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Executive Summary 
Population and extended economic growth in many Seattle neighborhoods are driving increased demand 
for private car travel along with transportation services such as ridehailing and on-demand delivery. 
Together, these trends are adding to existing demand for loading and unloading operations throughout the 
city, and exacerbating traffic congestion. Anecdotal evidence indicates that passenger/delivery vehicle stops 
at or next to transit stops can interfere with bus operations, causing longer or more volatile delays. The 
increased travel times and reduced reliability further erode the attractiveness of transit to travelers. Thus, it 
is important to understand how transit, ridehailing, and goods delivery vehicles interact in terms of both 
operations and travel demand. 

This project focuses on the analysis of open-source transit data to screen for locations with slow and/or 
unreliable bus travel times, and couple that data with interference observation, environmental, and traffic-
related data to potentially predict the likely causes. We have developed tools to identify transit corridors 
with high levels of interference from other road users, including passenger cars, ridehailing vehicles and 
goods delivery vehicles. These tools are applied to transit corridors in Seattle and Bellevue, and methods 
have been developed to identify likely sources of interference from available data. 

We drew on multiple data sources for identifying high-interference corridors in the region, including: 

● a virtual workshop with participants from beneficiary agencies and stakeholders to solicit input; 
● an online crowdsourcing survey to engage the community and gather feedback from all road users; 
● route-level ridership data from King County Metro; and 
● aggregated pick-up/drop-off data on ridehailing activities from SharedStreets. 

Data was consolidated and 10 corridors were selected based on their likelihood of containing interference 
between buses and other road users, transit ridership levels, and stakeholder and community feedback. 

In addition, we have developed a tool for identifying corridors with slow and/or unreliable bus travel times 
from open-source real-time transit data. We implemented a pipeline for ingesting and analyzing King 
County Metro’s real-time Generalized Transit Feed Specification data (GTFS-RT) at 10-second intervals. 
Using this pipeline, active bus coordinate and schedule adherence data has been scraped and stored to an 
Amazon Web Services (AWS) server since September 2020. We developed efficient methods to aggregate 
tracked bus locations and assign them to roadway segments, and quantified delays in terms of schedule 
deviation and ratio of median to free-flow speeds, among other metrics. We have developed a web based 
visualization tool to display this data, and it is being updated daily with aggregated performance metrics 
from our database. 

To collect ground truth validation data along selected corridors, we implemented an online data collection 
tool for field observations, and recruited research assistants to observe bus operations along the study 
corridors and record information on bus traversals and instances of interference. This dataset is analyzed 
alongside the GTFS-RT data, environmental, and traffic related data to identify instances of delay and 
predict the likely causes. 

Field data was collected for three weeks along eight of the selected corridors in March 2021, but was later 
paused due to depressed levels of transportation activity during the COVID-19 pandemic and the current 
unstable condition of travel choices and city traffic (and thus interferences). Preliminary analysis on the 
collected data revealed that there is not a substantial effect shown in the GTFS-RT data when a bus is 
interfered with; however, there were not a lot of interference observations in the collected field data. So, it 
remains to be seen whether the lack of an identifiable effect is due to the lack of ground truth data, lack of 
precision in the automatic vehicle location system, or the relatively low impact of an interference when 
compared to the effects of general traffic congestion, signals, and other roadway conditions. A linear 
regression model was also generated to determine the extent to which roadway characteristics can predict 
segment performance, which produced mildly predictive results.  
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As businesses and transit services continue to reopen, there will likely be an increase in the amount of 
transit interference experienced between buses and other roadway users, which will potentially allow for 
the gathering of more ground truth validation data. Field observations will resume in late Summer/early 
Fall 2021 and will continue until enough data is collected to either (1) model connections between observed 
interference and bus delays in the GTFS-RT data; or (2) determine whether significant delays cannot be 
linked to observed instances of interference in the study corridors. The GTFS-RT data scraping will 
continue daily, and summarized in the developed interactive visualization tool. 
 
The major anticipated benefits of the project can be summarized as follow: 

● This work will help identify network-wide road and route segments with slow and/or unreliable 
bus travel times. We may also be able to identify main causes of delay in the study corridors. 

● Moreover, we expect that this work will generate reusable analytical tools that can be applied by 
local agencies on an ongoing basis, and by other researchers and transportation agencies in their 
own jurisdictions. 

● The outcomes of this work will enable identifying corridors with slow and/or unreliable bus travel 
times as candidates for specific countermeasures to increase transit performance, such as increased 
enforcement, modified curb use rules, or preferential bus or street use treatments. Targeting such 
countermeasures towards priority locations will result in faster and more reliable bus operations, 
and a more efficient transportation network at a lower cost to transit agencies. 
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Introduction 
Population and extended economic growth in many Seattle neighborhoods are driving increased demand 
for private car travel along with emerging services including ridehailing and on-demand delivery. Together, 
these trends are adding to existing demand for loading and unloading operations throughout the city, and 
exacerbating traffic congestion. Anecdotal evidence indicates that passenger/delivery vehicle stops at or 
next to transit stops can interfere with bus operations, causing longer or more volatile delays. The increased 
travel times and reduced reliability further erode the attractiveness of transit to travelers. To improve the 
performance of transit services, it is important to understand whether other road users such as ridehailing 
and goods delivery vehicles interfere with transit vehicles in urban areas, and deploy measures to mitigate 
the causes of delay to transit operations. 

This project focuses on the analysis of open-source transit data to screen for locations with slow and 
unreliable bus travel times, and couple that data with additional environmental and traffic-related data to 
potentially predict the likely causes. To accomplish this, we identified transit corridors in Seattle and 
Bellevue with high levels of interference from other road users which may include passenger cars, 
ridehailing vehicles and goods delivery vehicles. Figure 1 shows an overview of the project stages and 
tasks. 

 
Figure 1: Overview of project stages and tasks. 

 

In screening for transit interference, we draw on multiple data sources for identifying interference, including 
the King County Metro Generalized Transit Feed Specification (GTFS) data and its real time component 
(GTFS-RT). Once locations with significant interference are located, we identify the likely causes by 
incorporating additional data (e.g. surrounding land use, number of lanes, speed limit, traffic volume, 
ridehailing pick-up drop-off, loading zone occupancy). Ground truth data for validation will be collected 
by field observers along pre-screened corridors throughout the Seattle-Bellevue region that are anticipated 
to have high levels of transit interference with other roadway users. 

The GTFS data has provided a fully generalizable framework by which agencies and planners can collect 
and share transit scheduling data. More importantly, it has led to the development and proliferation of the 
GTFS-RT (real-time) standard by which actual bus locations and stop times can be shared in a standardized 
format, once collected by various Automatic Vehicle Location (AVL) systems. The real-time aspect of this 
data allows for both the quantification of transit delays, and potential classification of them. That is to say 
that if a bus is blocked or slowed during its trip, not only can we quantify the amount of time that it has 
been put behind schedule, but also observe with relative precision where that delay initially occurred, and 
derive or estimate additional information about what might have caused it. As part of this project, we have 
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developed a tool to visualize several performance metrics derived from variables in the GTFS-RT standard. 
We have implemented this tool based on data scraped and stored from the OneBusAway API. The 
OneBusAway API is a programming interface which allows a user to request specific information (e.g. 
which vehicle ID is currently serving a specific trip, or where its position was last updated) about vehicles 
in the system. The organization which manages OneBusAway is the Open Transit Software Foundation, 
which handles the code-base and also provides a mobile application for users to easily view real-time bus 
data in various supported cities. The OneBusAway API contains real-time and scheduling data for the King 
County Metro transit system, which covers the entire study area. 

Literature Review 
There has been extensive work attempting to predict the quantity of delay, and overall travel time variability 
experienced by transit vehicles, at the segment and trip levels. In general, successful approaches utilize trip-
level characteristics such as traffic volumes, number of stops, and the length of a trip to predict travel time 
variability. Various models have been applied to these predictors, the simplest of them being univariate 
linear regressions and arguably the most complex being artificial neural networks. Other works have 
approached the problem in other ways, such as measuring the dissipation of delay, or using proxies like 
headway deviation. But ultimately the unifying question seems to be; “what is the likely quantity of delay 
induced by a given corridor or trip?”. This question is relevant to endeavors regarding schedule padding 
and delay accommodation; however, given the proliferation of GPS systems and widespread connectivity, 
bus arrival times can be predicted on a case-by-case basis in real-time. This then begs the question, “what 
specifically causes the bus delay induced by a given segment?”. This question has received significantly 
less attention. 

Most approaches to delay prediction use regression models, and draw from predictors that are not 
necessarily specific to transit delays, but are indicative of all vehicles using a segment. This approach has 
been used to develop models on a segment basis and apply predictors such as the number of buses, schedule 
adherence, number of stops, and traffic density as well as roadway characteristics such as left/right/through 
lane densities (1–3). The findings tend to suggest that variables related to moving time/travel time ratio, 
segment length, and number of bus stops are the most predictive variables; indicating that perhaps a 
combination of bus related variables (e.g. number of stops) and general traffic related variables (e.g. moving 
time/travel time, segment length) are most capable of quantifying transit delay for a given roadway segment. 
This distinction begins to suggest the opportunity for a classification model by which delay can be separated 
into quantities caused by bus activity for a segment (e.g. boarding and alighting), and quantities that are 
inherent to the segment itself (e.g. congestion). Another study explored this through variables drawn 
entirely from automated passenger counter (APC) data, such as specific quantities of boarding/alighting, 
lift use, headway deviation, and average passenger load (4). They were able to develop a fairly predictive 
model by using these transit-specific predictors. Additionally, several models were tested in which they 
used various measures of transit delay including run time, run time deviation, and headway deviation. The 
most success was found with run time as the dependent variable, in which nearly all variables in the model 
were significant. 

Other works have gone on to apply increasingly exotic models to similar predictors. One study approached 
the problem of predicting transit delay through a series of multivariate regressions, followed by an artificial 
neural network (ANN) model (3). They defined travel time between each of the stops as the dependent 
variables and used arrival time, dwell time, and schedule adherence at each stop along a corridor as 
independent variables. Their findings supported the use of the more complex model, indicating that 
compared to the regression model, the ANN was able to predict arrival time (and by extension accumulated 
delays) more precisely for each stop on a single route. This is in congruence with another study that tested 
linear regression, ANN, and support vector machine (SVM) models and found linear regression to be the 
least accurate arrival time model (5). This suggests a more complicated relationship between travel time 
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and characteristics of the route. As a matter of fact, ANNs have been applied frequently to attempt to predict 
transit delay (3,5–8). So much so that work has been performed to document many successful cases, from 
which one new study built itself by creating separate link- and stop-based models, then validated those 
models against a regional traffic simulation (7). Their results suggested that there were fundamental 
differences in the ANNs developed on stop-based characteristics than in those on link-based characteristics, 
specifically that stop-based models perform better when predicting segments with multiple intersections. 
This seems to suggest that there is a relationship between bus stops and intersections that could cause 
unscheduled delay, and that there is value in separating and accounting for segment and stop delay in 
different ways. They conclude by advocating for a hybrid model that predicts overall delay using 
characteristics of both stop and segment ANNs. 

In the realm of delay classification, much less work has been performed. There are works which have 
broken down a single component of delay (e.g. transit delay due to an intersection) (9) to predict with 
relative ease the delays due to that single component. However, these papers tend to make extensive use of 
AVL and APC data, while few, if any, have based their models on GTFS-RT. This could be due to the still 
limited adoption of GTFS-RT, or more likely, due to it being a less comprehensive data source than 
AVL/APC. Part of the work that this study proposes is to lay the groundwork for a predictive model, which 
can identify delay characteristics easily obtained from APC data such as stop length, by using the 
positioning data from GTFS-RT. The work most similar to ours classified delays using AVL data according 
to their phase of operation (slowdown in traffic, stopped at a signal, boarding passengers, and free flow) 
(10). Separately, they developed linear regressions attempting to predict travel times for each segment in a 
transit network, but were not able to explain much of the travel time variance (10-15%). However, this 
work relied heavily on door-open and bus stopped datasets, which are typically only available in AVL 
datasets and not found in GTFS-RT. 

Overall, there are strong use-cases for GTFS-RTdata, for example, retrospective analysis can determine 
hotspots of delay in transit networks, or trip segments with tendencies toward high variability (11,12). Both 
of these analyses can be applied by planners and agencies to adjust transit schedules and direct resources 
toward corridors, stops, or segments that need it most. In some cases, it is not delay itself that is modeled 
and analyzed, but the rate at which it increases or decreases across various land-use and roadway 
characteristics (13). In a conceptually similar way, we measure the individual occurrences of delay which 
contribute to these increases and decreases. Lastly, some studies have gone a step further and applied real-
time prediction methods to determine delays in active systems, and used that information to provide better 
scheduling information to travelers. This was found to lead to lower overall wait times for travelers, and a 
more positive perception of transit reliability (14). This is to say that prior works have not only documented 
extensively our ability to predict delay, but the value in doing so. 

Corridor Selection 
We selected 10 corridors for observing and studying interference between buses and other road users 
(passenger cars, ridehailing vehicles, delivery vehicles, etc.). We obtained data from various sources for 
the purpose of systematically determining these locations, and have utilized several strategies to process 
this data and to identify corridors, which are listed below. 

Input from Stakeholders 

We solicited feedback from all project stakeholders prior to the project kickoff meeting, and discussed 
recommendations during the meeting. This list of corridors was the primary decision factor in our corridor 
selection process. We then extended or altered the proposed locations to best capture areas with high 
ridership, survey responses, or ridehailing activity.  
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Crowdsourced Interference Data 

We designed a survey to solicit input from the community and road users, and to understand their feedback 
on busy transit corridors with high interference. All the survey questions were phrased to avoid requests for 
any personal information, instead asking for general input regarding observation location and type. The 
questions were designed to capture locations of interference, the time at which they were observed, the 
primary cause of the interference, and the bus routes that were affected. 

We published this survey through UW news on March 17, 2020 and allowed responses for 10 days. We 
received a total of 78 responses from the public. Almost all of the locations were mentioned in a descriptive 
and accurate way; but inevitably, some effort was required to recode responses into a standard address 
format. Furthermore, the survey contained a small number of irrelevant, duplicate, and unclear responses. 
To address these deficiencies, we performed a data cleaning process in which all the locations were 
rewritten in standard address format, and unclear responses were re-coded appropriately or discarded. A 
map of locations solicited through the survey is shown in Figure 2. Further details on the data cleaning 
process and the results of the survey can be found in Appendix A. 

 
Bus Ridership Data 

King County Metro (KCM) provided a dataset containing Fall 2019 weekday ridership data and summary 
ridership levels in the form of total counts, which helped us identify corridors with high ridership levels. 
Figure 3 shows corridors with more than 3000 riders during the combined daily peak hour periods (6-9AM 
and 3-7PM). This was calculated by determining the peak hour frequency for each route from KCM GTFS 
data, and multiplying it by the average number of riders on board during peak hour observations provided 
by the KCM ridership data. 

To determine average ridership, we first filtered the provided observations to only include those observed 
during peak hour. We then averaged the number of riders onboard during each of those observations. The 
significance of this is that it does not account for ridership levels that fluctuate heavily across different stops 
for a route; it is a route-level estimate of the average number of riders that can be expected onboard a peak 
hour coach for a given route. This data was then joined based on route number to a publicly available 
shapefile displaying route paths for the KCM network. 

Once the network was complete and overlaid with the proposed corridors, total peak hour bus ridership 
values were determined by using the trip frequency in the KCM GTFS, and summing the total ridership 
across all routes for each proposed corridor. These ridership values are reported in Section 3 along with 
their respective corridors. 
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Figure 2: Map of survey response locations. Red points show single-location responses such as an 
intersection or a bus stop (e.g. “Bell St & 5th Ave”); Yellow points, which are connected by purple 
lines, indicate locations where the respondent specified a corridor rather than a single location (e.g. 

“University Way NE between 45th and 47th St”). 
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Figure 3: Transit routes with peak period ridership greater than 3000 riders. 

 
 
Ridehailing Pick-up/Drop-off Data 
Pick-up and Drop-off (PUDO) data was provided by SharedStreets, an initiative developed by the Open 
Transport Partnership nonprofit group, which develops software intended to aid city planners in decision-
making tasks. One component of the SharedStreets project is an open-data partnership between 
Transportation Network Companies (TNCs) and cities, which provides PUDO data in a convenient user 
interface, and allows for visualization of areas with high TNC activity through a heatmap. As a project 
partner, SharedStreets provided us with access to their database, which contained average hourly counts for 
PUDO activity (aggregated over Uber and Lyft data) across nine weeks spread out across 2018-2019. For 
the purpose of this study, we only considered data for peak hours (all days of the week from 6-9AM and 3-
7PM), and treated pick-up and drop-off activity the same.  

The point-value based data was interpolated using an Inverse Distance Weighting (IDW) tool in GIS, which 
allowed for the generation of heat maps and revealed areas near our study corridors with tendencies towards 
high PUDO activity. Some artifacts occurred in this process due to individual locations in the dataset having 
very low average PUDO values, despite being surrounded by points with very high average PUDO values. 
The IDW process tends to leave small maximum and minimum values at the location of point values. This 
is manifested in many small “points” of low activity surrounded by areas with heavy PUDO activity, so it 
is important to judge the maps holistically and not on a meter-by-meter basis.  
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This data did not drive our initial corridor selection process, but was instead used to adjust, extend, or retract 
boundaries of our proposed corridors, such that areas of high average PUDO activity were included. It was 
the initial step in the process of refinement, the results of which are discussed in the next section. 

 
Selected Corridors 
Figure 4 shows an overview of the selected study corridors, and a list of corridor locations with additional 
information is provided in Table 1. A closer look into each individual corridor is provided in Appendix B. 
 
 

 
Figure 4: Overview of the selected corridor
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Table 1: Summary statistics for selected corridors 
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Quantifying and Visualizing Transit Performance 
In addition to the corridor selection and in-person data collection process, a pipeline for ingesting and 
analyzing GTFS-RT data from the OneBusAway API has been developed and put in place for determining 
transit performance as reported by the KCM AVL systems. Using this pipeline, active bus coordinate and 
schedule adherence data has been scraped and stored to an Amazon Web Services (AWS) server since 
September 2020. Efficient methods to aggregate tracked bus locations and assign them to roadway segments 
have also been developed, and delays have been quantified in terms of schedule deviation and ratio of 
median to free-flow speeds, among other metrics. A web based visualization tool has been developed to 
display this data, and is currently updated daily with aggregated performance metrics from this database. 
In this section we detail the process by which GTFS-RT data was collected and analyzed, following the 
general steps outlined in Figure 5. 

 
Figure 5: Overview of the framework proposed for measuring and classifying transit delays 

through GTFS-RT data. 
 
 

Collect API Data 

The key variables that are extracted from active trips in the GTFS-RT system are: 
● Trip ID 
● Vehicle ID 
● Last known GPS Coordinates 
● Closest Stop 
● Schedule Deviation 
● Coordinate Update Timestamp 

 
The only variable added to the data as it is stored is: 

● Data Collection Timestamp 
 
Several API endpoints are available in the OneBusAway API, and each provides a unique look at the state 
of the system. For example, certain endpoints provide static, up-to-date schedule data such as schedule-for-
stop or route-ids-for-agency. Others provide location data such as trip-for-vehicle or trips-for-location. The 
endpoint used in this study is the vehicles-for-agency endpoint, which provides a set of all vehicles in the 
KCM system, as well as the location and trip information for those which are currently active and traversing 
a route. The variables gathered from this endpoint, and a high-level overview of the GTFS-RT data 
collection pipeline is shown in Figure 6.  
 



14 

Queries are made at the highest resolution feasible; different buses may update the API at different 
frequencies, and the system itself may only update every so often. The higher frequency that the data is 
collected, the more precisely delays can be quantified and located. This of course comes at heavier 
computational costs during the analysis, and more calls to the API. We chose to query the API at 10-second 
intervals, from 6am to 9pm each day. 

 
Figure 6: Input and output structure for data collection used with the “vehicles-for-agency” 

endpoint of the OneBusAway API. All active vehicles are queried at 10 second intervals, 
timestamped, and added to a SQL database. The timestamp parameter is added to the GTFS-RT 
response when it is added to the database, and is different from the time corresponding to the last 

coordinate update. 
 

Quantify Bus Metrics and Locate their Positions 

Once bus trip updates have been recorded during collection and stored in the database, performance metrics 
are calculated between consecutively timestamped trip IDs for each unique day in the data. Thus, a 
particular measurement for a performance metric does not necessarily represent a point-observation, but a 
period of time between tracked locations. For the sake of analysis, we treat these measurements as point-
observations and assign them the coordinates of the latter of the two tracked locations. The following 
performance metrics are calculated for every trip in the GTFS-RT data: 
 

● Speed at bus position j consecutive to position i was calculated using the trip distance (TD) and 
location timestamp (T) variables from GTFS-RT: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗 (𝑚𝑚/𝑠𝑠) =  
𝑇𝑇𝑇𝑇𝑗𝑗 − 𝑇𝑇𝑇𝑇𝑖𝑖
𝑇𝑇𝑗𝑗 − 𝑇𝑇𝑖𝑖

 

 
● Pace is then calculated as the inverse of speed to provide a more direct measure of delay incurred 

on a given segment: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑗𝑗  (𝑠𝑠/𝑚𝑚) =  
1

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑗𝑗
 

 
● Delay is determined using the schedule deviation (SD) variable that is available for all buses 

broadcasting real-time arrival information, and is defined as a cumulative measure of all delays and 
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speedups experienced by a vehicle during a given trip. In other words, the schedule deviation states 
how far ahead, or behind schedule a bus currently is. Therefore, we identify delay occurrences as 
locations where there is a change in the value for schedule deviation between consecutive locations: 

 
𝑇𝑇𝑆𝑆𝐷𝐷𝑃𝑃𝐷𝐷𝑗𝑗 (𝑠𝑠𝑆𝑆𝑃𝑃) =  𝑆𝑆𝑇𝑇𝑗𝑗 − 𝑆𝑆𝑇𝑇𝑖𝑖  

 
It is important to note that schedule deviation can be negative (ahead of schedule) or positive 
(behind schedule). Any decrease in schedule deviation is treated as a negative delay, i.e. the bus 
sped up due to lack of congestion or other factors. Any increase in schedule deviation is treated as 
a positive delay, i.e. the bus slowed down due to delaying factors (Figure 7). 

 
Figure 7: The process of determining instances of delay from the cumulative “schedule deviation” 

measure in GTFS-RT. 
 

Assign Segments and Aggregate Metrics 

To analyze bus performance at the street segment level, we utilized the TIGER road shapefiles provided by 
the American Community Survey (ACS) as a link representation of the Seattle-Bellevue street network. 
These roadway shapefiles must first be decomposed into individual line segments, then re-joined into 
suitable streets. This pre-processing step is performed using GIS software to “explode” the shapefile into 
segments at every line intersection, then rejoin segments that are below a certain length threshold with their 
neighbors. When matching bus location data to these segments, the processing time can be significantly 
reduced if it is already known which segments a particular route will traverse. To this end, a route-to-
segment mapping is also created using GIS software by buffering a shapefile containing all routes in the 
KCM network, then performing a spatial join with the “contains” predicate on our street segments dataset. 
This attaches route information to each segment, and allows us to greatly reduce the number of potential 
candidates when matching bus locations to street segments. 
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After the OneBusAwayAPI data is processed to determine all instances of tracked performance metrics, 
and each metric has been assigned a location based on the bus location of its second timestamp, these 
observations are overlaid with street segments and nearest-neighbor matching is used to assign each 
observation to the closest street segment. To facilitate this, a Ball-Tree spatial index and the aforementioned 
route-to-segment mapping are used to speed up processing time. The resulting dataset contains one row for 
each consecutively tracked bus location, with identifiers for the trip, route, vehicle, and roadway segment 
in question, as well as performance metrics calculated from the previous location to the current. These 
observations are then aggregated at the segment-level for analysis of the network as a whole. Aggregating 
all observations on a segment allows for analyzing the performance of each segment regardless of transit 
routes going through that segment. 
 
Interactive Visualization 

To interactively examine descriptive results of this collection and aggregation process, a visualization tool, 
called TransitVis, has been developed which is capable of displaying metrics for all roadway segments in 
the network for the most recently collected day’s data. Currently, the metrics for each segment calculated 
from the database are summarized once daily, and uploaded to the site. The user interface is hosted at 
TransitVis.com (under active development), and a snapshot of that is shown in Figure 8. 
 

 
Figure 8: User interface for TransitVis, the developed tool for online interactive visualization. 

 
The TransitVis tool provides interactive ways for users to choose the metric displayed, as well as filter the 
data by route and time period, and change parameters related to the visualization scale for coloring roadway 
segments. Selecting a roadway segment on the map provides detailed information about that segment, such 
as the name of the street, the metric value, and the time that the segment was last updated. The user may 
interact through panning and zooming on the map, and perform transformations on the data and 
visualization through a set of widgets in the bottom right corner of the display (Figure 9). 

This tool enables the user to explore the network for segments with uncharacteristically high delays by 
observing their performance metric of interest on a map, or to examine the details of a suspected route, 
corridor, or segment for more information on its delays or the delays of its neighboring segments. 

https://www.transitvis.com/
https://www.transitvis.com/
https://www.transitvis.com/
https://www.transitvis.com/
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Figure 9: Widgets available for adjusting the data shown in the TransitVis tool, and the 

visualization parameters. Adaptive scale allows metrics with the same units to use different bins. 
 
 
Descriptive Delay Analysis 

In addition to the one-day summary statistics provided in the visualization tool, a more robust analysis of 
the ingested GTFS-RT data was performed based on a full month of data collected during March 2021.  

As mentioned previously, API queries were made starting at 6AM, and ending at 7PM. To obtain 
information on only the active vehicles, trip statuses listed as “canceled”, or trips with a null identifier were 
removed. Additionally, any active trips without posted GPS coordinates were removed, on the assumption 
that these vehicles were not equipped with functioning real-time tracking. After preliminary cleaning, this 
dataset consisted of ~8,400,000 tracked locations belonging to 1,314 unique vehicle ids across 12,308 street 
segments. Approximately 50% of tracked delays/speedups (places where there was a change in schedule 
deviation) occurred at a transit stop. Summary statistics are provided for all delays and collection periods 
in Figure 10. 

Spatial distributions of each performance metric are shown in Figures 11-14. In general, downtown areas 
create higher delays and perform worse than highway segments (e.g. I5, I90). An exception to this is the 
SR520 bridge, for which observed performance metrics were poor. The SR520 bridge has HOV/transit 
lanes and is tolled; however, there are several on- and off-ramps at the west end of the bridge. The segment 
representing SR520 is also fairly large in the street network shapefile, and so delays could accumulate at 
this location, showing a low performance for the entire bridge. When it comes to schedule deviation, 
highway segments deviate further from the mean and are less predictable than other segments. From a 
network-wide perspective, areas of low performance generally occur as clusters of streets rather than 
corridors. This is perhaps embodied best by Figure 14, which shows the ratio of median to free flow speeds 
for all segments. That being said, Figure 13, which shows the pace of buses traversing network segments, 
is slightly less noisy than other metrics and reveals some key locations where transit performance could be 
improved relative to nearby segments. 
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Figure 10: Network-wide univariate distributions of performance metrics based on data collected 

during March 2021. 
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Figure 11: Median transit delays (sec) for all segments in the network. 

 

 
Figure 12: Median transit speeds (mph) for all segments in the network. 

 



20 

 
Figure 13: Median pace (sec/mi) for all segments in the network. 

 

 
Figure 14: Transit performance (median/freeflow speed) for all segments in the network. 

 
Figures 15-19 display the pace of roadway segments near selected study corridors. In most cases, the 
corridors capture the worst performing segments in their respective regions. In the case of the downtown 
corridors (Figure 15), all corridors show poor overall performance; this is consistent with the surrounding 
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streets, and most segments in the downtown area fall above the network median pace, as would be expected. 
The Fremont corridor (Figure 16) is perhaps the only corridor that could be changed in future studies by 
aligning with Northwest Market Street that has a slower pace in the surrounding areas. 
 

 
Figure 15: Segment pace for downtown study corridors and surrounding streets. 

 

 
Figure 16: Segment pace for Fremont study corridor and surrounding streets. 
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Figure 17: Segment pace for University District study corridors and surrounding streets. 

 

 
Figure 18: Segment pace for Downtown Bellevue study corridor and surrounding streets. 
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Figure 19: Segment pace for South Seattle study corridor and surrounding streets. 

Video Data Collection 
One of the objectives of this project was to collect real-world data on instances of interference, as well as 
bus arrivals and departures at bus stops, to locate sources of delay in the selected transit corridors. The 
original plan was to achieve these ends through video data from bus-mounted cameras on KCM buses. 

Most KCM buses are equipped with multiple cameras facing different directions. We received three video 
samples from KCM (averaging 20 minutes each) for different times of day and weather conditions to 
explore the feasibility of using video data. A screenshot of the user interface of the KCM video software 
can be seen in Figures 20-21. Double-clicking on a particular camera feed will expand it to the whole screen 
(see Figure 22). 

Video data has multiple benefits and can effectively be used for identifying interference instances. Some 
of the benefits of using video data are:  

1) Video data reducers can pause or play the video at any given moment and have the ability to rewind 
videos to review something they missed; 

2) Access to multiple cameras with various directions allows seeing an interference incident from 
different angles. The list of cameras includes forward facing, front door, exit/rear door, mid door 
(if available), curbside view for front and rear, side facing view for front and rear, inside front to 
rear, inside mid to rear, etc.; 

3) Ability to zoom in on a particular camera by double clicking its box to see an interference or event 
in more detail. ; 

4) Field data collection would have been avoided; 
5) The cameras function well in rainy weather and darker conditions with little to no performance 

drop compared to normal conditions. 
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A data request was made to KCM for obtaining several weeks of video data from a number of buses going 
through the selected corridors for the AM and PM peak periods (i.e., 7:30-9:00 AM & 3:30-6:00 PM). In 
order to process the request and provide the requested videos, KCM needed vehicle IDs and time windows. 
To address that, we developed a method for identifying the start and end time of vehicle IDs traversing 
study corridors using the GTFS-RT data. This was accomplished by matching tracked vehicle locations 
recorded in the GTFS-RT database to roadway segments in the street network, and filtering out locations 
that were assigned to segments not in a study corridor. After this, tracked locations were grouped by trip 
ID and date to get unique corridor traversals. The first and last tracked locations were then the start and end 
time for a particular vehicle ID traversing a given corridor.  

Covering all buses that go through the selected corridors in peak periods would result in around 550 
different buses and 24 hours of video, which would have been hard for KCM to extract. To reduce the size 
of the data request, we decided to request a sample of corridor traversals in a particular period of time. We 
tested two sampling methods: 1) choose the top 10 vehicles that traverse our corridors and request video 
from those buses during the time period in question; 2) choose 10 randomly selected vehicles (which could 
traverse areas outside our selected corridors), and extract whatever number of hours of video footage that 
relates to our corridors across the time period.  

On average, we found that Method 1 would give us around 2 hours of video data in our corridors for the 
two weeks; while Method 2 would give us around 1 hour of data. However, Method 2 would be easier for 
KCM to handle, because it did not involve any processing, and all they needed to do was to pull the hard 
drives installed on buses and transfer the video footage. 

Ultimately, the video data collection was disregarded since due to the pandemic KCM was experiencing 
some staff shortage and was not able to fulfill our data request. Instead, we collected data through field 
observations as explained in the following section. 

 
Figure 20: Passengers getting off the bus at a stop in Downtown Seattle in rainy weather 
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Figure 21: Bus coming to a full stop and waiting for a pedestrian crossing the street at a signed 

crosswalk on University Way NE 
 

 
Figure 22: Expanded Footage from the forward facing camera showing the same scene as Figure 21 
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Field Data Collection 
There are two types of data that we plan to collect from buses in the field to better understand sources of 
delay: 1) interference by other modes with buses (timestamp, interfering mode, duration, etc.), and 2) bus 
arrival and departure information (bus arrival timestamp, door open time, whether bike rack was used or 
not, whether flip-out wheelchair ramp was used or not, bus departure timestamp, etc.). This data will be 
used to 1) model interference and delay by establishing a relation between modes of interference attributed 
to delay and identifying significant variables, and 2) understand what happens at individual bus stops that 
lead to additional delay for buses, such as the use of bike racks and flip-out ramps. The bus arrival/departure 
data could also add additional value as they could be used to validate the accuracy of GTFS-RT data by 
comparing its timestamps to the timestamps collected in the field.  
 
Variables of interest for the data collection are listed as follows:  

● Interference information: 
○ Interference start time (moment when another mode interferes with the bus’s movement by 

reducing its speed or making it come to a stop) 
○ Interference stop time (moment when the other mode stops the interference) 
○ Interfering mode (e.g., pedestrian, ridehailing vehicle, delivery vehicle, etc.) 
○ Location of interference (latitude and longitude) 
○ Location category: 1) at a bus stop; 2) in a dedicated bus lane; 3) in a driving lane; and 4) 

other 
○ Description of interference 
○ Bus ID (four-digit number seen from all sides of the bus) 

 
● Bus arrival and departure information: 

○ Time of bus arrival at a bus stop (moment when the bus comes to a full halt at the bus stop) 
○ Time of door opening (first door that opens) 
○ Time of passenger flow stop (time when last passenger gets in or out) 
○ Time of door closing (last door that closes) 
○ Time of bus departure (moment when the bus starts accelerating to leave the bus stop) 
○ Was the flip-out access ramp deployed? 
○ How many people used the flip-out access ramp at the bus stop? 
○ Was the bike rack used during the stop or not? 
○ Did the use of the bike rack cause any delay for the bus? 
○ Delay (in seconds) that the use of the bike rack caused. 
○ Bus ID (four-digit number seen from all sides of the bus) 

 
We established a framework to capture all variables of interest efficiently and cost effectively through field 
observations.  

Two options were studied for the field data collection: 1) ride check, in which research assistants (RAs) 
board the bus and log information about bus operation from inside the vehicle, and 2) point check, in which 
data is collected by RAs standing on the sidewalk either at a bus stop or at a certain point along a transit 
corridor. Ride check data is more similar to video data reduction, because a field observer will stay inside 
the vehicle for an extended period of time, observing interferences and other desired variables (just like 
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how the cameras also move with the bus). In the point check data, unlike the ride check and video data, the 
field observer collects data from a single point while different buses approach and leave. In order to cover 
the whole corridor through the point check method, multiple observers are required across the corridor, 
covering the entire length and avoiding blind spots which might lead to missing an interference. The pros 
and cons for each method are mentioned in the following. 
 
Ride Check 

● Advantages: 
○ Observers can capture an interference regardless of where in the transit corridor it happens 

since they are moving with the bus (i.e., not having blind spots). 
● Disadvantages: 

○ One disadvantage, compared to video data collection, is that there are not multiple cameras 
facing different directions; to get that same view of the surroundings and all doors there 
might have been a need for two data collectors on the bus.  

○ Due to the pandemic and the lack of vaccination at the time of the data collection it would 
not have been the safest option since it was indoors. 

○ We calculated the approximate number of reports per hour from the route data collection 
method and it was found that it is lower compared to the point data collection meaning that 
it was less cost-effective. 

 
Point Check 

● Advantages: 
○ More cost effective per our calculations. 
○ Students get more familiar with the point they are assigned to over time leading to better 

efficiency in data collection. 
○ Standing in outdoor space and more than six feet away from crowds to minimize risk of 

COVID-19. 
○ More reliable data due to having the field observers’ locations in advance. Field observers 

were assigned to a particular bus stop or location along the corridor in advance and had to 
stay there for the whole duration of their shift; thus, their collected data for the whole shift 
was linked to one bus stop only. For route data collection, we would have relied on their 
phones’ GPS to understand which stop they were collecting data from when the bus arrived 
there, which was less reliable. 

● Disadvantages: 
○ No matter how hard we try, there still may not be complete coverage of the corridor 

compared to the route data collection option. 
 
Due to the pandemic and to avoid any health risk posed to the data collectors, we proceeded with the point 
check method for field data collection.  
 
Field Observer Recruitment  
A job description was posted on the UW’s job posting website and was also pushed through UW Civil and 
Environmental Engineering (CEE) undergraduate mailing list to hire RAs  for field data collection. A total 
of nine RAs were hired for the data collection. A data collection protocol was sent out to students and they 
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were asked to attend an online training session to prepare for the field work. To make sure the planned work 
met all health and safety requirements associated with the COVID-19 restrictions, a fieldwork health and 
safety plan was submitted to and approved by the CEE department.  

To identify the optimal point check locations and number of posts needed to cover each corridor, two 
graduate RAs walked and investigated all the selected corridors prior to assigning posts to field data 
collectors. Based on the length and typology of corridors, the number of people needed for field data 
collection ranged between 4 to 10 students per corridor. 
 
Data collection tool development 
To make data collection more efficient and to minimize the errors associated with the process, we used an 
online data collection tool, called KoboToolbox, which data collectors could access through their 
smartphones. KoboToolbox has three main features: 

● The form builder is utilized to design forms using an intuitive UI, allowing more than 20 different 
question types, such as multiple choice, select all that apply, number answer, text answer, date and 
time stamp, location, image, etc. The form also has skip logic for skipping certain questions based 
on the answer provided for previous questions as well as validation for answers. Finally, it allows 
importing and exporting of XLS forms to easily share and edit a form with other XLS-based 
applications. 

● The data collection tool uses a web-based application called Enketo which works on any modern 
browser on a phone or tablet to collect data online and offline. Namely, the OS of the phone does 
not matter, and the app is supported on both Android and iOS smartphones with Safari or Chrome. 
The data is synchronized via SSL to make sure it cannot be read by a third party. Data is available 
immediately after it is collected.  

● The data management and analysis system which allows exporting of data at any time in formats 
such as XLSX, CSV, ZIP (for media), etc. and accessing data through their API. It also has features 
for creating summary reports with graphs and tables and to visualize collected data on a map (we 
did not utilize this feature as we did our post-processing in Python and R). 

Our data collection form was designed in a simple fashion that would follow real-world events in the order 
that is expected to occur. Figure 23 shows the first page once the app is opened. The form asks for the bus 
ID or vehicle ID at the very first step. This is a four-digit number which can be clearly seen from the front, 
rear, and sides of all buses. The four-digit ID uniquely identifies the bus. If the data collector does not see 
the vehicle ID at first glance, they can attend to the other fields first and return to the vehicle ID field as the 
bus approaches them. Next, the form allows the user to choose between reporting 1) an interference, 2) an 
arrival at a bus stop, and 3) both (i.e., if an interference happens during the bus arrival or departure at a bus 
stop or when the bus is waiting at a stop. This option is enabled in order to mark both events concurrently). 
Figures 24(a) and 24(b) respectively show the forms when the user selects “Interference” (i.e., interference 
form) or “Bus Arrival” events (i.e., bus arrival form). The developed tool is available here.  

Details of the bus arrival and interference forms, as well as another form used by the RAs to report on their 
shifts (called shifts form) are provided in Appendix C. Information regarding the observation posts and 
locations is provided in Appendix D. 
 
 
 

https://ee.kobotoolbox.org/x/cxcUNH0Y
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Figure 23: Point data collector form first page 

 
Summary statistics 

The data collection was done in 12 2.5-hour shifts (9 AM peak and 3 PM peak shifts) between March 3rd 
to19th, 2021. Out of our 10 transit corridors, we only collected data from eight of them during the three 
weeks of data collection. The two corridors from which data was not collected are 2nd Avenue between 
Pike Street and James Street, and Northwest Market/Leary from 24th Avenue to 15th Avenue Northwest. 
Table 2 has information on the shifts, dates, and the corridors that the data was collected from.  

After the data was collected from the field, we cleaned and organized it and created some summary reports. 
The cleaning steps included reviewing the descriptions of the interference instances, ensuring it matches 
the selected interfering mode, and correcting the selected mode if needed. We also checked the bus IDs to 
ensure that the interference instances are unique and not repeated. There was only one instance where the 
same interference was observed by two different RAs, in which case the two observations were consolidated 
into one.  

Figures 25-30 show some of the summary statistics. A total of 1639 reports were submitted, with 1609 
being bus arrival reports at stops, 22 from interferences with other modes, and 8 under the “both” category 
meaning that an interference happened at the same time the bus arrived at the stop. Figure 25 shows the 
number of reports separated by type of report for each transit corridor, and Figure 26 shows the same data 
in relative ratios. 
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(a) 

 
(b) 

Figure 24: Point Data Collector Forms for (a) Bus arrival and (b) Interference events 
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Table 2: Dates and periods that data was collected from the corridors 

 
 
 

Figure 27 shows the frequency of all reports and bus arrival reports submitted per hour, frequency of unique 
bus IDs traversing the corridor per hour, and frequency of unique interferences per hour per corridor. 
Figures 28 and 29 use the same data to show only the frequency of unique bus traversals per hour per 
corridor and frequency of unique interferences per hour per corridor, respectively. Corridors with the 
highest amounts of bus traversals had the lowest amount of interference (e.g., Pacific St. corridor and 
Westlake Ave corridor), whereas those with lower bus traversals generally showed a higher frequency of 
interference (e.g., Denny Way corridor and 9th Ave corridor). 

Figure 30 shows the frequency of interferences by mode per hour per corridor. Pedestrians have the highest 
frequency of interference; with some of those caused by passengers who boarded or alighted the bus. 
Construction, transit, passenger vehicles, and service and delivery vehicles also seem to have caused some 
interference; however, no instance of a ridehailing vehicle interference was observed. Table 8 in Appendix 
E shows a breakdown of interferences by mode for each corridor along with the description of each 
interference. The average number of interferences per shift (per 2.5 hours) for morning and evening periods 
were about 2.1 and 3.7, respectively, meaning that the rate of interference in the evening is about two times 
that in the morning. 
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Figure 25: Number of reports separated by bus arrival, interference, and both, per corridor. 

 
 

 
Figure 26: Portion of reports by bus arrival, interference, and both, per corridor. 
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Figure 27: Frequency of reports submitted per hour, bus arrival reports, unique bus IDs traversing 

the corridor, and unique interferences per corridor (sorted by unique bus IDs from high to low). 
 

 
Figure 28: Frequency of unique interferences per corridor per hour (sorted by unique bus IDs). 
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Figure 29: Frequency of unique bus ID traversal per corridor per hour (sorted by unique bus IDs). 
 
 

 
Figure 30: Frequency of different interferences by mode per corridor. 
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Interference Modeling 
Once data collection was performed, and instances of interference were identified from the collected field 
data, the scraped GTFS-RT data was analyzed to determine whether interference could be identified in it 
directly. Out of the 30 instances of interference, transit was the interfering mode in three of the cases, and 
those were excluded for modeling purposes, leaving 27 instances. 

One goal of this analysis was to ensure that a connection between in-person data collection and tracked 
vehicle locations could be rectified despite the somewhat low (~30 second interval) time resolution of the 
GTFS-RT data and potential loss of precision between reality and the AVL data. In this endeavor, we were 
able to match all tracked interference that had corresponding real-time data, and so each observation’s 
location, route, and vehicle ID were aligned with the location and identifiers found in the GTFS-RT data. 
In some cases, where the interference affected a vehicle not equipped with real-time tracking technology, 
the interference could not be located in the GTFS-RT data. Out of the 27 instances of interference, nine 
were not matched to real-time data, leaving 18 instances. The other objective of this analysis was to train a 
model capable of identifying bus interference using only the GTFS-RT data, by using the in-person data 
collection as ground truth validation data. This work is still in progress and requires a larger volume of 
ground truth data.  

Preliminary analysis revealed that there is not a substantial effect shown in the GTFS-RT data when a bus 
is interfered with; however, there were not a lot of interference observations in the collected field data. So, 
it remains to be seen whether the lack of an identifiable effect is due to the lack of ground truth data, lack 
of precision in the AVL collection system, or the relatively low impact of an interference when compared 
to the effects of general traffic congestion, signals, and other roadway conditions. A follow-up linear 
regression model was generated to determine the extent to which roadway characteristics can predict 
segment performance, with mildly predictive results. 

 
Effects of Interference Observed in Real-Time Performance Data 

To determine whether the identified interferences created a noticeable delay for vehicles traversing the 
study corridor, distributions of vehicle speed, schedule deviation, and travel time for the delayed vehicle 
traversing the study corridor within +/-2 minutes of the point of interference were generated and presented 
in Figures 31-33. The distributions show both the median performance metric during the specified time 
period (blue bar) as well as the value of the metric at the point in time where the interference occurred (red 
bar). If the interference can be identified using the GTFS-RT data, we would expect the red bar to be 
consistently to the left of the blue bar in Figure 31 (the vehicle speed metric) and to the right of the blue 
bar in Figure 32-33 (the schedule deviation and travel time metrics); indicating a negative influence on the 
vehicle’s performance at the point of interference. However, that is not what is observed in the figures. 
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Figure 31: Effects of interference on vehicle speed. Some interferences were not matched to a 

vehicle with real-time tracking. 
 

 

 
Figure 32: Distribution of travel times for all vehicles traversing the study corridors during the 

days of field data collection. Only corridors with recorded instances of field interference are shown. 
Some interferences were not matched to a vehicle with real-time tracking. 
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Figure 33: Effects of interference on vehicle schedule deviation. Some interferences were not 

matched to a vehicle with real-time tracking. 
 

 
In addition to the performance distributions for individual vehicles, we also aggregated the interferences to 
see whether across multiple interferences and transit vehicles, there would be a discontinuity in the time-
series data for the schedule deviation metric. This would indicate that an unplanned delay occurred, given 
that schedule deviation should account for congestion or other predictable effects through schedule padding. 
The results of this are shown in Figure 34. Each line represents the trend in schedule deviation for a vehicle 
+/-2 minutes from the point of interference. The black line indicates a LOESS curve fit to all of the 
combined trajectories. The left portion of the curve is fit to data from before the interference, and the right 
portion is fit to data after the interference. If the instances of interference had an impact on the GTFS-RT 
data, it would be expected that the curve would shift upward at its discontinuity, indicating an increase in 
schedule deviation as the vehicles fall behind schedule, which is not observed in the preliminary data. 
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Figure 34: Trajectories of schedule deviation for all interfered vehicles +/-2 minutes from the point 
of interference. Black lines show fitted LOESS curves pre- and post-interference. The zero value on 

the x-axis represents the time of the tracked location of a vehicle immediately prior to its 
interference. 

 
 
Exploratory Modeling of Segment Performance with Urban Characteristics 

We also built models to determine whether the performance of transit segments could be predicted using 
urban characteristics of the segment and its surrounding land use. Bus route, stop, intersection, and roadway 
segment locations and characteristics were accessed through the City of Seattle Open Data Portal. This 
resource provides shapefiles and other datasets that can be spatially linked to segment performance using 
GIS software.  

The roadway segments which form the most disaggregate units of analysis for this work were drawn from 
the “Seattle Streets” dataset, which can be linked to other available datasets such as Average Weekday 
Daily Traffic (AWDT) and existing bike facilities using a shared “compkey” identifier. Each segment in 
the dataset is approximately one block long and covers all lanes traveling in one direction of a given 
roadway. Due to limited availability of roadway characteristic data, only segments in Seattle and its 
immediate vicinity were analyzed. However, these models can be easily extended to other areas if additional 
roadway data for them is available. 

A mix of continuous and categorical variables were used in a linear regression model, attempting to predict 
the performance of each transit segment. Performance was quantified as the ratio of median to 95th 
percentile (free flow) speeds as observed across one month of GTFS-RT data. To model categorical 
variables, a reference class is identified and the effects of the other classes are measured with respect to that 
class. In Table 3, the reference class for each categorical variable is the first class listed. All variable data 
was gathered from the City of Seattle’s Open Data Portal.  
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Table 3: Urban Characteristics 
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Continuous variables (both dependent and independent) were examined for outliers (Figure 35) and 
pairwise scatterplots were constructed for each combination of variables to look for cases of strong 
multicollinearity (Figure 36). The presence of extreme outliers was not found; however, we observed a 
relationship between street width and AWDT, which makes sense as streets with more lanes naturally 
support larger traffic flows and built in areas with more traffic. 
 

 
Figure 35: Checking for outlier segments across continuous independent variables and the 

dependent variable. 
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Figure 36: Checking for correlation between independent variables. 

 
 
In total, 1,878 segments were analyzed, and the results of a regression on their characteristics are shown in 
Table 4. Ordinary Least Squares (OLS) was used to fit the linear regression, and a number of input variables 
were found to be significant, such as street type, transit description, bike facility type, speed limit and 
AWDT. Perhaps most interesting is the finding that in-street bike facilities increase the performance of a 
segment relative to no facility. However, the existence of a shared facility was not a statistically significant 
detriment to transit performance. Overall, with an adjusted R-squared value of 0.126, the model based on 
urban characteristics was found to be only mildly predictive of the performance for a given roadway 
segment.  
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Table 4: OLS Analysis Results (N = 1878, Adjusted R-Squared = .126) 

 
 

Next Steps 
We have thus far put together a framework for screening and analyzing transit delays on segments in the 
transit network, but found little overlap with preliminary interference field data collection. This may be due 
to depressed levels of transportation activity during the COVID-19 pandemic. Given the current unstable 
condition of travel choices and city traffic (and thus interferences), we decided to pause the field data 
collection until late Summer or early Fall 2021. As businesses and transit services continue to reopen, there 
will likely be an increase in the amount of transit interference experienced between buses and other roadway 
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users, which will potentially allow for the gathering of more ground truth validation data. Over a larger 
dataset, we may see the methods outlined in this report produce more consistent coordination between 
transit delays in the GTFS-RT and field data collection. We plan to resume field data collection in late 
summer or early Fall of 2021. The GTFS-RT data scraping will continue daily, and summarized in the 
developed interactive visualization tool. 
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Appendix A: Details of Crowdsourced Survey Data 
This section discusses the results of our survey and how we performed data cleaning to achieve those results. 
The four questions of the survey were: 

● Where did the observed interference occur? (e.g. 3rd St between Virginia and Yesler) 
● Which bus routes were affected by this interference? (e.g. 42, 71, RapidRide E) 
● What was the primary cause of this interference? 

○ Options: 1) Pedestrians; 2) Bicyclists; 3) Delivery Trucks/Commercial Vehicles; 4) 
Passenger Vehicles; 5) Ridehailing Vehicles (Taxis, Lyft, Uber, etc.) 

● What time of day did the interference occur? 
 
The survey received 78 responses. The most reported cause of interference was overwhelmingly passenger 
vehicles, with ridehailing services and other being the next most common responses. This could in part be 
a result of respondents not being able to distinguish between TNCs and private vehicles. It may also be a 
result of misconstruing “interference” to simply mean “traffic”. Figure 37 shows the results for the causes 
of interference. 
 

 
Figure 37: Causes of interference according to survey respondents. 

Respondents also observed two clear peak periods for transit interference. We see a less severe but slightly 
more sustained morning peak between 6-10AM, with a more intense afternoon peak between approximately 
3-7PM. This coincides fairly well with standard peak hours, suggesting that most interference occurs (or is 
observed to occur) while respondents are commuting. Figure 38 shows a histogram of the interference time 
distribution provided in the survey responses, and Figure 39 illustrates a density estimation for the time of 
interference. 
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Figure 38: Most frequent times of interference according to survey respondents. 

 

Figure 39: Estimated distribution of interference times based on survey responses. 

To identify transit corridors with high interference, we cleaned responses to the first question (i.e., where 
did the observed interference occur?) as follows. We first removed 12 irrelevant or inaccurate responses 
that: (1) was too broad and did not specified a specific location (e.g. U District); (2) was irrelevant (e.g. the 
whole ride, all over the place, etc.); or (3) had an unclear or very long corridor (e.g. 405 North between 
Renton and Newcastle, which is a highway piece longer than 6 miles). After removing these locations, a 
total of 66 valid responses remained. 
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Then, the remaining data was categorized into two groups. The first group included responses specifying a 
single location such as a certain bus stop or an intersection (e.g. “Harbor Ave SW & SW Spokane St”). The 
second group included responses specifying a corridor or block (e.g. “Jefferson St between 3rd Ave and 
Broadway”). Out of the 66 remaining valid entries, 47 were single-location responses and 19 were corridors. 
Responses of the second group were then translated into a pair of two points (the two bounds of the specified 
corridor). All points were written in a standard address format as follows: street address or two crossing 
streets + city + state + zip code.  

The cleaned surveyed locations are plotted in Figure 40. Figure 40(a) shows all responses in the Greater 
Seattle area including a small number of responses in Redmond, Bothell, and White Center. Figure 40(b) 
focuses on areas with the highest number of responses mostly being in Downtown Seattle, South Lake 
Union, and areas in North and Northeast Seattle. Red points represent single-location responses, and yellow 
points represent the two ends of a corridor response, which is shown by a purple line. This data was then 
combined with other data sources to identify the study corridors, which are mentioned in Appendix B. 

The cleaned survey response addresses are listed in Tables 5 and 6. Table 5 presents the responses which 
specified single locations and Table 6 lists the two ends of the responses which specified corridors. 

(a)                                                                         (b) 
Figure 40: (a) All survey responses in the Greater Seattle area; (b) Areas with higher number of 

responses (e.g. Downtown, SLU, North, and Northeast Seattle) 
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Table 5: Cleaned survey results for single-location responses 
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Table 5 (cont’d) 
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Table 6: Cleaned survey results for corridor responses. The two addresses listed for each corridor 
represent the two ends of a suggested corridor in the survey.
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Appendix B: Details of Selected Corridors 
 
Corridor 1: 2nd Avenue, between Pike Street and James Street 

 
Figure 41: Corridor 1 ridership and nearby survey responses. 

 
This downtown corridor is 9 blocks long and serves 
the largest number of transit routes of all proposed 
corridors. A few survey responses reported 
interaction near or within the corridor, and peak hour 
ridership for all routes is around 22,849 people/day. 
PUDO activity is extremely high throughout the 
area. A Google street view of the corridor is 
available here. 
 
 
 
 

Figure 42: Heat map of PUDO activity. Darker areas indicate higher peak hour activity. 

https://goo.gl/maps/EDk1JsdxHrsH4fjv6
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Corridor 2: Pike Street, between 3rd Avenue and 9th Avenue 

 
Figure 43: Corridor 2 ridership and nearby survey responses. 

 
This downtown corridor is 6 blocks long and 
serves routes 10, 11, 47, and 9 among others. 
Peak hour ridership for all routes combined is 
around 22,157 people/day. This corridor has 
many commercial attractions, and captures 
potential transit interactions near the 
convention center. Union street is a similar 
alternative that serves more routes. PUDO 
activity is extremely high throughout the area. 
A Google street view of the corridor is 
available here. 
 
 
 

Figure 44: Heat map of PUDO activity. Darker areas indicate higher peak hour activity.  

https://goo.gl/maps/a8jTYnMeyxMbork18
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Corridor 3: Westlake Avenue, between Denny Way and Mercer Street 

 
Figure 45: Corridor 3 ridership and nearby survey responses. 

 
This South Lake Union corridor is 5 blocks 
long and serves route 40. One survey 
response reported interaction near the 
corridor, and peak hour ridership for all 
routes combined is around 8,893 people/day. 
This corridor has potential for interactions 
with employer-shuttles, as well as the Seattle 
Streetcar. PUDO data reveals higher activity 
to the east near Amazon, but this corridor 
captures the closest transit routes. A Google 
street view of the corridor is available here. 
 
 
 
 

Figure 46: Heat map of PUDO activity. Darker areas indicate higher peak hour activity. 

https://goo.gl/maps/frh3uN1GR6cNjDJJ9
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Corridor 4: E Olive Way, between E Denny Way and E Broadway 

 
Figure 47: Corridor 4 ridership and nearby survey responses. 

 
This Capitol Hill corridor is 6 blocks long 
and serves routes 10, 43, and 8. One 
survey response reported interaction in the 
corridor, and peak hour ridership for all 
routes combined is around 5,163 
people/day. This corridor has potential for 
interaction with nearby commercial 
activity, as well as traffic accessing the 
light rail station on Broadway. A Google 
street view of the corridor is available 
here. 
 
 
 

Figure 48: Heat map of PUDO activity. Darker areas indicate higher peak hour activity. 

https://goo.gl/maps/5ReLAPKsJrQQhLPL8
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Corridor 5: 9th Avenue, between Alder Street and Columbia Street 

 
Figure 49: Corridor 5 ridership and nearby survey responses. 

 
This First Hill corridor is 4 blocks long 
and serves routes 303, 13, 2, 4, 3, 60, 
and 193. Three survey responses 
reported interaction in the corridor, 
with another two responses nearby. 
The peak hour ridership for all routes 
combined is around 9,504 people/day. 
This corridor likely has interactions 
with the nearby medical center. A 
Google street view of the corridor is 
available here. 
 
 
 
 

Figure 50: Heat map of PUDO activity. Darker areas indicate higher peak hour activity. 
  

https://goo.gl/maps/yAkLbtsoSzfQN9aU9
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Corridor 6: University Way, between Campus Parkway and NE 45th Street 

Figure 51: Corridor 6 ridership and nearby survey responses. 
 

This University District corridor is 5 blocks long 
and serves routes 71, 73, 373, and 45. Two survey 
responses reported interaction in the corridor, and 
peak hour ridership for all routes combined is 
around 3,847 people/day. This corridor has a 
large amount of commercial interaction and 
potential interaction with the UW campus/dorms. 
A Google street view of the corridor is available 
here. 
 
 
 
 

Figure 52: Heat map of PUDO activity. Darker areas indicate higher peak hour activity. 

https://goo.gl/maps/ZsdXwcjnN5fxr5iw5
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Corridor 7: NE Pacific Street, between 15th Avenue NE and Montlake Boulevard NE 

 
Figure 53: Corridor 7 ridership and nearby survey responses. 

 
This University District corridor is 
roughly 5 blocks long and serves routes 
41, 48, 71, 78, 542 and many others. 
Two survey responses reported 
interaction in the corridor, and peak hour 
ridership for all routes combined is 
around 16,816 people/day. This corridor 
has some potential for interference with 
traffic accessing the nearby UW 
facilities including the Medical Center. 
A Google street view of the corridor is 
available here. 
 
 
 

Figure 54: Heat map of PUDO activity. Darker areas indicate higher peak hour activity. 

https://goo.gl/maps/Ey3BM4L4XufY9PXN6
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Corridor 8: NW Market Street/Leary Ave, between 24th Avenue NW and 15th Avenue NW 

 
Figure 55: Corridor 8 ridership and nearby survey responses. 

 
This Ballard corridor is 4 blocks long and 
serves route 40, 29, 18, and 17. There were no 
survey responses reporting interaction in the 
corridor, and peak hour ridership for all routes 
combined is around 6,068 people/day. This 
corridor serves as a convergence point to the 
Ballard bridge, and has many commercial 
attractions as well as for potential interaction 
with the nearby medical center. A Google 
street view of the corridor is available here. 
 
 
 

Figure 56: Heat map of PUDO activity. Darker areas indicate higher peak hour activity. 

https://goo.gl/maps/oBm7AyG9ED5KCMh67
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Corridor 9: Rainier Avenue S, between S Bayview Street and MLK Way S 

 
Figure 57: Corridor 9 ridership and nearby survey responses. 

 
This Beacon Hill corridor is 4 blocks long 
and serves routes 106, 14, 7, 48, 8, 987, and 
9. There were no survey responses reporting 
interaction in the corridor, and peak hour 
ridership for all routes combined is around 
12,566 people/day. This corridor has 
potential for interaction with the Mt. Baker 
Transit Center, and there are a number of 
converging routes here. A Google street view 
of the corridor is available here. 
 
 
 
 

Figure 58: Heat map of PUDO activity. Darker areas indicate higher peak hour activity. 
  

https://goo.gl/maps/8YJpCrHrKQN7r4gf8
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Corridor 10: 108th Avenue NE, between NE 4th Street and NE 12th Street 

 
Figure 59: Corridor 10 ridership and nearby survey responses. 

 
This downtown Bellevue corridor is 4 blocks 
long and serves routes 75, 77, 172, and 270 
among many others. There were no survey 
responses reporting interaction in the 
corridor. Peak hour ridership for all routes 
combined is around 10,159 people/day. This 
corridor has potential for interactions with the 
nearby Amazon campus, and Bellevue 
Transit Center. A Google street view of the 
corridor is available here. 
 
 
 
 

Figure 60: Heat map of PUDO activity. Darker areas indicate higher peak hour activity. 
 
 
  

https://goo.gl/maps/rHb2FqHDbPAyNn9m9
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Appendix C: Field Data Collection Forms 
Bus arrival form 

The “Bus Arrival” form starts with questions on: 1) the bus arrival time, 2) door opening time, 3) passenger 
flow stop time, 4) door closing time, and 5) bus departure time. All of these fields collect a timestamp (date 
and time). When the data collector clicks on a field, a window pops up with the current timestamp, as shown 
in Figure 61. This automatic timestamp selection allows faster responses compared to the data collector 
having to type the date and time every time.  

The next question is whether the access ramp was deployed. If a ramp is not deployed, this question can be 
skipped; if the data collector presses “Yes”, an additional field is added to the form, asking for how many 
people used the ramp. 

The next question asks whether the bike rack in front of the bus was used. If the data collector responds 
yes, an additional question is shown asking if the use of the bike rack caused any delay for the bus. What 
is meant by bike rack delay was explained in the data collection protocol and is as follows. A delay caused 
by a bike rack user is defined as a delay that occurs when all other passengers have boarded/alighted the 
bus before the user gets their bike off or puts their bike on. In other words, if all passengers had not yet 
boarded/alighted the bus by the time the bike rack user gets their bike on/off the rack, it means that the bus 
had to wait anyway for other passengers, and so no delay was caused by the bike rack user. If the user 
reports that a delay was caused, another question will be added, which asks roughly how many seconds of 
delay was caused by the bike rack user.  

The next question asks whether the bus stopped at the bus stop, and aims to capture instances when the bus 
does not stop at the bus stop (e.g. because there are no passengers to board or alight at that stop). There is 
only one answer choice for this question which is “Bus did not stop (mark arrival time only)”, and the 
question can be skipped if the bus stops to pick up/drop off passengers. If the bus did not stop, the data 
collectors were only asked to put in the arrival timestamp of the bus, marking the moment when the bus 
passed the bus stop, and leave all other fields (e.g., door open time) empty. This question was included to 
collect data for all buses passing through a corridor, even if they did not stop, so that they can later be used 
to verify GTFS-RT timestamps. 

The next question asks for multiple buses arriving at the same time. This is an additional measure put in 
place in case, at a busy station, two or more buses arrive together and the data collector is not able to submit 
all timestamps for multiple buses simultaneously. In such a case, they would select “Multiple buses arrived 
at the same time”, and leave additional information in the notes sections, such as the other bus vehicle IDs.  

Data collectors were also asked to add notes to provide more context on what was going on at their duty 
post; for example, a delayed movement because the bus wanted to merge into traffic, or a traffic collision 
nearby. 

 

Interference form 

For the interference form, the questions asked are interference start and stop time, location of interference, 
location category, the interfering mode. 
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The interference start time is the timestamp at which the interfering mode starts affecting the bus operation, 
by causing the bus to move slower or come to a full stop. The interference stop time is the timestamp at 
which the bus starts moving away from the location of interference by either starting to move after a 
complete stop or starting to accelerate.  

To record the location of interference, the user can simply click a button and the latitude, longitude, and 
altitude fields get automatically filled through the GPS of the smartphone (see Figure 62). The bus 
interference may be happening up to 200 feet away from where the data collector stands; however, we 
decided that the rough location of the interference would suffice. 

The next field is the location category of where the interference is occurring. The options include the 
following location categories: 

1. At a bus stop: Anywhere alongside the curb within close proximity of a bus stop (or wherever the 
bus turnout and curb transitioning starts/stops). 

2. In a bus only lane: Anywhere in a lane which is dedicated to buses either shown by road signs, 
pavement markings, or separation from the rest of the road.  

3. In a driving lane: Any other travel lane that is not a dedicated bus lane or in the proximity of a bus 
stop. 

4. Other: If the location does not fall within the above categories. In this case, data collectors are 
asked to enter their response in the textbox space which will show after they select this field. 

Next, data collectors are asked to specify what mode(s) interfered with the bus. This question is in the select 
all that apply format which allows selecting multiple modes. The available options are passenger vehicle, 
ridehailing vehicle, bicyclist, scooter rider, pedestrian, service vehicle, small delivery vehicle, large 
delivery vehicle, transit, and construction. Each option was further defined in the data collection protocol 
as follows: 

● Passenger Vehicle: A motor vehicle with the body type sedan, hatchback, minivan, SUV, or other 
similar class, with at least four wheels and comprising no more than eight seats (including the 
driver’s seat), with the main purpose of transporting passengers. 

● Ridehailing/TNC vehicle: A passenger-car-sized vehicle in which a customer hires a driver to take 
them to their destination. This vehicle can be a taxi or a vehicle hailed virtually through an app 
offered by a Transportation Network Company (TNC, e.g. Uber and Lyft).  
For data collection, a ridehailing vehicle was defined as a passenger-car-sized vehicle which is 
either colored/painted with taxi patterns (e.g. yellow/green color with taxi top sign) or has a 
detectable Uber or Lyft sign on the front window, and is picking up or dropping off one or more 
passengers or waiting to do so.  
If a TNC sign is not detectable on the car, but a passenger is seen stepping out/in through the 
backdoor of the vehicle, it can be identified as a ridehailing vehicle. For other cases, data collectors 
were asked to apply their own judgment of the situation to either classify the vehicle as a passenger 
vehicle or  ridehailing vehicle. 

● Bicyclist: Any person riding a privately owned bicycle or a bike-share service (e.g. JUMP). 
● Scooter Rider: Any person riding a privately owned scooter or a scooter-share service (e.g. Lime, 

Wheels, or Link). 
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● Pedestrian: Any person walking on the road in a manner which is obstructing the bus by either 
causing delay in movement, blocking access to right-of-way, or otherwise causing an interference. 

● Service vehicle: A motor vehicle that: 1) bears commercial plates; 2) is primarily used for a 
commercial/other service; and 3) displays the registrant’s name and address permanently affixed 
in characters on both sides of the vehicle; which is used primarily for either the transportation of 
property or for the provision of commercial services (such as plumbing, electrician, waste 
management, etc.).  

● Small Delivery Vehicle: A passenger-car-sized vehicle vehicle (not a truck or a van) which is 
making/receiving deliveries to and from businesses. Examples of these vehicles are those used by 
Instacart, UberEats, DoorDash, etc.  

● Large Delivery Vehicle: Vans or trucks which are used for the transportation of property, goods, 
mail, parcels, and packages. Examples of this include UPS, USPS, FedEx, Amazon Prime vans, 
etc. Other examples could also be unmarked local delivery trucks delivering goods to a supermarket 
(observers were asked to describe the vehicle in the next field).  

● Transit: In a situation where another bus has stopped at the bus stop (either boarding/alighting 
passengers or waiting to merge to traffic), which does not allow the arriving bus to stop at the curb 
and open/close doors to pick up and drop off passengers, the stopped bus is causing delay to the 
arriving bus. This counts as interference from another transit mode. 
Cases where a bus is fully occupying the bus stop, yet the arriving bus is able to pull over to the 
curb and open/close its doors without any delay do not count as interference. 

● Construction: In corridors where there is construction going on, if buses are forced to stop by 
flaggers or other workers with a stop sign, this counts as interference.  

 
Data collectors are asked to provide a brief description of the interference describing how the other mode(s) 
interfered with the bus movement or further description of the interfering mode. They are also allowed to 
upload a photo if they felt like it would help with the description. Once selected, the app would prompt 
their phone’s camera to open and allow them to take and upload a photo of the situation.  

 

Shifts form 
The data collectors would also fill out a “shifts form” (shown in Figure 63) before their shifts start, stating 
their first and last name, the point_id (an ID associated with their post location, which was given to them 
in advance) and stop_id (an ID associated with the stop, if any, they are assigned to, which was given to 
them in advance), date and time of when they filled the form, and whether their shift was for the morning 
or afternoon period. 
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Figure 61: This window pops up when the data collector clicks on a timestamp field. The exact date 
and time of that moment are displayed. The data collector simply has to press the “OK” button in 

the bottom right. The date is shown in a calendar format, and the time is shown in hours and 
minutes. The “seconds” are also recorded and uploaded in the backend even though they are not 

displayed in the user interface. 
 

 
Figure 62: Location example: once you press the “Find my location” button (shaped like a target) it 

automatically loads the latitude, longitude, altitude, and location accuracy. 
 



64 

 
Figure 63: Shifts form asking for first and last name, the point_id and stop_id that the RA was 

assigned to, date and time of when they filled the form, and whether their shift was for the morning 
rush hour or the evening rush hour shift.
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Appendix D: Observer Posts in the Field 
Table 7 has information regarding the field observers’ post locations. The information in the table includes the corridor ID and name, a point ID 
(that we assigned to each post), whether it is a bus stop, the stop name, latitude and longitude, and boundaries that the observer should monitor. 
 
Table 7: Observation posts  
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67 

Appendix E: List of Observed Interference Instances  
Table 8 illustrates a list of all interferences by mode and corridor, accompanied by time and description of interference. 
 
Table 8: List of observed interference instance 
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