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Transient Analysis of a Porous Electrode
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An analytical expression is presented for the voltage response including the transient voltage for a simple~i.e., no concentration
gradients! porous electrode model subject to a sinusoidal input current density. The transient voltage response as a function of the
frequency, exchange current density, and double layer capacitance is studied independent of the periodic~steady state! voltage
response. The change in the voltage response in the transient region is compared to that of the periodic voltage response with
respect to the parameters. The physical properties of the porous electrode can be estimated using the voltage response in the
transient region is presented. The methodology for doing this is described.
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The transient techniques employed to measure the physical
erties of a porous electrode and in fact any electrochemical sy
are based on the concept of perturbing the system about its
condition using potential, current, or charge and measuring th
sponse of the system. Because the rates of each processes
interfacial charge transfer, mass transport etc., are time depe
the analysis of the time dependence gives information to o
these properties. When any system is perturbed, the current o
age response changes from one steady state~initial state! to anothe
steady state. The transition from an initial state to steady state o
within a region and the response in this region is called the tran
response. Hence, the complete response of a system consists
parts: the transient response and the steady state response.1

The perturbation can be of many different kinds such as
ramp, pulse, sinusoidal, etc.2 To maintain a linear response the a
plitude of the perturbations are often very small. Some of the
sient techniques take into consideration only the steady sta
sponse of the system for example electrochemical imped
spectroscopy~EIS!.3 Most of the other techniques include the m
surement of both transient and the steady state responses f
ample potential step or sweep.2,4 We will only consider the tech
niques that take into consideration the transient response o
system. In this case, the analysis of the system response is
carried out using a combination of the transient and steady
response. However, the transient response is a strong function
properties of the system. Moreover, the transient response occ
very short times. Consequently, we expect that there is a wea
information that can be obtained in very short time periods u
just the response in the transient region. In the past, instrum
limitations posed a serious problem to measuring the respon
very short time periods~a few milliseconds!.2 With the advanceme
of the electrochemical instrumentation this problem has been s
and the measurements at short time periods have been used b
researchers to estimate certain parameters in case of p
electrodes5-7 and thin films.8,9 However the potential of the transie
response has not been fully utilized.

In this paper, we stress the importance of the transient res
of a porous electrode using a simple porous electrode mode
model equations presented below describe the porous electro
der very low rates of discharge when the concentration gradie
the solution phase are not important and when the size of the
ticles in the electrode are very small so that there is no solid-p
diffusion limitation as well. An analytical solution is developed
the voltage response of a porous electrode subjected to sinu
perturbation in current. The response includes the transient vo
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response and the uniform and sustained periodic~sinusoidal stead
state! voltage response. Note that the steady state response in
odic input perturbation such as a sinusoidal signal is also a pe
response with the same frequency but with a different amplitud
phase angle with respect to the input perturbations. The input
soidal perturbations could have been replaced by other kind o
turbations such as step input,6 ramp input,7 etc. However, the adva
tages of analyzing the system response using sinus
perturbations are(i) perturbations as sine waves are easy to gen
compared to the other wave forms10 (ii) using sinusoidal signa
specified as a function of time and frequency facilitates the u
frequency as another variable apart from time that can be var
ease, and(iii) the sinusoidal signal can be expressed using sta
mathematical functions that makes modeling the system an
subsequent theoretical analysis easier.

In this paper, we analyze the voltage response in the tran
region as a function of frequency, exchange current density
double layer capacitance and compare it with the change i
periodic voltage response~sinusoidal steady state response! of the
porous electrode with respect to the same set of paramete
evaluating the limiting expressions of the derived analytical solu
for the voltage response we establish the possibility of estim
the physical parameters of the system using only the voltag
sponse in the transient region. The proposed methodology c
used to estimate parameters accurately within very short
periods.

Model Development

Consider the geometry of the porous electrode illustrated in
1. The following assumptions are made:

~1! Porous electrode theory in one dimension is applicable11

~2! No concentration gradients exist inside the electrode.
~3! Both double layer charging and a linear far

c reaction occur.
~4! The material propertiessa,s,k,aa,acd are assumed to b

constants.
~5! The double layer capacitancesCdld is a constant.
~6! The open circuit potential is set equal to zero.

With no concentration gradients, the matrix phase current
sity, i1 and solution phase current density, i2 are given by Ohm’
law11

i1 = −seff
]f1

]x
f1g
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i2 = −keff
]f2

]x
f2g

whereseff andkeff are the effective matrix phase and solution ph
conductivities, which are related to the respective bulk condu
ties through the Bruggeman’s correlation

seff = s1 − « − «inertd1.5s f3g

keff = «1.5k f4g
The total current density I~t! is the sum of the matrix and soluti

phase current densities

i1 + i2 = Istd f5g

where I~t! is the applied current density as a function of time.
current transferred from the matrix phase to the solution pha
expressed in terms of the interfacial current density, jn

11

−
] i1
] x

=
] i2
] x

= ajn f6g

where a is the surface area per unit volume of the porous elec
~estimated here as a collection of uniform sphere of radius Rs, see
list of symbols12!. The interfacial current densitys jnd is the sum o
the double layer charging current density and the faradic cu
density

jn = Cdl
]sf1 − f2d

]t
+ jn,f f7g

where Cdl is the double layer capacitance and the faradic cu
density s jn,fd is given by the linearized Bulter-Volmer kine

expression5,13

jn,f =
i0Fsaa + acd

RT
sf1 − f2d f8g

whereaa + ac = n and the open circuit potential has been set e
to zero. Substituting Eq. 8 in Eq. 7 yields

Figure 1. Geometry of the porous electrode.
e

jn = Cdl
]sf1 − f2d

]t
+

i0saa + acdF
RT

sf1 − f2d f9g

The overpotential is given byh = f1 − f2 when the open circu
potential is set equal to zero. For a constant value for the o
circuit potentialsU Þ 0d the quantitysf1 − f2d in Eq. 8 and con
sequently in Eq. 9 should be replaced withsf1 − f2 − Ud. Now the
overpotential is given byh = f1 − f2 − U. The equations derive
from this point and on are in terms of the overpotential that is
same for both cases; when U is a constant value and for U set
to zero. The initial and boundary conditions for the overpotentia
given by

f1 = 0 andf2 = 0 ⇒ h = 0 at t = 0 for 0ø x ø L f10g

i1 = 0 and i2 = Istd ⇒
]h

]x
=

Istd
keff

at x = 0 and fort. 0 f11g

i1 = Istdand i2 = 0 ⇒
]h

]x
=

−Istd
seff

at x = L and for t. 0 f12g

Equations 1, 2, 6, and 9 can be used to derive the follo
equation for the overpotential in dimensionless form17

]h*

]t
=

]2h*

]X2 -n2h* f13g

wheren2 ~dimensionless exchange current density! is

n2 =
ai0saa + acdFL2

RT
S 1

seff
+

1

keff
D f14g

and

X =
x

L
; t =

t

aCdlS 1

keff
+

1

seff
DL2

; h* =
hF

RT
f15g

The corresponding dimensionless initial and boundary cond
are

h* = 0 att = 0 and for 0ø X ø 1 f16g

]h*

]X
= d at X = 0 and fort . 0 f17g

]h*

]X
= −db at X = 1 and fort . 0 f18g

whereb is the ratio of the effective solution phase to matrix ph
conductivitysb = keff/seff d andd is the dimensionless current de
sity

dstd = IstdS FL

keffRT
D f19g

The solution to Eq. 13 using the initial and boundary condit
given in Eq. 16-18 in the Laplace domain is

h*ssd = −dssdFbcoshsXÎn2 + sd + coshss1 − XdÎn2 + sd
În2 + ssinhsÎn2 + sd

G
f20g

where the over bar represents the variables in the Laplace d
and

dssd = IssdS FL

keffRT
D f21g

The potential drop across the porous electrode can be defin

V* = suf1
* uX=1 − uf2

* uX=0d f22g

or
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V* = suf1
* uX=1 − uf1

* uX=0d + uh* uX=0 f23g

Having solved for the overpotential of the electrode in
Laplace domain it is convenient to derive the voltage drop acros
porous electrode in terms of the dimensionless overpotential. H
we determine the potential drop in the solid phase~uf1

* uX=1
− uf1

* uX=0d in terms of the overpotential in the subsequent equa
that can be later substituted in Eq. 23 to obtain voltage drop
function of overpotential in the dimensionless form.

Combining Eq. 1, 6, and 9 gives the equation for solid ph
potential as

seff
]2f1

]x2 = aCdl
]h

]t
+

ai0saa + acdF
RT

h f24g

Substitution of the dimensionless variables as defined in E
and 15 into Eq. 24 and letting

f1
* =

f1F

RT
f25g

yields an equation for the dimensionless solid phase potential

]2f1
*

]X2 =
b

1 + b
F ]h*

]t
+ n2h*G f26g

Using Eq. 13, Eq. 26 can be rewritten as

]2f1
*

]X2 =
b

1 + b

]2h*

] X2 f27g

The boundary conditions forf1
* andh* in Eq. 27 are

]f1
*

]X
= 0 and

] hp

] X
= d at X = 0 f28g

]f1
*

]X
= −db and

]h*

]X
= −db at X = 1 f29g

Equation 27 can be integrated once with respect to X to yie

]f1
*

]X
=

b

1 + b

]h*

]X
+ C f30g

where C is an integration constant that can be determined usin
of the boundary conditions~Eq. 28 or 29!

C = −
db

1 + b
f31g

Integrating Eq. 30 between the limits X = 0 to 1 gives
change in the dimensionless solid phase potential across the
trode

uf1
* uX=1 − uf1

* uX=0 =
b

1 + b
suh* uX=1 − uh* uX=0d −

db

1 + b
f32g

By substituting Eq. 32 into Eq. 23, we get the dimension
voltage drop across the electrode as

V* = F uh* uX=0 + buh* uX=1 − db

1 + b
G f33g

This dimensional voltage response of the porous electrode
Laplace domain is obtained using the expression for dimensio
overpotential~Eq. 20 and Eq. 33! in the Laplace domain as

V*ssd = dssdFb2coshsÎn2 + sd + 2b + coshsÎn2 + sd
sb + 1dÎn2 + s sinhsÎn2 + sd

+
b

sb + 1dG
f34g

Laplace inverse of Eq. 34 is determined using the standard
rems as explained below. The Laplace inverse of the second te
Eq. 34 can be determined directly
e

-

s

-
f

L−1F dssdb
sb + 1dG =

dstdb
sb + 1d

f35g

A is the amplitude andv* is dimensionless frequency of t
input perturbation defined as

v* = aCdlS 1

keff
+

1

seff
DL2v f36g

Now the Laplace inverse of Eq. 34 is given by

L−1fV*ssdg = L−1fdssdGss + n2dg +
b

sb + 1ddstd f37g

where

Gss + n2d =
b2coshsÎn2 + sd + 2b + coshsÎn2 + sd

sb + 1dÎn2 + s sinhsÎn2 + sd
f38g

The Laplace inverse of the function Gss + n2d can be determine
by applying the shifting theorem and the Heaviside expan

theorem14-16 as

gstd = e−n2tL−1fGssdg = −sb + 1de−n2t

− o
k=1

`
2e−sn2+k2p2dtss−1dksb + 1d + 2bd

s−1dksb + 1d
f39g

Substituting for the inverse Laplace of the functions Gss + n2d
anddssd and applying convolution theorem14 we obtain the Laplac
inverse of the first term in Eq. 37

L−1fdssdGss + n2dg = E
0

t

dsjdgst − jddj f40g

In general the dimensionless voltage response in the time do
for a porous electrode with a time dependent input current ca
derived using the expression

V*std = E
0

t

dsjdgst − jddj +
b

sb + 1d
dstd f41g

V* =
VF

RT
f42g

or in dimensional form Eq. 41 is given by

Vstd =
L

keff
FE

0

t

Isjdgst − jd dj +
b

sb + 1d
IstdG f43g

For the case of a sinusoidal input perturbation applied as a
rent densitysIstd = Acossvtdd to the system, the dimensionless c
rent density becomes

dstd = Acossv*tdS FL

keffRT
D f44g

The voltage response of the porous electrode to the applied
soidal perturbation in the time domain is determined by evalu
the integral in Eq. 40 and substituting the result into Eq. 37

Vst,vd =
c1sb + 1dn2e−n2 t

t0

sn4 + svt0d2d + c1o
n=1

`

AkS sn2 + k2p2de−sn2+k2p2d t
t0

ssn2 + k2p2d2 + svt0d2dD
+ Vss f45g

where the uniform and sustained periodic voltage response wh
commonly called the steady state voltage response is given b
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Vss = −
c1sb + 1dsn2cossvtd + vt0sinsvtdd

sn4 + svt0d2d

− 2c1o
k=1

`

AkScossvtdsn2 + k2p2d + vt0sinsvtd
ssn2 + k2p2d2 + svt0d2d D

−
c1cossvtdb

b + 1
f46g

with

Ak =
ss− 1dksb2 + 1d + 2bd

s− 1dksb + 1d
f47g

c1 =
AL

keff
f48g

and

t0 = aCdlL
2S 1

keff
+

1

seff
D f49g

The angular frequencyv that appears in all of the above eq
tions is given in rad/s, which is related to the frequency ‘f’ give
Hz asv = 2pf.

Results and Discussion

The voltage response to an input sinusoidal current signal is
a sinusoidal wave with the same frequency as the input but w
different phase angle and amplitude. Figure 2 shows these d
ences between the input current density and the voltage respon
a fixed frequencys f = 100 Hzd. The voltage response is function
the frequency of the input perturbation, time and the dimensio
parameters that includen2, b and t0 ~see Eq. 45!. The dimensionles
parameters are in turn functions of the properties of the porous
trode: exchange current density, electric double layer at the inte
and the effective conductivities in the solid and solution phase~see
Eq. 14 and 15!. The values of the parameters used to simulate
voltage response in Fig. 2 are given in Table I. In deriving
analytical expression for the voltage response we have assum
ear electrochemical kinetics. Hence, the model presented in th
per is limited to cases where the perturbation to the system is
small ~A = 0.1mA/cm2 or less! and when the exchange current d

Figure 2. Input current density and voltage response plotted at a frequ
of f = 100 Hz. All the other values are given in Table I.
r

-

-
-

sity is high ~i0 = 1.8 3 10−4 A/cm2 or greater!. We confirmed ou
results for the linear kinetics case presented here by replacing
with the Butler-Volmer equation and solving the resulting equa
numerically. In plotting the voltage response using the analy
solution one has to be careful with the number of terms used i
series. The number of terms required in the series solution
function of the frequency. The number of termsskd required is pro
portional to the frequency hence when the expression is us
simulate the voltage response at high frequencies a larger num
terms is needed~for example, forf = 100 Hzk = 1600!.

The short time voltage response and the periodic part of the
voltage are represented in Fig. 3. The periodic part is a uniform
sustained periodic state that can otherwise be called as the sinu
steady state. Henceforth, when we refer as the periodic respo
should be understood as the sinusoidal steady state respons
short time voltage response is given by the first two terms of E
~V − Vss! that goes to zero at longer times. Note: Short time vol
response occurs only at times less than a few time constants~con-
stant multiplied by t0/n2!, while transient voltage response is
total voltage response in the transient region. Transient region

Table I. Parameter values.

Parameter Value

i0 0.00018 A/cm2

keff 2.0553 10−4 S/cm
seff 0.16185 S/cm
L 0.016 cm
« 0.63
«inert 0.073~Ref. 5!
Rs 8.5 µm
Cdl 10 mF/cm2

n 1
aa + ac 1
A 0.0001A/cm2

a 3s1 − « − «inertd/Rs = 1408.1 cm−1

T 298.15 K
t0 0.01307 s
n2 9.1599
t0/n2 1.427 ms

Figure 3. Transient voltage and the steady state voltage that make u
total voltage response of the porous electrodes f = 100 Hzd.
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to time less than the time constant, t0/n2 ~51.427 ms; see Table!
and steady-state region~longer times! refers to t@ t0/n2.

Transient voltage response.—In this section, we focus on the b
havior of the transient voltage response. The change in the tra
voltage as a function of the frequency is shown in Fig. 4. A
quency range of 100 kHz to 10 mHz over which the same sy
would yield a squashed semicircle in the frequency domain is
to analyze the response in time domain.6 We observe that the sho
time voltage changes for higher frequency values but for freque
less than or equal to 10 Hz the short time voltage becomes con
The frequency of 10 Hz is termed the limiting frequencys f ld be-
cause the short time voltage at frequencies lower thanf l can be
determined by evaluating the limit of the total voltage respons
v = 0. The short time voltage response is indicated asuVtu f l can be
written as

f50g
Figure 5 gives the total voltage response for tø t0/n2 at different

frequency values. Because the short time response dominat
total voltage response over the transient region, it shows a co
voltage response for fø f l as observed in Fig. 4 for just the sh
time voltage response. Also, the total voltage response in Fig
characterized by a constant slope in the initial part of the resp
and a constant value for voltage at t = 0 at all frequencies.
values of these constants can be determined by evaluating th
lowing limiting cases of Eq. 45

uV ut=0 =
AL

skeff + seffd
f51g

and

Figure 4. Short time voltage response as a function of time for var
frequency values.
t

t.

e
t

l-

SdV

dt
D

t→0
= −

c1

t0
Fsb + 1d + o

k=1

`

AkG f52g

Equation 51 can otherwise be obtained by substituting the i
condition for the overpotential at X = 0 and X = 1~uh* uX=0 and
uh* uX=1 both of which are zero! into Eq. 33. Also dV/dt att = 0 can
be obtained by differentiating both sides of Eq. 33 with respectt,
provided an expression forh as a function of time valid for sho
time periods is known~such an expression can be obtained by
termining the Laplace inverse of Eq. 20!. Both Eq. 51 and 52 a
independent of frequency. Note that the voltage at timet = 0 is
determined by the ohmic properties of the material~solution phas
conductivity and solid phase conductivity!. The initial slope of th
voltage response~see Eq. 52! is independent of the electrode kin
ics.

At low frequencies the input perturbation tends to become a
input s limv → 0fAcossvtdg = Ad. Hence the voltage response
low frequencies for sinusoidal perturbation should agree with
voltage response for a step input that consists of a transient
steady state response~not periodic!. This is evident from a plot o
the voltage response atf l for sinusoidal perturbation~Eq. 50! and
the voltage response with a step input as shown in Fig. 6. An
lytical solution for the voltage response of a porous electrode i
case of applied potential step was published earlier.5,6,17 Unfortu-
nately, typos exist in all of them; in Ref. 5 the negative sign be
the term within the exponential that is before sit in Eq. B-9 sh
be omitted, in Ref. 6Cm

I = 2s−1dmn/ sm2p2 + n2d fAI sinhsnd
+ BI coshsnd − BIs−1dmg in the voltage expression~Eq. 10! instead
of the expression given in Eq. 11 and in Ref. 17 coefficient o
series term in the voltage expression~Eq. 39! should be 2d/ s1
+ bd .

Unlike the constant steady state voltage response for a step
the constant voltage response in the steady state region asv → 0
indicates that the periodic voltage response is characterized b
stant amplitude. This is because of the nature of the two inpu
turbations. In linear systems the steady state response of the s
takes the same form as the input perturbation~when the input is
periodic perturbation the corresponding output will also be
odic!. The constant amplitude of the periodic signal for low frequ

Figure 5. Transient voltage response region for various frequency va
Note that the initial slope at all frequencies is equal.~t0 = 0.01307 s an
sn2 = 9.1599d.
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cies is evident from Fig. 7 that gives a plot of the amplitude of
periodicsVss, ampd response as a function of the frequency in a s
log scale. In obtaining the Vss, ampat very high frequency one has
pay utmost attention to the sample spacing. Sample spacing
fined as the time period between two consecutive data sample
higher frequency values very small sample spacing has be us
obtain an accurate value of the amplitude. The amplitude o
periodic voltage response is inversely proportional to the frequ
At lower frequency valuesf ø 10 Hz a constant value of Vss, ampis
obtained as determined using the voltage response at the lim
frequency,f l. The amplitude forf ø f l is given by uVssuf l ~Eq. 52!.
The value of the limiting frequency for the periodic voltage is s
as that of the transient voltage. The amplitude of the periodic
age response is also constant at high frequencies and is given
51, the value of the voltage at timet = 0 in the transient region. A

Figure 6. Comparing the voltage response at the limiting frequency f
sinusoidal input~Eq. 50! given by continuous line with that of the volta
response for a potential step as the input~see Ref. 5 and 6, or 16! represente
by symbols.

Figure 7. Amplitude of the steady state voltage~Vss, Eq. 46! plotted as a
function of the frequency. The straight lines at high and low frequenc
plotted using Eq. 5 and 52, respectively.
-
r
o

q.

this point it is worth mentioning that a plot of the ratio of the a
plitude of the periodic signal to the amplitude of the input curr
Vss, ampvs. log frequency yields the well-known Bode magnitu
plot of impedance as shown in Fig. 8a along with the Bode
obtained using the impedance expression.5,6 We would also mentio
that the impedance plots can be obtained from the expression
voltage response and the input current presented in this pap
applying simple concepts: we know that the real part of the im
ance is given by the part of the voltage response that is in phas
the imaginary part is given by the part of the response that is o
phase with respect to the input perturbation. ZRe and ZIm are equal t
the coefficient of cossvtd divided by A and sinsvtd divided by A of
Eq. 46, respectively. The Nyquist plot obtained using the imped
expression5,6 is compared to that obtained using Eq. 46 as desc
above are given in Fig. 8b.

In porous electrodes designed for the electrochemical capa
the performance of the porous electrode is limited only by the
trical double layer charging. In this case, the voltage respon
given by ~limit of Eq. 45 asn2 → 1!

Figure 8. ~a! The Bode plot of the impedancevs.frequency.~b! Nyquist plot
of the impedance of a porous electrode Continuous line represents th
obtained using the impedance expressions in the literature. Symbols
the plot determined from the expression for steady state voltage res
~Eq. 46!.
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uV un2→0 = −
c1sb + 1dsinsvtd

vt0

− c1o
k=1

`

AkSk2p2cossvtd + vt0sinsvtd − k2p2e−k2p2 t
t0

ssk2p2d2 + svt0d2d D
−

c1cossvtdb
b + 1

f53g

and atf ø f l we have~limit of Eq. 53 asv → 0!

uV u f l
n2→0

= c1Fo
k=1

`

Ak
e−sk2p2d t

t0

k2p2 G−c1Fsb + 1d
t0

+ o
k=1

`
Ak

k2p2

+
b

sb + 1dG f54g

Unless mentioned we will only deal with a porous electrode
erned by both linear kinetics and double layer charging. Figu
shows a comparison of the voltage profiles of a porous electro
the limiting frequency for the two cases; 1! with both linear kinetic
and double layer charging~Eq. 50 and 2! with double layer changin
only ~Eq. 54!. The voltage response in the transient region for
latter case can be approximated by a straight line while in the
case the transient response is a curve. In the porous electrode
by double layer charging only the figure shows a linear increa
the voltage response with time well beyond the borderline bet
the transient region and the steady state region that is att = t0/n2.

Because we determined that the transient voltage respon
comes a constant at the limiting current density the effect o
exchange current density and double layer capacitance is s
using the voltage response at the limiting frequency~Eq. 50!. A plot
of the voltage response for various values of i0 and Cdl are presente
in Fig. 10 and 11, respectively. For now, we will discuss the effe
the voltage response only in transient region. The effect of th
rameters on the periodic voltage response will be dealt in detail
In the transient region the voltage response changes with the
of i0. However one should remember that the slope att = 0 remains
a constant since the value of Cdl is not varied~see Eq. 52!. In Fig. 10
the initial slope of the voltage response curve and the voltag

Figure 9. Voltage response at the limiting frequency for different case
indicated in the figure. All the parameter values are indicated in Table
t

d

-

d

.
e

sponse in the latter part of the transient region changes as e
from Eq. 52. It is also important to remember that in both the fig
the voltage at timet = 0 is constant given by Eq. 51 and is indep
dent of i0 and Cdl. In Fig. 10 and 11, the time taken for the trans
response to attain sinusoidal steady state response varies w
parameters. The time taken for the transient response to attain
soidal steady state response is nothing but the time range in
the transient response occurs which is the time constant t0/n2 where
t0 andn2 are functions of the parameters. The changes in the pa
eter values also introduce a shift of the limiting frequency~see Tabl

Figure 10. Voltage response at the limiting frequency,~Eq. 50! plotted for
various values of the exchange current density, i0 in A/cm2 is as indicated i
the figure. All the other parameter values are given in Table I.

Figure 11. Voltage response at the limiting frequency~Eq. 50! plotted for
various values of the double layer capacitance, Cdl in F/cm2 as indicated in
the figure. All the other parameter values are given in Table I.



l
ime,

iting
e de
ases

he
ant
is
ency
nt

of
nsien
bility
nsien

tion

e

se
cted.

tance.
f the
the
ency
nse
s.
ing

aram-
nsient
the

of the
g the
erate

so the
gion
an be
urves
uld be
n for

sion.

do-
ensity
luded
ct of
ng on
nding

o that
nclude
n that
ociated

sup-
t

ation

s

s

func-
ity as

A954 Journal of The Electrochemical Society, 152 ~5! A947-A955 ~2005!A954
II !. From the tabulated values we see thatf l is directly proportiona
to i0 / Cdl. Because we know that frequency is the inverse of t
we can conclude thatf l ~ 1/ t0/n2.

The effect of parameters on the periodic response at the lim
frequency can be explained based on Fig. 10 and 11. With th
crease in i0 the amplitude of the periodic voltage response decre
while the change in Cdl does not influence the value of Vss, amp.
However change in both i0 and Cdl values introduce a change in t
time constantst0 = n2d for the transient region. As the time const
increases the periodic~sinusoidal steady state! voltage response
pushed to longer and longer times and hence the limiting frequ
becomes a smaller value. The change inf l with the exchange curre
density is clear from Fig. 12.

Parameter estimation.—So far we have analyzed the effect
frequency and the parameter values on the behavior of the tra
voltage response. In this section, we will investigate the possi
of estimating parameters of the porous electrode using the tra
voltage response only.

The value of the voltage at t = 0 yields the ratio of the solu
phase conductivity to solid phase conductivity~Eq. 51!. When one
of the conductivity values is known~keff or seff! the other can b

Table II. Limiting frequency values as a function of the (a) ex-
change current density and (b) double layer capacitance.

~a!
Exchange current
density, i0 sA/cm2d

Limiting frequency,f l
~Hz!a

1.8 3 10−2 1 Hz
1.8 3 10−3 10 Hz
1.8 3 10−4 0.1 Hz

~b!
Double layer capacitance, Cdl smF/cm2d Limiting frequency,f l ~Hz!b

1 00 1 Hz
10 10 Hz
1 0.1 Hz

a The limiting current density is determined with the parameter value
given in Table I except for i0 ~whose values are specified above!.

b The limiting current density is determined with the parameter value
given in Table I except for Cdl ~whose values are specified above!.

Figure 12. Amplitude of the steady state voltage response plotted as a
tion of frequency for three different values of the exchange current dens
indicated in the figure.
-

t

t

determined from their ratiosbd. Alternatively when the solid pha
conductivity in a porous electrode is very high it can be negle
Then Eq. 51 would yield a value forkeff.

The equation for the initial slope of the transient voltage~Eq. 52!
can be used to determine the value of the double layer capaci

The exchange current density is obtained from the value o
voltage at a fixed frequency and at any point of time well within
transient region. It is convenient to use the moderate frequ
range~100 Hz to 0.01 Hz! because the transient voltage respo
exists for a considerable time~in ms see Fig. 4! at these frequencie

In cases where both conductivities are unknown, the follow
four equations can be solved simultaneously to estimate the p
eter values: Eq. 51, Eq. 52, and the voltage response in the tra
region at two different values of time at a fixed frequency or
voltage response in the transient region at two different values
frequency at a fixed time. One has to be cautious in selectin
time and frequency values for parameter estimation. The mod
frequency value of about 100 to 0.01 Hz has to be used and al
value of time should be longer than the constant initial slope re
but should also be within the transient region. These values c
determined by looking at the nature of the voltage response c
at very short times. A better method to estimate parameters wo
to fit18 simultaneously the voltage esponse in the transient regio
two or three different frequency values using nonlinear regres

Conclusions

An analytical solution for the voltage response in the time
main for a porous electrode perturbed by a sinusoidal current d
was derived. The voltage response of the porous electrode inc
the initial transients along with the periodic response. The effe
frequency, exchange current density and double layer chargi
the transient voltage response was analyzed. The correspo
variation in the periodic voltage was presented and compared t
of the transient voltage response. Based on the results we co
that the transient voltage response has a wealth of informatio
can be used independently to estimate all the parameters ass
with a porous electrode model presented here.
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List of Symbols

A amplitude of the applied current density, A/cm2

Ak see Eq. 47
a specific interfacial area, 3s1 − « − «inertd/Rscm−1

Cdl double-layer capacitance, F/cm2

c1 see Eq. 48
f frequency, Hz~1/s!
f l limiting frequency, Hz
F Faraday’s constant, 96487 C/equiv
I applied current density, Acossvtd, A/cm2

i0 exchange current density, A/cm2

i1 matrix phase current density, A/cm2

i2 solution phase current density, A/cm2

jn interfacial current density, A/cm2

jn,f faradaic interfacial current density, A/cm2

L thickness of the porous electrode, cm
n number of electrons transferred in the reaction,s=1d
R universal gas constant, 8.313 J/mol. K

Rs radius of a particle, cm
T temperature, K
t time, s

t0 time constant for double layer charging, s~see Eq. 49!
V* dimensionless voltage across the porous electrode
V voltage ~total voltage! response across the porous electrode, V~see Eq.

45!
V steady state voltage response across the porous electrode, V~see Eq. 46!
ss
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Vss, amp amplitude of the steady state voltage response across the porous elect
V ~see Eq. 46!

Vt short time voltage response across the porous electrode, V~first two ex-
pressions of Eq. 45!

X dimensionless distance, x/L
x distance, cm

Greek
aa, ac anodic and cathodic transfer coefficients respectivelysaa + ac = nd

« porosity of the electrode, dimensionless
«inert volume fraction of the inert material of the porous electrode

dimensionless
b ratio of the effective solution phase and matrix phase conductivitie

keff/ seff
d dimensionless current density, Istds FL/ keffRTd ~see Eq. 19!

f1 solid phase potential, V
f1

* dimensionless solid phase potential,f1F/RT
f2 solution phase potential, V
h overpotentialsf1 − f2d, V

hp dimensionless overpotential,hF/RT ~see Eq. 15!
k solution phase conductivity, S/cm

keff effective solution phase conductivity, see Eq. 4, S/cm
n2 dimensionless exchange current density, ai0saa + acdFL2/RTs 1/ seff

+ 1/ keff d ~see Eq. 14!
s matrix phase conductivity, S/cm

seff effective matrix phase conductivity, see Eq. 3, S/cm
t dimensionless time, t/aCdls 1/ keff + 1/ seff dL2 ~see Eq. 15!
v frequency of the applied current, rad/ss=2pfd

vp dimensionless frequency of the applied current,~see Eq. 36!
j dummy variable of integration

Subscripts
t variable in the transient region

ss variable in steady state region
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