant D cannot be evaluated by substituting equation 1.10 into the
original differential equation 1.7, since the identity 0ffff ¬0 will result for any value
of D (indeed: D(−1/RC)RCe−t/RC+De−r/RC=0). The constant of integration
must be selected to satisfy the initial condition v

C
(0)=V0VV , which is the initial

voltage across the capacitance. Thus, the solution of equation 1.10 at t=0
becomes v

C
(0)=D , and we may conclude that D=V0VV . Therefore, with this

value of D we will obtain the desired response

v
C
=V0VV e

−
t

RC. (1.11)

We shall consider the nature of this response by analyzing the curve of the
voltage change shown in Fig. 1.5. At zero time, the voltage is the assumed value
V0VV and, as time increases, the voltage decreases and approaches zero, following
the physical rule that any condenser shall finally be discharged and its final
voltage therefore reduces to zero.
Let us now find the time that would be required for the voltage to drop to

Figure 1.5 The exponential curve of the voltage changing.
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zero if it continued to drop linearly at its initial rate. This value of time, usually
designated by t, is called the time constant. The value of t can be found with
the derivative of v

C
(t) at zero time, which is proportional to the angle c between

the tangent to the voltage curve at t=0, and the t-axis, Fig. 1.5, i.e.,

tan l3−
V0VV
t
=
d

dt AV0VV e− t

RCB
t=0
=
−V0VV
RC
,

or

t=RC

and equation 1.11 might be written in the form

V
C
VV =V0VV e

−
t

t. (1.12)

The units of the time constant are seconds ([t]=[R][C]=V ·F), so that the
exponent t/RC is dimensionless, as it is supposed to be. The time constant may
be easily found graphically from the response curve, as can be seen from Fig. 1.5:
the interception point, B, of the tangent line AB with the time axis determine
the time constant t. This line segment OB is called under-tangent. It is interesting
,
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Figure 1.6 A circuit of Example 1.1 (a) and two plots of current and voltage (b).

Example 1.1

Consider a numerical example. The RL circuit in Fig. 1.6(a) is fed by a d.c.
current source, I0=5A. At instant t=0 the switch is closed and the circuit is
short-circuited. Find: 1) the current after switching, by separating the variables
and applying the definite integrals, 2) the voltage across the inductance.

Solution

1) First, we shall write the differential equation:ffff

v
L
+v
R
=L

di

dt
+Ri=0,

or after separating the variables

di

i
=
R

L
dt.

Since the current changes from I0 at the instant of switching to i(t), at any
instant of t, which means that the time changes from t=0 to this instant, we
may perform the integration of each side of the above equation between the
corresponding limits

P i(t)
I
PP
0

di

i
= P t
0
PP −RL dt.

Therefore,

ln i | i(t)
I
0

=−
R

L
t | t
0
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and

ln i(t)− ln I0=
R

L
t, or ln

i(t)

I0
=−

R

L
t,

which results in

i(t)

I0
=e−

R

L
t

Thus,

i(t)=I0e
−
R

L
t=5e−2000t ,

or

i(t)=I0e
−
t

t=5e
−

t

0.5·10−3 .

where

R/L=
40

20·10−3
=2000 s−1,

which results in time constant

t=
L

R
=0.5ms.

Note that by applying the definite integrals we avoid the step of evaluating the
constant of the integration.

2) The voltage across the inductance is

v
L
=L

di

dt
=L

d

dt
(5e−2000t )=20·10−3 ·5· (−2000)e−2000t=−200e−

t

0.5, V

(time inms).

Note that the voltage across the resistance is v
R
=Ri=40·5e−t/0.5=200e−t/0.5,

i.e., it is equal in magnitude to the inductance voltage, but opposite in sign, so
that the total voltage in the short-circuit is equal to zero. The plots of the
current and voltage are shown in Fig. 1.6(b).

1.4 NATURAL AND FORCED RESPONSES

Our next goal is to introduce a general approach to solving differential equationsffff
by the classical method. Following the principles of mathematics we will consider
the complete solution of any linear differential equation as composed of twoffff
parts: the complementary solution (or natural response in our study) and the
particular solution (or forced response in our study). To understand these
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principles, let us consider a first order differential equation, which has alreadyffff
been derived in the previous section. In a more general form it is

dv

dt
+P(t)v=Q(t). (1.14)

Here Q(t) is identified as a forcing function, which is generally a function of
time (or constant, if a d.c. source is applied) and P(t), is also generally a function
of time, represents the circuit parameters. In our study, however, it will be a
constant quantity, since the value of circuit elements does not change during
the transients (indeed, the circuit parameters do change during the transients,
but we may neglect this change as in many cases it is not significant).
A more general method of solving differential equations, such as equationffff

1.14, is to multiply both sides by a so-called integrating factor, so that each side
becomes an exact differential, which afterwards can be integrated directly toffff
obtain the solution. For the equation above (equation 1.14) the integrating
factor is e∆Pdt or ePt, since P is constant. We multiply each side of the equation
by this integrating factor and by dt and obtain

ePtdv+vPePtdt=QePtdt.

The left side is now the exact differential offfff vePt (indeed, d(vePt)=
ePtdv+vPePtdt), and thus

d(vePt)=QePtdt.

Integrating each side yields

vePt= P QePtdt+A, (1.15)

where A is a constant of integration. Finally, the multiplication of both sides
of equation 1.15 by e−Pt yields

v(t)=e−Pt P QePtdt+Ae−Pt, (1.16)

which is the solution of the above differential equation. As we can see, thisffff
complete solution is composed of two parts. The first one, which is dependent
on the forcing function Q, is the forced response (it is also called the steady-
state response or the particular solution or the particular integral ). The second
one, which does not depend on the forcing function, but only on the circuit
parameters P (the types of elements, their values, interconnections, etc) and on
the initial conditions A, i.e., on the ‘‘nature’’ of the circuit, is the natural response.
It is also called the solution of the homogeneous equation, which does not
include the source function and has anything but zero on its right side.
Following this rule, we will solve differential equations by finding naturalffff
and forced responses separately and combining them for a complete solution.
This principle of dividing the solution of the differential equations into twoffff
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components can also be understood by applying the superposition theorem.
Since the differential equations, under study, are linear as well as the electricalffff
circuits, we may assert that superposition is also applicable for the transient-
state. Following this principle, we may subdivide, for instance, the current into
two components

i= i∞+ i◊,

and by substituting this into the set of differential equations, say of the formffff

∑ AL didt+Ri+ 1C P i dtB=∑ vs ,
we obtain the following two sets of equations

∑ AL di∞dt+Ri∞+ 1C P i∞ dtB=∑ vs ,
∑ AL di◊dt +Ri◊+ 1C P i◊ dtB=0.

It is obvious that by summation (superimposition) of these two equations, the
original equation will be achieved. This means that i◊ is a natural response
since it is the solution of a homogeneous equation with a zero on the right side
and develops without any action of any source, and i∞ is a steady-state current
as it develops under the action of the voltage sources v

s
(which are presented

on the right side of the equations).
The most difficult part in the classical method of solving differential equationsffff
is evaluating the particular integral in equation 1.16, especially when the forcing
function is not a simple d.c. or exponential source. However, in circuit analysis
we can use all the methods: node/mesh analysis, circuit theorems, the phasor
method for a.c. circuits (which are all given in introductory courses on steady-
state analysis) to find the forced response. In relation to the natural response,
the most difficult part is to formulate the characteristic equation (see further
on) and to find its roots. Here in circuit analysis we also have special methods
for evaluating the characteristic equation simply by inspection of the analyzed
circuit, avoiding the formulation of differential equations.ffff
Finally, it is worthwhile to clarify the use of exponential functions as an
integrating factor in solving linear differential equations. As we have seen inffff
the previous section, such differential equations in general consist of the secondffff
(or higher) derivative, the first derivative and the function itself, each multiplied
by a constant factor. If the sum of all these derivatives (the function itself might
be treated as a derivative of order zero) achieves zero, it becomes a homogeneous
equation. A function whose derivatives have the same form as the function itself
is an exponential function, so it may satisfy these kinds of equations. Substituting
this function into the differential equation, whose right side is zero (a homogen-ffff
eous differential equation) the exponential factor in each member of the equationffff
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might be simply crossed out, so that the remaining equation’s coefficients will
be only circuit parameters. Such an equation is called a characteristic equation.

1.5 CHARACTERISTIC EQUATION AND ITS DETERMINATION

Let us start by considering the simple circuit of Fig. 1.7(a) in which an RL in
series is switching on to a d.c. voltage source.
Let the desired response in this circuit be current i(t). WeWW shall first express

it as the sum of the natural and forced currents

i= i
n
+ i
f
.

The form of the natural response, as was shown, must be an exponential
function, i

n
=Aest (*). Substituting this response into the homogeneous

differential equation, which isffff L (di/dt)+Ri=0, we obtain L s est+R est=0, or

L s+R=0. (1.17a)

This is a characteristic (or auxiliary) equation, in which the left side expresses
the input impedance seen from the source terminals of the analyzed circuit.

Z
in
(s)=L s+R. (1.17b)

We may treat s as the complex frequency s=s+ jv (for more about complex
frequencies see any introductory course to circuit analysis and further on in
Chap. 3). Note that by equaling this expression of circuit impedance to zero,
we obtain the characteristic equation. Solving this equation we have

s=−
R

L
and t=

L

R
. (1.18)

Hence, the natural response is

i
n
=Ae

−
R

L
t
. (1.19)

Figure 1.7 An RL circuit switching to a d.c. voltage source (a) and after ‘‘killing’’ the source (b).

(*)Here and in the future, we will use the letter s for the circuit parameters’ dependent exponent.
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Subsequently, the root of the characteristic equation defines the exponent of
the natural response. The fact that the input impedance of the circuit should
be equaled to zero can be explained from a physical point of view.(*) Since the
natural response does not depend on the source, the latter should be ‘‘killed’’.
i.e. short-circuited as shown in Fig. 1.7(b). This action results in short-circuiting
the entire circuit, i.e. its input impedance.
Consider now a parallel L R circuit switching to a d.c. current source in which
the desired response is v

L
(t) , as shown in Fig. 1.8(a). Here, ‘‘killing’’ the current

source results in open-circuiting, as shown in Fig. 1.8(b).
This means that the input admittance should be equaled to zero. Thus,

1

R
+
1

sL
=0,

or

sL+R=0,

which however gives the same root

s=−
R

L
and t=

L

R
. (1.20)

Next, we will consider a more complicated circuit, shown in Fig. 1.9(a). This
circuit, after switching and short-circuiting the remaining voltage source, will
be as shown in Fig. 1.9(b). The input impedance of this circuit ‘‘measured’’ at
the switch (which is the same as seen from the ‘‘killed’’ source) is

Z
in
(s)=R1+R3//R4//(R2+sL ),

or

Z
in
(s)=R1+A 1R3+ 1R4+ 1

R2+sL B−1 .

Figure 1.8 A parallel RL circuit switching to d.c. current source (a) and after ‘‘ killing’’ the source (b).

(*)This fact is proven more correctly mathematically in Laplace transformation theory (see further
on).
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Figure 1.9 A given circuit (a), determining the input impedance as seen from the switch (b) and as

seen from the inductance branch (c).

Evaluating this expression and equaling it to zero yields

(R1R3+R1R4+R3R4 )(R2+sL )+R1R3R4=0,

and the root is

s=−
R
eq
L
, where R

eq
=
R1R3R4+R1R2R3+R1R2R4+R2R3R4

R1R3+R1R4+R3R4
.

It is worthwhile to mention that the same results can be obtained if the input
impedance is ‘‘measured’’ from the inductance branch, i.e. the energy-storing
element, as is shown in Fig. 1.9(c).
The characteristic equation can also be determined by inspection of the
differential equation or set of equations. Consider the second-order diffff fferentialffff
equation like in equation 1.2

L
d2i(t)
dt
+R

di(t)

dt
+
1

C
i(t)=g(t). (1.21)

Replacing each derivative by sn, where n is the order of the derivative (the
function by itself is considered as a zero-order derivative), we may obtain the
characteristic equation:

L s2+Rs1+
1

C
s0=0, or s2+

R

L
s+

1

L C
=0. (1.22)


