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Abstract—Many numerical solution methods exist for the
transient analysis of continuous-time Markov chains, such as
differential equations, matrix exponential and uniformization
methods. Uniformization is preferable for reasons of its numer-
ical stability, pre-determined error bounds and acceptable time
complexity. However, latest results reveal that computation of
matrix exponentials can be carried out much more efficiently
than before. In this paper, we compare uniformization and ma-
trix exponential—through Padé approximation—coupled with
the scaling and squaring method tailored to the IEEE floating-
point specification. We show that, in certain circumstances, the
use of Padé approximation is advisable, even though in most
cases uniformization performs better.

Index Terms—Transient analysis, continuous-time Markov
chains, uniformization, matrix exponential, Padé approxima-
tion, scaling and squaring.

I. INTRODUCTION

MARKOV chains form a class of stochastic processes
that satisfy Markov property. This property is impor-

tant for it renders the analysis of these processes tractable and
furthermore suitable for various modelling techniques. This
paper deals with discrete-state, continuous-time Markov pro-
cesses: continuous-time Markov chains (CTMCs). CTMCs
have been intensively studied and many textbooks ([1],
[2], [3], [4]) provide thorough introduction to this field
of research. CTMCs have also been used in diverse areas
of applications, including reliability [5], forecasting [6],
transportation [7], and even pre-clinical study [8].

Analysis of CTMCs is usually conducted by computing
transient or steady-state probabilities. The computation of
steady-state probabilities can be reduced to the solution of
a system of linear equations. Transient-state probabilities,
on the other hand, can be computed by solving a system
of Kolmogorov differential equations. The solution of the
system of differential equations can further be carried out di-
rectly or through an exponential function. In 1953, Jensen [9]
introduced a new method to compute these transient-state
probabilities, which he called randomization. This method,
later called uniformization, avoids direct exponentiation, but
instead evaluates a truncated formal power series of the
exponential function. Direct exponentiation or its approxi-
mation is avoided because of its poor numerical properties
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and severe round-off errors [10]. Further investigations and
improvements on the application of uniformization in tran-
sient analysis of CTMCs can be found in [11], [12], [10],
[13], [14], [15].

As previously mentioned, transient-state probabilities can
also be computed through an exponential function of matri-
ces. In this area, Moler and Van Load [16] presented a survey
of the various methods for computing matrix exponentials,
which was later revisited and refined in [17]. Researches in
this field have flourished, resulting in more efficient ways
of computing matrix exponentials. Sidje presented a tool
Expokit in [18], a matrix exponential package that can
deal with many types of matrices. Higham [19] sharpened
previous relative perturbation errors and proposed a faster
method for computing matrix exponentials.

With such advancements in matrix exponential methods,
we are interested in finding out whether it is still wise to
use uniformization to perform transient analysis in CTMCs
and whether we should consider using matrix exponential
instead. To that end, we compare uniformization and matrix
exponential, through Padé approximation combined with
scaling and squaring. As a result of our study, we identify
circumstances, under which matrix exponential is more ef-
fective than uniformization, and then discuss the limitations
of these observations.

The rest of the paper is organized as follows: Section II
presents the background of transient analysis of CTMCs.
The two methods, uniformization and matrix exponential,
are described in Section III. In Section IV, we analyze both
methods by comparing them in terms of time complexity and
storage requirements. We also present the results of experi-
ments to compare the performance of their implementations.
Section V concludes the paper.

II. TRANSIENT ANALYSIS OF CTMCS

Let state space S be finite and discrete, and set T be
continuous. A CTMC is a stochastic process {X(t) ∈ S |
t ∈ T } satisfying Markov property:

Pr{X(tn+1) = sn+1 | X(t0) = s0, . . . , X(tn) = sn}
= Pr{X(tn+1) = sn+1 | X(tn) = sn}.

With every pair of states s, s′ ∈ S , we associate a rate
R(s, s′) that determines the delay and the probability of
the transition from s to s′. The rates of the transitions
between all pairs of states, hence, form a matrix R. Let
E(s) =

∑
s′∈S R(s, s′), namely the total rate of taking an

outgoing transition from state s. Markov property can only
be satisfied if the sojourn time of each state in the CTMC is
governed by a memoryless distribution. Since only negative
exponential distributions are memoryless, these state sojourn
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times are negative exponentially distributed. The sojourn-
time distribution of state s is given by:

Fs(t) = 1− e−E(s)t, t ≥ 0.

For many measures over CTMCs, it is interesting to know
the probability that a CTMC is residing in a particular state
after a given time interval has elapsed. This probability
is called the transient-state probability. Let ~π(t) be the
probability vector of these transient-state probabilities (for
all states) at time instant t; then it satisfies the system of
Kolmogorov differential equations:

d

dt
~π(t) = ~π(t)Q, ~π(0) = ~π0, (1)

where:
Q = R−Diag(E),

is the infinitesimal generator matrix, Diag(E) is a diagonal
matrix formed by E(s)’s, and ~π0 is an initial probability
vector. The solution of Equation (1) is given by:

~π(t) = ~π0eQt = ~π0

∞∑
i=0

(Qt)i

i!
. (2)

III. TWO METHODS FOR TRANSIENT ANALYSIS

In this section, the two methods for computing the
transient-state probabilities of CTMCs are described.

A. Uniformization

Uniformization is one of the methods used to perform
transient analysis of CTMCs. In uniformization, a CTMC is
first uniformized and the resulting embedded discrete-time
Markov chain (DTMC) is then analyzed. To uniformize a
CTMC, which is specified by initial probability distribution
~π0 and infinitesimal generator matrix Q, a rate of sojourn Λ
is selected such that Λ ≥ max{E(s)}. This rate is then set to
become the rate of all states, hence the name uniformization.
The probability matrix of the embedded DTMC is then:

P = I +
Q

Λ
,

where I is the corresponding identity matrix. Once such
a DTMC is available, ~π(t), the transient-state probabilities
vector at time t in Equation (2), can be rewritten as:

~π(t) = ~π0eΛ(P−I)t = ~π0

∞∑
i=0

e−Λt (Λt)
i

i!
Pi. (3)

The expression e−Λt (Λt)i

i! is the distribution of a Poisson
process {Nt, t ≥ 0} with rate Λ. In practice, the infinite sum
in Equation (3) is truncated at some depth, say N , hence:

~π(t) ≈ ~π0

N∑
i=0

e−Λt (Λt)
i

i!
Pi. (4)

Given ε, the maximum error allowed for any component
of the transient-state probabilities vector, N is the smallest
integer such that:

1−
N∑
i=0

e−Λt (Λt)
i

i!
≤ ε.

However, when the value of Λt gets bigger, the Poisson
distribution gets thinner. In this case, the Poisson distribution
for small i’s will be negligibly small. Avoiding the summa-
tion in Equation (4) for such small i’s will not only reduce
computational overhead considerably, but also evade under-
flow and overflow problems. Fox and Glynn in [11] observed
this and proposed an algorithm to perform truncation on
both sides of the summation. Their algorithm also provides
a way to obtain the values of Poisson probabilities without
evaluating expression e−Λt directly. Let L and U be the lower
and upper bounds of the number of terms to compute in
the summation, respectively. Given ε, then L and U are the
largest and smallest integers, respectively, such that:

L∑
i=0

e−Λt (Λt)
i

i!
≤ ε

2
, and 1−

U∑
i=0

e−Λt (Λt)
i

i!
≤ ε

2
. (5)

Algorithm 1 computes the transient-state probabilities vec-
tor by using uniformization. Function foxglynn() is the Fox
and Glynn’s algorithm. Algorithm 1 returns L, the lower
truncation point; U , the upper truncation point; a vector ~w
and a value W such that ~w[i]/W is the probability that i
events occur in the Poisson process.

Algorithm 1: Transient analysis by uniformization
Input: ~π0,Q, t, ε
Output: ~π

1 begin
2 Λ←− max{E(s)}
3 P←− Q

Λ + I
4 [L,U, ~w,W ]←− foxglynn(Λt, ε)
5 p←− ~π0P

L−1 ~w[L− 1]/W
6 for L to U do
7 ~π ←− ~π + p
8 p←− pP~w[i]/W
9 end

10 return ~π
11 end

B. Matrix exponential

Many methods for computing matrix exponentials of the
form of Equation (2) exist. Moler and Van Loan [16],
[17] presented a thorough survey for such methods. We
are particularly interested in Padé approximation method
combined with the scaling and squaring method. Padé ap-
proximation is a method for approximating a formal power
series with a rational function. This method is attributed to
Henri Eugène Padé (1863-1953). The rational function is
derived by expanding the power series as a ratio of two
polynomials and then determining the coefficients of the
numerator and denominator polynomials.

Consider the following arbitrary formal power series:

f(t) =
∞∑
i=0

cit
i, ci ∈ R. (6)

The power series can be approximated by a rational function:

Rm,n(t) =
Pm,n(t)

Qm,n(t)
,
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where Pm,n(t) and Qm,n(t) are two polynomials of degree
m and n, respectively. Such rational function is called a Padé
approximant of the power series if the following conditions:

Rm,n(0) = f(0) and
dk

dtk
Rm,n(t)

∣∣∣
t=0

=
dk

dtk
f(t)

∣∣∣
t=0

hold for k = 1, 2, . . . ,m+ n.
The magnitude of the approximation error for a particular

Padé approximant is given in Theorem 1.
Theorem 1 ([20]): Let Pm,n(t) and Qm,n(t) be polyno-

mials of degree m and n, respectively, and let f(t) be a
formal power series, then:

Pm,n(t)

Qm,n(t)
− f(t) = O(tm+n+1).

Conversely, let W (t) be a polynomial of degree m and V (t)
be a polynomial of degree n such that:

W (t)

V (t)
− f(t) = O(tm+n+1),

then:
W (t)

V (t)
=
Pm,n(t)

Qm,n(t)
.

Theorem 1 establishes that there exists a unique Padé
approximant of particular degrees of numerator and denom-
inator polynomials for any power series; and for such an
approximant a larger t results in a bigger approximation
error. Brezinski [20] presented a constructive method to build
Padé approximants for arbitrary power series. Diagonal Padé
approximants Rm,m(·) are more preferable than off-diagonal
approximants, since for the same order of approximation,
diagonal approximants expend the least amount of work. For
the special case when the power series is an exponential
function, the generic forms of the two polynomials Pm,n(t)
and Qm,n(t) have been determined [20], namely:

Pm,n(t) =
m∑
i=0

(m+ n− i)!m!

(m+ n)!(m− i)!
ti

i!
, and

Qm,n(t) =
n∑
i=0

(m+ n− i)!n!

(m+ n)!(n− i)!
(−t)i

i!
.

Moler and Van Loan described in [17] that Padé approx-
imation coupled with the scaling and squaring technique,
when properly implemented, is one of the most effective
methods to compute matrix exponentials. Scaling and squar-
ing method exploits an important property of exponential
functions, namely:

et = (et/m)m.

In computing matrix exponential eA, for the same order of
approximation error, polynomials Pm,n(A) and Qm,n(A) of
higher degrees are required if the norm of the matrix (‖A‖)
increases. The scaling and squaring method enables us to
choose s, for which eA/2

s

can be computed efficiently with
reasonable degrees of Pm,n(A) and Qm,n(A) (since ‖A/2s‖
stays small) and then by squaring the result s times, to obtain
the final result (eA/2

s

)2s

= eA. A common criterion is
usually to select s such that ‖A/2s‖ ≤ 1

2 .
When the scaled matrix eA/2

s

is approximated by
Rm,m(A/2s), naturally an approximation error occurs. If:

Rm,m (A/2s)
2s

= eA+E,

where E is the perturbation matrix, then it is shown in [17]
that:

‖E‖
‖A‖

≤ 8

(
‖A‖
2s

)2m
(m!)2

(2m)!(2m+ 1)!
. (7)

Given an upper bound ε, the values of s and m can be chosen
such that:

‖E‖
‖A‖

≤ ε.

If this is the case, it can be shown that [17]:

‖Rm,m(A/2s)2s − eA‖
‖eA‖

≤ ε‖A‖eε‖A‖, (8)

which gives the relative error bound of the approximant to
its exact value.

It must be remembered that the above-mentioned error
bounds are due to truncation error when computing the infi-
nite sums of the power series. The whole derivation is carried
out with the assumption of exact arithmetic. The problem of
rounding error, however, is important, especially when the
squaring is performed more often (namely when s is large). It
is worth noting that function expm in MATLAB [21], which
computes matrix exponential, uses this result with m = 6 and
s such that ‖A/2s‖∞ < 1

2 .
The relative perturbation error in Equation (7) is sharpened

by Higham in [19] as described in Theorem 2.
Theorem 2 ([19]): Let the diagonal Padé approximant

Rm,m(·) satisfy:

Rm,m(A/2s)

eA/2s = I + G,

where ‖G‖ < 1. Then:

Rm,m(A/2s)2s

= eA+E,

where E commutes with A and the relative error:
‖E‖
‖A‖

≤ − log(1− ‖G‖)
‖A/2s‖

.

We can then write the relative error in Theorem 2 as:
‖E‖
‖A‖

≤ − log(1− g(θ))

θ
, (9)

with θ = ‖A/2s‖ and:

g(θ) =

∞∑
i=2m+1

|ci|θi.

Higham in [19] evaluated g(θ) for m = 1, . . . , 21 such
that the relative error in Equation (9) does not exceed the
unit round-off in IEEE double-precision arithmetic, namely
u = 2−53 ≈ 1.1 × 10−16. Choosing m = 13—which
gives θ = 5.371920351148152—is the most preferable for it
requires the lowest number of matrix multiplications in the
evaluation of the Padé approximant and the squaring. Note
that using this method, ‖A/2s‖ ≤ θ is very big compared to
the criterion proposed in [17] (‖A/2s‖ < 1

2 ), which means
the number of matrix multiplications required in the squaring
phase is even smaller.

Furthermore, an efficient scheme can be applied in the
evaluation of the numerator and the nominator of Rm,m(A).
Since Qm,m(A) = Pm,m(−A), only even powers of A are
required to be computed. For instance, for m = 13, let:

U = A(A6(b13A
6+b11A

4+b9A
2)+b7A

6+b5A
4+b3A

2+b1I)
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and:

V = A6(b12A
6+b10A

4+b8A
2)+b6A

6+b4A
4+b2A

2+b0I,

then P13,13(A) = U +V and Q13,13(A) = −U +V . There-
fore, the evaluation of both P13,13(A) and Q13,13(A) re-
quires only 6 matrix multiplications. Nevertheless, it must not
be forgotten that Rm,m(A) itself is computed by solving the
system of linear equations Qm,m(A)Rm,m(A) = Pm,m(A).

For ‖A‖1 > 1, Higham’s method requires two or three
fewer matrix multiplications than expm, and four to five
fewer than padm. padm is the Padé approximation to matrix
exponential in the tool Expokit ([18]). For ‖A‖1 ≤ 1,
Higham’s method requires up to (no more than) 3 and 5
fewer matrix multiplications, compared to expm and padm,
respectively.

IV. METHODS COMPARISON

In this section, we compare uniformization and matrix
exponential methods. First, the worst-case computational
requirements of both methods are analyzed. Several practical
issues concerning the complexity and implementation of
both methods are also considered. The next two subsections
describe the experiments conducted to compare the perfor-
mance of both methods. The section is closed by a general
discussion of the comparison.

A. Worst-case complexity

Let ~π0 and Q be the initial probability distribution and
the infinitesimal generator matrix of a CTMC, respectively.
Transient analysis of the CTMC by uniformization proceeds
by applying Algorithm 1. In this case, it is advisable to
choose Λ, the uniformizing rate, to be strictly larger than
the largest absolute diagonal element of Q to ensure that
the embedded DTMC be aperiodic and hence has a steady-
state solution. On the other hand, transient analysis of the
CTMC by matrix exponential method is carried out by
evaluating Equation (2). For a particular time-instant t, the
multiplication of matrix Q with constant t is calculated and
then expression eQt is evaluated by using matrix exponential
with Padé approximant R13,13(Qt) and scaling and squaring
method as required by the norm ‖Qt‖. If ‖Qt‖ > θ then
the matrix is scaled s times such that ‖Qt/2s‖ ≤ θ, where
θ = 5.371920351148152.

Let us consider the complexity of transient analysis by
matrix exponential when the CTMC has N states. We
assume that a standard matrix multiplication requires a
cubic number of element-wise multiplications, and do not
consider specialized algorithms such as [22]. The number of
multiplications required to compute matrix exponential of the
scaled matrix (Qt/2s) is 6N3, since using Padé approximant
R13,13(·) requires 6 matrix multiplications. Furthermore, the
resulting matrix is squared s times to produce the final matrix
exponential and this requires sN3 multiplications, where
s = dlog2(‖Qt‖θ )e. The final vector-matrix multiplication of
the initial probability distribution with the result of matrix
exponential adds N2 multiplications. Thus, overall, the num-
ber of multiplications required when using ∞-norm is:

O(N3(6 + s) +N2) = O(N3(6 + dlog2(
‖Qt‖∞
θ

)e) +N2),

= O(N3(6 + dlog(Λt)− log(θ)e) +N2),

where Λ = max{E(s)}. This reduces to O(N3(dlog(Λt)e)),
since θ is a constant.

In transient analysis via uniformization, the number of
terms needed in the summation in Equation (3), if truncated
from both sides, is in the order of

√
Λt [11]. Since each

term requires a vector-matrix multiplication, computing the
final transient-state probabilities vector after the left trunca-
tion requires O(N2

√
Λt) multiplications. However, the left

truncation removes the first O(Λt) terms from the sum in
Equation (3). To obtain the first significant term after the
left truncation requires O(Λt) vector-matrix multiplications,
thus O(N2Λt) multiplications. Overall, the number of mul-
tiplications required in uniformization is in the order of
(N2Λt+N2

√
Λt), hence O(N2Λt).

When N is large compared to Λt (which is very common),
then uniformization is the method of choice. However, when
Λt is large compared to the state-space size N , the O(Λt)
vector-matrix multiplications needed to reach the left trunca-
tion point constitute a considerable overhead. This procedure
can better be replaced by successive squaring of P, the tran-
sition probabilities matrix of the embedded DTMC, which
requires log(Λt) matrix multiplications. In this fashion, the
number of multiplications required in uniformization is in
the order of (N3 log(Λt) +N2

√
Λt), hence O(N3 log(Λt)).

The previous analysis reveals rough parameter ranges
where the computational requirements for uniformization
are expected to be lower than those for matrix exponential,
namely when N > Λt

log(Λt) . It also suggests that, theoretically,
we can expect matrix exponential to perform better when Λt
is large enough, namely when N < Λt

log(Λt) .

B. Practical considerations
In the previous subsection, we have shown that matrix

exponential may, theoretically, perform better if Λt is large
enough. The expression Λt represents the index of stiffness
of the model. The index of stiffness reflects the number of
occurrences of the most frequent event during the observation
time. For ordinary models, this index is expected to be small,
since most of the interesting properties can be observed in
comparatively small time-intervals (small time-intervals for
large rates and vice versa). On the other hand, if the ratio
of the largest to the smallest rates is large, and we are more
interested in the occurrences of those events that happen with
small rates, then we are forced to observe the model in large
time-intervals.

In practice, very stiff models are not rare at all [23]: large
values for Λt are notorious for reliability models and their
evaluation. In reliability evaluation, within a model, the rate
of occurrences of normal events are usually much larger than
the rate of occurrences of events that lead to failures. Since in
reliability evaluation, we are mostly interested in events that
lead to failures, the model must be analyzed at large time-
instant t’s. At the same time, reliability models of small and
medium sizes (less than a few thousand states) are rather
common [24], [25], [26]. Thus, reliability models are prime
candidates where matrix exponential tailored to the IEEE
floating-point specification might show its advantages.

Each of uniformization and matrix exponential methods
provides a way to compute an error bound. The error bound
in uniformization is the maximum deviation of each com-
ponent of the resulting transient-state probabilities vector.
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This bound is pre-determined by setting ε in Equation (5).
For matrix exponential, the error bound is the maximum
perturbation error of the approximation relative to its exact
value as given by Equation (8). With ε in Equation (8)
being fixed to the unit round-off of IEEE double-precision
arithmetic, the error bound of this method is comparable to
having ε in Equation (5) set to 10−10 up to 10−12.

C. Experimental evaluation

For models with low index of stiffness, previous researches
indicate that uniformization is the method of choice amongst
all existing methods. In this subsection, we compare the per-
formance of uniformization and matrix exponential methods
experimentally for stiff models. For that purpose, we have
selected two CTMC models, namely a tandem queueing
network and a cyclic server polling system models. Both
models are stiff, and, thus, help to show the applicability of
matrix exponential method.
Experiment 1: Simple Tandem Queueing Network [27].
This is a CTMC model of M/Coxp/1 queue of a certain
capacity c. Arrival to the queue is exponentially distributed
while its service time is distributed according to phase-type
distribution. Coxp represents the phase-type distribution of
Coxian representation with p phases. In this experiment, we
use queue with phases p = 2.

The computation times of both methods are compared for
various cases by varying the capacity of the queues (which
corresponds to the number of states in the model, ranging
from 45 to 861 states) and the times at which the transient-
state probabilities are inspected (ranging from 1 to 10,000).
The maximum of absolute diagonal elements of the generator
matrices, namely max{E(s)}, of all models ranges from 22
for the model with 45 states to 86 for the model with 861
states.
Experiment 2: Cyclic Server Polling System [28]. A polling
system consists of several queueing stations and a polling
server. The server serves each queue in a cyclic manner. In
this experiment, the server only has a single buffer and must
handle 4 to 7 queueing stations.

The computation times of both methods are compared for
the cases where the number of stations handled by the polling
server is varied from 4 to 7. The resulting models have
96, 240, 576, and 1,344 states, respectively. The transient-
state probabilities of the models are computed for the times
ranging from 10 to 10,000. In all the models, the maximum
of absolute diagonal elements of the generator matrices,
(max{E(s)}) is equal to 201.

Both experiments are conducted on a computer with an In-
tel Core i7-6700 @ 3.40 GHz. CPU, 16 GB of RAM, running
Ubuntu Linux 16.04 64 bits. Both uniformization and matrix
exponential have been implemented in C. Implementations
do not make use of sparse matrix storages.

D. Results

The results of Experiment 1 and Experiment 2 are depicted
in Fig. 1 and Fig. 2, respectively. The figures show the
computation times (in milliseconds) of both methods for
various sizes of models’ state spaces and various values of
Λt. Note that axes “Lambda * t” and “Computation Time
(ms)” are in logarithmic scale.

In both figures, we can observe that computation times
consistently grow for larger state-space sizes as well as
for larger values of Λt. For a particular value of Λt, the
computation time of both methods grows fast for larger state-
space sizes, even though matrix exponential is much faster
than uniformization. For a particular state-space size, the
computation time of matrix exponential for different values
of Λt grows slowly (less than one order of magnitude). The
computation time of uniformization, for a similar situation,
grows steeply; the larger Λt, the steeper the growth.

In order to more closely observe the effect of the value
of Λt on the computation time, we show in Fig. 3 the
computation times for increasing values of Λt of a model
in Experiment 1 (containing 780 states) and a model in
Experiment 2 (containing 1,344 states). We can observe
that the computation time of uniformization exceeds that of
matrix exponential when the value of Λt exceeds around
20,000 in the first model and around 400,000 in the second
model. When Λt is less than those values, the computation
time of uniformization is considerably less than that of matrix
exponential. Once those values are exceeded, however, the
computation time grows very fast.

E. Discussion

In this section, we have investigated how recently de-
veloped methods for computing matrix exponentials can
be used in Markov chain analysis. Since transient analysis
of CTMCs basically boils down to the solution of matrix
exponential functions, we have compared the most promis-
ing method by Higham with uniformization, the method
usually used to perform transient analysis. The comparison
of both methods reveals that, at least theoretically, their
computational requirements are comparable, with, as a rule
of thumb, uniformization being preferable for large models
and Higham’s method being preferable for very stiff models.

Our practical experiments support this claim for small
and moderate-size models. The advantages of matrix expo-
nential are restricted to this range of model sizes for two
reasons. First, because of the computational requirements
described above. Another reason for this lies in the storage
requirements of matrix exponential. Due to the heavy use
of matrix multiplications in matrix exponential method, its
use is restricted to models of small to moderate size. The
fact that at least 4 matrices, namely the original matrix Qt,
(Qt)2, (Qt)4, and (Qt)6, must be stored simultaneously in
memory increases the storage requirement of this method.
Uniformization, on the other hand, does not suffer from this
limitation.

Another advantage of uniformization lies in the sparseness
of the model; and this allows it to scale to larger model sizes
better than matrix exponential. Since CTMCs are usually
structured and have a low number of non-zero elements, the
use of sparse matrices or symbolic storages can considerably
reduce not only the storage requirement, but also the per-
formance. Using sparse storage, vector-matrix multiplication
can be performed in O(η) multiplications, where η is the
number of non-zero elements in the matrix.

Matrix exponential cannot profit from such a sparse matrix
storage that much, because successive matrix multiplications
result in fill-in. In current standard personal computers,
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Fig. 1. A 3D chart showing the computation times (in milliseconds) of both methods for 476 cases obtained by varying the state-space size (#state) and
the value of Λt for the Simple Tandem Queueing Network experiment. The state-space size ranges from 45 to 861, while Λ ranges from 22 to 86. Since
the transient-state probabilities are computed for time-instant ranging from 10 to 10,000, Λt, then, ranges from 220 to 860,000. The axes for computation
time and Λt are logarithmic.
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Fig. 2. A 3D chart showing the computation times (in milliseconds) of both methods for 80 cases obtained by varying the state-space size (#state)
and the value of Λt for the Cyclic Server Polling System experiment. The state-space size ranges from 96 to 1,344, while Λ is fixed at 210. Since the
transient-state probabilities are computed for time-instant ranging from 10 to 10,000, Λt, then, ranges from 2100 to 2,100,000. The axes for computation
time and Λt are logarithmic.
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Fig. 3. Zooming into Fig. 1 and Fig. 2, this figure shows the computation times (in milliseconds) of both methods for a particular state-space size,
namely 780 states for the Simple Tandem Queueing Network experiment and 1,344 states for the Cyclic Server Polling System experiment, while the
value of Λt is varied. The axis for computation time is logarithmic.

matrix exponential is only practical for models with up
to around 3,000 states. On the other hand, this is the
range of model sizes where matrix exponential shows its
strength, so there is no benefit in striving for more compact
representations, which would allow it to handle models that
uniformization is preferable anyhow.

With respect to numerical accuracy, we have discussed
that error bounds supplied by both methods are (or can be
made) comparable. In practice, for models with small index
of stiffness (Λt ≤ 102) the performance of uniformization is
still tolerable when error bound is maintained small (10−10

to 10−12), but, as explained above, decreases with increasing
index of stiffness. In Padé approximation, on the other
hand, the maximum relative perturbation error is ensured
not to exceed the unit round-off of IEEE double-precision
arithmetic (253 ≈ 1.1 × 10−16). As a result, our experience
shows that matrix exponential is safe to use for models with
Λt of up to 105. As was to be expected, decreasing the
error bound for uniformization makes the numerical results
converge to those produced by matrix exponential.

As a final point, one may raise the issue that, for large
values of Λt, an equilibrium might have been reached long
before time-instant t. Uniformization can account for that
by using a built-in steady-state detection mechanism during
the evaluation of each (or some) time-step of the embed-
ded DTMC, thus cutting computation steps. However, this
equilibrium phenomenon is not to be expected for very stiff
models, where even for very large time-instants (in the order
of 103) equilibrium is still out of sight.

V. CONCLUSION

We have compared the performance of uniformization
and matrix exponential methods in computing transient-state
probabilities of CTMCs. Specifically, we have used the Padé
approximation coupled with scaling and squaring method of
the type proposed by Higham to compute matrix exponentials
tailored to the IEEE floating-point specification.

Our experiments show that:
1) For small indices of stiffness, the computation time

of uniformization is always much smaller than that of
matrix exponential.

2) The index of stiffness has only a marginal effect
on the computation time of matrix exponential. On
uniformization, however, the index of stiffness has a
significant effect.

3) The state-space size contributes much more to the
computation time than the index of stiffness. Note that
axis “#state” is in linear scale; and even in this scale,
the growth of computation time for increasing state-
space size is faster than that for increasing values of
Λt, which is presented in logarithmic scale.

While in general the use of uniformization is still prefer-
able compared to matrix exponential, very stiff models
of average state-space sizes can take advantage of matrix
exponential method. Such models are common in reliability
engineering.

REFERENCES

[1] W. Feller, An introduction to probability theory and its applications.
John Wiley & Sons, 2008, vol. 2.

[2] J. R. Norris, Markov Chains, ser. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 1997.

[3] S. M. Ross, Stochastic processes, ser. Wiley series in probability and
statistics: Probability and statistics. Wiley, 1996.

[4] W. J. Stewart, Introduction to the numerical solution of Markov chains.
Princeton University Press, 1994.

[5] Y.-L. Tsai, D. Yanagisawa, and K. Nishinari, “Performance analysis
of open queueing networks subject to breakdowns and repairs,” Engi-
neering Letters, vol. 24, no. 2, pp. 207–214, 2016.

[6] X. Zeng, L. Shu, and J. Jiang, “Fuzzy time series forecasting based
on grey model and Markov chain,” IAENG International Journal of
Applied Mathematics, vol. 46, no. 4, pp. 464–472, 2016.

[7] R. Pulungan and H. Hermanns, “Acyclic minimality by construction—
almost,” in 2009 Sixth International Conference on the Quantitative
Evaluation of Systems, Sept 2009, pp. 63–72.

[8] H. R. Al-Khalidi and D. J. Schnell, “Application of a continuous-
time Markov chain to a preclinical study,” Drug Information Journal,
vol. 31, no. 2, pp. 607–613, 1997.

[9] A. Jensen, “Markov chains as an aid in the study of Markov processes,”
Skand. Aktuarietidskrift, vol. 3, pp. 87–91, 1953.

[10] W. K. Grassmann, “Transient solutions in Markovian queueing sys-
tems,” Comput. & Oper. Res., vol. 4, no. 1, pp. 47–53, 1977.

[11] B. L. Fox and P. W. Glynn, “Computing Poisson probabilities,”
Communications of the ACM, vol. 31, no. 4, pp. 440–445, 1988.

[12] W. Grassmann, “Finding transient solutions in Markovian event
systems through randomization,” in Numerical Solution of Markov
Chains, W. J. Stewart, Ed. CRC Press, 1991, ch. 18, pp. 357–371.

[13] D. Gross and D. R. Miller, “The randomization technique as a
modeling tool and solution procedure for transient Markov processes,”
Operations Research, vol. 32, no. 2, pp. 343–361, 1984.

IAENG International Journal of Computer Science, 45:2, IJCS_45_2_05

(Advance online publication: 28 May 2018)

 
______________________________________________________________________________________ 



[14] J. K. Muppala and K. S. Trivedi, “Numerical transient solution of finite
Markovian queueing systems,” in Queueing and Related Models, U. N.
Bhat and I. V. Basawa, Eds. Oxford University Press, 1992, ch. 18,
pp. 262–284.

[15] A. Reibman and K. Trivedi, “Numerical transient analysis of Markov
models,” Comput. Oper. Res., vol. 15, no. 1, pp. 19–36, Jan. 1988.

[16] C. Moler and C. V. Loan, “Nineteen dubious ways to compute the
exponential of a matrix,” SIAM Review, vol. 20, no. 4, pp. 801–836,
1978.

[17] ——, “Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later,” SIAM Review, vol. 45, no. 1, pp. 3–49, 2003.

[18] R. B. Sidje, “Expokit: A software package for computing matrix
exponentials,” ACM Trans. Math. Softw., vol. 24, no. 1, pp. 130–156,
Mar. 1998.

[19] N. J. Higham, “The scaling and squaring method for the matrix expo-
nential revisited,” SIAM Journal on Matrix Analysis and Applications,
vol. 26, no. 4, pp. 1179–1193, 2005.
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